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8.2.2 Chvátal Cut Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2.3 Gomory Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2.3.1 Cutting plane algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



CONTENTS 9

8.2.4 Disjunctive cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.5 Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2.6 RLT cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3 Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3.2 Branch-and-Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3.3 Branch-and-Price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.4 Lagrangean relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9 Fundamentals of Nonlinear Programming 137

9.1 Sequential quadratic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2 The structure of GO algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.2.1 Deterministic vs. stochastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.2.2 Algorithmic reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.2.3 Stochastic global phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.2.3.1 Sampling approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.2.3.2 Escaping approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.2.3.3 Mixing sampling and escaping . . . . . . . . . . . . . . . . . . . . . . . . 140

9.2.3.4 Clustering starting points . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.2.4 Deterministic global phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.2.4.1 Fathoming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.2.5 Example of solution by B&S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.3 Variable Neighbourhood Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.4 Spatial Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.4.1 Bounds tightening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.4.1.1 Optimization-based bounds tightening . . . . . . . . . . . . . . . . . . . . 148

9.4.1.2 Feasibility-based bounds tightening . . . . . . . . . . . . . . . . . . . . . 149

9.4.2 Choice of region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.4.3 Convex relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.4.3.1 Reformulation to standard form . . . . . . . . . . . . . . . . . . . . . . . 150

9.4.3.2 Convexification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.4.4 Local solution of the original problem . . . . . . . . . . . . . . . . . . . . . . . . . 153



10 CONTENTS

9.4.4.1 Branching on additional variables . . . . . . . . . . . . . . . . . . . . . . 153

9.4.4.2 Branching on original variables . . . . . . . . . . . . . . . . . . . . . . . . 153

9.4.5 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

IV Advanced Mathematical Programming 155



Part I

Setting the scene

11





Chapter 1

Introduction

The Dean, in his office, is receiving a delegation from a prominent firm, with the aim of promoting a
partnership between the two institutions. The goal is to pair a technical contact from the firm with a
faculty member from the university. The hope is that the two will talk and find something interesting to do
together. This might induce the firm to give some money to the university. It’s a well-tested endeavour,
which invariably ends up generating a “framework contract” (which mentions no money whatsoever),
followed, sometimes, by more substantial contracts.

There’s a physics professor who extols the virtues of a new revolutionary battery for storing energy.
There’s a mathematics professor who entered the now burgeoning field of “data science” and talks about
how it took them two years to “clean” a certain vendor database, after which they could apparently
forecast all future sales to a 1% precision. Another professor from the computer science department says
“me too”. When it’s my turn, as usual, I mentally groan, and brace for impact.

— And now we come to Prof. Liberti, says the Dean with his usual sneer, for he’s heard the commu-
nication failure of my trade too many times for him to be optimistic about it.

— We are listening, Prof. Liberti, says the CTO of the firm, tell us what you do. We’re sure your
research will be very useful to our firm.

— Well, ehm. OK. What I do is called “mathematical programming”. It is a language for describing
and then solving optimization problems.

— Interesting. And tell me, Prof. Liberti: what type of problems do you work on?

— All, really. Any optimization problem can be modelled as a mathematical program.

— Yes, yes of course. But could you tell us exactly what this mathematical thingy can be applied to?

— But this is exactly what I’m trying to say: it is a language, you can use it to describe any problem!
So the application field really does not matter!

This can go on and on, with the industry leader who tries to extract an application field name out
of me (optimal power flow in electrical grids, vehicle routing on road/rail networks, economic planning,
shortest paths in urban settings, facility location in view of minimizing costs, crew rostering in the airline
business, pricing of goods and services based on market demand, mixing and transforming materials,
scheduling of tasks on processors, packing of crates/boxes in variously shaped containers, packing of
said containers in a ship, docking the damn ships in the port, strategic decisions to address market
segmentation, retrieving a clean signal from a noisy one, assigning personnel to different jobs, analysing
data by clustering points, finding the shape of proteins and other molecules, aligning strands of RNA or
DNA so that they match as closely as possible, and many, many more), while I attempt to wiggle out of

13
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having an application label slapped on my work.

Once, when I was younger and more naive, I figured I might as well make the industrialist happy.
During one of these meetings, after a couple of iterations of “what application field do you work on?”
followed by “this is really the wrong question”, I had decided to break the monotony and hopelessness
of the exchange by stating I work on shortest paths in road networks.

— Ah, this is fantastic! came the reply, but unfortunately we don’t do any of that.

This had two adverse effects: the first, and less serious, was that the industrialist did not wish to
work with me. The second, much more damaging, was that I had inadvertently convinced the Dean that
I worked on shortest paths. So he never invited me to any further industry meeting unless the words
“shortest paths” appeared prominently in the firm’s product descriptions.

On the other hand, the “stalling choice” I adopt today, while it keeps me invited to meetings with
the Dean, is no less disastrous with industry leaders. At one point I thought to myself, I’ll try and
collaborate with firms which already employ an operations research team, who’ll be obviously familiar
with mathematical programming. So, additionally to the “Dean scenario”, I sometimes also went to visit
operations research teams in large firms directly. This approach elicited the polite answer “thank you, but
we already know how to do that”, followed by vague promises of future possible scientific collaborations,
never actually pursued.

When the top boss of a large firm, which includes an operations research team internally, asks my Dean
about mathematical programming or operations research, I immediately get called, and the meeting itself
is usually successful. Unfortunately, however, the very need for hiring outside hands instead of relying
on the internal team means that there is a disagreement between the latter and their top boss. I am
henceforth tasked to working with the internal team, which means that I rely on their availability for
data, explanations, and so on; and then I am supposed to deliver what they could not. Quite aside from
the difficulty of producing better results than a whole team of specialists, the real issue is that the internal
team have all the motivations to sabotage the outsider’s work, so it takes fairly advanced diplomatic skills
to actually produce something.

To recap: mathematical programming is a general framework for describing and solving optimization
problems. It is not only theoretical: quite on the contrary, it applies to practically everything. Its
methods are used in engineering, chemistry, biology, mathematics, economics, psychology and even some
social and human sciences. As far as communication is concerned, this polyvalence is its worst weakness.
The generalization and efficiency of some mathematical programming algorithms, on the other hand,
boggle the mind: it seems they can solve every optimization problem under the sun — which is exactly
what they are meant to do.

1.1 Some easy examples

Look at the list of problems below. We start from a bank and its investment strategy. There follows a
refinery wishing to make fuels from a blend of crudes. We then look at pairing jobs to machines in a
production environment. We continue with a firm deciding some expenses to satisfy demands. Then there
is a firm planning production and storage to match sales forecasts. Then a network operator deciding its
data routing on two possible backbone links. Then a firm confronted with hiring and training decisions in
view of demands. Then a hospital rostering nurses. The ninth problem requires decision on three issues:
how to cover a set of customers with facilities, how to deal with a one-time cost, and how to transport
the goods from the built facilities to the customers. Then there is a beer crate packing operation. Lastly,
we look at a protein structure problem.

1. Investments. A bank needs to invest C gazillion dollars, and focuses on two types of investments:
one, imaginatively called (a), guarantees a 15% return, while the other, riskier and called, surprise
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surprise, (b), is set to a 25%. At least one fourth of the budget C must be invested in (a), and
the quantity invested in (b) cannot be more than double the quantity invested in (a). How do we
choose how much to invest in (a) and (b) so that revenue is maximized?

2. Blending. A refinery produces two types of fuel by blending three types of crude. The first type
of fuel requires at most 30% of crude 1 and at least 40% of crude 2, and retails at 5.5EUR per
unit. The second type requires at most 50% of crude 1 and at least 10% of crude 2, and retails
at 4.5EUR. The availability of crude 1 is 3000 units, at a unit cost of 3EUR; for crude 2 we have
2000 units and a unit cost of 6EUR; for crude 3, 4000 and 4EUR. How do we choose the amounts
of crude to blend in the two fuels so as to maximize net profit?

3. Assignment. There are n jobs to be dispatched to m identical machines. The j-th job takes time pj
to complete. Jobs cannot be interrupted and resumed. Each machine can only process one job at
a time. Assign jobs to machines so the whole set of jobs is completed in the shortest possible time.

4. Demands. A small firm needs to obtain a certain number of computational servers on loan. Their
needs change every month: 9 in January, 5 in February, 7 in March, 9 in April. The loan cost
depends on the length: 200EUR for one month, 350 for two, and 450 for three. Plan the needed
loans in the cheapest possible way.

5. Multi-period production. A manufacturing firm needs to plan its activities on a 3-month horizon.
It can produce 110 units at a cost of 300$ each; moreover, if it produces at all in a given month, it
must produce at least 15 units per month. It can also subcontract production of 60 supplementary
units at a cost of 330% each. Storage costs amount to 10$ per unit per month. Sales forecasts for
the next three months are 100, 130, and 150 units. Satisfy the demand at minimum cost.

6. Capacities. A total of n data flows must be routed on one of two possible links between a source
and a target node. The j-th data flow requires cj Mbps to be routed. The capacity of the first
link is 1Mbps; the capacity of the second is 2Mbps. Routing through the second link, however, is
30% more expensive than routing through the first. Minimize the routing cost while respecting link
capacities.

7. Demands, again. A computer service firm estimates the need for service hours over the next five
months as follows: 6000, 7000, 8000, 9500, 11000. Currently, the firm employs 50 consultants: each
works at most 160 hours/month, and is paid 2000EUR/month. To satisfy demand peaks, the firm
must recruit and train new consultants: training takes one month, and 50 hours of supervision
work of an existing consultant. Trainees are paid 1000EUR/month. It was observed that 5% of the
trainees leave the firm for the competition at the end of training. Plan the activites at minimum
cost.

8. Rostering. A hospital needs to roster nurses: each can work 5 consecutive days followed by two
days of rest. The demand for each day of the week (mon-sun) are: 11, 9, 7, 12, 13, 8, 5. Plan the
roster in order to minimize the number of nurses.

9. Covering, set-up costs and transportation. A distribution firm has identified n candidate sites to
build depots. The i-th candidate depot, having given capacity bi, costs fi to build (for i ≤ n).
There are m stores to be supplied, each having a minimum demand dj (for j ≤ n). The cost of
transporting one unit of goods between depot i and store j is cij . Plan openings and transportation
so as to minimize costs.

10. Circle packing. Maximize the number of cylindrical crates of beer (each having 20cm radius) which
can be packed in the carrying area (6m long and 2.5m wide) of a pick-up truck.

11. Molecular distance geometry. A protein with n atoms is examined with a nuclear magnetic resonance
experiment, which determines all and only the distances dij between the pairs of atoms closer than
5Å. Decide the atomic positions that best satisfy these distance data.
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1.2 Real vs. didactical problems

What is the the most prominent common feature of the problems in Sect. 1.1? To a student, they possibly
contribute to raise a state of mind between boredom and despair. To a professor, it is the fact that they
can all be formulated by means of mathematical programming. To a practitioner, the fact that they
are all invented for the purpose of teaching. No real world problem ever presents itself as clearly as the
problems above.

Should any reader of this text ever become a mathematical programming consultant, let her or him
be aware of this fact: on being assigned a task by your client, you shall be given almost no explanation
and a small1 portion of incomprehensible data. The sketch below is sadly much closer to the truth than
one might imagine.

— Dr. Liberti, thank you for visiting the wonderful, magnificent firm I preside. I’ll come straight to
the point: we have a problem we want you to solve.

— Why, certainly sir; what is the problem?

— Exactly this thing we want you to solve.

— I understand you want me to solve the problem; but what is it?

— My dear fellow, if we knew what the problem was, we very possibly wouldn’t need your help! Now
off you go and do your mathemathingy trick or whatever it is that you do, and make us rich! Oh and by
the way we’ll try and withhold any payment for your services with any excuse we deem fit to use. And if
forced by law to actually pay you (God forbid!), we’ll at least delay the payment indefinitely. You won’t
mind, won’t you?

Although it is usually not quite as bad, the “definition” of a problem, in an industrialist’s view, is
very often a partial set of database tables, with many essential columns missing for nondisclosure (or
forgetfulness, or loss) purposes, accompanied by an email reading more or less as follows. These 143
tables are all I found to get you going. I don’t have any further time for you over the next three months. I
don’t know what the tables contain, nor what most of the column labels mean, but I’m almost sure that the
column labeled t5y/3R denotes a complicated function – I forget which one – of the estimated contribution
of the product indexed by the row to our fiscal imposition in 2005, scaled by a 2.2% inflation, well more
or less. Oh, and we couldn’t give you the unit costs or profits, since of course they are confidential. Your
task is to optimize our revenues. You have three days. Best of luck.

Coming back to the common features of the list of problems in Sect. 1.1, the majority concern industry.
This is not by chance: most of the direct practical value provided by mathematical programming is to
technological processes. In the last twenty years, however, the state-of-the-art has advanced enough so
that mathematical programming methods now feature prominently as substeps of complex algorithmic
frameworks designed to address systemic issues. This provides an indirect, though no less important,
value to the real world.

1.3 Solutions of the easy problems

We now provide solutions for all of the problems listed in Sect. 1.1. Some of these solutions are heavily
commented: I am hoping to address many of the issues raised by students when they learn how to model
by mathematical programming.

1Or huge, the net effect is the same.
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1.3.1 Investments

We start with a simplistic bank wishing to invest an unknown, but given, budget C in two types of
investments, (a) and (b). Let xa denote the part of the budget C invested in (a), and xb the same for
(b): their relation is xa + xb = C. The revenue is 1.15xa + 1.25xb. The “technical constraints” require
that xa ≥ 1

4C and xb ≤ 2xa. This might appear to be all: written properly, it looks like the following
formulation.

max
xa,xb

1.15xa + 1.25xb

xa + xb = C
xa ≥ 1

4C
2xa − xb ≥ 0.



1.3.1.1 Missing trivial constraints

Now, it is easy to see that xa = C + 1 and xb = −1 satisfies all the constraints, but what is the meaning
of a negative part of a budget? This should make readers realize we had left out an apparently trivial,
but crucial piece of information: xa ≥ 0 and xb ≥ 0.

Like all programming, mathematical programming is also subject to bugs: in our brains, the “part
of a budget” is obviously nonnegative, but this is a meaning corresponding only to the natural language
description of the problem. When we switch to formal language, anything not explicitly stated is absent:
everything must be laid out explicitly. So the correct formulation is

max
xa,xb

1.15xa + 1.25xb

xa + xb = C
xa ≥ 1

4C
2xa − xb ≥ 0
xa, xb ≥ 0.


We remark that writing xa, xb ≥ 0 (which is formally wrong) is just a short-hand for its correct counterpart
xa ≥ 0 ∧ xb ≥ 0. Variable restrictions can also be stated under the minimum operator:

max
xa,xb≥0

1.15xa + 1.25xb.

1.3.1.2 No numbers in formulations

Something else we draw from computer programming is that good coding practices forbid the use of
numerical constants within the code itself: they should instead appear at the beginning of the coding
section where they are used. Correspondingly, we let ca = 1.15, cb = 1.25, p = 1

4 and d = 2, and rewrite
the formulation as follows:

max
xa,xb≥0

caxa + cbxb

xa + xb = C
xa ≥ pC

dxa − xb ≥ 0.

 (1.1)

1.3.1.3 Formulation generality

Most mathematical writing attempts to set the object of interest in the most general setting. What if we
had n possible investments rather than only two? We should rename our variables x1, . . . , xn, and our
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returns c1, . . . , cn, yielding:
max
x≥0

∑
j≤n

cjxj∑
j≤n

xj = C

x1 ≥ pC
dx1 − x2 ≥ 0,

 (1.2)

a formulation which generalizes Eq. (1.1) since the latter is an instance of Eq. (1.2) where n = 2. In
particular, Eq. (1.1) is the type of formulation that can be an input to a mathematical programming
solver (once C is fixed to some value), since it involves a list of (scalar) variables, and a list of (single-row)
constraints. Such formulations are called flat. On the other hand, Eq. (1.2) involves a variable vector x
(of unspecified length n) with some components xj : it needs to be flattened before it can be passed to a
solver. This usually involves fixing a parameter (in this case n) to a given value (in this case, 2), with
all the consequences this entails on the formulation (see Sect. 2.2.6). Formulations involving parameter
symbols and quantifiers are called structured.

1.3.1.4 Technical constraints

Lastly, there are two reasons why I called the last two constraints “technical”. The first has to do
with the application field: they provide a way to limit the risk of pledging too much money to the
second investment. They would not be readily explained in a different field (whereas the objective
maximizes revenue, something which is common to practically all fields). The second is that they cannot
be generalized with the introduction of the parameter n: they still only concern the first two investments.
Of course, had the problem been described as “the quantity invested in anything different from (a) cannot
be more than double the quantity invested in (a)”, then the corresponding formulation would have been:

max
x≥0

∑
j≤n

cjxj∑
j≤n

xj = C

x1 ≥ pC
∀2 ≤ j ≤ n dx1 − xj ≥ 0,


an even “more structured” formulation than Eq. (1.2) since it also involves a constraint vector (the last
line in the formulation above) including n− 1 single-row constraints.

How far is it reasonable to generalize formulations? It depends on the final goals: in the real world of
production, one is usually confronted with the problem of improving an existing system, so some of the
sizes (e.g. the number of machines) might be fixed, while others (e.g. the demands, which might vary by
day or month) are not.

1.3.2 Blending

We come to the world of oil production: when we refuel our vehicles, we are actually buying a blend
of different crudes with different qualities. In Sect. 2.2.7.7 we shall look at blending operations with a
decision on based on the qualities. Here we look at a simple setting where we have prescriptions on the
fraction of each crude to put in the blend for a particular fuel.

1.3.2.1 Decision variables

Although I did not stress this fact in Sect. 1.3.1, the first (and most critical) decision to make when
modelling a problem is to define the decision variables. In Sect. 1.3.1 it was quite obvious we needed
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to decide the parts of budget xa, xb, so there was no need to reflect on the concept. Here, however, the
natural language description of this problem is sufficiently fuzzy for the issue to deserve some remarks.

• The process of turning a problem description from natural language to formal language is called
modelling. It involves human intelligence. So far, no-one has ever produced a computer program
that is able to automate this task. The difficulty of modelling is that natural language is ambiguous.
The natural language description is usually interpreted in each stakeholder’s cultural context. When
working with a client in the real world, the modelling part might well take the largest part of the
meeting time.

• For most problems arising in a didactical setting, my advice is: start modelling by deciding a
semi-formal meaning for the decision variables; then try and express the objective function and
constraints in terms of these variables. If you cannot, or you obtain impossibly nonlinear expressions,
try adding new variables. If you still fail, go back and choose a different set of decision variables.
One is generally better off modelling structured formulations rather than flat formulations: so,
while you decide the variables, you also have to decide how they are indexed, in what sets these
indices range, and what parameters appear in the formulation.

• For real world problems, where information is painstakingly collected during many meetings with
the client, the first task is to understand what the client has in mind. Usually, the client tries to
describe the whole system in which she works. Naturally, she will give more information about the
parts of the system which, to her mind, are most problematic. On the other hand, it might well
be that the problematic parts are only symptoms of an issue originating because poor decisions are
being taken elsewhere in the system. When you think you have a sufficiently clear picture of the
whole system (meaning the interactions between all the parts, and every entity on which decisions
can be taken), then you can start modelling as sketched above (think of decision variables first).

In the present case, the hint about “what decision variables to consider” is given in the final question
“how do we choose the amounts of crude to blend in the two fuels?” So each choice must refer to crudes
and fuels: as such, we need variables indexed over crudes and over fuels. Let us define the set of C of
crudes, and the set F of fuels, and then decision variables xij indicating the fraction of crude i ∈ C in
fuel j ∈ F . What else does the text of the problem tell us? We know that each fuel j ∈ F has a retail
price, which we shall call rj , and that each crude i ∈ C has an availability in terms of units, which we
shall call ai, and a unit cost, called ci.

1.3.2.2 Parameters

The other numeric information given in the text concerns upper or lower bounds to the amount of crude
in each fuel. Since we are employing decision variables xij to denote this amount, we can generalize these
lower and upper bounds by a set of intervals [xLij , x

U
ij ], which define the ranges xLij ≤ xij ≤ xUij of each

decision variable. Specifically, we have xU11 = 0.3, xL21 = 0.4, xU12 = 0.5 and xL22 = 0.1. Unspecified lower
bounds must be set to 0 and unspecified upper bounds to 1, since xij denotes a fraction. We remark that
xL, xU , r, a are vectors of parameters, which, together with the index sets C,F , will allow us to write a
structured formulation.
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1.3.2.3 Objective function

Let us see whether this choice of decision variables lets us easily express the objective function: the text
says “maximize the net profit”. A net profit is the difference between revenue and cost. We have:

revenue =
∑
j∈F

rj fuelj

cost =
∑
i∈C

ci crudei.

We have not defined decision variables denoting the amounts of produced fuels and crudes used for
production. But these can be written in terms of the decision variables xij as follows:

∀j ∈ F fuelj =
∑
i∈C

aixij

∀i ∈ C crudei = ai
∑
j∈F

xij .

So, now, the objective function is:

max

∑
j∈F

rj
∑
i∈C

aixij −
∑
i∈C

ciai
∑
j∈F

xij

 .

We can rewrite the objective more compactly as follows:

max

∑
j∈F

rj
∑
i∈C

aixij −
∑
i∈C

ciai
∑
j∈F

xij

 =

= max

∑
i∈C
j∈F

airjxij −
∑
i∈C
j∈F

aicixij

 =

= max
∑
i∈C
j∈F

ai(rj − ci)xij .

1.3.2.4 Constraints

What about the constraints? As mentioned already, we have range constraints, which we express in
tensor form:

x ∈ [xL, xU ].

(The scalar form would need a quantification: ∀i ∈ C, j ∈ F xLij ≤ xij ≤ xUij).

Any other constraint? As in Problem 1 of Sect. 1.1, there is a risk of a bug due to a forgotten trivial
constraint: we know that xij are supposed to indicate a fraction of crude i ∈ C over all j ∈ F . So, for all
i ∈ C, the sum of the fractions cannot exceed 1:

∀i ∈ C
∑
j∈F

xij ≤ 1.
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The complete formulation is as follows:

max
0≤x≤1

∑
i∈C
j∈F

ai(rj − ci)xij

∀i ∈ C
∑
j∈F

xij ≤ 1

x ∈ [xL, xU ].


1.3.1 Exercise
Propose a formulation of this problem based on decision variables yij is the total amount (rather than
the fraction) of crude i in fuel j.

1.3.2.5 Ambiguities in the text description

Unfortunately, whether the problem is didactical or from the real world, human communication is given
in natural language, which is prone to ambiguities. Sometimes “almost the same text” yields important,
or even dramatic differences in the formulation, as Exercise 1.3.2 shows. If you are working with a client,
if in doubt ask — do not be afraid of being considered an idiot for asking multiple times: you will certainly
be considered an idiot if you produce the wrong formulation. If the setting is didactical, perhaps the
ambiguity is desired, and you have to deal with it as well as you can (you might be judged exactly for
the way you dealt with a textual ambiguity).

1.3.2 Exercise
How would the formulation change if, instead of saying “fuel i requires at most/least a given fraction of
crude i”, the problem said “the amount of crude i must be at most/least a given fraction of fuel j”?

1.3.2.6 Unused textual elements

Recall that the text mentioned three crudes. Although our structured formulations are invariant to the
actual number of crudes, the data are such that the third crude is completely irrelevant to the problem.
This is a typical feature of modelling real world problems: some (much?) of the information given to the
modeller turns out to be irrelevant. The issue is that one may only recognize irrelevance a posteriori.
During the modelling process, irrelevant information gives a nagging sensation of failure, which a good
modeller must learn to recognize and ignore.

In fact, recognizing data irrelevance often provides a valuable feedback to the client: they may use
this information in order to simplify and rationalize the dynamics of their system processes. Mostly, the
reason why some data are irrelevant, and yet given to the modeller, is that, historically, those data were
once relevant. In the present case, perhaps the firm once used all three crude types to produce other
types of fuels. Some fuel types may have been discontinued to various reasons, but the database system
remained unchanged.

1.3.3 Assignment

When hearing talk of “jobs” and “machines” (or “tasks” and “processors”), a mathematical programmer’s
brain pathways immediately synthesize the concept of “scheduling”. Scheduling problems consist of an
assignment (of jobs to machines or tasks to processors) and of a linear order (on jobs on a given machine).
But sometimes text descriptions can be misleading, and the problem is simpler than it might appear.

In this case we have identical machines, jobs cannot be interrupted/resumed, each machine can process
at most one job at a time, and the requirement is to assign jobs to machines so that the set of jobs is
completed “in the shortest possible time”. The appearance of the word “shortest time” seems to require
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an order of the jobs on each machine: after all completing a set of jobs requires the maximum completion
time of the last job over all machines.

But now suppose someone already gave you the optimal assignment of jobs to machines: then the
working time of each machine would simply be the sum of the completion times of all the jobs assigned
to the machine. And the completion times for all jobs would involve minimizing the working time of the
slowest machine. This does not involve an order of the jobs assigned to each machine. The problem can
therefore be more simply formulated by means of an assignment.

1.3.3.1 Decision variables

Assignment problems are among the fundamental problems which we can solve efficiently. You should
therefore learn to recognize and formulate them without even thinking about it.

The beginner’s mistake is to define two sets of binary variables xi (relating to job i) and yj (relating
to machine j) and stating that xiyj denotes the assignment of job i to machine j, because “xiyj = 1 if
and only if both are 1”. This is a mistake for at least two reasons:

• the definition of a binary decision variable should reflect a boolean condition, whereas here the
condition (the assignment of i to j) is related to the product of two variables;

• introducing a product of variables in the formulation introduces a nonlinearity, which yields more
difficult formulations to solve. While sometimes nonlinearity is necessary, one should think twice
(or more) before introducing it in a formulation.

Nonetheless, the first reason points us towards the correct formulation. Since the boolean condition
is “whether job i is assigned to machine j”, we need binary decision variables indexed on the pair i, j.
So we introduce the index sets J of jobs and the set M of machines, and decision variables xji ∈ {0, 1}
for each j ∈ J and i ∈ M . The only other formulation parameters are the completion times pj for each
job j ∈ J .

1.3.3.2 Objective function

We can write the working time µi of machine i ∈ M as the sum of the completion times of the jobs
assigned to it:

∀i ∈M µi =
∑
j∈J

pjxji. (1.3)

Now the objective function minimizes the maximum µi:

min
µ,x

max
i∈M

µi.

Several remarks are in order.

• New decision variables µi (for i ∈ M) were “surreptitiously” introduced. This is a helpful trick in
order to help us cope with increasing formulation complexity while modelling. It is clear that µi
can be eliminated by the formulation by replacing it with the right-hand side (RHS) of Eq. (1.3),
so they are inessential. They simply serve the purpose of writing the formulation more clearly.

• The function in Eq. (1.3.3.2) involves both a minimization and a maximization; at first sight, it
might remind the reader of a a saddle point search. On closer inspection, the minimization operator
occurs over decision variables, but the second only occurs over the indices of a given set: so the
maximization does not involve an optimization procedure, but simply the choice of maximum value
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amongs |M |. It simply means that the function being optimized is maxi∈M µi. Such a function is
piecewise linear and concave.

• Eq. (1.3.3.2) can be reformulated to a purely linear form by means of an additional decision variable
t, as follows:

min
µ,x,t

t (1.4)

∀i ∈M t ≥ µi. (1.5)

It is clear that t will be at least as large as the maximum µi, and by minimizing it we shall select the
“min max µ”.

1.3.3.3 Constraints

The unmentioned constraint implicit in the term “assignment” is that each job j is assigned to exactly
one machine i. This is written formally as follows:

∀j ∈ J
∑
i∈M

xji = 1. (1.6)

Eq. (1.6) is known as an assignment constraint. It does its work by stating that exactly one variable in
the set {xji | i ∈ M} will take value 1, while the rest will take value 0. All that is left to do is to state
that the variables are binary:

∀j ∈ J, i ∈M xji ∈ {0, 1}. (1.7)

Eq. (1.7), known as boolean constraint, are part of the wider class of integrality constraints.

The whole formulation can now be written as follows.

min
x,t

t

∀i ∈M
∑
j∈J

pjxji ≤ t

∀j ∈ J
∑
i∈M

xji = 1

x ∈ {0, 1}|J||M |.


1.3.4 Demands

As there are no new difficulties with formulating this problem, I will simply present the formulation in a
way I consider concise and clear.

1. Index sets

(a) T : set of month indices ({1, 2, 3, 4})
(b) L: loan lengths in months ({1, 2, 3})

2. Parameters

(a) ∀t ∈ T let dt = demand in month t

(b) ∀` ∈ L let c` = cost of loan length `

3. Decision variables
∀t ∈ T, ` ∈ L let xt` = number of servers loaned for ` months in month t
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4. Objective function: min
∑
`∈L

c`
∑
t∈T

xt`

5. Constraints
demand satisfaction: ∀t ∈ T

∑̀
∈L
`<t

xt−`,` ≥ d`.

We note that variables indexed by time might involve some index arithmetic (see xt−`,` in the demand
satisfaction constraint).

1.3.5 Multi-period production

1. Index sets

(a) T : set of month indices ({1, 2, 3})
(b) T ′ = T ∪ {0}

2. Parameters

(a) ∀t ∈ T let ft = sales forecasts in month t

(b) let p = max normal monthly production

(c) let r = max subcontracted monthly production

(d) let d = min monthly production level in normal production

(e) let cnormal = unit cost in normal production

(f) let csub = unit cost in subcontracted production

(g) let cstore = unit storage cost

3. Decision variables

(a) ∀t ∈ T let xt = units produced in month t

(b) ∀t ∈ T let wt = 1 iff normal production active in month t, 0 otherwise

(c) ∀t ∈ T let yt = units subcontracted in month t

(d) ∀t ∈ T ′ let zt = units stored in month t

4. Objective function: min cnormal
∑
t∈T

xt + csub
∑
t∈T

yt + cstore
∑
t∈T

zt

5. Constraints

(a) demand satisfaction: ∀t ∈ T xt + yt + zt−1 ≥ ft
(b) storage balance: ∀t ∈ T xt + yt + zt−1 = zt + ft

(c) max production capacity: ∀t ∈ T xt ≤ p
(d) max subcontracted capacity: ∀t ∈ T xt ≤ r
(e) storage is empty when operation starts: z0 = 0

(f) minimum normal production level:

∀t ∈ T xt ≥ dwt (1.8)

∀t ∈ T xt ≤ pwt. (1.9)

(g) integrality constraints: ∀t ∈ T wt ∈ {0, 1}
(h) non-negativity constraints: ∀t ∈ T x, y, z ≥ 0.

We remark that Eq. (1.8)-(1.9) ensure that xt ≥ 0 iff wt = 1, and, conversely, xt = 0 iff wt = 0 (also see
Sect. 2.2.7.5.1).
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1.3.6 Capacities

Note that the text hints to an assignment of data flows to links, as well as to capacity constraints.

1. Index sets

(a) F : set of data flow indices

(b) L: set of links joining source an target

2. Parameters

(a) ∀j ∈ F let cj = required capacity for flow j

(b) ∀i ∈ L let ki = capacity of link i

(c) ∀i ∈ L let pi = cost of routing 1Mbps through link i

3. Decision variables

(a) ∀i ∈ L, j ∈ F let xij = 1 iff flow j assigned to link i, 0 otherwise

4. Objective function: min
∑
i∈L

pi
∑
j∈F

cjxij

5. Constraints

(a) assignment: ∀j ∈ F
∑
i∈L

xij = 1

(b) link capacity: ∀i ∈ L
∑
j∈F

cjxij ≤ ki

1.3.7 Demands, again

1. Index sets

(a) T : set of month indices

(b) T ′ = T ∪ {0}

2. Parameters

(a) ∀t ∈ T let dt = service hour demands for month t

(b) σ = starting number of consultants

(c) ω = hours/month worked by each consultant

(d) γ = monthly salary for each consultant

(e) τ = number of hours needed for training a new consultant

(f) δ = monthly salary for trainee

(g) p = percentage of trainees who leave the firm after training

3. Decision variables

(a) ∀t ∈ T let xt = number of trainees hired at month t

(b) ∀t ∈ T let yt = number of consultants at month t

4. Objective function: min γ
∑
t∈T

yt + τ
∑
t∈T

xt

5. Constraints

(a) demand satisfaction: ∀t ∈ T ωyt − τxt ≥ dt
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(b) active consultants: ∀t ∈ T yt−1 + pxt−1 = yt

(c) boundary conditions: y0 = σ, x0 = 0

(d) integrality and nonnegativity: x, y ∈ Z+.

We remark that nowhere does the text state that x0 = 0. But this is a natural condition in view of the
fact that hiring does not occur before the need arises, i.e. before the start of the planning horizon T .

1.3.8 Rostering

The text of this problem says nothing about the total number of nurses. In real life, the output of a
rostering problem should be a timetable stating that, e.g., nurse John works from Monday to Friday,
nurse Mary from Tuesday to Saturday, and so on. In this sense, the timetable assigns nurses to days
in a similar way as scheduling assigns jobs to machines. But in this didactical setting the modeller is
asked to work without the set of nurses. The trick is to define variables for the number of nurses starting
on a certain day. This provides a neat way for decomposing the assignment problem from the resource
allocation.

1. Index sets

(a) T = {0, . . . , |T | − 1}: set of days indices (periodic set)

2. Parameters

(a) ∀t ∈ T let dt = demand for day t

(b) let α = number of consecutive working days

3. Decision variables

(a) ∀t ∈ T let xt = number of nurses starting on day t

4. Objective function: min
∑
t∈T

xt

5. Constraints

(a) resource allocation: ∀t ∈ T
α−1∑
i=0

xt+i ≥ dt

• Does it make sense to generalize the “days of the week” to a set T? After all, there will never be
weeks composed of anything other than seven days. However, some day an administrator might plan
the rostering over two weeks, or any other number of days. Moreover, this allows writing indexed
variables (such as xt for t ∈ T ) rather than “flat” variables (e.g. a for Monday, b for Tuesday, and
so on).

• The set T is interpreted as being a periodic set: it indexes {Monday,Tuesday, . . . ,Sunday}, where
“Monday” obviously follows “Sunday”: this is seen in the resource allocation constraints, where
t+ i must be interpreted as modular arithmetic modulo |T |.

1.3.9 Covering, set-up costs and transportation

This problem embodies three important features seen in many real-world supply chain problems: covering
a set of stores with facilities, set-up costs (already seen in Sect. 1.3.5, and modelled with the binary
variables w), and transportation. While we shall look at covering in Sect. 2.2.7.4 and transportation in
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Sect. 2.2.7.2, this problem is typical in that it mixes these aspects together. Most real-world problems
I came across end up being modelled by combining variables and constraints from classic examples
(covering, packing, network flow, transportation, assignment, ordering and so on) in a smart way.

1. Index sets

(a) N = {1, . . . , n}: index set for candidate sites

(b) M = {1, . . . ,m}: index set for stores

2. Parameters

(a) ∀i ∈ N let bi = capacity of candidate depot i

(b) ∀i ∈ N let fi = cost of building depot i

(c) ∀j ∈M let dj = minimum demand for store j

(d) ∀i ∈ N, j ∈M let cij = cost of transporting one unit from i to j

3. Decision variables

(a) ∀i ∈ N, j ∈M let xij = units transported from i to j

(b) ∀i ∈ N let yi = 1 iff depot i is transported, 0 otherwise

4. Objective function: min
∑

i∈N,j∈M
cijxij +

∑
i∈N

fiyi

5. Constraints

(a) facility capacity: ∀i ∈ N
∑
j∈M

xij ≤ bi

(b) facility choice: ∀i ∈ N, j ∈M xij ≤ biyi
(also see Sect. 2.2.7.5.1)

(c) demand satisfaction: ∀j ∈ N
∑
i∈M

xij ≥ dj

(d) integrality: ∀i ∈M yi ∈ {0, 1}
(e) nonnegativity: ∀i ∈M, jinN xij ≥ 0

A few remarks are in order.

• The facility choice constraint forces xij to be zero (for all j ∈M) if facility i is not built (i.e. yi = 0);
this constraint is inactive if yi = 1, since it reduces to xij ≤ bi, which is the obvious production
limit for candidate facility i (for i ∈ N).

• Facility capacity and demand satisfaction constraints encode the transportation problem within the
formulation. Set-up costs are modelled using the binary variables yi. Note that we do not need
to ensure an “only if” direction on the relationship between x and y, i.e. if yi = 1 we still allow
xij = 0 (in other words, if a facility is built, it might not produce anything), since it is enforced
by the objective function direction (a built facility which does not produce anything contradicts
minimality of the objective, since otherwise we could set the corresponding yi to zero and obtain
a lower value). The covering aspect of the problem (i.e. selecting a minimum cardinality subset
of facilities that cover the stores) is somewhat hidden: it is partly encoded in the term

∑
i yi of

the objective (minimality of the covering subset), by the facility choice constraints (which let the
y variables control whether the x variables are zero), and by the demand satisfaction constraints,
ensuring that ever store is covered.
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• An alternative formulation, with fewer constraints, can be obtained by combining facility capacity
and facility choice as follows:

∀i ∈ N
∑
j∈M

xij ≤ biyi, (1.10)

and then removing the facility choice constraints entirely. The formulation was presented with
explicit facility choice constraints because, in general, they are “solver-frendlier” (i.e. solvers work
better with them). In this specific case, this may or may not be the case, depending on the instance.
But suppose you knew the transportation capacity limits qij on each pair i ∈M, j ∈ N . Then you
could rewrite the facility choice constraints as:

∀i ∈ N, j ∈M xij ≤ qijyi. (1.11)

Obviously, the transportation capacities from each facility cannot exceed the production capacity, so∑
j qij ≤ bi. This implies that by summing Eq. (1.11) over j ∈M , we obtain Eq. (1.10). By contrast,

we cannot “disaggregate” Eq. (1.10) to retrieve Eq. (1.11), which shows that the formulation using
Eq. (1.11) is somehow tighter (more precisely, it yields a better continuous relaxation — we shall
see this in Part III). Again, while this may not be the case in the formulation above (since we do
not have the qij parameters as given), using facility choice constraints is nonetheless a good coding
habit.

1.3.10 Circle packing

In this problem we have to make an assumption: i.e. that we know at least an upper bound ν to the
maximum number of crates of beer. We can compute it by e.g. dividing the carrying area of the pick-up
truck by the area of a circular base of the cylinder representing a beer crate.

1. Index sets

(a) N = {1, . . . , ν}

2. Parameters

(a) let r = radius of the circular base of the crates

(b) let a = length of the carrying area of the pick-up truck

(c) let b = width of the carrying area of the pick-up truck

3. Decision variables

(a) ∀i ∈ N let xi = abscissa of the center of circular base of the i-th crate

(b) ∀i ∈ N let yi = coordinate of the center of circular base of the i-th crate

(c) ∀i ∈ N let zi = 1 iff the i-th crate can be packed, and 0 otherwise

4. Objective function: max
∑
i∈N

zi

5. Constraints

(a) packing (abscissae): ∀i ∈ N rzi ≤ xi ≤ (a− r)zi
(b) packing (coordinates): ∀i ∈ N rzi ≤ yi ≤ (b− r)zi
(c) non-overlapping: ∀i < j ∈ N (xi − xj)2 + (yi − yj)2 ≥ (2r)2yiyj

(d) integrality: ∀i ∈ N zi ∈ {0, 1}
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This problem is also known in combinatorial geometry as packing of equal circles in a rectangle. Note
that any packing is invariant by translations, rotations and reflections. We therefore arbitrarily choose
the origin as the lower left corner of the rectangle, and align its sides with the Euclidean axes. Note that
the packing constraints ensure that either a circle is active, in which case it stays within the boundaries
of the rectangle, or it is inactive (and its center is set to the origin) — also see Sect. 2.2.7.5.1. The
non-overlapping constraints state that the centers of two active circles must be at least 2r distance units
apart.

1.3.11 Distance geometry

1. Index sets

(a) V : set of atoms

(b) E: set of unordered pairs of atoms at distance ≤ 5Å

2. Parameters

(a) ∀{i, j} ∈ E let dij = Euclidean distance between atoms i, j

(b) let K = 3 be the number of dimensions of the Euclidean space we consider

3. Decision variables

(a) ∀i ∈ V, k ≤ K let xik = value of the k-th component of the i-th atom position vector

4. Objective function: min
∑

{i,j}∈E
(‖xi − xj‖22 − d2

ij)
2

A few remarks follow.

• Notationwise, we write xi to mean the vector (xi1, . . . , xiK). This allows us to write the Euclidean
distance between two vectors more compactly.

• Although the distance measure 5Å was given in the text of the problem, it is not a formulation
parameter. Rather, it simply states that E might not contain all the possible unordered pairs (it
usually doesn’t).

• The objective function appears to be a sum of squares, but this is deceiving: if you write it in
function of each component xik you soon discover that it is a quartic multivariate polynomial of
the x variables.

• The formulation is unconstrained. Like packings, a set of vectors identified by pairwise distances is
invariant to congruences. One way to make it invariant to rotations is to fix the barycenter of the
vector set to the origin, which corresponds to the constraint:∑

i∈N
xi = 0.

• Most solvers are happier if you provide bounds to the variables (there are some exceptions to this
rule). The worst that can happen is that all vectors are on a segment as long as D =

∑
{i,j}∈E

dij .

Since the barycenter is at the origin, you can impose the following variable bounds:

∀i ∈ N, k ≤ K − D

2
≤ xik ≤

D

2
.
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Chapter 2

The language of optimization

Mathematical Programming (MP) is a formal language for describing and solving optimization problems.

In general, languages can be natural or formal. Natural languages are those spoken by people to
communicate. Almost every sentence we utter is ambiguous, as it can be interpreted by different people
in different ways. By contrast, its expressivity is incredibly rich, as it can be used to describe reality.
Formal languages can be defined formally through recursive rules for interpreting their sentences within
the confines of an abstract model of a tiny part of reality. If ambiguity occurs in formal languages, it is
limited in scope, announced and controlled.

Optimization refers to the improvement of a process which an agent can modify through his/her/its
decisions. For example, the airplane departure sequence is decided by controllers who usually try and
reduce the average (or maximum) delay.

We use the word “problem” here in the semi-formal sense of computer science: a problem is a formal
question relating some given input to a corresponding output: both input and output are encoded through
a sequence of bits respecting some given formats and rules. For example, a decision problem might ask
whether a given integer is even or odd: the input is an integer, and the output is a bit encoded by the
mapping 1 ↔ YES, 0 ↔ NO. An optimization problem might ask the shortest sequence of consecutive
vertices linking two given vertices in a graph (provided it exists).

2.1 MP as a language

In computer science, a (basic) language L is a collection of strings, each of which is a sequence of
characters from a given alphabet A . Composite languages can be formed as Cartesian products of basic
languages. The fundamental problem, given a language and a string, is to determine whether or not the
string belongs to the language. This is called recognition problem.

2.1.1 Exercise
Implement algorithms to recognize: (a) strings made entirely of digits; (b) strings consisting of a finite
sequence of floating point numbers (in exponential notation) separated by any amount of spaces, tabs and
commas; (c) strings consisting of multi-indexed symbols (use square brackets for indices, as in, e.g. x[2, 4]);
(d) strings consisting of English words from a dictionary of your choice.

2.1.2 Exercise
Implement an algorithm that recognizes a language consisting of strings in the union of (b) and (d) in
Exercise 2.1.1 above.

31
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2.1.1 The arithmetic expression language

The most basic language we use in this book includes all functions that can be expressed in “closed form”
using a set of primitive operators, say +,−,×,÷, (·)(·), log, exp, sin, cos, tan. Some of these operators are
binary, some are unary, and others, like −, can be both, depending on context: the number of arguments
of an operator is its arity.

Operators recursively act on their arguments, which are either other operators, or symbols representing
numerical quantities (which can also be considered as operators of zero arity). Ambiguous cases, such
as x1 + x2x3, are resolved by assigning to each operator a precedence: × trumps +, so the order of the
operations is x2x3 first, and then x1+the result. In cases of tie, the left-to-right scanning order is used.

Given a string such as x1 + x1x2

log x2
, the recognition problem can be solved by the following recognition

algorithm, given here in pseudocode:

1. find the operator of leftmost lowest precedence in the string

2. identify its arguments and tag them by their arity, marking the characters of the string that compose
them

3. recurse over all operators of positive arity

If all characters in the string have been marked at the end of this algorithm, the string is a valid sentence
of the language. By representing each recursive call by a node, and the relation “parent-child” by an
arrow, we obtain a directed tree (called parsing tree) associated with each execution of the recognition
algorithm. If, moreover, we contract leaf nodes with equal labels, we obtain a directed acyclic graph
(DAG) representation of the arithmetical expression (see Example 2.1.3). This representation is called
expression DAG or expression tree.

2.1.3 Example
Consider the expression x1 + x1x2

log x2
. Precedences may be re-written using brackets and implicit operators

are written explicitly: this yields x1 + (x1 × x2)/ log(x2). The corresponding parsing tree and DAG are
shown in Fig. 2.1.

Figure 2.1: A parsing tree (left), the nodes being contracted (center), and the corresponding DAG (right).

Note that implementing this algorithm in code requires a nontrivial amount work, mostly necessary to
accommodate operator precedence (using brackets) and scope within the string. On the other hand, easy
modifications to the recognition algorithm sketched above yield more interesting behaviour. For example,
a minor change allows the recursive recognition algorithm to compute the result of an arithmetical
expression where all symbols representing numerical values are actually replaced by those values. This
algorithm performs what is called evaluation of an arithmetic expression.

2.1.4 Exercise
Implement recognition and evaluation algorithms for an arithmetic expression language.
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2.1.1.1 Semantics

By semantics of a sentence we mean a set of its interpretations. A possible semantics of an arithmetic
expression language is the value of the function represented by the expression at a given point x. The
algorithm for this semantics can be readily obtained by the evalution algorithm described in Sect. 2.1.1
above as follows:

• replace each symbol (operator of zero arity) with the value of the corresponding component of the
vector x;

• evaluate the arithmetic expression.

Other semantics are possible, of course.

2.1.5 Exercise
Define a semantics for sat sentences, namely conjunctions of disjunctions of literals such as (x1 ∨ x̄2) ∧
(x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x3), where x̄i is equivalent to ¬xi, i.e. the negation of the literal xi.

2.1.6 Exercise
How would you define a semantics for the English language?

2.1.2 MP entities

The sentences of the MP formal language consist of symbols belonging to five categories: parameters,
decision variables, objective functions, functional constraints and implicit constraints. The parameters
encode the problem input, the decision variables encode the problem output (the solution), an objective
function defines a search direction of optimality, the functional constraints are expressed as equations
(=) or (non-strict) inequalities (≤, ≥) involving functions, and the implicit constraints express range
constraints, integrality, membership in a cone, and so on.

The distinction between functional and implicit constraints need not be strict. For example, one can
write x ∈ {0, 1} (an implicit integrality constraint) as x2 = x (a functional constraint), and vice versa.
In such cases, the choice often depends on the solution algorithm. For example, an algorithm that can
accept nonlinear functions as part of its input, but is limited to continuous variables, will accept x2 = x.
Conversely, an algorithm that only accepts linear functions but can deal with integrality constraints
directly will accept x ∈ {0, 1}.

2.1.2.1 Parameters

The input of the optimization problem that the MP describes is contained in various data structures,
which can be vectors, matrices, arrays and so on. Each component of these data structures appears as a
symbol in the MP formulation. These symbols are known as parameters. The parameter language must
simply recognize an appropriately structured set of parameter symbols (which are initially declared as
such) or numerical values.

2.1.2.2 Decision variables

The decisions that can be taken by the agent interested in solving the optimization problems are also
contained in various data structures, each component of which appears as a symbol in the MP formulation.
These symbols are known as decision variables. The decision variable language must simply recognize an
appropriately structured set of decision variable symbols (which are initially declared as such). After the
problem is solved, these symbols are assigned the values of the optimal solutions found.
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2.1.2.3 Objective functions

An objective function string is an arithmetical expression having decision variables and (optionally)
parameter symbols as operators of zero arity, together with an optimization direction, denoted by min
or max. Depending on whether the optimization problem is feasibility-only, single-objective or multi-
objective, there may be zero, one or a finite number of objective functions in the problem.

The single objective function language is a trivial extension of the arithmetical expression language: it
must also recognize an optimization direction. The objective function language must be able to recognize
a sequence of single objective function language sentences.

2.1.7 Exercise
Consider an optimization problem that aims at minimizing the objective function f(x) =

∑
j≤n cjxj .

Typically, people use the ‘x’ symbols to denote decision variables: thus each component of the vector
x = (x1, . . . , xn) is a decision variable. Since we wrote f as a function of x, we implicitly mean that the
symbol c = (c1, . . . , cn) is a parameter vector.

2.1.2.4 Functional constraints

A constraint string is an arithmetical expression having decision variables and (optionally) parameter
symbols as operators of zero arity, together with a relational sign, denoted by =,≤,≥ and a numeri-
cal value. Depending on whether the problem is constrained or unconstrained, there may be multiple
constraint strings in the MP formulation or none.

The single constraint function language is a trivial extension of the arithmetical expression language:
it must also recognize the relational operator and the numerical value. The functional constraint function
langauge must be able to recognize a sequence of single constraint function language sentences.

2.1.2.5 Implicit constraints

Constraints are implicit when their description does not include an arithmetical expression string. We
shall consider two types:

• integrality constraints, which require that a certain subset of decision variables must attain integer
values to be feasible;

• semidefinite programming (SDP) constraints, which require that a certain square symmetric matrix
of decision variables must attain a positive semidefinite (PSD) matrix of values to be feasible.

An integrality constraint string simply consists of a tuple of indices denoting the decision variable symbols
required to be integer. Equivalently, an SDP constraint indicates that the decision variable matrix is
required to attain a PSD matrix value.

2.1.3 The MP formulation language

A MP formulation is a description of a MP problem. It consists of a tuple (P, V,O, F, I) where P is a
parameter string, V a decision variable string, O an objective function string, F a functional constraint
string, and I an implicit constraint string. An MP formulation indicates a optimization problem, if at
least one parameter is a symbol, or an instance of this problem if all parameters have numerical values.
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A problem is nontrivial if the parameter symbols can range over infinite sets of values. Each assignment
of values to the parameter symbols yields an instance, so that problems can also be considered as sets of
instances.

2.1.3.1 Solvers as interpreters

The semantics of an MP formulation are given by the assignment of optimal solution values to the decision
variable symbols. The algorithms for computing optima of MP formulations are called solvers. There
exist different solvers for MP, each targeting a particular MP restriction.

For example, if the objective and constraint functions are linear, several off-the-shelf solvers exist, most
of which are commercial, e.g. CPLEX [73], XPress-MP [62]. Many of these solvers have lately endowed
their products with algorithms for dealing also with nonlinear terms involving specific operators. There are
also some free and open-source solvers, though: look at the COIN-OR project [97] page www.coin-or.org,
as well as GLPK [100].

A solver establishes the semantics of an MP language sentence P . In this sense, it can be seen as
a natural interpreter for the MP language. Its input is the set of parameter values, i.e. the instance,
which suffices to reconstruct the formulation P . Its output (if the solver is successful) is usually the pair
(f∗, x∗) where f∗ is the optimal objective function value and x∗ an optimum with value f∗. We denote
this by JP K = (f∗, x∗).

Most theories of programming languages manage to control the relationship between syntax and
semantics, since the formal grammar parsers they employ to define recognition algorithms can easily
be modified to construct the sentence semantics (as underlined in the discussion on recognition and
evaluation of arithmetic expression sentences in Sect. 2.1.1). In other words, most programming languages
are defined in such a way that recursion in syntax parallels recursion in semantics (this is particularly
true of imperative languages, see Sect. 2.1.3.2).

On the other hand, the algorithms implemented by solvers have generally nothing to do with the recur-
sive syntactical structure of the formal grammar used to recognize the sentences. Hence, unfortunately,
the relationship between syntax and semantics is much harder to establish in a theoretical sense. There
is a general consensus to the effect that efficient (e.g. polynomial time) algorithms provide a “desirable
semantics”.

Not only can different solvers employ very different algorithms in order to compute JP K; they may
also have different formats for their semantics, which could be, e.g.: a single optimum, or many, or
even all if there are finitely many optima; the optima might be defined only with respect to (w.r.t.) a
neighbourhood, or they may be global; the results might be guaranteed or not (see Defn. 6.0.1 for a
formal definition of optima).

One of the major efforts in the theory of MP is that of deriving new implied constraints (generally
called valid cuts) to be added to existing hard MP formulations so that: (a) at least one (and hopefully all)
optimal solutions remains feasible; (b) they help make other problematic constraints (such as integrality
constraints) redundant; (c) they themselves are not problematic. This allows the use of an efficient solver
to solve the instance. Valid cuts can be seen as a way to keep JP K invariant while making the solution
searching process more efficient.

2.1.3.2 Imperative and declarative languages

Computer programming languages such as C/C++, Java, Pascal, Basic, Fortran, Python, Matlab (and
more) are known as imperative languages: a program in any of these languages will be a set of statements
in any of four broad categories: (a) storage, or assignments of values to program variables; (b) tests, or
verification of given conditions on program variables; (c) loops, or repeated execution of some parts of the
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code; (d) input/output (I/O), i.e. interaction with the hardware layer or external world. Most languages
can also encapsulate some parts of code into callable functions: this also allows the implementation of
loops by means of recursion.

By contrast, declarative1 languages only make logical statements about variables, and then let a
general algorithm search for the variable values that satisfy those statements. It should be clear that
MP is a declarative language. Programming in declarative languages is both simpler and harder than
programming in an imperative language. It is simpler because one need not conceive nor implement
the algorithm — it is by definition the language interpreter. It is harder because humans are better
suited to understand the very simple blocks assignments, tests, loops than to design multiple logical
statements which, conjunctively, are supposed to describe the output of a given process (without actually
detailing the process itself). Programming in a declarative language is also somtimes called modelling,
although this term also has a different meaning (see Sect. 1.3.2.1). The MP language shifts the focus of
optimization from algorithmics to modelling.

Suppose someone asks you to find the largest stable set in a given graph G = (V,E), i.e. the largest
subset S ⊆ V such that no unordered pair {s, t} of vertices in S is an edge in E. In an imperative
language, you would need to decide how to encode a graph and a subgraph, how to enumerate subgraphs
in the most efficient possible way, and how to verify whether a subgraph is a stable set (i.e. it has induces
no edges in E) or not. In MP, you would simply write:

max

{∑
v∈V

xv
∣∣ ∀{u, v} ∈ E (xu + xv ≤ 1) ∧ ∀v ∈ V xv ∈ {0, 1}

}
, (2.1)

and then deploy an appropriate solver on the formulation in Eq. (2.1).

Note that most imperative and declarative languages are Turing-complete, (see Sect. 4.1.1). This
means one can program or design a universal Turing machine (UTM) with them (again, see Sect. 4.1.1).
Hence their expressive power is equivalent.

2.1.8 Exercise
Consider the imperative pseudocode

p = 1
input x ∈ Z
if x < p then
x← 2x

end if
return x

Write a declarative language equivalent of this code.

2.2 Definition of MP and basic notions

The formal definition of an MP formulation on n decision variables and m constraints is as follows:

min
x∈Rn

f(p, x)

∀i ≤ m gi(p, x) ≤ 0
∀j ∈ Z xj ∈ Z

x ∈ X,

 [P ] (2.2)

where Z ⊆ {1, . . . , n}, X ⊆ Rn is the set of implicit constraints (see Sect. 2.1.2.5) x is a vector of n
decision variables taking values in R, p is a vector of parameters which, once fixed to values, make the

1Some computer scientists might call such languages “descriptive”, and reserve “declarative” for a different type of
programming languages.
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functions f and gi (for i ≤ m) functions Rn → R. The symbol P = P (n,m, p, Z,X) denotes the MP
instance for given n,m, p, Z,X.

We let MP be the class of all instances of Eq. (2.2) as n,m range over all sizes, Z over all subsets of
{1, . . . , n} and p over all possible sizes and values, and f, g over all functions Rn → R.

The set of vectors in Rn that satisfy all constraints of the instance P is called the feasible set of P and
denoted by F(P ) or simply F . The set of feasible vectors that are also optima (i.e. achieve the minimum
objective function value) in P is called the optimal set of P and denoted by G(P ) or simply G.

There are three possibilities for a given a MP instance P , which we assume without loss of generality
(wlog) in minimization form:

1. there exists at least an optimum x∗ of P with optimal objective function value f∗;

2. P is unbounded, i.e. for any feasible solution x′ with objective function value f ′, there always exist
another feasible solution x′′ with objective function value f ′′ such that f ′′ < f ′;

3. P is infeasible, i.e. F(P ) = ∅.

This ternary classification corresponds to two hierarchically dependent binary classifications: whether P
is feasible or not, and, if P is feasible, whether it has an optimum or not.

2.2.1 Certifying feasibility and boundedness

In general, it is possible to certify feasibility in practice: given a solution x′, it suffices to verify whether
x′ satisfies all the constraints. Certifying optimality is more difficult in general: whether it can be done or
not depends on many factors, the most important of which the behaviour of the objective over the feasible
region, the presence of linear/nonlinear terms in the description of the objective function, whether there
are finitely or infinitely many feasible solutions.

Infeasibility is also hard to certify: in general, given a MP formulation as in Eq. (2.2), assuming we
have an algorithm for optimizing over the implicit constraints x ∈ X, we can add non-negative slack
variables s1, . . . , sm to the rhs of the inequality constraints and minimize their sum:

min
x∈Rn,s≥0

∑
i≤m

si

∀i ≤ m gi(p, x) ≤ si
∀j ∈ Z xj ∈ Z

x ∈ X.

 [FP ] (2.3)

The original instance P is infeasible if and only if (iff) the globally optimal objective function value of
Eq. (2.3) is strictly greater than zero. This poses two issues: (a) globally optimizing Eq. (2.3) is generally
just as hard as optimizing Eq. (2.2); and (b) in practice, using floating point computations, we might
well obtain optimal objective function values in the order O(10−5) where the parameters are in the range
O(1)-O(100): how do we decide whether the problem is infeasible or it is feasible up to some floating
point error?

2.2.2 Cardinality of the MP class

Since p might encode continuously varying parameters, and f, g range over all possible real functions of
n arguments, the class MP must contain uncountably many instances.

In practice, however, any continuous parameter in p must in fact range over the rationals, of which
there are countably many (in fact continuous parameters usually range over the floating point numbers, of
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which there are finitely many). As for f, g, they must be recognized by the expression languages described
in Sect. 2.1 above. Since there are countably many arithmetical expressions, and only finitely many of
a given size, the subclass of instances in MP which can be explicitly described (a necessary condition in
order for an instance to be solved — if nothing else because the instance description is the input to the
solver) is countably infinite in theory. Given our language L , we call MPL the subclass of instances in
MP having a finite description in L . If L is fixed a priori (which it usually is), we drop the subscript
and simply write MP.

This means we cannot express (and hence solve) uncountably many instances. But the good news is
that, given any instance (and so any functions f, g described in some language L ′), we can extend our
language L to integrate L′ so that f, g can also be described in L.

2.2.3 Reformulations

Several features of Eq. (2.2) might appear arbitrary to the untrained eye. We will show in this section
that every assumption was made wlog.

2.2.3.1 Minimization and maximization

In Sect. 2.1.2.3 we stated that objective functions have a direction, either min or max. But in Eq. (2.2)
we only wrote min. However, given any MP formulation

P ≡ min{f(x) | x ∈ F} (2.4)

can be written as
Q ≡ max{−f(x) | x ∈ F} (2.5)

while keeping the set G of optima invariant. The only thing that changes is the value of the optimal
objective function: it is f∗ in P iff it is −f∗ in Q.

Some solvers only accept one of the two optimization directions (typically the min direction is more
common). So there is sometimes a practical need for carrying out this transformation.

2.2.3.2 Equation and inequality constraints

Eq. (2.2) only lists m inequality constraints gi(p, x) ≤ 0 (for i ≤ m). However, we can express an equation
constraint h(p, x) = 0 by requiring that there exist two indices i, j ≤ 0 such that gi(p, x) ≡ h(p, x) and
gj(p, x) ≡ h(p, x). This yields

h(p, x) ≤ 0

−h(p, x) ≤ 0,

which hold for fixed p iff h(p, x) = 0. Note that for each equation constraint we need two inequality
constraints, so the size m of the constraint list changes.

In practice, the large majority of solvers accept both inequality and equation constraints explicitly.

2.2.3.3 Right-hand side constants

Although all right-hand sides (rhs) in Eq. (2.2) have been set to zero, any other constant can simply be
brought over (with opposite sign) to the left-hand side (lhs) and considered part of the function gi(p, x)
(for i ≤ m).
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2.2.3.4 Symbolic transformations

All the simple transformations given in Sect. 2.2.3.1-2.2.3.3 are part of a much larger family of symbolic
and numerical transformations on MP formulations collectively known as reformulations [84, 151], some
of which will be discussed in more depth below.

2.2.4 Coarse systematics

As we shall see below, MP formulations are classified in many different ways [85, 151]. For example,

• according to the properties of their descriptions: e.g. an MP where all the functions are linear and
Z = ∅ is called a Linear Program (LP), whereas if Z 6= ∅ it is called a Mixed-Integer Linear
Program (MILP);

• according to their mathematical properties: e.g. if f is nonlinear but convex in x and F is a convex
set, P is a convex Nonlinear Program (convex NLP or cNLP);

• according to whether a certain class of solvers can solve them: this classification is obviously a
posteriori w.r.t. the solution process, and often changes in time, since solvers, operating systems
and hardware all evolve.

Unions of properties are also possible: for example an MP involving both integer variables and nonlinear
functions is called a Mixed-Integer Nonlinear Program (MINLP). If, when relaxing the integer variables
to take continuous values, the resulting problem is a cNLP, then the MINLP is referred to as a convex
MINLP (cMINLP). We remark that a cMINLP has a nonconvex feasible region (by virtue of the integrality
constraints).

2.2.5 Solvers state-of-the-art

In this section we examine the state of the art of current MP solvers according to our systematics
(Sect. 2.2.4) as regards robustness and solution size.

• Currently, LP solvers are the most advanced. Most of them are very robust. For sparse data,
current LP solvers might well solve instances with O(106) variables and constraints. For dense
data, unfortunately, the situation varies wildly depending on the data themselves: but most input
data in MP is sparse, and dense MPs mostly occur in specific fields, such as quantile regression or
signal processing.

• The most advanced MILP solvers are based on the Branch-and-Bound (BB) algorithm, which
essentially solves a sequence of LPs (this makes MILP solvers quite robust). However, this sequence
is exponentially long in the worst case. It is very hard to make predictions on the maximal size of
MILPs that current BB technology is able to solve in “acceptable times”, as there are minuscule
examples known to force the worst-case, as well as practical cases of MILPs with tens of thousands
of variables and/or constraints being solved very fast.

• SDP solvers (and conic solvers in general) are quite robust, but compared to LP solvers their
“size bottleneck” is much more restricted. You can hope to solve SDPs with O(103) variables
and constraints, and possibly even O(104) (but remember that SDPs involves matrices of decision
variables, so the number of decision variables is usually quite large).

• Local NLP solvers guarantee global optimality on the vast majority of practical cNLP instances; and
most of them will also be rather efficient at finding such optima. One might hope to solve instances
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with tens of thousands of variables and/or constraints as long as the “linear part” of the problem
is large, sparse, and the solver is able to exploit it. Today, however, many cNLP applications are
from Machine Learning (ML), and their sizes are so large that special purpose solvers have to be
designed — and a guarantee of optimality often forsaken. While a local NLP solver deployed on a
cNLP is reasonably robust, the same solver deployed on a nonconvex NLP typically has many more
chances of failures, specially if an infeasible starting point was provided (which is often the case —
finding a feasible solution in a nonconvex NLP is as hard as finding an optimal one, in terms of
computational complexity in the worst case).

• The state of the art of global NLP solvers for nonconvex NLPs is less advanced than then the
previous ones. Currently, all of the solvers that are able to certify global optimality (to within a
given ε > 0 tolerance on the optimal objective function value) are based on a BB variant called
“spatial BB” (or sBB). The sBB algorithm solves a sequence of LP or cNLP relaxations of the
given (nonconvex) NLP, as well as locally solving the given NLP every so often. This procedure
is as fragile as its local solvers warrant — and since local NLP solvers are not so robust, sBB is
no different. Current sBBs perform reasonably well on problems with a quadratic structure, as
those are the best studied. sBB implementations can often exhibit their exponential worst-case
behaviour even on tiny instances, unfortunately. Expect some results in the size range O(102)-
O(103) variables/constraints.

• cMINLP solvers are somewhat more robust than nonconvex NLP solvers, but much less advanced
than MILP solvers; they can probably be deployed on instance sizes of around O(103).

• General MINLP solvers implement sBB algorithms that can also branch on integer variables. There
is currently no sBB solver that can only deal with nonconvex NLPs but not with MINLP. Since
MILP solution technology is reasonably advanced, endowing an sBB implementation with mixed-
integer capabilities does not worsen its robustness or the limits of its maximal sizes.

You should take all of the information given above with a pinch of salt. It is the author’s own opinion,
formed after close to twenty years’ experience in the field. It is not a scientific statement, and has been
left suitably vague on purpose. Algorithmic research in MP is intense, and major improvements, even on
much smaller subclasses than our systematics above lists, are often picked up by the major commercial
codes rather rapidly.

If you have a large instance for which your solver takes too long you should: (b) ask yourself whether
there exists a simple and efficient algorithm that can solve your problem independently of its MP formu-
lation; (b) attempt to reformulate the problem in order to be able to solve it with a more robust/efficient
solver; (c) give your solver a time limit, forsake its guarantees, and hope it finds a good solution within
the allotted time. While advice (c) sounds close to “give up”, remember that (i) in the large majority of
practical cases, having any solution is better than having none at all; (ii) for many classes of problems,
local optima tend to cluster together, and local optima close to the global optimum might be quite close
to it.2

2.2.6 Flat versus structured formulations

A formulation is flat if it has no quantifier over variable indices, and structured otherwise.

We have seen two examples of MP formulations so far: Eq. (2.1) and Eq. (2.2). Eq. (2.1) involves
the maximization of the sum of all the decision variables (one per vertex in the graph), subject to the
condition that, for each edge in the graph, the decision variables corresponding to the adjacent vertices
cannot both be set to one. Eq. (2.2) is completely general: it minimizes an objective subject to a list of
functional constraints introduced by a universal (“for all”) quantifier. In both formulations there appear

2This is mostly an empirical observation [28]. Intuitive explanations have sometimes been attempted, based on the
distribution of optima in all points satisfying first-order conditions [17].
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symbols quantified by indices (u, v in Eq. (2.1), i in Eq. (2.2)), and quantifiers (
∑
,∀ in Eq. (2.1), ∀ in

Eq. (2.2)). Therefore, both are structured.

The following is a simple example of a flat formulation:

min x1 + x2 + x3 + x4

x1 + x2 ≤ 1
x1 + x3 ≤ 1
x2 + x4 ≤ 1
x3 + x4 ≤ p

x1, x2, x3, x4 ∈ {0, 1},


(2.6)

where p is a (scalar) parameter. If we assign a fix value to p, e.g. p = 1, we obtain a flat formulation
representing an instance of the MP formulation in Eq. (2.1).

2.2.1 Exercise
Since Eq. (2.6) is an instance of Eq. (2.1) when p = 1, its optima are stable sets in a graph: recover the
graph from the formulation.

2.2.2 Exercise
Is Eq. (2.6) an instance of Eq. (2.1) whenever p 6= 1? What about p = 0 or p = 2? Does it make sense
to consider other values of p?

2.2.6.1 Modelling languages

The distinction between flat and structured formulations is that solvers only accept flat (instance) for-
mulations, whereas humans naturally model optimization problems using structured formulations. This
calls for two MP languages: one that understand parameters and variable symbols with indices, as well
as quantifiers over those indices, and one that does not. It also calls for a translator between the two
languages.

In MP, translators from structured to flat formulations are called modelling languages. In fact, they
do more than just translate. Since each solver accepts its input in a flat formulation language with its
own distinct syntax, most modelling languages act as interfaces to a set of solvers, each of which requires
a specific translation module.

2.2.3 Remark (Quantifiers over indices)
Quantifiers are only allowed to range over indices belonging to a set given as part of the parameters (the
input). In no case should a quantifier ever involve a decision variable symbol. The issue arises because
translating from a structured formulation to a flat one would be impossible if a quantifier involved a
decision variable (the value of which is not known before the solution process occurs). Though this
remark might appear innocuous at this time, wait until you need a “conditional constraint” (see the
discussion at the end of Sect. 2.2.7.5).

The best known purely MP-related translators are AMPL [57] and GAMS [29]. AMPL structured
formulation language syntax is very similar to the mathematical form of MP languages, and hence very
close to human-readable syntax, and can interface with many solvers. Its weak point is that it has very a
limited imperative sub-language, which makes it hard to reformulate and post-process solutions. GAMS
has a better imperative sub-language, but its structure formulation language syntax has a steep learning
curve (at best).

On the other hand, with the increasing need for complicated algorithms involving MP as elementary
steps, many imperative programming languages have been endowed with capabilities for modelling and
solving MP formulations. Python has a growing number of translators (e.g. PyOMO [65] and PICOS
[129]), and Matlab [102] has many extremely good translators, some commercial and some not. The
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most complete Matlab translator appears to be TOMLAB [71], which interfaces with a large number of
solvers. A free equivalent to TOMLAB is the OPTI toolbox [42], which, however, unfortunately only
works on the Windows version of Matlab. Another excellent free translator for Matlab is YALMIP [96],
which focuses mostly (but not only) on conic optimization.

2.2.7 Some examples

2.2.7.1 Diet problem

A diet involving m nutrients (vitamins, proteins, fats, fibers, iron, etc.) is healthy if it has at least
quantities b = (b1, . . . , bm) of the nutrients. In order to compose such a diet, we need to buy quantities
x = (x1, . . . , xn) of n types of food having unit costs c = (c1, . . . , cn). Food j ≤ n contains aij units of
nutrient i ≤ m. The solution of the following LP problem yields an x that satisfies the requirements of
a healthy diet at minimum cost [43].

minx

n∑
i=1

c>x

Ax ≥ b
x ≥ 0.

 (2.7)

The parameters are A, b, c. The decision variables are the components of the vector x. The functional
constraints are the rows of the linear inequality system Ax ≤ b. The non-negativity constraints x ≥ 0
can be interpreted both as functional constraints (since x = f(x) where f is the identity function) and
as implicit constraints: in the latter case, the sentence x ≥ 0 encodes membership in the non-negative
orthant.

2.2.7.2 Transportation problem

Consider a transportation network modelled by a weighted bipartite directed graph B = (U, V,A, d) with
a set of departure vertices U , a set of destinations V , a set of arcs A = {(u, v) | u ∈ U, v ∈ V } weighted by
a nonnegative distance function d : A→ R+. A certain amount of material au is stored at each departure
vertex u ∈ U . We associate to each destination v ∈ V a given demand bv of the same material. The cost
of routing a unit of material from u ∈ U to v ∈ V is directly proportional to the distance duv. We have to
determine the transportation plan of least cost satisfying the demands at the destinations. The variables
xuv in the LP formulation below, associated to each arc (u, v) ∈ A, denote the amount of material routed
on the arc.

minx
∑

(u,v)∈A
duvxuv

∀u ∈ U
∑
v∈V

xuv ≤ au

∀v ∈ V
∑
u∈U

xuv ≥ bv

∀(u, v) ∈ A xuv ≥ 0.


(2.8)

The parameters are all encoded in the weighted bipartite directed graph (digraph) B. The decision
variables represented by the double-indexed symbols xuv (for (u, v) ∈ A). This structure can also be seen
as a partial3 |U | × |V | matrix X with component (u, v) being present iff (u, v) ∈ A. There are two sets
of functional constraints and a non-negativity constraint.

3A partial matrix is a matrix with some components replaced by a placeholder indicating their absence.
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2.2.7.3 Network flow

Given a network on a directed graph G = (V,A) with a source node s, a destination node t, and capacities
uij on each arc (i, j). We have to determine the maximum amount of material flow that can circulate on
the network from s to t. The variables xij in the LP formulation below, defined for each arc (i, j) in the
graph, denote the quantity of flow units.

maxx
∑

i∈δ+(s)

xsi

∀ i ≤ V, i 6= s, i 6= t
∑

j∈N+(i)

xij =
∑

j∈N−(i)

xji

∀(i, j) ∈ A 0 ≤ xij ≤ uij .

 (2.9)

The parameters include the array {uij | (i, j) ∈ A of upper bounds and the digraph G, represented
in Eq. (2.9) in the node adjacencies N+(i) (set of outgoing nodes j such that (i, j) ∈ A) and N−(i) (set
of incoming nodes j such that (j, i) ∈ A). The decision variables are xij for (i, j) ∈ A. The functional
constraints are in the form of equations (we remark that the form of the equation is not f(x) = 0 but
f1(x) = f2(x), trivially reducible to the former standard form). The range constraints 0 ≤ xij ≤ uij can
be seen as functional constraints. This is obtained by re-writing them as xij − uij ≤ 0 and xij ≥ 0 or as
an implicit constraint X ∈ [0, U ] where X is the partial |V | × |V | matrix of decision variables, and U is
the partial |V | × |V | matrix of upper bounds.

2.2.7.4 Set covering problem

A certain territory containing n cities is partitioned in m regions. We must decide whether to build a
facility on region i ≤ m or not. For each i ≤ m and j ≤ n, the parameter aij is equal to 1 iff a facility on
region i can serve city j (otherwise aij = 0). The cost of building a facility on region i is ci. We require
that each city is served by at least one facility, and we want to find the construction plan of minimum
cost. We model the problem as the following MILP:

minx

m∑
i=1

cixi

∀ j ≤ n
m∑
i=1

aijxi ≥ 1

x ∈ {0, 1}n.


(2.10)

The parameters are (c, A) where A is the m × n matrix having aij as its (i, j)-th component (A is
an adjacency matrix). There is a decision variable vector x, a set of linear functional constraints and
an implicit integrality constraints of binary type. Note that, although Eq. (2.10) is a MILP, it only has
binary variables and no continuous ones. We usually call such problems Binary Linear Programs
(BLP).

2.2.7.5 Multiprocessor scheduling with communication delays

A scheduling problem generally has two main types of decision variables: assignment (of tasks to pro-
cessors) and sequencing (order of tasks for each processor). The makespan is the time taken to finish
processing the last task: an optimal schedule usually minimizes the makespan. The Multiprocessor
Scheduling Problem with Communication Delays (MSPCD) consists in finding a minimum makespan
schedule in order to run a set V of tasks with given duration Li (for i ∈ V ) on an arbitrary network
P of homogeneous processors. Tasks must be executed according to a certain partial precedence order
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encoded as a digraph G = (V,A), where (i, j) ∈ A if task i must be completed before task j can start.
If i, j ∈ V are assigned to different processors h, k ∈ P , they incur a communication cost penalty γhkij ,
which depends on the (given) distance dhk, which is in fact the length of a shortest path from h to k in
P , as well as on the (given) amount of exchanged data cij that needs to be passed from task i to task j.
In summary, γhkij = Γcijdhk, where Γ is a given constant.

2.2.4 Remark (Meanings of V )
We assume that V is actually a set of integers {1, . . . , |V |} indexing the tasks, so that we can talk about
task i (for i ∈ V ) but also the s-th task on some processor (for s ∈ V ). While syntactically this notation
is valid, it might engender some confusion to do with the fact that task i might not be the i-th task on
the processor it is assigned to. You should consider that V stands in fact for two different collections:
one of the task indices, and the other of the order indices. 2

We define two sets of decision variables as follows:

• binary variables y denoting assignment and sequencing:

∀i, s ∈ V, k ∈ P ysik =

{
1 task i is the s-th task on processor k
0 otherwise,

• continuous variables ti ≥ 0 determining the starting time for task i (for i ∈ V ).

The MSPCD can now be formulated as follows:

min
y,t

max
i∈V

(ti + Li) (1)

∀i ∈ V
∑
k∈P

∑
s∈V

ysik = 1 (2)

∀k ∈ P
∑
i∈V

y1
ik ≤ 1 (3)

∀k ∈ P, s ∈ V r {1}
∑
i∈V

ysik ≤
∑
i∈V

ys−1
ik (4)

∀j ∈ V, i ∈ N−(j) ti + Li +
∑
h∈P

∑
s∈V

∑
k∈P

∑
r∈V

γhkij y
s
ihy

r
jk ≤ tj (5)

∀i, j ∈ V, k ∈ P, s ∈ V r {n} ti + Li −M
(

2−
(
ysik +

∑n
r=s+1 y

r
jk

))
≤ tj (6)

∀i, s ∈ V, k ∈ P ysik ∈ {0, 1} (7)
∀i ∈ V ti ≥ 0, (8)



(2.11)

where M � 0 is a “sufficiently large” (given) penalty coefficient, and N−(j) is standard graph theoretical
notation to mean the incoming neighbourhood of node j ∈ V , i.e. the set of nodes i ∈ V such that (i, j) ∈ A.

Equation (2) ensures that each task is assigned to exactly one processor. Inequalities (3)-(4) state
that each processor can not be simultaneously used by more than one task: (3) means that at most one

task will be the first one at k, while (4) ensures that if some task is the sth one (for s ≥ 2) scheduled to
processor k ∈ P then there must be another task assigned as (s− 1)-st to the same processor. Inequality
(5) expresses the precedence constraints together with communication time required for tasks assigned
to different processors. Inequality (6) defines the sequence of the starting times for the set of tasks
assigned to the same processor: it expresses the fact that task j must start at least Li time units after
the beginning of task i whenever j is executed after i on the same processor k; the M parameter must
be large enough so that constraint (6) is active only if i and j are executed on the same processor k and
r > s (for i, j, r, s ∈ V , k ∈ P ).

2.2.5 Remark (Presenting a MP formulation)
Each row of a MP formulation is split in four columns.

• In the first column, quantifiers: min and max for objective functions, ∀ or none for constraints;
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• In the second column, functional forms (objective and constraints);

• In the third column, equality sign or ≤,≥ signs for functional constraints, ∈ for implicit constraints
(nothing for objectives);

• In the fourth column, constants or functional forms for functional constraints, set names or labels
for implicit constraints (nothing for objectives).

2.2.6 Remark (Objective function)
The objective function has a min max form, and is therefore not linear. Formulations exhibiting a min max
optimization direction are known as saddle problems. Though this might deceptively look like one, it is
not: in saddle problems you minimize over a subset of variables and maximize over the rest. In Eq. (2.11)
the inner maximization occurs w.r.t. an index ranging over a set given as an input parameter. In other
words, the objective function expression f(p, x) given in Eq. (2.2) is max

i∈V
(ti + Li): it corresponds to the

ending time of the last task, i.e. the makespan.

2.2.7 Exercise
Reformulate the objective function (1) of Eq. (2.11) exactly so that it becomes linear in the decision
variables.

2.2.8 Remark (Products of binary variables)
Note that Constraint (5) in Eq. (2.11) involves a sum of products of two binary variables. Without any
further analysis on the problem structure, we are forced to conclude that this formulation belongs to the
(nonconvex) MINLP class. This is bad news according to Sect. 2.2.5. Fortunately, however, roducts of
binary variables can be reformulated exactly to a linear form. Whenever any MP involves a product xixj
where xi, xj ∈ {0, 1}, proceed as follows: replace the product with an additional variable Xij ∈ [0, 1] (a
process called linearization), and adjoin the following constraints:

Xij ≤ xi (2.12)

Xij ≤ xj (2.13)

Xij ≥ xi + xj − 1. (2.14)

This reformulation was first proposed in [55]. It can be generalized to products where only one of
the variables is binary, as long as the other is bounded above and below [85]. If both variables are
continuous and bounded, Eq. (2.12)-(2.14) can be generalized to obtain a convex envelope of the set
X ij = {(Xij , xi, xj) ∈ Bij | Xij = xixj} (where Bij is a box defined by lower and upper bounds on xi, xj
and the corresponding bounds on Xij obtained by interval analysis) [106].

2.2.9 Exercise
With reference to Rem. 2.2.8, prove that Eq. (2.12)-(2.14) provide an exact reformulation of the set
X ij ∩ [0, 1]× {0, 1}2.

The formulation in Eq. (2.11) uses a rather standard set of variables for most scheduling problems.
It is not easy to solve, however, even for medium-sized instances, since it has O(|V |3) variables and
O(|V |3|P |) constraints. See [45] for a more compact formulation.

2.2.7.5.1 The infamous “big M” Anyone who is familiar with the integer programming literature
knows about the “big M”, its widespread use, and its unanimous condemnation. The need for a “large”
constant M arises when a constraint needs to be activated or deactivated according to the value of a
given binary decision variable (such constrained are known as conditional constraints). Suppose we have
a constraint g(x) ≤ g0 which should only be active when the variable y ∈ {0, 1} has value 1.

A maximally inexperienced reader would probably come up with the expression “∀y ∈ {1} g(x) ≤
g0”, which unfortunately involves the decision variable y appearing in a constraint quantifier, against
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Rem. 2.2.3. A naive reader might propose multiplying both sides of the constraint by y, so that the
constraint (now reformulated as yg(x) ≤ yg0) will be inactive when y = 0 and active when y = 1, as
desired. The issue here is that this introduces unnecessary products in the formulation, which, according
to our analysis of the state of the art in solvers (Sect. 2.2.5) should be best avoided.

The common practice is to assume that g(·) is bounded above over its domain, say g(x) ≤ gU for all
possible values of the decision variable vector x. One would then reformulate the constraint by choosing
some parameter M ≥ gU − g0 and writing:

g(x) ≤ g0 +M(1− y), (2.15)

so that when y = 1 we retrieve g(x) ≤ g0, whereas with y = 0 we simply have g(x) ≤ g0 + M , which
implies g(x) ≤ gU , which is always true (and therefore does not actively constrain the problem anymore).

MILP formulations involving “big M”s are often condemned because their continuous relaxations
(obtained by relaxing the integrality constraints) yield a bound that is known to often have a large gap
with the optimal objective function value of the original problem. MILP solvers therefore take much
longer to achieve termination. It is also known that this adverse impact is lessened when M is as small
as possible. So when people write “big M” what they really mean is “big enough”: make an effort to
correctly estimate M as an upper bound to the (possibly unknown) gU .

2.2.7.6 Graph partitioning

The Graph Partitioning Problem (GPP), also known as min-k-cut problem is part of a larger family
of clustering problems, which form the methodological basis of unsupervised ML. Given an undirected
graph G = (V,E) and two integers L, k ≥ 2, it asks for a partition of V into k (disjoint) subsets, called
clusters, such that each cluster has cardinality bounded above by L, and such that the number of edges
{i, j} ∈ E such that i, j belong to different clusters is minimized [58, ND14].

In general, the GPP is NP-hard for all k ≥ 3. The particular case k = 2 is known as the min cut
problem, and can be solved in polynomial time by computing the solution of its dual,4 the max flow
problem (see Sect. 2.2.7.3).

The parameters of the problem are given by an encoding of G and the two integers L, k. As decision
variables we employ two-indexed binary variables in order to assign vertices to clusters:

∀i ∈ V, h ≤ k xih =

{
1 if vertex i is in cluster h
0 otherwise.

The formulation is as follows:

min
x

∑
{i,j}∈E

∑
h≤k

xih(1− xih) (1)

∀h ≤ k
∑
i∈V

xih ≤ L (2)

∀i ∈ V
∑
h≤k

xih = 1 (3)

∀i ∈ V, h ≤ k xih ∈ {0, 1}. (4)


(2.16)

We remark that, for each edge {i, j} ∈ E and h ≤ k, the product xih(1 − xjh) has value 1 iff i, j are
assigned to different clusters: thus the objective function (1).

2.2.10 Remark (Data structure representation for edges)
If you implement Eq. (2.16), be aware that if {i, j} is represented as a couple (i, j) rather than an

4See e.g. [119] for an introduction to LP duality, as well as the special form of “combinatorial” duality given by the pair
max flow – min cut.
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unordered pair, then you are likely to have to multiply the objective function by 1
2 , unless you remove the

repeated couples by means of a condition i < j. In general, however, whether you are allowed to express
i < j also depends on the other features of the MP you are considering; sometimes the most expedited
solution is to count edges twice and divide by two.

As for Constraint (2), it expresses the fact that each cluster must have cardinality bounded above by
L. Constraint (3) states that each vertex must be assigned to exactly one cluster (i.e. the clustering is a
partition).

The formulation in Eq. (2.16) belongs to the class of MINLP, since the objective function is quadratic,
and possibly nonconvex. An exact reformulation to a MILP can be achieved by employing Fortet’s
reformulation technique (see Remark 2.2.8).

2.2.7.7 Haverly’s Pooling Problem

Haverly’s Pooling Problem (HPP), first introduced in [66], is described visually in Fig. 2.2. We have three
input feeds with different levels of percentage of sulphur in the crude. Accordingly, the unit costs of the
input feeds vary. Two of the feeds go into a mixing pool, which makes the level of sulphur percentage
the same in the two streams coming out of the pool. The various streams are then blended to make two
end products with different requirements on the sulphur percentage and different unit revenues. We have
some market demands on the end products and we want to determine the quantities of input crude of
each type to feed into the networks so that the operations costs are minimized. This problem can be

Figure 2.2: Haverly’s Pooling Problem.

formulated in various ways. We present here what is known as the “p-formulation” of the HPP [10], with
comments on the constraints explaining their meaning.

min
x,y,p≥0

6x11 + 16x21 + 10x12 − 9(y11 + y21)− 15(y12 + y22) cost

s.t. x11 + x21 − y11 − y12 = 0 mass balance
x12 − y21 − y22 = 0 mass balance
y11 + y21 ≤ 100 demands
y12 + y22 ≤ 200 demands
3x11 + x21 − p(y11 + y12) = 0 sulphur balance
py11 + 2y21 ≤ 2.5(y11 + y21) quality req
py12 + 2y22 ≤ 1.5(y12 + y22) quality req,


where x, y are decision variable vectors representing input and intermediate stream quantities (as shown
in Fig. 2.2) and p is the decision variable scalar representing the percentage of sulphur in the streams out
of the pool. Notice that this NLP has three constraints involving bilinear terms, so Global Optimization
(GO) techniques are mandatory for its solution. Since bilinear terms can (and usually do) yield nonconvex
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feasible regions when used in constraints, we can only say that this is a nonconvex NLP. Note that the
implicit non-negativity constraints appear under the minimization direction operator min.

The formulation presented above is the flat formulation (it has no quantifiers ranging over indices)
of a single instance (it has no parameters). This instance is part of the problem that can be obtained
by replacing the numbers 6, 16, 10, 9, 15, 100, 200, 2.5, 1.5 in the objective and constraints by parameter
symbols ranging over non-negative real scalars. It is this problem that is actually called HPP. Many
generalizations of the HPP have been studied in the literature, most notably with respect to the network
topology, to the types of oil impurity (e.g. the sulphur) and to the activation/de-activation of conducts
in the oil network [111], see Sect. 2.2.7.8 below.

2.2.7.8 Pooling and Blending Problems

The HPP (Sect. 2.2.7.7) is a subclass of more general problems termed Pooling/Blending problems.
Various types of crude oils of different qualities, coming from different feeds, are mixed together in
various pools to produce several end-products subject to quality requirements and quantity demands; the
objective is to minimize the net costs. These problems are usually modelled as continuous NLPs involving
bilinear terms. The literature on Pooling/Blending problems is vast (see e.g. [1, 56, 150, 142, 10, 91]).
We present the general blending problem formulation found in [1, p. 1958]. The formulation refers to a
setting with q pools each with nj input streams (j ≤ q) and r end products. Each stream has l qualities.

min
x,y,p≥0

q∑
j=1

nj∑
i=1

cijxij −
r∑

k=1

dk
q∑
j=1

yjk

nj∑
i=1

xij =
r∑

k=1

yjk ∀j ≤ q
q∑
j=1

yjk ≤ Sk ∀k ≤ r
nj∑
i=1

λijwxij = pjw
r∑

k=1

xjk ∀j ≤ q ∀w ≤ l
q∑
j=1

pjwxjk ≤ zkw
q∑
j=1

yjk ∀k ≤ r ∀w ≤ l

xL ≤ x ≤ xU , pL ≤ p ≤ pU , yL ≤ y ≤ yU ,



(2.17)

where xij is the flow of input stream i into pool j, yjk is the total flow from pool j to product k and pjw
is the w-th quality of pool j; cij , dk, Sk, Zkw, λijw are, respectively: the unit cost of the i-th stream into
pool j, the unit price of product k, the demand for product k, the w-th quality requirement for product
k and the w-th quality specification of the i-th stream into pool j.

The variable symbols are x, y, p, as emphasized under the optimization direction symbol min. The
other symbols indicate parameters.

2.2.7.9 Euclidean Location Problems

There are n plants with geographical positions expressed in Euclidean coordinates (ai, bi) (1 ≤ i ≤ n)
w.r.t. to an arbitrary point (0, 0). Daily, the i-th plant needs ri tons of raw material, which can be
delivered from m storage points each with storage capacity cj (1 ≤ j ≤ m). For security reasons, each
storage point must be located at least at D = 1 Km distance from the plant. The cost of raw material
transportation between each storage point and each plant is directly proportional to their distance as
well as the quantity of raw material. Find geographical positions where to place each storage point so
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that the transportation costs are minimized. The MP formulation is as follows:

min
x,y,d,w

n∑
i=1

m∑
j=1

wijdij

s.t.
n∑
i=1

wij ≤ cj ∀j ≤ m storage capacity

m∑
j=1

wij ≥ ri ∀i ≤ n plant requirement

dij =
√

(xj − ai)2 + (yj − bi)2 ∀i ≤ m, j ≤ n Euclidean distance
dij ≥ D ∀i ≤ n, j ≤ m minimum distance


where (xj , yj) is the geographical position of the j-th storage point, dij is the distance between the i-th
plant and the j-th storage point, wij is the quantity of raw material transported from the j-th storage
point to the i-th plant (i ≤ n, j ≤ m). The decision variable symbols are x, y, d, w. The rest are parameter
symbols.

2.2.7.10 Kissing Number Problem

When billiard balls touch each other they are said to “kiss”. Accordingly, the kissing number in D
dimensions is the number of D-dimensional spheres of radius R that can be arranged around a central
D-dimensional sphere of radius R so that each of the surrounding spheres touches the central one without
their interiors overlapping. Determining the maximum kissing number in various dimensions has become
a well-known problem in combinatorial geometry. Notationally, we indicate the Kissing Number Problem
in D dimensions by KNP(D). In R2 the result is trivial: the maximum kissing number is 6.

2.2.11 Exercise
Prove that the kissing number in 2 dimensions is 6.

The situation is far from trivial in R3. The problem earned its fame because, according to Newton,
the maximum kissing number in 3D is 12, whereas according to his contemporary fellow mathematician
David Gregory, the maximum kissing number in 3D is 13 (this conjecture was stated without proof).
This question was settled, at long last, more than 250 years after having been stated, when J. Leech
finally proved that the solution in 3D is 12 [82]. As you can see in Fig. 2.3, there is some slack around
the sphere, so it is not obvious that 13 non-overlapping spheres cannot fit. Given parameters D (number

Figure 2.3: A solution of Kissing Number Problem in 3D with 12 spheres.

of dimensions) and N (number of spheres), the variables xi = (xi1, . . . , x
i
D), 1 ≤ i ≤ N determine the

position of the center of the i-th sphere around the central one. We maximize a decision variable α ≥ 0
which represents the minimum pairwise sphere separation distance in the N -sphere configuration being
tested, subject to the necessary geometric constraints. Since the constraints are nonconvex, there may
be multiple local minima. If the solution of the formulation determines that the global maximum is at
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α ≥ 1, then there is enough space for N spheres; if the globally optimal α is strictly less than 1, it means
that the N configuration has overlapping spheres, hence the kissing number is N − 1. By solving this
decision problem repeatedly for different values of N , we are able to quickly pinpoint the maximum N
for which α > 1. The following formulation correctly models the problem:

max α (2.18)

∀i ≤ N ||xi||2 = 2R (2.19)

∀i < j ≤ N ||xi − xj ||2 ≥ 2Rα (2.20)

α ≥ 0 (2.21)

∀i ≤ N xi ∈ RD (2.22)

Constraints Eq. (2.19) ensure that the centers of the N spheres all have distance 2R from the center of
the central sphere (i.e., the N spheres kiss the central sphere). Constraints Eq. 2.20 make the N spheres
non-overlapping. This problem has been solved correctly up to D = 4 (and N = 24, which is KNP(4))
[87].



Chapter 3

The AMPL language

This chapter provides a brief tutorial to the AMPL language. A much better reference is the AMPL
book [57], the chapters of which can be downloaded from www.ampl.com free of charge. AMPL stands
for “A Mathematical Programming Language”. It was initially conceived by Robert Fourer, David Gay
and Brian Kernighan, although the current software and book are only authored by Fourer and Gay.

AMPL’s strong point is that can interface to many different solvers, for LP, MILP, NLP and MINLP.
Another endearing feature is that MP formulations written in AMPL are very close to the mathematical
syntax (much closer to it than, say, what the GAMS [29] language achieves). Its weak point is that its
algorithmic capabilities are quite limited.

AMPL is a commercial software: even with academic pricing, a yearly license runs into the hundreds of
dollars (but GAMS costs much more, and MATLAB [103] more than either, specially if you order a decent
set of add-ons). A subset of the AMPL language is implemented within the open-source GNU-licensed
GLPK [100] solver; but GLPK only offers two solvers (a good LP solver, and a somewhat primitive
MILP solver). Note that with both AMPL and GAMS the cost of the solvers is extra — and often you
need to purchase solvers from other distributors. Luckily, AMPL makes it possible for teachers to obtain
time-limited teaching licenses free of charge, which come with a lot of embedded solvers.

We will not cover installation here: we assume you obtained an AMPL distribution with a good set
of solvers (particularly CPLEX, IPOPT, BonMin and Couenne), and that paths are correctly set, so
that if you type ampl or cplex on the command line, you will invoke the correct executables.

3.1 The workflow

Although AMPL comes with a rather primitive GUI, we focus on a command-line driven workflow. You
can see the ampl executable as an interpreter: a program which inputs a text file containing instructions
and executes them one by one. Instruction files traditionally have the extension .run. So the basic calling
sequence (from Linux, MacOSX or Windows) is:

ampl < file.run

If you are on a Unix system (e.g. Linux and MacOSX, but to some extent this might also work with
Windows), you can exploit the operating system’s “pipe”-style filters: you instruct AMPL to provide its
output as formatted text, and pass the output to a second command which accepts that format:

ampl < file.run | command

51



52 CHAPTER 3. THE AMPL LANGUAGE

In this setting, command might perform tasks such as writing a graphical file with a visualization of the
output of your file.run program, or perform further algorithmics on the output of your program.

3.2 Input files

The simplest way to solve a MP formulation using AMPL involves three text files:

• a .run file, containing some imperative instructions (e.g. read/write data from/to the console or
files, perform loops and/or tests);

• a .mod file, containing some declarative instructions (e.g. declare and define index sets, parameters,
variables, objectives, constraints, formulations)

• a .dat file, containing the values to assign to the index sets and parameters.

Typically, all files share the same name (e.g. mymodel.run, mymodel.mod, mymodel.dat). The .run file
usually instructs AMPL to read the .mod and the the .dat file.

Dividing a formulation into two files (.mod and .dat) is meant to help separating symbolic entities
from numerical data. In a real world setting, one might need to solve large amounts of instances of the
same problem: in that case one would only need to update the .dat file, never the .mod file.

On the other hand, this division in three text files serves the purpose of making the organization of
information clearer to the user. AMPL does not care if you use one, two, three or more files (which might
be the case if solving your problem involves more than one formulation).

3.3 Basic syntax

AMPL embeds three sublanguages: one is imperative (used mostly in .run files), one is declarative (used
mostly in .mod files), and the third (the simplest) is only used within .dat files.

For all three sublanguages, comments are one line long and are introduced by the hash (#) character.
Every instruction is completed using a semicolon (;), with one exception: within the AMPL imperative
sublanguage, if the body of loops or tests is delimited by braces ({, }), there need not be a semicolon
after the closing brace. E.g.,

# whole line comment

param i default 0; # rest of line is comment

let i := 4;

but

if (i == 4) then {

let i := i + 1;

} else {

let i := i - 1;

}

and
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for {i in 1..5} {

let i := i + 1;

}

Note that imperative program variables are declared to be formulation parameters (keyword param).
Assignment of values to program variables requires the keyword let and the assignment operator :=,
while the equality test uses == (the operator = is reserved for use in the definition of equality constraints).
The notation 1..5 denotes the set {1, 2, 3, 4, 5}. For more about test/loop syntax, see the AMPL book
[57].

3.4 LP example

Let us model the following LP using AMPL:

min{c>x | Ax ≥ b ∧ x ≥ 0},

where c, A, b are parameters and x decision variables. AMPL will not accept matrix notation, so we really
have to write the formulation as follows:

min
∑
j∈N

cjxj

∀i ∈M
∑
j∈N

Aijxj ≥ bi,


which involves two index sets M (for the constraints) and N (for the variables), a cost vector c ∈ Rn, a
RHS vector b ∈ Rm and an m× n matrix A.

3.4.1 The .mod file

The syntax of a .mod file is declarative. It segments a MP formulation into five different entities: sets
(set), parameters (param), variables (var), objective (introduced by either minimize or maximize) and
constraints (introduced by subject to). Every entity is named. The name may be quantified over an
index set. For example if N is an index set, you can declare variables xi for i ∈ N as follows:

var x{i in N};

We write the .mod file as follows.

## .mod file for an LP in form min cx : Ax >= b

# parameters and sets

param m integer, >0, default 50; # number of constraints

param n integer, >0, default 10; # number of variables

set M := 1..m; # index set for constraints

set N := 1..n; # index set for variables

param c{N} default Uniform01(); # objfun coeff vector

param A{M,N} default Uniform(-1,1); # constr matrix

param b{M} default Uniform(1,2); # RHS vector

# decision variables

var x{N} >= 0;

# objective function

minimize myObj: sum{j in N} c[j]*x[j];
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# constraints

subject to myConstr{i in M}: sum{j in N} A[i,j]*x[j] >= b[i];

# solve the problem

option solver cplex; # choose the solver

solve; # solve it

# display the output

display x, objective, solve_result;

Some remarks follow.

• Every entity declaration supports a list of modifiers separated by commas: the parameter symbol
m is required to be integer, positive, and, if uninitialized elsewhere, be assigned the value 50. The
decision variable symbol x, quantified over N, declares a variable vector each component of which
is constrained to be nonnegative.

• Modifiers such as integer, >0 and >=0 are applied to both parameters and variables: their meaning
in these different context is correspondingly different. When a parameter is constrained, it will force
AMPL to abort its execution whenever it is assigned (within the .run or .dat file) a value which
does not satisfy the constraints. When a variable is constrained, the constraint will be passed to the
solver. Constraining parameters is therefore a form of input data validation, whereas constraining
variables is an essential part of an MP formulation.

• The parameters c, A, b are quantified over index sets, and describe vectors and matrices. Notwith-
standing, their assigned default value is the output of the functions Uniform01 and Uniform, which
is a scalar. This means that every component of the vectors and matrix will be assigned the scalar
returned by the function, which is called on every component. In other words, c, A, b are random
vectors and a random matrix. Suppose we defined a parameter C quantified over N, to which we
would like to assign default values taken from c. In this case, the declaration should be written as
follows:

param C{j in N} default c[j];

Note that we explicitly mention the index j ranging over N in order to use it to index c (which is
also quantified over the same set N).

• In order to initialize the index sets M and N, we use two scalar integer parameters m and n, which
allow us to define M and N as sequence of consecutive integers from 1 to m (respectively, n). This is
often done when defining consecutive integer ranges. You can also initialize a set within a .mod file
by using normal set notation:

set M := {1,3,6};

or range notation:

set M := 1..m;

We remark that initialization of sets in .dat files follows a different syntax (see Sect. 3.4.2).

• Initializing a parameter or set with a value within a declaration instruction in a .mod can be done
with two constructs: the assignment operator := and the default keyword, e.g.:

param m default 50;

param n := 10;

set M := 1..50;

set N default {1,2,3,4};
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Those sets/parameters initialized with an assignment operator := are initialized once and for all
during the AMPL execution. The initialization value assigned with the default keyword can be
changed (e.g. using let) during the AMPL execution.

• The label myObj is the name we chose for the objective function. The labelmyConstr is the name
we chose for the constraints. Since LPs only have one objective, we do not need to quantify myObj

over an index set. On the other hand, we need to quantify myConstr over the constraint index set
M.

• The choice of solver is made by specifying the option solver. The name which follows (in this
case, cplex) must correspond to a solver executable file by the same name available to AMPL for
calling (which requires adding the solver executable directory to the default path). The instruction
solve will flatten the formulation, pass it to the solver, retrieve the (flat) solution from the solver,
and re-organize the solution components in structured format.

• The display command is the simplest of AMPL’s output commands. See the AMPL book [57] for
more information.

• The variable solve result is a system variable (i.e. it exists in AMPL’s namespace by default —
no need to declare it), in which solvers may store a string description of their return status.

3.4.2 The .dat file

An AMPL .dat file simply stores the input data in an AMPL-specific format. Users can define parameter
values and set contents in a .dat file.

Sets are initialized in .dat files by providing a list of elements separated by spaces, without brace
enclosure:

set N := 1 2 3;

set M := 1 2;

Parameters are initialized in various ways (see the AMPL book for more details). We shall only cover
the basics here.

• Initializing a vector is done as follows.

param c :=

1 0.4

2 0.1

3 1.23 ;

• Supposing you did not initialize the index set N in the .mod file, and you cannot be bother to list
its contents explicitly using the constructs above, you can do it implicitly in the definition of the
first parameter indexed on N.

param : N : c :=

1 0.4

2 0.1

3 1.23 ;

• If two (or more) vectors (such as c, C) are defined over the same index set N, you can list the index
set once only.
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param : c C :=

1 0.4 0.9

2 0.1 0.8

3 1.23 -0.7 ;

• You can also initialize N while defining both c and C.

param : N : c C :=

1 0.4 0.9

2 0.1 0.8

3 1.23 -0.7 ;

• Initializing a matrix (or a tensor) simply requires more index columns.

param A :=

1 1 1.1

1 2 0.0

1 3 0.3

2 1 0.0

2 2 -0.31

2 3 0.0;

• If your matrix is sparse, make sure you initialize it to zero in the .mod file (using the default 0

modifier in the declaration), and then simply initialize the nonzeros in the .dat file (otherwise your
.dat files will be enormous).

param A :=

1 1 1.1

1 3 0.3

2 2 -0.31;

• Note that the format (columns, line breaks) is arbitrary. By leveraging its knowledge of the index
sets of the parameters, necessarily declared in the .mod file, AMPL will not mind whether you write
the previous matrix definition as follows.

param A := 1 1 1.1 1 3 0.3 2 2 -0.31;

Since the previous syntax is clearer (to a human), it is preferable.

3.4.3 The .run file

A minimal .run file, sufficient for reading the model, the data, selecting the solver and solving the instance
is as follows.

## .run file

# read the model file

model file.mod;

# read the data file

model file.dat;

# choose the solver

option solver cplex;

# solve the problem

solve;

# display the solver status

display solve_result;
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3.5 The imperative sublanguage

Although some heuristics can easily be coded in AMPL, more complicated algorithms might be unwieldy,
as AMPL has (among other limitations) no construct for function calls. Mostly, the imperative sub-
language is very useful for formatting the output. You might for example instruct AMPL to write the
solution of a circle packing problem (Sect. 1.3.10) in Python, and then use the latter to display the
solution graphically, as in the following AMPL code snippet:

print "import matplotlib.pyplot as plt" > circlepacking_out.py;

for {i in N} {

printf "circle%d = plt.Circle((%g,%g),%g)\n", i, x[i], y[i], r >> circlepacking_out.py;

}

print "fig = plt.gcf()" >> circlepacking_out.py;

for {i in N} {

printf "fig.gca().add_artist(circle%d)\n", i >> circlepacking_out.py;

}

print "fig.savefig(’circlepacking_out.png’)" >> circlepacking_out.py;
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Chapter 4

Computability

In this chapter we treat the very basic question “can we even solve an optimization problem using a
computer?” In general, this question can be asked of any type of broad problem category, be it decision,
search or optimization. The field of logic that studies this question is called computability. The questions
are asked in a given computing model, which is usually the Turing machine (TM) model of computation
(though it need not be). We want the answers to be valid for every problem in the class of interest.
For example, every (finite) LP with rational input data can be solved using a TM that implements the
simplex method. Conversely, there can be no TM that is able to solve every MINLP.

4.1 A short summary

We first give a very short summary of concepts in computability theory.

4.1.1 Models of computation

The computer was first conceived by Alan Turing in 1936 [143]. Turing’s mathematical model of the
computer is called Turing machine. A TM consists of an infinite tape, divided into a countably infinite
number of cells, with a device (called head) that can read or write symbols out of a given alphabet A
on each cell of the tape. According to the state s ∈ S the TM is in, the head either reads, or writes, or
moves its position along the tape. The description of any TM includes a set of instructions which tell it
how to change its state. Turing showed that there exist TMs which can simulate the behaviour of any
other TM: such TMs are called Universal TMs

Turing’s work spawned further research, from the 1950s onwards, aimed at simplifying the description
of UTMs, involving scientists of the caliber of Shannon [134] and Minsky [110]. More recently, Rogozhin
[127] described UTMs with low values of (|S|, |A|), e.g. (24, 2), (10, 3), (7, 4), (5, 5), (4, 6), (3, 10), (2, 18).
It appears clear that there is a trade-off between number of states and number of symbols in the alphabet.

UTMs are not the only existing models of computation — several others exist, sometimes very different
from each other (see e.g. the Game of Life, a model for bacteria diffusion [19]). Such models are said to
be Turing-complete if they can simulate a UTM. “Simulating”, in this context, means using a different
model C of computation in order to mimick the behaviour of a UTM. To prove this, it suffices to show
that every instruction, state and symbol of the UTM can be simulated by C. If the UTM can also
simulate C, then C is said to be Turing-equivalent.

Church’s Thesis is the statement that every Turing-complete model of computation is also Turing-
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equivalent. So far, no Turing-complete model of computation was found to be more “powerful” than the
UTM.

4.1.2 Decidability

Functions N → N described by a TM are called computable. The term decidable applies to relations
instead of functions: a k-ary relation R on Dk is decidable if, given d1, . . . , dk ∈ D, there exists a TM
that decides whether the k-tuple d = (d1, . . . , dk) is in R. Since “being in R” can be encoded as a
YES/NO type of question, decidability applies to decision problems.

Sets V ⊆ N that are domains (or co-domains) of computable functions are called recursively enu-
merable. If V and N r V are both recursively enumerable, then they are both also called recursive or
decidable.

Given a set V ⊆ N and an integer v ∈ N, one may ask whether v ∈ V or not. This is a fundamental
decision problem (in number theory — but a computer represents every data structure with numbers in
base 2, so this limitation is only formal). It turns out that V is recursively enumerable if and only if
there is a program that answers YES when v ∈ V , but may answer wrongly or even fail to terminate
when v 6∈ V ; moreover, V is decidable if and only if there is a program that answers YES when v ∈ V
and NO when v 6∈ V .

It should appear clear that recursively enumerable sets are of limited value as far as proving that
an answer to a problem is correct: if the algorithm answers YES, it may be a true positive or a false
negative, and there is no way to tell. Moreover, how is a user supposed to know whether a program fails
to terminate or is simply taking a long time? Accordingly, we hope to consider problems so that the
solution set is decidable. On the other hand, many interesting sets arising in optimization problems are
only recursively enumerable (or worse).

4.2 Solution representability

The solutions of LPs and MILP have rational components as long as the input data is rational. For
MINLP, the situation is not so clear: solution components might involve irrational numbers (both alge-
braic and transcendental, depending on the involved functions). We list four approaches that attempt to
deal with the issue of representing such solutions within a finite amount of storage.

4.2.1 The real RAM model

The computation model of Blum, Shub and Smale [22] (often referred to as real RAM model) essentially
eschews the problem of representation, as it defines the real equivalent of computational complexity
classes such as P, NP and their relationships. In the real RAM model, storing, reading or performing
arithmetic on real numbers has unit cost [22, p. 24]. This model of computation is mostly used for
theoretical results concerning algorithms in numerical analysis and scientific computing.

4.2.2 Approximation of the optimal objective function value

The approach taken by the GO community, specially those who develop sBB algorithms, consists in
finding a (rational, or rather floating point encoded) solution x∗ yielding an objective function value
f∗ = f(x∗) that is within a given ε > 0 of the true globally optimal function value f̃ at a true global
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optimum x̃:
|f∗ − f̃ | ≤ ε. (4.1)

Since the true optimal value f̃ is not known, in practice Eq. (4.1) is enforced by requiring that |f∗−f̄ | ≤ ε,
where f̄ is a guaranteed lower bound to the optimal objective function value, computed e.g. by solving
an LP relaxation of Eq. (2.2). One of the issues with this approach is that, depending on the instance
being solved, Eq. (4.1) might be satisfied even if ‖x∗ − x̃‖ is arbitrarily large.

4.2.3 Approximation of the optimal solution

The approach taken by Dorit Hochbaum [70] is more accurate, as it insists that the solution x∗ is within
a given ε > 0 tolerance of the true optimum x̃:

‖x∗ − x̃‖∞ ≤ ε. (4.2)

This means that x∗ is the same as x̃ inO(log 1
ε ) decimal digits. Other than that, all arithmetical operations

on reals take O(1) time. Since one only needs to consider O(log 1
ε ) decimal digits, this assumption places

this representation approach within the TM model of computation.

4.2.4 Representability of algebraic numbers

A more credible attempt at representing an algebraic number α has been made using of minimal polyno-
mials. The most common is the Thom encoding, a pair (pα, σ), where pα(x) is the minimal polynomial
of α (of degree d, say) and σ : {0, . . . , d} → {0,−1, 1} encodes the sign of the k-th derivative of pα at
α [12, Prop. 2.28]. Simpler representations are possible for specific tasks, e.g. σ might be replaced by a
rational number a which is closer to α than to any other real root of pα [14].

4.2.4.1 Solving polynomial systems of equations

Solving polynomial systems of equations exactly is sometimes possible by “diagonalizing” them using
Gröbner bases and then perform back-substitution, similar to Gaussian elimination.

Gröbner bases can be found by Buchberger’s algorithm [30]. It takes as input a rational multivariate
polynomial equation system:

∀i ≤ m pi(x) = 0. (4.3)

It then proceeds by diagonalizing Eq. (4.3) to a new polynomial system:

∀i ≤ m′ qi(x) = 0, (4.4)

such that the leading terms of pi’s and qi’s, w.r.t. some given monomial order, generate the same ideal. Let
F = {p1, . . . , pm}. Buchberger’s algorithm proceeds as follows:

1: Fix an ordering <F on the monomials of F
2: Let G← F
3: repeat
4: Let H ← G
5: for p, q ∈ G s.t. p 6= q do
6: Let p̂, q̂ be the leading terms of p, q w.r.t. <F
7: Let a be the least common multiple (lcm) of p̂, q̂
8: Let s← a

p̂p−
a
q̂ q # This cancels the leading terms of p, q in s

9: Reduce s w.r.t. G using multivariate polynomial division
10: if s 6≡ 0 then
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11: Update G← G ∪ {s}
12: end if
13: end for
14: until G = H

Buchberger’s algorithm monotonically increases the size of the ideal generated by the leading terms of G.
The algorithm terminates because, by Hilbert’s basis theorem, ascending chains of ideals must eventually
become stationary. The termination condition is verified even if the last considered polynomial is not
univariate.

Like Gaussian elimination, this diagonalization can be used for performing back-substitution as long
as the last considered equation q(x) only depends on a single variable. Unlike Gaussian elimination,
however, m′ generally exceeds m, and it does not yield a guarantee that qi will contain strictly fewer
variables than qi+1: the diagonal structure might contain blocks of polynomials depending on the same
set of variables. Even if the back-substitution procedure fails to provide a solution, the diagonal form
will still hold after a failure occurs, a condition which might be described as “back-substitute as far as
possible”.

Unfortunately, Buchberger’s algorithm has doubly exponential worst-case complexity in general (see
Ch. 5), though it behaves singly exponentially in some cases [11].

An interesting development of Gröbner’s bases is given by chordal networks [34]. They supply polyno-
mial systems that are cheaper to construct, provide the same back-substitution functionality for finding
a solution of a polynomial system of equations. Unfortunately, their size is larger than for Gröbner bases.

4.2.4.2 Optimization using Gröbner bases

There are at least two articles [63, 32] where Gröbner bases are used to diagonalize the first-order opti-
mality conditions, also known as Karush-Kuhn Tucker (KKT) system (see Thm. 6.2.7), of a Polynomial
Programming (PP) problem. In both articles, the last phase of the procedure performs back-substitution
on the diagonalized polynomial system using floating point numbers, thereby forsaking exactness; but
those floating point numbers could in principle be used as “closest rationals” in the representation men-
tioned above.

4.3 Computability in MP

As mentioned above, we can solve LPs (by means of the simplex method, see Sect. 7.1). We can solve
MILPs (by means of the BB algorithm). We cannot solve all cNLPs (and hence even the including classes
NLPs, cMINLPs and MINLPs) at least because we have issues with representing the solution exactly, as
detailed in Sect. 4.2.

We focus on MINLP. While we cannot solve them in full generality (see Sect. 4.3.2 below), the full
answer is rather more interesting: MINLP is a class of problems containing two bordering theories1, one
of which is decidable, while the other is not.

4.3.1 Polynomial feasibility in continuous variables

MINLP contains (as a strict subset) all Polynomial Feasibility Problems (PFP) with variables ranging
over the reals:

∀i ≤ m pi(x) R 0, (4.5)

1By theory we mean a class of formal sentences provable from a given set of axioms; also see Footnote 3 on p. 66.
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where the pi’s are rational polynomials and the relation symbol R is one of the relations in the set {≥,=}.
We question the existence of a general method for deciding whether there exists a solution to Eq. (4.5).

4.3.1 Remark (Polynomial equations and inequalities)
Note that Eq. (4.5) can in fact be expressed with a single relation R, either ≥ or =, since every equation
can be expressed by a pair of inequalities with opposite sign, and every inequality pi(x) ≥ 0 can be
rewritten as pi(x) + s2

i = 0, where si is an additional continuous variable.

4.3.1.1 Quantifier elimination

Tarski proved in [141] that systems like Eq. (4.5) are decidable. Most algorithms for deciding Eq. (4.5)
are based on a technique known as quantifier elimination. This is an algorithm which turns a quantified
logical sentence with variable terms into one without quantifiers or free variables. Forthwith, deciding
truth or falsity can be achieved by elementary manipulations leading to either a tautology 1 = 1 or a
contradiction 0 = 1. Note that Tarski’s algorithm can be applied to a larger class of polynomial systems
than Eq. (4.5): the relation symbol R can actually range over {≥, >,=, 6=}.

Tarski’s proof extends for 57 pages of a RAND Corporation technical report [141]. To showcase an
easier quantifier elimination example, Lyndon discusses dense linear orders in his book [99, p. 38]. This
theory includes logical formulæ involving ∀,∃,¬,∧,∨, the variable symbols x1, x2, . . ., the terms True,
False, the real numbers as constants, and the relation symbols <,=. Sentences of this theory can be
inductively reduced to a disjunctive normal form (DNF) such that each clause is ∃xi s.t. qi(x), where qi
is an unquantified conjunction of sentences

∧
qij , where, in turn, each qij has one of the forms s = t or

s < t with s, t are either variables or real constants. Each qij is then reduced to either True or False: if
s, t are both constants, the conditions s < t or s = t are immediately verified and can be replaced with
True or False. If both s and t are xi, then s = t ⇒ xi = xi is True, and s < t ⇒ xi < xi is False: so
s, t can be assumed to be different. If s is the variable xi, a formula xi = t (independently of whether t
is a constant or another variable) can be interpreted to mean “replace xi with t”, so the variable xi can
be eliminated. The remaining case is that qi is a conjunction of formulae of the form s < xi and xi < t
(with s, t either other variables or constants), which amounts to writing s < t — again, this eliminates
xi. Since every occurrence of xi can be eliminated from qi, ∃xiqi can be more simply re-written as qi:
hence the name quantifier elimination..

4.3.1.2 Cylindrical decomposition

Well after Tarski’s 1948 quantifier elimination algorithm, Collins discovered [36] that the decision proce-
dure of systems such as Eq. (4.5) is in some sense a nontrivial extension of the dense linear order case.
The solution set of Eq. (4.5) consists of finitely many connected components, which can be recursively
built out of cylinders with bases shaped as points or intervals the extremities of which are either points, or
±∞, or algebraic curves depending on variables involved in previous recursion levels. Although Collins’
algorithm is doubly exponential in the number of variables, a singly exponential algorithm was described
in [12].

The cylindrical decomposition result of [36] consists of a topological and a geometric part. The
topological part states that the feasible regions of Eq. (4.5) (where R ranges in {>,≥,=, 6=}), also called
semi-algebraic sets, consist of a finite number of connected components. The geometrical part gives the
recursive description mentioned above in terms of cylinders. The topological part was known previous to
Collins’ contribution, see e.g. [108].
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4.3.2 Polynomial feasibility in integer variables

In this section, we shall consider Eq. (4.5) subject to integrality constraints on the vector x of decision
variables. In fact, it suffices to consider equations only (see Rem. 4.3.1):

∀i ≤ m pi(x) = 0
∀j ≤ n xj ∈ Z.

}
(4.6)

Given a system Eq. (4.6) of polynomial equations in integers, can we decide whether it has a solution?

4.3.2.1 Undecidability versus incompleteness

The question of deciding whether a polynomial system has integer solutions is related but different from
completeness2. A consistent formal system3 S is complete when, for any sentence p of the system, either
p is provable within S, or ¬p is. A system S is incomplete when there are sentences p such that neither
p nor ¬p are provable within S. Gödel’s (first) incompleteness theorem states that any S capable of
representing N and its arithmetic is either inconsistent or incomplete. This leaves open the question of
decidability, i.e. of whether there exists an algorithm that, given any p in S, decides whether p is provable
within S or not.

4.3.2 Remark (Decidability does not imply completeness)
There is a common misconception that decidability should imply completeness. The (faulty) argument
goes as follows. If a formal system S is decidable, then for any given p the system S can be used to
decide whether p is provable in S (e.g. by exhibiting a proof of p within S). So, in case p is provable,
then ¬p cannot be, and vice versa. Hence, either p or ¬p must be provable within S, which implies that
S is complete.

The error resides in thinking that the “vice versa” above exhausts all possibilities. For two sentences
p and ¬p in S, there are four assignments of “provability within S” to the two sentences: (i) both are
provable, (ii) the first is provable and the second is not, (iii) the first is not and the second is, and
(iv) neither is provable. The first assignment leads to the inconsistency of S: it should be discarded
since we assumed that S is consistent. The second and third assignments are part of the above (faulty)
argument. The error stems from forgetting the fourth assignment: i.e., that both p and ¬p may fail to be
provable within S. This condition is described by saying that p is independent of S. A decision algorithm
for provability in S might answer NO when given either p or ¬p as input. So a formal system can be
decidable but incomplete (e.g., the Wikipedia page https://en.wikipedia.org/wiki/Decidability_
(logic)#Relationship_with_completeness states that the theory of algebraically closed fields bears
this property).

As it turns out, if S encodes arithmetic in N and is consistent, it is not only incomplete (by Gödel’s
first incompleteness theorem) but also undecidable. This was settled by Turing [143] using a diagonal-
ization argument involving another undecidable decision problem called the halting problem — is there
an algorithm for deciding whether a given TM terminates or not?

2We mean “completeness” as in Gödel’s incompleteness theorem, rather than Gödel’s completeness theorem — these
two notions, though bearing related names, are distinct.

3A formal system S is a finite language L, together with a grammar that defines a set of well-formed formulæ (called
sentences) over L, a chosen set of sentences called axioms, and a set of inference rules (e.g. modus ponens) which define
relations over sentences. Given a sentence p, a proof for p in S is a sequence of iterative applications of inference rules to
sentences that are either axioms or for which a proof was already provided.
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4.3.2.2 Hilbert’s 10th problem

We now come back to our MINLP feasibility problem in Eq. (4.6). Each equation in the system is known
as a Diophantine equation (DE). Let S be a formal system encoding arithmetic in N. Systems of DEs are
certainly well-formed formulæ within S. Although the set of all well-formed formulæ in S is undecidable,
we still do not know whether the limited subset described by the form of Eq. (4.6) is “general enough” to
be undecidable. The common property of all feasibility systems is that the integer variables x1, . . . , xn are
implicitly quantified by existential quantifiers “∃”, but no universal quantifier “∀”. Moreover, Eq. (4.6)
only consists of sentences involving polynomials, whereas exponentiation is also part of arithmetic in
integers. We can now frame the question as follows: is the set of all existentially quantified polynomial
sentences of S decidable or not? This can be seen as a modern restatement of Hilbert’s 10th problem.

From the proof of Gödel’s first incompleteness theorem [60], it is clear that Gödel only used a finite
number of bounded universal quantifiers. Davis, in [46], shows that a single bounded universal quantifier
is sufficient to encode undecidable problems:

∃y∀z ≤ y∃x1, . . . , xn p(y, z, x) = 0, (4.7)

where p is an integral polynomial, and x1, . . . , xn, y, z are all in N. In [47], it is shown that there exist
undecidable problems that are almost in the desired form:

∃x1, . . . , xn ∈ N η(x) = 0, (4.8)

but where η is an exponential DE (EDE), i.e. a function that can be written using arithmetical opera-
tions and exponentiation. In a landmark result, Matiyasevich proved in 1970 [104] that the exponential
relationship a = bc can be expressed by means of a DE (i.e. without exponentiation), thereby settling
Hilbert’s 10th problem in the negative. This result is now known as the Matiyasevich-Davis-Putnam-
Robinson (MDPR) theorem. In the setting of this paper, the MDPR theorem means that

∃x1, . . . , xn ∈ N p(x) = 0, (4.9)

where p is a polynomial, is generally undecidable. This makes Eq. (4.6) undecidable, which, by inclusion,
makes MINLP undecidable, too.

4.3.3 Remark (DE systems)
A system of DEs such as Eq. (4.6) is equivalent to a single DE such as Eq. (4.9): it suffices to write

p(x) =
∑
i≤m

(pi(x))2.

4.3.4 Remark (Undecidability in Z)
The undecidability results relate to N rather than Z, but this is without loss of generality: we can

transform any DE with solutions in Z to one with solutions in N by writing xi = y+
i − y−i (where

y+
i , y

−
i ∈ N), and, conversely, since every non-negative integer is the sum of four squares, the opposite

transformation as xi = a2
i + b2i + c2i + d2

i for the i-th component xi occurring in the arguments of p(x).

4.3.5 Remark (Polynomials over Q)
The result also holds for polynomials over Q: it suffices to write rational coefficients as fractions, find the
lcm L of the denominators, and consider Lp(x) instead of p(x).

It might seem strange to stare at a single polynomial equation such as Eq. (4.9), and claim that it is
undecidable: it sounds like saying that a single instance of a problem is undecidable. In fact, the variable
vector of p(x) is partitioned in two subsequences α = (α1, . . . , α`) and y = (y1, . . . , yN ), so that α encodes
the parameter of an “instance”, and y the solution. Since:
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(a) every recursively enumerable set W can be encoded by a single polynomial equation pW (α, y) = 0
such that any string w is encoded in α, and w ∈W iff p(α, y) = 0 has a solution in y;

(b) there exist recursively enumerable sets that are undecidable,

the MDRP result follows.

4.3.3 Universality

As remarked in [76], recursively enumerable sets can be enumerated in some order W1,W2, . . . such that
the relation w ∈Wv for some v is also recursively enumerable. This implies the existence of a DE

U(w, v, y) = 0 (4.10)

for some parameters w and v such that U(α, v, y) = 0 has an integer solution y iff w ∈ Wv. Such
polynomials U are known as universal Diophantine equations (UDE). This is equivalent to a UTM, which
takes as input an encoding of any TM Tv and any instance w, and simulates Tv(w). In this setting, Tv
is a TM that is supposed to determine whether w ∈Wv.

Finding a UDE presents potential applications, as it would allow the encoding of any computer
program into a single polynomial. Studying its properties might help shed light on the program itself.
Jones [76] conducted a thorough study of two complexity measures for UDEs: their degrees δ and the
number ν of variables occuring in them.

The minimum known value for δ is 4. It suffices to take any UDE, and repeatedly replace any degree
2 term with a new variable until we obtain a system of DEs ∀i ≤ m (ti(x) = 0) where each ti(x) consists
of monomials of degrees 1 and 2. The equation∑

i≤m

(ti(x))2 = 0 (4.11)

(see Rem. (4.3.3)) is therefore a UDE with degree δ = 4. In passing, we also conclude that, in general,
systems of (many) quadratic DEs (QDE) are also undecidable. Jones reports the existence of a UDE
with (δ = 4, ν = 58). Decreasing ν unfortunately yields large increases on δ: Jones [76] reports a new
(δ, ν) pair due to Matiyasevich valued at (1.638× 1045, 9).

4.3.6 Remark (Proofs in N involve at most 100 operations)
By way of an application, Jones exploits the (4, 58) UDE, suitably modified to minimize the number
B basic operations (additions and multiplications) required to evaluate the polynomial, and obtains
B = 100. This implies that for any statement p that can be proved within the formal system S of
arithmetic in N, p has at least a proof that only involves 100 integer additions and multiplications.

Coming back to MINLP, since UDEs are subsets of MINLP, MINLP inherits their properties, which
means that there exist universal MINLP formulations, though they may be hard to exploit in practice. The
dynamics of a universal register machine (another computation model which is more similar to modern
computers than TMs are) have been modelled in [88] using an infinite MINLP. This MINLP becomes
finite, and hence practically solvable, on bounded executions, as boundedness ensures termination of the
underlying TM.

4.3.4 What is the cause of MINLP undecidability?

Considering Sect. 4.3.1 and Sect. 4.3.2, we can ascribe the undecidability of MINLP to the presence of
integer variables. This is apparently in contrast with the fact that any integer can be expressed within a
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theory encoding polynomials and continuous variables: given any a ∈ Z, the equation

x− a = 0

is polynomial and encodes the fact that the continuous variable x should take the integer value a. Taking
this further, we can write x ∈ {a1, . . . , ak} for any integer values a1, . . . , ak using the polynomial equation

(x− a1) · · · (x− ak) = 0.

A different approach uses the length ` of the finite sum y + y + · · ·+ y (say it has ` occurrences of y) to
express the integer ` using the polyomial equation xy =

∑
` y. Aside from the zero solution, any other

solution with y > 0 yields x = `.

However, every finite set F is decidable, at least if its elements are all given explicitly: any total
order on F provides an enumeration algorithm. Obviously, the complement F̄ of F w.r.t. N is recursively
enumerable: just list N and verify if the current element is in F or not.

To achieve undecidability, we have to look at infinite subsets of N. Is it possible to encode any
such set as solutions over R of some (multivariate) polynomial equation? The answer is no: supposing
there exists a real polynomial system with a countably infinite set of (integer) solutions would yield an
infinite number of connected components in the corresponding variety, contrary to Milnor’s topological
result [108]. Another way of proving this is that, if it were possible to encode N as solutions of a real
polynomial system in any (even nonstandard) way, then the theory of polynomials over R would be
undecidable, contrary to Tarski’s decision algorithm. It is common knowledge that, in order to encode
all integers in a system of nonlinear equations with variables ranging over Rn, one needs at least one
periodic function, e.g. the set of solutions of sin(πx) = 0 is Z. If the polynomials range over Cn, the
exponential function (which is periodic over the complex numbers) is also a candidate.

These arguments suggest that a cause of undecidability is the issue of boundedness versus unbound-
edness of the decision variables. This is well known in polynomial optimization theory. With unbounded
variables, even the continuous relaxation of a MILP may need to be reformulated using nonlinear functions
for practical usefulness [68].

4.3.5 Undecidability in MP

Although the theories of polynomial equations over the reals and the natural numbers belongs de re to
MINLP, since PFP is clearly a subclass of MINLP, the results above are traditionally a part of logic and
axiomatic set theory. Here follow two results from the MP community.

The earliest paper investigating MP and (un)decidability is possibly Jeroslow’s 1971 paper [75] about
the undecidability of Integer Quadratic Programming. Consider the formulation

min c>x
∀i ≤ m x>Qix+ a>i x ≤ bi
∀j ≤ n xj ∈ Z,

 (4.12)

where c ∈ Qn, Qi are rational n × n matrices for each i ≤ m, A = (ai | i ≤ m) is a rational m × n
matrix, and b ∈ Qm. Witzgall’s algorithm [152] solves Eq. (4.12) when each quadratic form x>Qix+a>i x
is parabolic, i.e. each Qi is diagonal with non-negative diagonal entries (for i ≤ m).

In contrast, Jeroslow observed that this is a limiting case, since if the quadratic forms are diagonal but
are allowed to have some negative entries, then they can encode an undecidable set, via the undecidability
theory of DEs. The proof is as follows: given an undecidable DE p(x) = 0, we consider the following
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subclass of Eq. (4.12):
min xn+1

(1− xn+1)p(x) = 0
xn+1 ≥ 0

∀j ≤ n xj ∈ Z.

 (4.13)

Obviously, the minimum of Eq. (4.13) is 0 iff p(x) = 0 has a solution, and 1 otherwise. Now we follow
the argument given above Eq. (4.11), and iteratively linearize products occurring in the k monomials of
p(x) until p can be reformulated to a linear form y1 + · · ·+ yk, subject to a set of defining constraints in
the form yh = τh(x, y), where each τh only involves linear occurrences of variables, or their squares, or
bilinear products of two variables. This is already undecidable, since finding the optimum of Eq. (4.13)
would solve the undecidable DE p(x) = 0, but Jeroslow notes that one can write each bilinear product
of decision variables uv (where u, v are decision variable symbols occurring in either x or y), by means of
an additional variable w, as w = u + v while replacing uv by 1

2 (w2 − u2 − v2). This yields the required
form.

Jeroslow also notes that whenever the integer variables are bounded, the problem becomes decidable
(since there is only a finite number of possible solutions of p(x) = 0).

Another paper about optimization and undecidability is [154], which focuses on undecidable problems
in MINLP and GO as detailed here below.

1. PP in integers is undecidable. Consider:

min q(x)
∀j ≤ n xj ∈ Z,

}
(4.14)

where q is a polynomial. We define q(x) = (p(x))2 so that minx q(x) = 0 iff p(x) = 0, since q
is a square and its minimum value must be ≥ 0. If we could compute the minimum of q(x), we
could decide on the solvability of p(x) = 0 according to whether minx q(x) = 0 or > 0. But this is
impossible since p(x) = 0 is undecidable.

2. Solving system of nonlinear equations is undecidable. Consider:

∀i ≤ m gi(x) = 0, (4.15)

where gi : Rn → R are nonlinear functions: is this problem decidable? The paper [154] remarks
that if p(x) = 0 is an undecidable DE, then

(p(x))2 +
∑
j≤n

(sin(πxj))
2 = 0, (4.16)

where x ranges in Rn, is precisely a restatement of the DE, and so it is undecidable. Note that
Eq. (4.16) is obviously a subclass of Eq. (4.15).

3. Unconstrained NLP is undecidable. Consider:

min
x
q(x), (4.17)

for some nonlinear function q(x). Let p(x) = 0 be an undecidable DE. Let q(x) = (p(x))2 +∑
j≤n(sin(πxj))

2, and suppose q∗ = minx q(x) is computable. Then if q∗ = 0 we have p(x) = 0
and xj ∈ Z for all j ≤ n, otherwise we do not, which is equivalent to the decidability of p(x) = 0,
against assumption.

4. Box-constrained NLP is undecidable. Consider

min
xL≤x≤xU

q(x), (4.18)
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for some nonlinear function q(x) and some variable bound vectors xL, xU . Let p(y) = 0 be an
undecidable DE. Let

q(x) = (p(tanx1, . . . , tanxn))2 +
∑
j≤n

(sin(π tanxj))
2,

then we can enforce −π2 ≤ xj ≤ π
2 for all j ≤ n, i.e. xL = −π2 and xU = π

2 without changing the
values of q(x). The argument runs as above: if we could compute the minimum q∗ of q(x) over
xL ≤ x ≤ xU , we could establish whether p(y) = 0 has a solution or not, which is impossible.
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Chapter 5

Complexity

In this chapter, we look at the computational complexity of some MINLP problems. We shall mostly
focus on nonconvex NLPs, since the presence of integer variables, even bounded to {0, 1}, makes it very
easy to prove MINLP hardness, as shown in Sect. 5.2.

5.1 Some introductory remarks

Many variants of TMs have been proposed in the first years of research on theoretical computer science:
larger alphabets, half-infinite or multiple tapes to name a few. For most of these variants, simulation
proofs were quickly devised to show that none of them was essentially more powerful than the “basic”
TM. Driven by the need for faster computation, the issue of computational complexity became more
pressing: given an algorithm and some input data, how many steps1 would a TM need to perform before
termination? Given that the same algorithm is routinely run on different inputs, the paradigm of worst
case complexity was brought to attention. Infinite sets of input data of the same type and increasing size,
together with a specification of the goal the algorithm is supposed to achieve, were grouped in classes
named problems; conversely, each member of a given problem is an instance (also see Sect. 2.1.3). We
recall that a decision problem consists in answering a YES/NO question.

Given any problem P , if there exists an algorithm taking a number of steps bounded by a polynomial
function of the instance size n in the worst case, we denote its complexity by O(nd), where d is the degree
of the polynomial, and call the algorithm polynomial-time (or simply polytime). If we are only able to
establish an exponential bound, we denote it by O(2n), and call the algorithm exponential-time.

5.1.1 Problem classes

5.1.1.1 The class P

The focus of computational complexity rapidly shifted from algorithms to problems. Given a decision
problem P , the main issue of computational complexity is: what is the worst-case complexity of the best
algorithm for solving P? Edmonds [49] and Cobham [35] remarked around 1965 that problems having
a polytime complexity are invariant w.r.t. changes in the TM definitions concerning alphabet size (as
long as it contains at least 3 characters), number of tapes, and more. This is the reason why today we
partition decision problems into two broad categories called “tractable” and “intractable”. The tractable
problems are those having polytime complexity. The class of such problems is called P.

1The issue of whether the TM would actually stop or not was discussed in Ch. 4.

73
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5.1.1.2 The class NP

For those decision problems for which no-one was able to find a polytime algorithm, it was remarked
that a somewhat “magic” TM, one that is able to pursue every test branch concurrently (this is called
nondeterministic TM), gives another useful partition on the class of all decision problems. Those for
which there exists a nondeterministic TM that runs in polytime are all grouped in a class called NP.

5.1.1 Remark (NP and certificates)
An equivalent definition of NP, which is often used, is the following: NP is the class of all problems for
which YES instances come with a polytime verifiable certificate, i.e. a proof that the instance is indeed
YES, which can be checked in polytime.

To see this, we first define NP as the class of all problems which can be solved by a nondeterministic
TM in polytime. We run the solution algorithm nondeterministically (i.e. by following all test branches
concurrently) on a given instance. At termination we look at the trace of the algorithm, i.e. the sequence
of instructions followed by the algorithm: we “unfold” loops, and list every occurrence of repeated steps.
This will yield a set of step sequences each pair of which shares an initial subsequence, i.e. a tree where
branches correspond to tests. Each tree leaf identifies the end of the sequence it corresponds to. If the
algorithm terminates with a YES, it is because one of the sequences ends with a solution of the instance.
We identify this sequence with the certificate: it has polynomial length since the nondeterministic algo-
rithm runs in polytime; and by following its steps we can convince ourselves that the answer is indeed
YES, as we verify each computation along the terminating YES sequence. We note that NO answers
generally occur because every branch was explored, and not necessarily because a particular sequence
has some specific property (but see Ex. 5.1.2), which makes this argument non-symmetric w.r.t. YES and
NO.

Conversely, we now define NP as the class of problems for which YES instances have a polytime veri-
fiable certificate. We assume that the given certificate is a binary string with length bounded by a (given)
polynomial in function of the instance size. We devise a brute-force algorithm which explores the set of all
such strings by branching (on zeros and ones) at each component. Since the TM is nondeterministic, all
branches will be followed concurrently, and since we only need to explore polynomially bounded strings,
it will terminate in polytime. The certificate will be found if it exists (i.e. if the instance is YES).

Consider the clique problem: given a graph G and an integer k, does G possess a clique of size at
least k? If the instance is YES, then it has a clique of size at least k, and this clique can be supplied
as certificate to a verification algorithm which is able to establish in polytime whether the certificate is
valid. Therefore clique is in NP.

While it is easy to show that P ⊆ NP, no-one was ever able to establish whether P is different or
equal to NP. This is the famous P vs. NP question.

5.1.2 Exercise
Prove that P ⊆ NP.

5.1.2 Reductions

The class NP is very useful because, in absence of a complement of P allowing us to tell problems apart
into “easy” and “hard”, it provides a good proxy.

Given two problems P and Q in NP, suppose we know a polytime algorithm A to solve P but we know
of no such algorithm for Q. If we can identify a polytime algorithm R that transforms a YES instance
of Q into a YES instance of P and, conversely, a NO instance of Q into a NO instance of P , then we
can compose R and A to obtain a polytime algorithm for Q. An algorithm R mapping instances Q→ P
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while keeping their membership in YES and NO classes invariant is called a polynomial reduction2 from
Q to P .

5.1.2.1 The hardest problem in the class

This gives an interesting way to define the “hardest problem in NP”. Let P be a problem in NP such
that any problem in NP polynomially reduces to P . Pick any Q ∈ NP: can Q be harder to solve than
P? Since there is a polynomial reduction R : Q → P , if we know how to solve P then we know how to
solve Q, so there is no real additional difficulty in solving Q other than knowing how to solve P . In this
sense, P is hardest in the class NP. The set of such problems are said to be NP-complete. Since this
notion of hardness only depends on polynomial reductions rather than membership in NP, we also define
as NP-hard those problems which are as hard as any problem in NP without necessarily being members
of NP. Thus, NP-complete problems are the subset of NP-hard problems which also belong to NP.

In a landmark result, S. Cook proved in [37] that the class of NP-complete problems is non-empty,
since it contains the satisfiability problem (sat). The sat problem involves a decision about the truth or
falsity of the sentences defined over variable symbols, the ¬ unary operator, the ∧ and ∨ binary operators,
and the constants True and False (represented by 1 and 0). Traditionally, in sat notation, one writes x̄
instead of ¬x. An instance (i.e. a sentence) is YES if there is an assignment of 1 and 0 to the variables for
which the sentence is True, and NO otherwise. The evaluation uses the common meaning of the boolean
operators ¬,∧,∨. Cook’s result is based on the idea that sat can be used as a declarative language to
model the dynamics of any polytime TM. The modelling exploits the fact that TMs (tapes, instructions,
states) can be described by 0-1 vectors each component of which is modelled as a sat variable. Since the
definition of NP involves a polytime-checkable certificate, sat can be used to model the polytime TM
used to verify the certificate. The sat instance has finite length because we know that the number of
steps of the TM is bounded by a polynomial in the input size.

5.1.3 Remark (Cook’s Theorem)
In order to prove that sat is NP-complete, we must prove that it is in NP and that is NP-hard.

The hard part is the reduction of any problem in NP to sat. We use the definition of NP: given
a problem in this class, there exists a polytime nondeterministic TM which decides each instance of
the problem. Cook showed that the dynamics of a nondeterministic polytime TM can be modelled by
a polynomially sized sat instance. Since this is a book about MP, we reduce to a MILP instead: so,
instead of proving that sat is NP-complete, we shall prove that MILP is NP-hard.

A nondeterministic TM M is described by a tuple (Q,Σ, s, F, δ) where Q is the set of states of the
machine, Σ is the alphabet (characters to be written on the tape), s ∈ Q is the initial state, F ⊆ Q is the
set of termination states, and δ is the transition relation, a subset of (Q r F × Σ) × (Q × Σ × {−1, 1})
(the component {−1, 1} signals the left or right movement of the head on the tape). Let n be the size of
the input. We know that M terminates in polytime O(p(n)), where p is a polynomial. So we only need
tape cells indexed by i where −p(n) ≤ i ≤ p(n), and steps indexed by k where 0 ≤ k ≤ p(n). We index
alphabet characters by j ∈ Σ. The dynamics of the TM can be described by the following statements
[58].

1. Initialization:

(a) the tape has an initial string at step k = 0;

(b) M has an initial state s at step k = 0;

(c) the initial position of the read/write head at k = 0 is on cell i = 0;

2Technically, this is known as a Karp reduction. A Cook reduction occurs from Q to P if Q can be solved by a polynomial
number of standard operations and calls to an oracle that solves P . A Karp reduction is like a Cook reduction allowing
for a single oracle call. Karp reductions allow for a distinction between hard problems where polynomial certificates are
available for YES instances and for NO ones — in other words, it allows for the definition of the class co-NP.



76 CHAPTER 5. COMPLEXITY

2. Execution:

(a) at each step k each cell i contains exactly one symbol j;

(b) if cell i changes symbol between step k and k+ 1, the head must have been on cell i at step k;

(c) at each step k, M is in exactly one state;

(d) each step k, cell i and symbol σ lead to possible head positions, machine states and symbols
as prescribed by the transition relation δ;

3. Termination:

(a) M must reach a termination state in F at some step k ≤ p(n).

Next, we translate the above description into a set of MILP constraints. As parameters we have
the initial tape string τ (a vector indexed by −p(n) ≤ i ≤ p(n)). We introduce the following binary
(polynomially many) decision variables:

• ∀ cell i, symbol j, step k tijk = 1 iff tape cell i contains symbol j at step k;

• ∀ cell i, step k hik = 1 iff head is at tape cell i at step k;

• ∀ state `, step k q`k = 1 iff M is in state ` at step k.

Finally, we express the above statements by means of constraints in function of the variables t, h, q:

1. Initialization:

(a) ∀i (ti,τi,0 = 1);

(b) qs,0 = 1;

(c) h0,0 = 1;

2. Execution:

(a) ∀i, k (
∑
j tijk = 1);

(b) ∀i, j 6= j′, k < p(n) (tijk ti,j′,k+1 = hik);

(c) ∀k
∑
i hik = 1;

(d) ∀i, `, j, k (hik q`k tijk =
∑

((`,j),(`′,j′,d))∈δ
hi+d,k+1 q`′,k+1 ti,j′,k+1);

3. Termination:

(a)
∑

k,f∈F
qfk = 1.

Again, the number and size of these constraints are bounded by polynomials in the input size. We observe
that some constraints involve products of binary variables, but these can all be reformulated exactly to
linear, by means of a polynomial quantity of additional variables and constraints (see Rem. 2.2.8).

5.1.4 Exercise
Prove that feasibility-only MILPs are in NP.
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5.1.2.2 The reduction digraph

After Cook’s result, sat became known as the “primitive problem” in the theory of NP-hardness. While
the first proof of NP-hardness was difficult to devise (since it necessarily has to encode every TM,
following the definition), subsequent proofs are of an altogether different nature, as they can rely on the
mechanism of reduction.

Let P be an NP-hard problem. We want to establish the NP-hardness of Q. Can Q be any easier
than P? Suppose we find a polynomial reduction R : P → Q: if Q could be solved by an algorithm A that
is asymptotically faster than that of P , then we could compose R with A to derive a better algorithm
for P , which is impossible since P was defined to be hardest for NP. In [77], R. Karp used this idea to
prove that many common problems are NP-complete. Since then, when discussing a new problem, an
effort is made to establish either membership in P or NP-hardness.

Note that polytime reductions define an asymmetric relation on the class NP, i.e. two problems P,Q
in NP are related if there is a reduction R : P → Q. This turns NP in an (infinite) digraph, called the
reduction digraph, where the problems are represented by nodes, and reductions by arcs. This digraph is
strongly connected by Cook’s result, which proves exactly that there is a reduction from any problem in
NP to sat. This makes the reduction digraph strongly connected.

5.1.2.3 Decision vs. optimization

As mentioned above, a problem P is NP-complete if it is NP-hard and belongs to NP. Many theoretical
results in computational complexity concern decision problems, but in practice we also need to solve
function evaluation and optimization problems. In the Wikipedia page about “Decision problem” (en.
wikipedia.org/wiki/Decision_problem), we read:

There are standard techniques for transforming function and optimization problems into de-
cision problems, and vice versa, that do not significantly change the computational difficulty
of these problems.

The “decision version” of the MINLP in Eq. (2.2) adds a threshold value φ to the input and asks
whether the system

f(x) ≤ φ
g(x) ∈ [gL, gU ]
x ∈ [xL, xU ]

∀j ∈ Z xj ∈ Z

 (5.1)

is feasible. The class of optimization problems that can be reducible to their decision version Eq. (5.1)
is called NPO (the “O” stands for “optimization”). It has the following properties: (i) the feasibility of
any solution can be established in polytime; (ii) every feasible solution has polynomially bounded size;
(iii) the objective function and constraints can be evaluated in polytime at any fasible solution.

5.1.2.4 When the input is numeric

For problems involving arrays of rational numbers in the input data, such as vectors or matrices, more
notions are used to distinguish complexity in function of the numerical value of the input versus the
number of bits of memory required to store it.

An algorithm is pseudopolynomial if it is polynomial in the value of the numbers in the input, but
not in their storage size. E.g., testing whether a number n is prime by trying to divide it by 2, . . . , b

√
nc

takes
√
n divisions. In the classic TM computational model, the number of divisions is polynomial in the

value of the input n, but exponential in the size of the input dlog2(n)e, since
√
n = 2

1
2 log2(n).
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5.1.5 Remark (Pseudopolynomial and unary encoding)
An equivalent definition of a pseudopolynomial algorithm is that it is polytime in the unary encoding
of the data (but not in the binary encoding). The equivalence of these two definitions is readily seen
because an integer in encoded in base 1 needs as many bits of storage as its value, whereas in base 2 it
can be encoded in dlog2(n)e bits.

In the arithmetic computational model, where elementary operations on numbers take unit time,
an algorithm is strongly polytime if its worst case running time is bounded above by a polynomial in
function of the length of the input arrays, and the worst-case amount of memory required to run it
(a.k.a. the worst-case space) is bounded by a polynomial in the number of bits required to store their
values, a.k.a. the size of the input (e.g. Dijkstra’s shortest path algorithm on weighted graphs is strongly
polytme). By contrast, if the running time also depends nontrivially (i.e. aside from read/write and
elementary arithmetic operations) on the actual input storage size, including the bits required to represent
the numbers in the arrays, the algorithm is weakly polytime (e.g. the ellipsoid method for LP is weakly
polytime: whether there exists a strongly polytime algorithm for LP is a major open question).

A problem P is strongly NP-hard if there is a strongly polytime reduction algorithm R from every
problem in NP to P , or, equivalently, from a single NP-hard problem to P . P is strongly NP-complete
if it is strongly NP-hard and also belongs to the class P . An equivalent definition of strong NP-hardness
is the class of those NP-hard problems that remain NP-hard even if the input is encoded in unary (see
Rem. 5.1.5), i.e. when the value of all of their numerical data is bounded by a polynomial in the input
size. A problem P is weakly NP-hard when it is NP-hard but there exists a pseudopolynomial algorithm
that solves it. E.g. often dynamic programming based solutions search the set of values that a given
variable can take, so that the number of iterations might remain polynomial in the value rather than the
number of bits required to store it. When proving NP-hardness for a new problem P , using reductions
from a strongly NP-hard problem gives more flexibility, as one can use a pseudopolynomial reduction
and still claim NP-hardness of P . This technique was used in [27].

5.1.6 Remark (Strong and weak)
Algorithms may be strongly or weakly polytime, and problems may be strongly or weakly NP-hard.
But the opposition of the terms “strong” and “weak” are expressed in different terms for algorithms and
problems. I.e. the weak notion of problem NP-hardness rests on pseudopolynomial (rather than “weak”)
reductions.

5.2 Complexity of solving general MINLP

MINLP is not in NP because it is not a decision problem. It is NP-hard because it includes MILP as
a subclass. MILP, in turn, is NP-hard by means of a trivial reduction from sat. Transform the sat
instance to conjunctive normal form3 (CNF), write x̄ as 1 − x, ∨ as + and let ∧ mark the separation
between constraints. This yields a set of MILP constraints that are feasible if and only if the sat instance
is YES.

This argument, however, only brushes the surface of the issue, as it is essentially an argument about
MILP. We know by Sect. 4 that nonlinearity makes unbounded MINLPs undecidable, whereas finite
bounds make it decidable. But what about the continuous variables? We know that PP without integer
variables is decidable, but is it NP-hard? Again, the answer is yes, and it follows from the fact that
polynomials can express a bounded number of integer variables (see the beginning of Sect. 4.3.4). All
that the sat→ MILP reduction above needs is a sufficient number of binary (boolean) variables, which
can be defined by requiring a continuous variable x to satisfy the polynomial x(1− x) = 0.

In the rest of this section, we shall survey the field of computational complexity of several different
MINLP problems, with a particular attention to NLPs (which only involve continuous variables).

3I.e. a sequence of clauses involving exclusively ∨, each separated from the next by ∧.
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5.3 Quadratic programming

The general Quadratic Programming (QP) problem is as follows:

min 1
2x
>Qx + c>x
Ax ≥ b.

}
(5.2)

5.3.1 NP-hardness

QP was shown in [130] to contain an NP-hard subclass of instances (and hence QP itself is NP-hard
by inclusion). The reduction is from an NP-complete problem called subset-sum: given a list s of non-
negative integers s1, . . . , sn and an integer σ, is there an index set J ⊆ {1, . . . , n} such that

∑
j∈J sj = σ?

Consider the QP formulation:

max f(x) =
∑
j≤n

xj(xj − 1) +
∑
j≤n

sjxj∑
j≤n

sjxj ≤ σ

∀j ≤ n 0 ≤ xj ≤ 1.

 (5.3)

This defines a transformation from an instance of subset-sum to one of QP. Obviously, it can be carried
out in polytime. We now prove that it maps YES instances of subset-sum to QP instances where
f(x) < σ and NO instances to instances of QP where f(x) = σ.

Assume (s, σ) is a YES instance of subset-sum with solution J . Then setting xj = 1 for all j ∈ J
satisfies all constraints of Eq. (5.3): in particular, the constraint is satisfied at equality. Solution integrality
mkes the first sum in the objective function yield value zero, which yields f(x) = σ. Conversely, assume
(s, σ) is a NO instance, and suppose first that Eq. (5.3) has an integer solution: then the constraint must
yield

∑
j sjxj < σ; solution integrality again zeroes the first sum in the objective function, so f(x) < σ.

Next, if Eq. (5.3) has no integer solution, there is at least one j ≤ n such that 0 < xj < 1, which makes
the objective function term xj(xj − 1) negative, yielding again f(x) < σ, as claimed.

The paper [130] also contains another proof that shows that a Nonlinear Programming (NLP) problem
with just one nonlinear constraint of the form

∑
j xj(xj − 1) ≥ 0 is also NP-hard.

5.3.1.1 Strong NP-hardness

A different proof, reducing from sat, was given in [149, Thm. 2.5]. It shows that the following QP
subclass is NP-hard:

min f(x) =
∑
j≤n

xj(1− xj)

sat→ MILP
∀j ≤ n 0 ≤ xj ≤ 1,

 (5.4)

where sat→ MILP indicates the MILP constraints encoding a sat instances which were discussed in the
first paragraph of this section. The proof shows that the given sat instance is YES iff f(x) = 0. Assume
first that the sat instance is YES: then there is an assignment of boolean values to the sat variables
that satisfies the sat → MILP constraints. Moreover, since the solution is integral, we get f(x) = 0.
Conversely, assume the sat instance is NO, and suppose, to aim at a contradiction, that a solution x∗

to Eq. (5.4) exists, and is such that f(x∗) = 0. Since the quadratic form
∑
j xj(1 − xj) is zero iff each

xj ∈ {0, 1}, we must conclude that x∗ is integral. Since the sat → MILP constraints are feasible iff the
sat instance is YES, and x∗ satisfies those constraints, it follows that the sat instance is YES, against
assumption. Hence, if the sat instance is NO, either Eq. (5.4) is infeasible or f(x∗) > 0.

These two arguments prove the same fact, i.e. that QP is NP-hard. However, the first reduction
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is from subset-sum, while the second is from sat. This has some consequences, since while sat is
strongly NP-hard, subset-sum is not: namely, the first reduction only proves the weak NP-hardness of
QP, leaving the possibility of a pseudopolynomial algorithm open. The second reduction rules out this
possibility.

5.3.2 NP-completeness

While QP cannot be in NP since it is not a decision problem, the decision problem corresponding to QP
is a candidate. The question is whether the following decision problem is in NP:

1
2x
>Qx+ c>x ≤ φ

Ax ≥ b,

}
(5.5)

where φ is a threshold value that is part of the input.

As shown in [149], the proof is long and technical, and consists of many intermediate results that are
very important by themselves.

1. If the QP of Eq. (5.2) is convex, i.e. Q is positive semidefinite (PSD), and has a global optimum,
then it has a globally optimal solution vector where all the components are rational numbers — this
was shown in [126]. The main idea of the proof is as follows: only consider the active constraints
in Ax ≥ b, then consider the KKT conditions, which consist of linear equations in x, and derive a
global optimum of the convex QP as a solution of a set of linear equations.

2. Again by [126], there is a polytime algorithm for solving convex QPs (cQP): in other words, cQP is
in P. This is a landmark result by itself — we note that the algorithm is an interior point method
(IPM) and that it is weakly polytime. Specifically, though, this result proves that the size of the
rational solution is bounded by a polynomial in the input size. By [149, p. 77], this is enough to
prove the existence of a polynomially sized certificate in case Eq. (5.5) is bounded.

3. The unbounded case is settled in [146].

This allows us to conclude that the decision version of QP is NP-complete.

5.3.3 Box constraints

A QP is box-constrained if the constraints Ax ≥ b in Eq. (5.2) consist of variable bounds xL ≤ x ≤ xU .
The hyper-rectangle defined by [xL, xU ] is also known as a “box”. As for the NP-hardness proof of QP,
there are two reductions from NP-complete problems to box-constrained QP: one from subset-sum [116,
Eq. (3)] and one from sat [149, §4.2]. Since reductions from sat imply strong NP-hardness, we only
focus on the latter.

We actually reduce from 3sat in CNF, i.e. instances consisting of a conjunction of m clauses each of
which is a disjunction of exactly 3 literals. As before, we write the i-th literal as xi or 1− xi if negated.
A disjunction xi ∨ x̄j ∨ xk, for example, is written as a linear constraint xh + (1− xj) + xk ≥ 1, yielding

∀i ≤ m a>i x ≥ bi (5.6)

for appropriate vectors ai ∈ Zm and b ∈ Z. By adding a slack variable v` ∈ [0, 2] to each of the m clauses,
Eq. (5.6) becomes ∀i ≤ m (a>i x = bi + vi). Next, we formulate the following box-constrained QP:

min f(x, v) =
∑
j≤n

xj(1− xj) +
∑
i≤m

(a>i x− bi − vi)2

x ∈ [0, 1]n, v ∈ [0, 2]m.

}
(5.7)
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We are going to show that the 3sat instance is YES iff the globally optimal objective function value of
Eq. (5.7) is zero.

Obviously, if the 3sat formula is satisfiable, there exists a feasible solution (x∗, v∗) where x∗ ∈ {0, 1}n
and v∗ ∈ {0, 1, 2}m that yields a zero objective function value. Conversely, suppose there exists (x∗, v∗)
such that f(x∗, v∗) = 0, which yields

a>i x
∗ = bi + v∗i (5.8)

for all i ≤ m. Supposing some of the x variables take a fractional value, the corresponding term x∗j (1−x∗j )
would be nonzero, against the assumption f(x∗, v∗) = 0. From integrality of the x variables, Eq. (5.8)
ensures that v∗i is integer, for all i ≤ m. Since integrality and feasibility w.r.t. Eq. (5.8) are equivalent
to Eq. (5.6) and therefore encode the clauses of the 3sat instance, x∗ is a YES certificate for the 3sat
instance. Thus, finding the global optimum of the box-constrained QP in Eq. (5.7) is NP-hard.

5.3.4 Trust region subproblems

Trust Region Subproblems (TRS) take their name from the well-known trust region method for black-box
optimization. TRSs are essentially instances of QP modified by adding a single (convex) norm constraint
‖x‖ ≤ r, where r (which is part of the input) is the radius of the trust region. If the norm is `2 and
Ax ≥ b has a special structure, then the problem can be solved in polytime [21]. In this case the solution
is generally irrational (due to the nonlinear norm constraint — note that because of that constraint, the
TRS is not formally a subclass of QP in general), though for the simple case of ‖x‖2 ≤ 1 and no linear
constraints, the technical report [148] states that the decision problem is actually in P.

Most TRSs arising in practical black-box optimization problems, however, are formulated with an `∞
norm constraint. This makes the resulting QP easier to solve numerically, to a given ε > 0 approximation
tolerance, using local NLP solvers. This is because the `∞ norm yields simple box constraints on the de-
cision variables, and therefore the `∞ TRS does belong to the class QP, specifically it is a box-constrained
QP. From a worst-case computational complexity point of view, however, we recall that box-constrained
QPs form an NP-hard subclass of QP, as mentioned above.

5.3.5 Continuous Quadratic Knapsack

The reduction is from subset-sum. Consider the following formulation, called continuous Quadratick
Knapsack Problem (cQKP):

min x>Qx + c>x∑
j≤n

ajxj = γ

x ∈ [0, 1]n,

 (5.9)

where Q is a square diagonal matrix, a, c ∈ Qn, and γ ∈ Q.

We encode a subset-sum instance ({s1, . . . , sn}), σ) in Eq. (5.9) as follows [149, §4.2]:

min f(x) =
∑
j≤n

xj(1− xj)∑
j≤n

sjxj = σ

x ∈ [0, 1]n,

 (5.10)

We are going to show that the instance is YES iff the global optimum of Eq. (5.10) is zero. If the instance
is YES, then there is a subset J ⊂ {1, . . . , n} such that

∑
j∈J

sj = σ. Let x∗j = 1 for all j ∈ J and x∗j = 0

for all j 6∈ J : then x∗ is feasible in the constraints of Eq. (5.9), and yields f(x∗) = 0. Conversely, if x∗

is a feasible solution of Eq. (5.9) yielding f(x∗) = 0, then each term x∗j (1 − x∗j ) in f(x) has value zero,
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which implies x∗ ∈ {0, 1}n. Now let J = {j ≤ n | x∗j = 1} be the support of x∗. By construction, J is a
YES certificate for the subset-sum instance. Thus finding a global optimum of a cQKP is NP-hard.

5.3.5.1 Convex QKP

Since a convex QKP is a subclass of convex QP, it can be solved in polytime — but no strongly polytime
algorithm is known. On the other hand, if Q is a diagonal matrix, then the objective function of Eq. (5.9)
is separable.4 As remarked in [149, §3.1] there is an O(n log n) algorithm for solving this specific variant
of convex QKP [67].

5.3.6 The Motzkin-Straus formulation

In 1965, Motzkin and Straus established an interesting relationship between the maximum clique C in a
graph G = (V,E) and the following QP [115]:

max f(x) =
∑

{i,j}∈E
xixj∑

j∈V
xj = 1

∀j ∈ V xj ≥ 0 ;

 (5.11)

namely, that there exists a global optimum x∗ of Eq. (5.11) such that

f∗ = f(x∗) =
1

2

(
1− 1

ω(G)

)
,

where ω(G) is the size of a maximum cardinality clique in G. In other words, this gives the following
formula for computing the clique number of a graph:

ω(G) =
1

1− 2f∗
.

Moreover, a maximum clique is encoded in a global optimum x∗ of Eq. (5.11), which has the form

∀j ∈ V x∗j =

{ 1
ω(G) if j ∈ C
0 otherwise.

Eq. (5.11) is called the Motzkin-Straus formulation for the max clique optimization problem. Its decision
version clique is well known to be NP-complete, which makes the Motzkin-Straus formulation an
appropriate candidate for reductions from clique to various problems related to QP and NLP.

We follow the proof of Motzkin and Straus as related in [6]. Let x∗ be a global optimum of Eq. (5.11)
with as many zero components as possible. Consider C = {j ∈ V | x∗j > 0}. We claim that C is a
maximum clique in G.

• First, we claim C is a clique. Suppose this is false to aim at a contradiction, and assume without
loss of generality that 1, 2 ∈ C and {1, 2} 6∈ E. For some ε in the interval [−x∗1, x∗2], let xε =
(x∗1 + ε, x∗2 − ε, x∗3, . . . , x∗n). Note that xε satisfies the simplex constraint

∑
j xj = 1, as well as the

non-negativity constraints. Since the edge {1, 2} is not in E, the product x1x2 does not appear
in the objective function f(x). This means that ε2 never occurs in f(xε). In particular, f(x) is
linear in ε. We temporarily look at f as a function fε of ε, parametrized by x∗. By the choice
of x∗ (a global optimum), fε achieves its maximum at ε = 0. Since ε = 0 is in the interior of its
range [−x∗1, x∗2] and fε is linear in ε, fε must necessarily be constant over this range. Hence setting

4A multivariate function is separable if it can be written as a sum of univariate functions.
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ε = −x∗1 and ε = x∗2 yields global optima with a smaller number of nonzero components x∗, which
is a contradiction as x∗ was chosen with the maximum possible number of zero components. Thus
C is a clique.

• Now, we claim C has maximum cardinality |C| = ω(G). Consider the simplex constraint
∑
j xj = 1

and square both sides:

1 =

∑
j∈V

xj

2

= 2
∑
i<j∈V

xixj +
∑
j∈V

x2
j . (5.12)

Since by construction of C we have x∗j = 0 iff j 6∈ C, the above reduces to

ψ(x∗) = 2
∑
i<j∈C

x∗i x
∗
j +

∑
j∈C

(x∗j )
2.

Moreover, ψ(x) = 1 for all feasible x by Eq. (5.12). So the objective function f(x) =
∑
i,j xixj

achieves its is maximum when the second term of ψ(x) is minimum (given that the sum of the
two terms is constant by Eq. (5.12)), i.e. when

∑
j∈C(x∗j ) attains its minimum, which occurs at

x∗j = 1
|C| . Again by the simplex constraint, we have

f(x∗) = 1−
∑
j∈C

(x∗j )
2 = 1− |C| 1

|C|2
= 1− 1

|C|
≤ 1− 1

ω(G)
,

with equality when |C| = ω(G), as claimed.

By reduction from clique, it follows therefore that Eq. (5.11) describes an NP-hard subclass of QP.
Using the same basic ideas, Vavasis gives a proof by induction on |V | in [149, Lemma 4.1]. A bijection
between the local optima of Eq. (5.11) and the maximal cliques of G is discussed in [23].

5.3.6.1 QP on a simplex

Consider the following formulation:

min x>Qx + c>x∑
j≤n

xj = 1

∀j ≤ n xj ≥ 0,

 (5.13)

where Q is a square n×n rational matrix and c ∈ Qn. Since Eq. (5.11) describes a subclass of Eq. (5.13),
the latter is NP-hard by inclusion.

5.3.7 QP with one negative eigenvalue

So far, we established that cQPs are in P, and that a variety of nonconvex QPs are NP-hard (with their
decision version being NP-complete). Where does efficiency end and hardness begin? In an attempt
to provide an answer to this question, Pardalos and Vavasis proved in [120] that an objective function
minx>Qx where Q has rank one and has a single negative eigenvalue suffices to make the problem
NP-hard. The problem of solving a QP with one negative eigenvalue is denoted by QP1NE.

The construction is very ingenious. It reduces clique to QP1NE in two stages. First, it provides
a QP formulation attaining globally optimal objective function value zero iff the main decision variable
vector x takes optimal values in {0, 1}. Second, it encodes a clique of given cardinality k in a given graph
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G = (V,E) by means of the following constraints:

∀{i, j} 6∈ E xi + xj ≤ 1 (5.14)∑
j∈V

xj = k (5.15)

0 ≤ x ≤ 1. (5.16)

The rest of the formulation, which essentially ensures integrality of the decision variables, is as follows:

min z − w2 (5.17)

w =
∑
j∈V

4jxj (5.18)

z =
∑
j∈V

42jxj + 2
∑
i<j

4i+jyij (5.19)

∀i < j ∈ V yij ≥ max(0, xi + xj − 1). (5.20)

Eq. (5.17) clearly is of rank one and has a single nonzero eigenvalue which is negative. Note that the
definitions of w2 (by means of Eq. (5.18)) and z in Eq. (5.19) almost match: we should have yij = xixj
for them to be equal. Eqs. (5.16), (5.20) and (5.19) ensure that z cannot be negative, which also holds
for w2 since it is a square. A couple of technical lemmata ensure that the QP in Eqs. (5.17)-(5.20) has
optimal value zero iff the optimal solution is binary. Integrating the constraints Eqs. (5.14)-(5.16) encodes
clique in this QP so that G has a clique of cardinality k iff the optimal objective function value is zero,
as claimed.

5.3.8 Bilinear programming

The Bilinear Programming Problem (BPP) reads as follows:

min
∑
j≤n xjyj

Ax+By ≥ b.

}
(5.21)

The NP-hardness of BPP has been established in [18], by a reduction from a problem in computational
geometry called 2-Linear Separability (2LS), consisting in determining whether two sets of points in
a Euclidean space can be separated by a piecewise linear curve consisting of two pieces. In turn, 2LS was
proven NP-complete in [107].

Bennett and Mangasarian show in [18] that the 2LS reduces to one of three possible BPP formulations,
all of which with general inequality constraints and non-negativity constraints on the decision variables.

5.3.8.1 Products of two linear forms

In [147, p. 37], Vavasis proposed as an open question whether the following QP:

min f(x) = (c>x+ γ)(d>x+ δ)
Ax ≥ b

}
(5.22)

is NP-hard. Note that that although Eq. (5.22) is a subclass of QP, which is itself an NP-hard problem,
there is the possibility that this might be a tractable case. This question was eventually settled in the
negative in [105], which gives an NP-hardness proof for Eq. (5.22).

The proof is constructed very ingeniously by borrowing the functional form minx1−x2
2 from QP1NE.
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First, it presents a reduction of the (NP-complete) set partition problem to the formulation

min
n∑
i=1

n∑
j=1

pi+jyij −
(

n∑
i=1

pixi

)2

Sx = 1
∀i 6= j ≤ n yij ≤ xi
∀i 6= j ≤ n yij ≤ xj
∀i 6= j ≤ n yij ≥ xi + xj − 1
∀i ≤ n yii = xi

x ∈ [0, 1]n

y ∈ [0, 1]n
2

,


(5.23)

where p is any positive integer and Sx = 1 is a set of constraints modelling set partition. This is
achieved by showing that the objective function is positive if and only if there are fractional feasible
solutions x′ with 0 < x′i < 1 for some i ≤ n. The crucial point of the proof is that the linearization
constraints xi + xj + 1 ≤ yij ≤ min(xi, xj) and yii = xi are exact only for x ∈ {0, 1}. A technical (but
easy to follow) argument shows that the objective function is positive at the optimum if and only if some
fractional solution exists.

This proof is then extended to the generalization of Eq. (5.23) where the objective function is replaced
by a general function g(x0, y0) where x0 =

∑
i p
ixi, y0 =

∑
i,j p

i+jyij and two more conditions on x0, y0

designed to endow g with positivity/negativity properties similar to that of the objective function of
Eq. (5.23). This new problem also has non-positive objective function value at the optimum if and only
if the optimum is binary. This provides the reduction mechanism from set partition (encoded in the
constraints Sx = 1).

Finally, the function g(x0, y0) = (y0− p+ 2p4n)2− 4p4nx2
0− 4p8n is shown to satisfy the requirements

on g and also to factor as a product of two linear forms plus a constant, which provides the necessary
form shown in Eq. (5.22).

The same proof mechanism can also prove NP-hardness of the related problems

min {x1x2 | Ax ≥ b} (5.24)

min

{
x1 −

1

x2
| Ax ≥ b

}
(5.25)

min

{
1

x1
− 1

x2
| Ax ≥ b

}
. (5.26)

5.3.9 Establishing local minimality

The problem of deciding whether a given x is a local minimum of a QP or not has attracted quite a
lot of attention in the late 1980s and early 1990s. There appear to be three distinct proofs of this fact:
in [116, Problem 1], in [123, §3], and in [149, §5.1]. The first [116] reduces subset-sum to the problem
of deciding whether a quadratic form over a translated simplex is negative, shown to be equivalent to
unboundedness of a constrained quadratic form, and to the problem of deciding whether a given point
is not a local optimum of a given QP. Moreover, [116] also shows that deciding copositivity of a given
matrix is co-NP-hard; it further proves co-NP-hardness of verifying that a point is not a local optimum
in unconstrained minimization (of a polynomial of degree 4). The second [123] presents a QP where a
certain point is not a local minimum iff a given 3sat instance is YES. The third [149] is based on an
unconstrained variant of the Motzkin-Straus formulation, where the zero vector is a local minimum iff a
given clique instance is NO.

These proofs all show that it is as hard to prove that a given point is not a local minimum of a QP as
to show that a given NP-hard problem instance is YES. Implicitly, using the reduction transformation,
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this provides certificates for the NO instances of the QP local minimality problem (QPLOC) rather than
for the YES instances. In computational complexity, this shows that QPLOC is co-NP-hard5 rather
than NP-hard.

Currently, no-one knows whether NP = co-NP. Assume we could prove that NP 6= co-NP (†); we
know that P = co-P (the whole polynomially long trace of the algorithm provides a polynomially long
certificate of both YES and NO instances). Suppose now P = NP: then it would follow from P = co-P
that NP = co-NP, a contradiction with (†), which would prove P 6= NP, the most famous open question
in computer science and one of the most famous in mathematics. This tells us that proving NP 6= co-NP
looks exceedingly difficult.

It is remarkable that many NP-hard problems have QP formulations (proving that solving QPs is
NP-hard), but verifying whether a given point is a local optimum is actually co-NP-hard. Looking
in more depth, most of the NP-hardness reductions about QP actually reduce to deciding whether a
given QP has zero optimal objective function value or not. On the other hand, the co-NP-hardness
reductions in [116, 123, 149] all establish local optimality of a given solution vector. The former setting
sometimes allows for clear dichotomies: for example, for the box-constrained QP in [116, Eq. (8)], it
is shown that there is a finite gap between the optimal value being zero or less than a finite negative
value (this implies that the corresponding decision problem is actually in NP). In practice, a sufficiently
close approximation to zero can be rounded to zero exactly, which means that a certificate for “equal to
zero” can be exhibited. Moreover, a YES instance of a problem might have multiple certificates, each
of which is mapped (through the reduction) to a different solution of the corresponding QP having the
same objective function value. The latter setting (about local optimality), on the other hand, is about
a specific point. Since QP involves continuous functions of continuously varying variables, it seems hard
to find cases where gap separations are possible. Furthermore, encoding a YES instance, possibly with
multiple certificates, in the verification of optimality of a single point appears to be a hard task. These
two considerations might be seen as an intuitive explanation about why QPLOC is co-NP-hard.

A completely different (again, intuitive) argument could be brought against the fact that QPLOC
should be a hard problem at all. Given a candidate local minimum x̄ in a QP, why not simply verify
first and second order conditions? First-order conditions are equivalent to KKT conditions, and second-
order conditions are well-known to involve the Hessian, i.e. the square symmetric matrix having second
derivatives w.r.t. two decision variables as components. The main issue with this approach is that all
QPs that have been proved hard in this section are constrained, so the Hessian alone is not sufficient:
indeed, local solution algorithms for constrained QPs all look at the Hessian of the Lagrangian function,
which involves the constraints; moreover, the Hessian of a QP objective is constant, so it cannot depend
on x̄. The second issue is that, in general, local and global optima of QPs may involve algebraic numbers,
for which we do not know a compact representation in terms of the length of the input (see Sect. 4.2).

5.4 General Nonlinear Programming

The general NLP formulation is like Eq. (2.2) where Z = ∅. It obviously contains QP, so NLP is NP-hard
in general. Murty and Kabadi’s proof of co-NP-hardness of verifying whether a given point is a local
minimum (see previous section) uses the following formulation

min
u

(u2)
>
Qu2,

where u2 denotes the vector (u2
1, . . . , u

2
n). This is a minimization of a quartic polynomial, and so it is

not, strictly speaking, quadratic (although it is readily seen to be equivalent to the quadratic problem
min
x≥0

x>Qx).

5See Footnote 2.
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In Sect. 4.3.5 we discussed undecidable NLP problems, so the hardness issue is somewhat moot. Two
hardness results in NLP are nonetheless worth mentioning: deciding whether a given function is convex,
and optimization over the copositive cone. These two problems are related by the notion of convexity
— which, according to Rockafellar, is the real barrier between easy and difficult optimization problems.
Given any function, can we efficiently decide whether it is convex? If so, then we may hope to optimize
it efficiently using a special-purpose algorithm for convex functions. This paradigm was doubly shattered
by relatively recent results. On the one hand, Ahmadi et al. proved NP-hardness of deciding convexity
of polynomials of 4th degree. On the other, the realization that many NP-hard problems have natural
copositive formulations [48] made Rockafellar’s remark obsolete.

5.4.1 Verifying convexity

In [121], Pardalos and Vavasis presented a list of open questions in the field of computational complexity
in numerical optimization problems. Problem 6, due to Shor, reads as follows.

Given a degree-4 polynomial of n variables, what is the complexity of determining whether
this polynomial describes a convex function [over the whole variable range]?

Polynomials of degree smaller than 4 are easy to settle: degree-1 are linear and hence convex, degree-2 have
constant Hessian which can be computed in polytime in order to decide their convexity, and odd-degree
polynomials are never convex over their whole domain (although they may be pseudo- or quasi-convex, see
[81, Thm. 13.11]). Degree-4, the smallest open question concerning the efficient decidability of polynomial
convexity, was settled in [5] in the negative.

The proof provided in [5] reduces from the problem of determining whether a given biquadratic form∑
i≤j
k≤`

αi,j,l`xixjyky` is non-negative over all its range is strongly NP-hard by reduction from clique [92]

by way of the Motzkin-Straus formulation Eq. (5.11). It shows how to construct a (variable) Hessian
form from any biquadratic form such that the former is non-negative iff the latter is. This Hessian form
allows the construction of a quartic polynomial that is convex over its range iff the original biquadratic
form is non-negative.

This result is extended to deciding other forms of convexity as well: strict and strong convexity, as
well as pseudo- and quasi-convexity.

5.4.1.1 The copositive cone

First, a square symmetric matrix A is copositive if x>Ax ≥ 0 for all x ≥ 0. If we removed the non-
negativity condition x ≥ 0, we would retrieve a definition of A being PSD: while every PSD matrix is
copositive, the converse is not true. Establishing copositivity of non-PSD matrices is NP-hard, as it
involves verifying whether the optimal objective function value of the QP P ≡ min{x>Ax | x ≥ 0} is ≥ 0
or either < 0 or unbounded [116].

We consider a variant of Eq. (5.13) where c is the zero vector (so the objective function is purely
quadratic). This variant is called Standard Quadratic Programming (StQP). Surprisingly, the
(NP-hard) StQP can be exactly reformulated to a convex continuous cNLP, as reported here below.

(a) We linearize each product xixj occurring in the quadratic form x>Qx to a new variable Xij . This
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yields:
min Q •X∑

j≤n
xj = 1

∀j ≤ n xj ≥ 0
X = xx>,


where • denotes trace(Q>X). Note that X = xx> encodes the whole constraint set

∀i < j ≤ n Xij = xixj .

(b) We square both sides of the simplex constraint
∑
j xj = 1 to obtain

∑
i,j xixj = 1, which can be

written as 1 •X = 1, where 1 is the all-one n× n matrix.

(c) We replace the (nonconvex) set C = {X | X = xx> ∧ x ≥ 0} by its convex hull C = conv(C). This
yields:

min Q •X
1 •X = 1

X ∈ C.

 (5.27)

The set C is a convex combination of rank-one matrices, and as such forms a convex cone.

(d) We write the dual of Eq. (5.27):

max y
Q− y1 ∈ C∗,

}
(5.28)

where C∗ is the dual cone of C. Unlike the PSD cone, which is self-dual, C∗ 6= C. In fact, C∗ turns
out to be the cone of all copositive matrices:

C∗ = {A | ∀x ≥ 0 (x>Ax ≥ 0)},

see [64, Thm. 16.2.1] for a detailed proof. Both cones are convex and achieve strong duality. Hence
Eq. (5.28) is a cNLP, as claimed.

This is extremely surprising, as cNLPs are known to be “easy to solve”, since every local optimum is
also global: thus a local solution algorithm should immediately find the global optimum (this proabably
motivated Rockafellar to put the barrier of complexity in MP at the frontier of convexity and nonconvexity,
see Sect. 5.4).

The issue is that no-one knows of any efficient algorithm for solving the cNLP in Eq. (5.28), and this
is exactly because of the copositive cone C∗ [24, 48]. Those cNLPs which we know how to solve efficiently
are usually defined over the non-negative orthant or the PSD cone. We can obviously test whether a
vector is in the non-negative orthant in linear time, and we can also test whether a given matrix is PSD
in polytime [133, p. 1152]. The polynomially long traces of the checking algorithms provide compact
certificates for both YES and NO instances. On the other hand, since testing copositivity is NP-hard,
there is no hope of achieving such compact descriptions for the copositive cone C∗.

A different way to see this issue is to consider that cNLPs over matrix cones are routinely solved
by IPMs, the polytime analysis of which rest on the existence of some functions called “self-concordant
barriers”, that deviate the search path for the optimum away from the border of the cone. Barrier
functions are used as penalty functions to be added to the objective function, which is made to increase
towards the boundary of the cone. Self-concordant barriers can be optimized efficiently using Newton’s
method. Self-concordant barriers are known for many convex cones (orthants, PSD and more), but not
for C∗. In [25], an IPM-based heuristic is proposed to solve copositive programs such as [25].

Another interpretation of the complexity inherent in the copositive cone is the classification of extremal
matrices of copositive cones of small dimension, pursued by Roland Hildebrand [69]. He emphasizes that
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the description complexity of these extreme rays increases dramatically as the dimension increases.
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Part III

Basic notions
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Chapter 6

Fundamentals of convex analysis

This chapter contains a condensed treatment of the basics of convex analysis and duality.

6.0.1 Definition
Given a set X ⊆ Rn, a function f : X → R and a point x′ ∈ X:

• we say that x′ is a local minimum of f if there is a ball S(x′, ε) (for some ε > 0) such that
∀x ∈ S(x′, ε) ∩X we have f(x′) ≤ f(x) — the local minimum is strict if f(x′) < f(x);

• we say that x′ is a global minimum of f if ∀x ∈ X we have f(x′) ≤ f(x) — again, the global
minimum is strict if f(x′) < f(x).

Similar definitions hold for (strict) local/global maxima. If the objective function direction is not specified,
the corresponding points are called optima.

6.1 Convex analysis

6.1.1 Definition
A set S ⊆ Rn is convex if for any two points x, y ∈ S the segment between them is wholly contained in
S, that is, ∀λ ∈ [0, 1] (λx+ (1− λ)y ∈ S).

A linear equation a>x = b where a ∈ Rn defines a hyperplane in Rn. The corresponding linear
inequality a>x ≤ b0 defines a closed half-space. Both hyperplanes and closed half-spaces are convex sets.
Since any intersection of convex sets is a convex set, the subset of Rn defined by the system of closed
half-spaces Ax ≥ b, x ≥ 0 is convex (where A ∈ Rm×n, b ∈ Rm).

6.1.2 Definition
A subset S ⊆ Rn defined by a finite number of closed half-spaces is called a polyhedron. A bounded,
non-empty polyhedron is a polytope.

Polyhedra and polytopes are very important in optimization as they are the geometrical representation
of a feasible region expressed by linear constraints.

6.1.3 Definition
Let S = {xi | i ≤ n} be a finite set of points in Rn.

1. The set span(S) of all linear combinations
∑n
i=1 λixi of vectors in S is called the linear hull (or

linear closure, or span) of S.

93
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2. The set aff(S) of all affine combinations
∑n
i=1 λixi of vectors in S such that

∑n
i=1 λi = 1 is called

the affine hull (or affine closure) of S.

3. The set cone(S) of all conic combinations
∑n
i=1 λixi of vectors in S such that ∀i ≤ n (λi ≥ 0) is

called the conic hull (or conic closure, or cone) of S. A conic combination is strict if for all i ≤ n
we have λi > 0.

4. The set conv(S) of all convex combinations
∑n
i=1 λixi of vectors in S such that

∑n
i=1 λi = 1 and

∀i ≤ n (λi ≥ 0) is called the convex hull (or convex closure) of S. A convex combination is strict if
for all i ≤ n we have λi > 0.

6.1.4 Definition
Consider a polyhedron P and a closed half-space H in Rn. Let H ∩ P be the affine closure of H ∩P and

d = dim(H ∩ P ). If d < n then H ∩P is a face of P . If d = 0, H ∩P is called a vertex of P , and if d = 1,
it is called an edge. If d = n− 1 then H ∩ P is a facet of P .

The following technical result is often invoked in the proofs of LP theory.

6.1.5 Lemma
Let x∗ ∈ P = {x ≥ 0 | Ax ≥ b}. Then x∗ is a vertex of P if and only if for any pair of distinct points
x′, x′′ ∈ P , x∗ cannot be a strict convex combination of x′, x′′.

Proof. (⇒) Suppose x∗ is a vertex of P and there are distinct points x′, x′′ ∈ P such that there is a λ ∈
(0, 1) with x∗ = λx′+ (1− λ)x′′. Since x∗ is a vertex, there is a half-space H = {x ∈ Rn | h>x ≤ d} such
that H ∩ P = {x∗}. Thus x′, x′′ 6∈ H and h>x′ > d, h>x′′ > d. Hence h>x∗ = h>(λx′ + (1− λ)x′′) > d,
whence x∗ 6∈ H, a contradiction. (⇐) Assume that x∗ cannot be a strict convex combination of any
pair of distinct points x′, x′′ of P , and suppose that x∗ is not a vertex of P . Since x∗ is not a vertex, it
belongs to a face H ∩ P of P (with H a closed half-space) with d = dim aff(H ∩ P ) > 0. Then there
must be a ball S (of dimension d) within H ∩P , having radius ε > 0 and center x∗. Let x′ ∈ S such that
||x′ − x∗|| = ε

2 . Let x′′ = (x∗ − x′) + x∗. By construction, x′′ is the point symmetric to x′ on the line
through x′ and x∗. Thus, ||x′′ − x∗|| = ε

2 , x′′ 6= x′, x′′ ∈ P , and x∗ = 1
2x
′ + 1

2x
′′, which is a strict convex

combination of x′, x′′, a contradiction. 2

Having defined convex sets, we now turn our attention to convex functions.

6.1.6 Definition
A function f : X ⊆ Rn → R is convex if for all x, y ∈ X and for all λ ∈ [0, 1] we have:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Note that for this definition to be consistent, λx+ (1− λ)y must be in the domain of f , i.e. X must be
convex. This requirement can be formally relaxed if we extend f to be defined outside X.

The main theorem in convex analysis, and the fundamental reason why convex functions are useful
in optimization, is that a local optimum of a convex function over a convex set is also a global optimum,
which we prove in Thm. 6.1.7. The proof is described graphically in Fig. 6.1.

6.1.7 Theorem
Let X ⊆ Rn be a convex set and f : X → R be a convex function. Given a point x∗ ∈ X, suppose that
there is a ball S(x∗, ε) ⊂ X such that for all x ∈ S(x∗, ε) we have f(x∗) ≤ f(x). Then f(x∗) ≤ f(x) for
all x ∈ X.

Proof. Let x ∈ X. Since f is convex over X, for all λ ∈ [0, 1] we have f(λx∗ + (1 − λ)x) ≤ λf(x∗) +
(1− λ)f(x). Notice that there exists λ̄ ∈ (0, 1) such that λ̄x∗ + (1− λ̄)x = x̄ ∈ S(x∗, ε). Consider x̄: by
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Figure 6.1: Graphical sketch of the proof of Thm. 6.1.7. The fact that f(x∗) is the minimum in S(x∗, ε)
is enough to show that for any point x ∈ X, f(x∗) ≤ f(x).

convexity of f we have f(x̄) ≤ λ̄f(x∗) + (1− λ̄)f(x). After rearrangement, we have

f(x) ≥ f(x̄)− λ̄f(x∗)

1− λ̄
.

Since x̄ ∈ S(x∗, ε), we have f(x̄) ≥ f(x∗), thus

f(x) ≥ f(x∗)− λ̄f(x∗)

1− λ̄
= f(x∗),

as required. 2

6.2 Conditions for local optimality

In this section we shall give necessary and sufficient conditions for a feasible point x∗ to be locally optimal.
Most of the work deals with deriving necessary conditions. The sufficient conditions are in fact very close
to requiring convexity of the objective function and feasible region, as we shall see later.

For a scalar function f : Rn → R we define the function vector ∇f as (∇f)(x) =
(
∂f(x)
∂x1

, . . . , ∂f(x)
∂xn

)>
,

where x = (x1, . . . , xn)
>

. We denote by ∇f(x′) the evaluation of ∇f at x′. If g is a vector-valued
function g(x) = (g1(x), . . . , gm(x)), then ∇g is the set of function vectors {∇g1, . . . ,∇gm}, and ∇g(x′) is
the evaluation of ∇g at x′.
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6.2.1 Equality constraints

We first deal with the case of an optimization problem as in Eq. (2.2) with all equality constraints,
unbounded variables and Z = ∅. Consider the following NLP:

min
x∈Rn

f(x)

s.t. g(x) = 0,

}
(6.1)

where f : Rn → R and g : Rn → Rm are C1 (i.e., continuously differentiable) functions.

A constrained critical point of Eq. (6.1) is a point x∗ ∈ Rn such that g(x∗) = 0 and the directional
derivative1 of f along g is 0 at x∗. It is easy to show that such an x∗ is a (local) maximum, or a minimum,
or a saddle point of f(x) subject to g(x) = 0.

6.2.1 Theorem (Lagrange Multiplier Method)
If x∗ is a constrained critical point of Eq. (6.1), m ≤ n, and ∇g(x∗) is a linearly independent set of
vectors, then ∇f(x∗) is a linear combination of the set of vectors ∇g(x∗).

Proof. Suppose, to get a contradiction, that ∇g(x∗) and ∇f(x∗) are linearly independent. In the case
∇f(x∗) = 0, the theorem is trivially true, so assume ∇f(x∗) 6= 0. Choose vectors wm+2, . . . , wn such
that the set J = {∇g1(x∗), . . . ,∇gm(x∗),∇f(x∗), wm+2, . . . , wn} is a basis of Rn. For m + 2 ≤ i ≤ n
define hi(x) = 〈wi, x〉. Consider the map

F (x) = (F1(x), . . . , Fn(x)) = (g1(x), . . . , gm(x), f(x), hm+2(x), . . . , hn(x)).

Since the Jacobian (i.e., the matrix of the first partial derivatives of each constraint function) of F
evaluated at x∗ is J , and J is nonsingular, by the inverse function theorem F is a local diffeomorphism of
Rn to itself. Thus, the equations yi = Fi(x) (i ≤ n) are a local change of coordinates in a neighbourhood
of x∗. With respect to coordinates yi, the surface S defined by g(x) = 0 is the coordinate hyperplane
0 × Rn−m. Notice that the (k + 1)-st coordinate, yk+1 = f(x), cannot have a critical point on the
coordinate plane 0× Rn−m, so x∗ is not a constrained critical point, which is a contradiction. 2

In the proof of the above theorem, we have implicitly used the fact that the criticality of points is
invariant with respect to diffeomorphism (this can be easily established by showing that the derivatives
of the transformed functions are zero at the point expressed in the new coordinates). The classical proof
of the Lagrange Multiplier Theorem 6.2.1 is much longer but does not make explicit use of differential
topology concepts (see [9], p. 153). The proof given above was taken almost verbatim from [124].

By Theorem 6.2.1 there exist scalars λ1, . . . , λm, such that

∇f(x∗) +

m∑
i=1

λi∇gi(x∗) = 0.

The above condition is equivalent to saying that if x∗ is a constrained critical point of f s.t. g(x∗) = 0,
then x∗ is a critical point of the following (unconstrained) function:

L(x, λ) = f(x) +

m∑
i=1

λigi(x). (6.2)

Eq. (6.2) is called the Lagrangian of f w.r.t. g, and λ1, . . . , λm are called the Lagrange multipliers.
Intuitively, when we are optimizing over a subspace defined by Ax = b, the optimization direction must
be a linear combination of the vectors which are normal to the hyperplane system Ax = b. The situation
is shown in Fig. 6.2.

1A formal definition is given in [109], p. 7-8.
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Figure 6.2: If ∇f is linearly dependent on the constraint gradients, there is no feasible descent direction.
∇f ′, which does not have this property, identifies a feasible descent direction when projected on the
feasible space (the thick line).

Hence, in order to find the solution of Eq. (6.1), by Theorem 6.2.1, one should find all critical points
of L(x, λ) and then select the one with minimum objective function value. This approach is of limited
use on all but the simplest formulations. It does, however, provide at least necessary conditions for the
characterization of a constrained minimum.

6.2.2 Inequality constraints

Notice, however, that Eq. (6.1) only deals with equality constraints; moreover, the proof of Theorem 6.2.1
is heavily based on the assumption that the only constraints of the problem are equality constraints. In
order to take into account inequality constraints, we introduce the following simple example.

6.2.2 Example
Consider the problem min{−x1−x2 | x1−1 ≤ 0, x2−1 ≤ 0}. The minimum is obviously at x∗ = (1, 1) as
shown in Fig. 6.3 (the figure only shows the non-negative quadrant; the feasible region actually extends to
the other quadrants). By inspection, it is easy to see that at the point x∗ = (1, 1) any further movement

Figure 6.3: The problem of Example 6.2.2.

towards the direction of objective function decrease would take x∗ outside the feasible region, i.e. no
feasible direction decreases the objective function value. Notice that the descent direction at x∗ is in the
cone defined by the normal vectors to the constraints in x∗. In this particular case, the descent direction
of the objective function is the vector −∇f(x∗) = (1, 1). The normal vector to g1(x) = x1 − 1 at x∗ is
∇g1(x∗) = (1, 0) and the normal vector to g2(x) = x2 − 1 at x∗ is ∇g2(x∗) = (0, 1). Notice that we can
express −∇f(x∗) = (1, 1) as λ1(1, 0) + λ2(0, 1) with λ1 = 1 > 0 and λ2 = 1 > 0. In other words, (1, 1) is
a conic combination of (1, 0) and (0, 1).

If we now consider the problem of minimizing f̄(x) = x1 + x2 subject to the same constraints as
above, it appears clear that x∗ = (1, 1) cannot be a local minimum, as there are many feasible descent
directions. Take for example the direction vector y = (−1,−1). This direction is feasible w.r.t. the
constraints: ∇g1(x∗)y = (1, 0)(−1,−1) = (−1, 0) ≤ 0 and ∇g2(x∗)y = (0, 1)(−1,−1) = (0,−1) ≤ 0.
Moreover, it is a nonzero descent direction: −∇f̄(x∗)y = −(1, 1)(−1,−1) = (1, 1) > 0.

In summary, either the descent direction at x∗ is a conic combination of the gradients of the constraints
(and in this case x∗ may be a local minimum), or there is a nonzero feasible descent direction (and in
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this case x∗ cannot be a local minimum).

The example above is an application of a well known theorem of alternatives called Farkas’ Lemma.
The following three results are necessary to introduce Farkas’ Lemma, which will then be used in the
proof of Theorem 6.2.7.

6.2.3 Theorem (Weierstraß)
Let S ⊆ Rn be a non-empty, closed and bounded set and let f : S → R be continuous on S. Then there
is a point x∗ ∈ S such that f attains its minimum value at x∗.

Proof. Since f is continuous on S and S is closed and bounded, then f is bounded below on S. Since
S is non-empty, there exists a greatest lower bound α for the values of f over S. Let ε be such that
0 < ε < 1 and consider the sequence of sets Sk = {x ∈ S | α ≤ f(x) ≤ α + εk} for k ∈ N. By the
definition of infimum, Sk is non-empty for each k, so we can select a point x(k) ∈ Sk for each k. Since
S is bounded, there exists a convergent subsequence of x(k) which converges to a point x∗. Since S is
closed, x∗ ∈ S. By continuity of f , and because α ≤ f(x(k)) ≤ α + εk, we have that the values f(x(k))
(taken on the convergent subsequence) converge to α. Thus x∗ is a point where f attains its minimum
value f(x∗) = α (see Fig. 6.4). 2

Figure 6.4: Weierstraß’ Theorem 6.2.3.

6.2.4 Proposition
Given a non-empty, closed convex set S ⊆ Rn and a point x∗ 6∈ S, there exists a unique point x′ ∈ S
with minimum distance from x∗. Furthermore, x′ is the minimizing point if and only if for all x ∈ S we
have (x∗ − x′)>(x− x′) ≤ 0.

Proof. Let x′ ∈ S be the point minimizing f(x) = ||x∗−x|| subject to x ∈ S (which exists by Weierstraß
Theorem 6.2.3). To show that it is unique, notice first that f is convex: for λ ∈ [0, 1] and x1, x2 ∈ S
we have f(λx1 + (1 − λ)x2) ≤ f(λx1) + f((1 − λ)x2) = λf(x1) + (1 − λ)f(x2) by triangular inequality
and homogeneity of the norm. Suppose now y ∈ Rn such that f(y) = f(x′). Since x′, y ∈ S and S

is convex, the point z = x′+y
2 is in S. We have f(z) ≤ f(x′)

2 + f(y)
2 = f(x′). Since f(x′) is minimal,

f(z) = f(x′). Furthermore, f(z) = ||x∗−z|| = ||x∗− x′+y
2 || = ||

x∗−x′
2 + x∗−y

2 ||. By the triangle inequality,
f(z) ≤ 1

2 ||x
∗ − x′|| + 1

2 ||x
∗ − y||. Since equality must hold as f(z) = f(x′) = f(y), vectors x∗ − x′ and

x∗ − y must be collinear, i.e. there is θ ∈ R such that x∗ − x′ = θ(x∗ − y). Since f(x′) = f(y), |θ| = 1.

Supposing θ = −1 we would have x∗ = x′+y
2 , which by convexity of S would imply x∗ ∈ S, contradicting

the hypothesis. Hence θ = 1 and x′ = y as claimed. For the second part of the Proposition, assume x′

is the minimizing point in S and suppose there is x ∈ S such that (x∗ − x′)>(x− x′) > 0. Take a point
y 6= x′ on the segment x, x′. Since S is convex, y ∈ S. Furthermore, since y − x′ is collinear to x − x′,
(x∗ − x′)>(y−x′) > 0. Thus, the angle between y−x′ and x∗−x′ is acute. Choose y close enough to x′ so
that the largest angle of the triangle T having x∗, x′, y as vertices is the angle in y (such a choice is always
possible) as in Fig. 6.5. By elementary geometry, the longest side of such a triangle is the segment x∗, x′
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opposite to the angle in y. This implies ||x∗ − y|| < ||x∗ − x′||, which is a contradiction, as x′ was chosen

to minimize the distance from x∗. Conversely, suppose for all x ∈ S we have (x∗ − x′)>(x − x′) ≤ 0.
This means that the angle in x′ is obtuse (and hence it is the largest angle of T ), and consequently the
opposite side x, x∗ is longer than the side x′, x∗. 2

Figure 6.5: Second part of the proof of Prop. 6.2.4: the point y can always be chosen close enough to
x′ so that the angle in the vertex y is obtuse. The figure also shows that it is impossible for x′ to be
the minimum distance point from x∗ if the angle in x′ is acute and the set S containing points x′, x, y is
convex.

6.2.5 Proposition (Separating hyperplane)
Given a non-empty, closed convex set S ⊆ Rn and a point x∗ 6∈ S, there exists a separating hyperplane

h>x = d (with h ≥ 0) such that h>x ≤ d for all x ∈ S and h>x∗ > d.

Proof. Let x′ be the point of S having minimum (strictly positive, since x∗ 6∈ S) distance from x∗. Let

y = x′+x∗

2 be the midpoint between x′, x∗. The plane normal to the vector x∗ − y and passing through y
separates x∗ and S (see Fig. 6.6). 2

Figure 6.6: Prop. 6.2.5: separating hyperplane between a point x∗ and a convex set S.

6.2.6 Theorem (Farkas’ Lemma)
Let A be an m × n matrix and c be a vector in Rn. Then exactly one of the following systems has a

solution: (a) Ax ≤ 0 and c>x > 0 for some x ∈ Rn; (b) µ>A = c> and µ ≥ 0 for some µ ∈ Rm.
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Proof. Suppose system (b) has a solution. Then µ>Ax = c>x; supposing Ax ≤ 0, since µ ≥ 0, we have
c>x ≤ 0. Conversely, suppose system (b) has no solution. Let Im+(A) = {z ∈ Rn | z> = µ>A,µ ≥ 0};
Im+(A) is convex, and c 6∈ Im+(A). By Prop. 6.2.5, there is a separating hyperplane h>x = d such that
h>z ≤ d for all z ∈ Im+(A) and h>c > d. Since 0 ∈ Im+(A), d ≥ 0, hence h>c > 0. Furthermore,
d ≥ z>h = µ>Ah for all µ ≥ 0. Since µ can be arbitrarily large, µ>Ah ≤ d implies Ah ≤ 0. Take x = h;
then x solves system (a). 2

We can finally consider the necessary conditions for local minimality subject to inequality constraints:
Consider the following NLP:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0,

}
(6.3)

where f : Rn → R and g : Rn → Rm are C1 functions. A constrained optimum of Eq. (6.3) is an optimum
x∗ of f(x) such that g(x∗) = 0 — a condition described as the constraint g being active at x∗. It can be
shown that if x∗ is a constrained minimum then there is no nonzero feasible descent direction at x∗ (see

[13], p. 141). We shall define a feasible direction at x∗ as a direction vector y such that (∇g(x∗))
>
y ≤ 0,

and a nonzero descent direction at x∗ as a direction vector y such that (−∇f(x∗))
>
y > 0.

6.2.7 Theorem (KKT)
If x∗ is a constrained minimum of Eq. (6.3), I is the maximal subset of {1, . . . ,m} such that gi(x

∗) = 0
for all i ∈ I, and ∇ḡ is a linearly independent set of vectors (where ḡ = {gi(x∗) | i ∈ I}), then −∇f(x∗)
is a conic combination of the vectors in ∇ḡ, i.e. there exist scalars λi for all i ∈ I such that the following
conditions hold:

∇f(x∗) +
∑
i∈I

λi∇gi(x∗) = 0 (6.4)

∀i ∈ I (λi ≥ 0). (6.5)

Proof. Since x∗ is a constrained minimum and ∇ḡ is linearly independent, there is no nonzero feasible
descent direction at x∗ such that (∇ḡ(x∗))

>
y ≤ 0 and −∇f(x∗)y > 0. By a direct application of Farkas’

Lemma 6.2.6, there is a vector λ ∈ R|I| such that ∇(ḡ(x∗))λ = −∇f(x∗) and λ ≥ 0. 2

The KKT necessary conditions (6.4)-(6.5) can be reformulated to the following:

∇f(x∗) +

m∑
i=1

λi∇gi(x∗) = 0 (6.6)

∀i ≤ m (λigi(x
∗) = 0) (6.7)

∀i ≤ m (λi ≥ 0). (6.8)

This is easily verified by defining λi = 0 for all i 6∈ I. Conditions (6.7) are called complementary slackness
conditions, and they express the fact that if a constraint is not active at x∗ then its corresponding Lagrange
multiplier is 0. A point x∗ satisfying the KKT conditions is called a KKT point.

6.2.3 General NLPs

Consider now a general NLP with both inequality and equality constraints:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0
h(x) = 0,

 (6.9)
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where f : Rn → R, g : Rn → Rm and h : Rn → Rp are C1 functions.

By applying theorems 6.2.1 and 6.2.7, we can define the Lagrangian of Eq. (6.9) by the following:

L(x, λ, µ) = f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

µihi(x), (6.10)

and the corresponding KKT conditions as:

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +
p∑
i=1

µi∇hi(x∗) = 0

λigi(x
∗) = 0 ∀i ≤ m
λi ≥ 0 ∀i ≤ m.

 (6.11)

In order to derive the general KKT conditions (6.11), it is sufficient to sum Eq. (6.4) and (6.6) and then
divide by 2.

This completes the discussion as regards the necessary conditions for local optimality. If a point x∗ is
a KKT point, the objective function is convex in a neighbourhood of x∗, and the objective direction is
minimization, then x∗ is a local minimum These are the sufficient conditions which are used in practice
in most cases. It turns out, however, that they are not the most stringent conditions possible: many
variants of convexity have been described in order to capture wider classes of functions for which all local
optima are also global.

6.2.8 Definition
Consider a function f : X ⊆ Rn → Rn.

1. f is quasiconvex if for all x, x′ ∈ X and for all λ ∈ [0, 1] we have:

f(λx+ (1− λ)x′) ≤ max{f(x), f(x′)}.

2. f is pseudoconvex if for all x, x′ ∈ X such that f(x′) < f(x) we have:

(∇f(x))
>

(x′ − x) < 0.

We state the sufficiency conditions in the following theorem; the proof can be found in [13, p. 155].

6.2.9 Theorem
Let x∗ be a KKT point of Eq. (6.3), I be as in Theorem 6.2.7, and X be the feasible region of a relaxation
of Eq. (6.9) where all constraints gi such that i 6∈ I have been discarded from the formulation. If there is
a ball S(x∗, ε) with ε > 0 such that f is pseudoconvex over S(x∗, ε) ∩X and gi are differentiable at x∗

and quasiconvex over S(x∗, ε) ∩X for all i ∈ I, then x∗ is a local minimum of Eq. (6.9).

6.3 Duality

Given an MP formulation P , the term “dual” often refers to an auxiliary formulation Q such that the
decision variables of P are used to index the constraints of Q, and the constraints of P are used to index
the variables of Q. For minimization problems, this is shown by setting up a special saddle problem can
sometimes be re-cast in terms of an ordinary MP where variables and constraint indices are swapped
(this is not the only relationship between primal and dual formulations, of course). Duality is important
because of weak and strong duality theorems. The former guarantees that dual formulations provide
lower bounds to primal minimization formulations. The latter guarantees that the “gap” between this
lower bound and the optimal objective function value of the original primal formulation is zero.
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In the following, we shall employ the terms primal variables, dual variables, primal constraints, dual
constraints, primal objective, dual objective to denote variables, constraints and objectives in the primal
and dual problems in primal/dual problem pairs.

6.3.1 The Lagrangian function

The primordial concept in duality theory is the Lagrangian function (see Eq. (6.2)) of a given formulation,
which, for a problem

min{f(x) | g(x) ≤ 0} (6.12)

is given by L(x, y) = f(x)+yg(x). The row vector y ∈ Rm is called the vector of the Lagrange multipliers.

The Lagrangian aggregates the constraints on the objective, penalizing them by means of the multi-
pliers. The solution x∗(y) (itself a function of the multiplier vector y) to minx L(x, y) must surely have
g(x∗(y)) ≤ 0 as long as y ≥ 0, since we are minimizing w.r.t. x (the term yg(x) must become negative for
L to attain its minimum). In other words, the solution x∗(y) is feasible in the original problem Eq. (6.12).
We write L(y) = minx L(x, y) = minx(f(x) + yg(x)).

It is easy to show that for all y ≥ 0, L(y) is a lower bound to the optimal objective function value f∗

of the original formulation. Thus, it makes sense to find the best (i.e. maximum) achievable lower bound.
This leads us to maximize L(y) with respect to y and subject to y ≥ 0. The Lagrangian dual problem of
Eq. (6.12) is a saddle problem defined as:

p∗ = max
y≥0

min
x
L(x, y). (6.13)

The considerations above show that
p∗ ≤ f∗ (6.14)

which is known as the weak duality theorem.

6.3.2 The dual of an LP

Consider the LP in standard form

min{c>x | Ax = b ∧ x ≥ 0}. (6.15)

Its Lagrangian function is L(x, y) = c>x+ y(b−Ax). We have

max
y≥0

min
x
L(x, y) =

= max
y≥0

min
x

(c>x+ y(b−Ax)) =

= max
y≥0

min
x

(c>x+ yb− yAx) =

= max
y≥0

(yb+ min
x

(c> − yA)x).

In general, if y increases, the expression above may become unbounded. Assume therefore that the
equation yA = c> holds; this implies min

x
(c> − yA)x = min

x
0 = 0, and so the above reduces to finding

max
y≥0,yA=c>

yb.
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We define the above maximization problem to be the dual of the LP Eq. (6.15), which is usually written
as follows:

maxy yb
yA = c>

y ≥ 0.

 (6.16)

6.3.2.1 Alternative derivation of LP duality

Eq. (6.16) can also be achieved as follows: we seek the best possible lower bound for Eq. (6.15) by
considering a weighted sum of the constraints Ax ≥ b, using weights y1, . . . , ym. We obtain yAx ≥ yb,
which are only valid if y ≥ 0. To get a lower bound, we need yb ≤ c>x: since yAx ≥ yb, we must require
yA = c>. To make the lower bound tightest, we maximize yb subject to y ≥ 0 and yA = c>, obtaining
Eq. (6.16) again.

6.3.2.2 Economic interpretation of LP duality

Consider the diet problem of Sect. 2.2.7.1. Its dual, max{yb | yA ≤ c> ∧ y ≥ 0}, can be interpreted as
follows. A megalomaniac pharmaceutical firm wishes to replace human food with nutrient pills: it wishes
to set the prices of the pills as high as possible, whilst being competitive with the cost of the foods. In
this setting, y are the prices of the m nutrient pills, b is the quantity of nutrients required, and c are the
costs of the food.

6.3.3 Strong duality

In this section we shall prove the strong duality theorem for cNLP: namely that for any cNLP Eq. (6.12)
having feasible region with a non-empty interior, strong duality holds:

p∗ = f∗ (6.17)

holds. The condition on the non-emptiness of the interior of the feasible region is called Slater’s constraint
qualification, and it asserts that:

∃x′ (g(x′) < 0). (6.18)

6.3.1 Theorem (Strong Duality)
Consider a cNLP Eq. (6.12) s.t. Eq. (6.18) holds. Then we have p∗ = f∗.

Proof. Consider the sets A = {(λ, t) | ∃x (λ ≥ g(x) ∧ t ≥ f(x))} and B = {(0, t) | t < f∗}. It is easy
to show that A ∩ B = ∅, for otherwise f∗ would not be optimal. Furthermore, both A and B are convex
sets. Thus, there must be a separating hyperplane defined by (u, µ) 6= 0 and α ∈ R such that

∀(λ, t) ∈ A (uλ+ µt ≥ α) (6.19)

∀(λ, t) ∈ B (uλ+ µt ≤ α). (6.20)

Since both λ and t can increase indefinitely, in order for the expression uλ+ µt to be bounded below in
Eq. (6.19), we must have

u ≥ 0, µ ≥ 0. (6.21)

Condition (6.20) is equivalent to µt ≤ α for all t < f∗, that is µf∗ ≤ α, since λ = 0 in B. Combining the
latter with (6.19) we conclude that for all x (in particular, for all feasible x),

ug(x) + µf(x) ≥ µf∗. (6.22)
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Suppose now that µ = 0: this implies, by Eq. (6.22), that ug(x) ≥ 0 for all feasible x. In particular, by
Eq. (6.18) there exists x′ feasible such that g(x′) < 0, which implies u ≤ 0, and by Eq. (6.21), this means
u = 0, yielding (u, µ) = 0 which contradicts the separating hyperplane theorem (Prop. 6.2.5). Thus µ > 0
and we can set y = 1

µu in Eq. (6.22):

f(x) + yg(x) ≥ f∗. (6.23)

This implies that for all feasible x we have L(x, y) ≥ f∗. The result follows from the weak duality theorem
Eq. (6.14). 2

The above proof applies to LPs Eq. (6.15) as a special case.



Chapter 7

Fundamentals of Linear
Programming

This chapter is devoted to LP. We summarize the main LP solution methods: simplex, ellipsoid, and
interior point.

7.1 The Simplex method

The simplex method1 is the fundamental algorithm used in LP. We remark straight away that it is one
of the practically most efficient algorithms for LP, although all known implementations have exponential
worst-case behaviour.

The simplex algorithms rests on four main observations.

• The LP in canonical form
min{c>x | Ax ≤ b} (7.1)

is equivalent to minimizing a linear form over a polyhedron.

• The minimum of a linear form over a polyhedron is attained at a vertex of the polyhedron (cf. Thm. 7.1.9):
since there are finitely many vertices in a polyhedron in Rn, there exists a finite search procedure
to solve the (continuous) LP.

• Verifying whether a vertex of a polyhedron is a local minimum w.r.t. a linear form is easy: it suffices
to check that all adjacent vertices have higher associated objective function value.

• Polyhedra are convex sets and linear forms are convex functions, so any local minimum is also a
global minimum.

Obviously, corresponding statements can be made for maximization.

The simplex algorithm starts from a feasible polyhedron vertex and moves to an adjacent vertex with
lower associated objective function value. When no such vertex exists, the vertex is the minimum and the
algorithm terminates. The simplex algorithm can also be used to detect unboundedness and infeasibility.

1The simplex method was invented by G. Dantzig in the late forties [44]; rumour has it that the young Dantzig approached
J. Von Neumann to present his results, and met with the response that his algorithm was correct but not very innovative.
Dantzig himself, for the very same reason, chose not to immediately publish his algorithm in a scientific journal paper,
although, to date, the simplex algorithm is the most famous algorithm in Operations Research and one of the most famous
in the whole field of applied mathematics.
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7.1.1 Geometry of Linear Programming

The material in this section is taken from [119, 53]. Consider the LP (in standard form)

min
x∈P

c>x (7.2)

where P is the polyhedron {x ∈ Rn+ | Ax = b} and c ∈ Rn.

7.1.1 Definition
A set {Ai | i ∈ β} of m linearly independent columns of A is a basis of A. The variables {xi | i ∈ β}
corresponding to the indices β of the basis are called basic variables. All other variables are called nonbasic
variables.

Defn. 7.1.1 suggests that we can partition the columns of A in (B|N) where B is the nonsingular, square
matrix of the basic columns and N are the nonbasic columns. Correspondingly, we partition the variables
x into (xB , xN ).

7.1.2 Definition
Given a polyhedron P = {x ∈ Rn+ | Ax = b}, the feasible vectors x having xB = B−1b ≥ 0 and xN = 0
are called basic feasible solutions (bfs) of P .

7.1.3 Lemma
Given a polyhedron P = {x ∈ Rn+ | Ax = b} and a bfs x∗ for P , there exists a cost vector c ∈ Rn such

that x∗ is the unique optimal solution of the problem min{c>x | x ∈ P}.

Proof. Let cj = 0 for all j such that xj is a basic variable, and cj = 1 otherwise. 2

The most important result in this section states that bfs’s correspond to vertices of P .

7.1.4 Theorem
Given a polyhedron P = {x ∈ Rn+ | Ax = b}, any bfs for P is a vertex of P , and vice versa.

Proof. (⇒) Let x∗ = (x∗B , 0), with x∗B ≥ 0, be a bfs for P . By Lemma 7.1.3 there is a cost vector c such
that for all x ∈ P , x∗ is the unique vector such that c>x∗ ≤ c>x for all x ∈ P . Thus, the hyperplane
c>(x−x∗) = 0 intersects P in exactly one point, namely x∗. Hence x∗ is a vertex of P . (⇐) Assume now
that x∗ is a vertex of P and suppose, to get a contradiction, that it is not a bfs. Consider the columns Aj
of A such that j ∈ β = {j ≤ n | x∗j > 0}. If Aj are linearly independent, we have immediately that x∗ a
bfs for P , which contradicts the hypothesis. Thus, suppose Aj are linearly dependent. This means that
there are scalars dj , not all zero, such that

∑
j∈β djAj = 0. On the other hand, since x∗ satisfies Ax = b,

we have
∑
j∈β xjAj = b. Thus, for all ε > 0, we obtain

∑
j∈β(xj−εdj)Aj = b and

∑
j∈β(xj+εdj)Aj = b.

Let x′ have components xj − εdj for all j ∈ β and 0 otherwise, and x′′ have components xj + εdj for all
j ∈ β and 0 otherwise. By choosing a small enough ε we can ensure that x′, x′′ ≥ 0. Since Ax′ = Ax′′ = b
by construction, both x′ and x′′ are in P . Thus, x∗ = 1

2x
′ + 1

2x
′′ is a strict convex combination of two

points of P , hence by Lemma 6.1.5 it cannot be a vertex of P , contradicting the hypothesis. 2

We remark that Thm. 7.1.4 does not imply that there is a bijection between vertices and bfs. In fact,
multiple bfs may correspond to the same vertex, as Example 7.1.5 shows.

7.1.5 Example
Consider the trivial LP min{x1 | x1 + x2 ≤ 0 ∧ x1, x2 ≥ 0}. The feasible polyhedron P ≡ {(x1, x2) ≥
0 | x1 + x2 ≤ 0} = {0} consists of a single vertex at the origin. On the other hand, we can partition the
constraint matrix (1 1) so that the basic column is indexed by x1 (and the nonbasic by x2) or, conversely,
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so that the basic column is indexed by x2 (and the nonbasic by x1): both are bfs of the problem, both
correspond to a feasible vertex, but since there is only one vertex, obviously both must correspond to the
origin.

7.1.6 Remark
Geometrically, multiple bfs corresponding to a single vertex is a phenomenon known as degeneracy, which
corresponds to more than n constraint hyperplanes passing through a single point (where n is the number
of variables). Degenerate vertices correspond to bfs having strictly less thanm nonzero components (where
m is the number of constraints).

In the case of our example, n = 2 but there are three lines passing through the (only) feasible vertex
(0, 0): x2 = 0, x1 = 0 and x1 + x2 = 0.

The event of more than n hyperplanes intersecting in a single point has probability zero if their
coefficients are sampled from a uniform distribution: this might lead the reader to believe that degeneracy
is a rare occurrence. This, however, is not the case: many formulations put together by humans are
degenerate. This is sometimes explained by noticing that LPs are used to model technological processes
conceived by humans, which — according to a human predisposition to simplicity — involve a fair amount
of symmetry, which, in turn, is likely to generate degeneracy.

7.1.7 Exercise
“A bfs is degenerate iff it has fewer than m nonzero components”: is this statement true or false?

7.1.8 Exercise
Prove the statement “degenerate vertices correspond to bfs having strictly less than m nonzero compo-
nents” in Rem. 7.1.6.

By the following theorem, in order to solve an LP all we have to do is compute the objective function
at each vertex of the feasible polyhedron.

7.1.9 Theorem
Consider Eq. (7.2). If P is non-empty, closed and bounded, there is at least one bfs which solves the
problem. Furthermore, if x′, x′′ are two distinct solutions, any convex combination of x′, x′′ is also a
solution.

Proof. Since the polyhedron P is closed and bounded, the function f(x) = c>x attains a minimum on
P , say at x′ (and by convexity of P , x′ is the global minimum). Since x′ ∈ P , x′ is a convex combination

of the vertices v1, . . . , vp of P , say x′ =

p∑
i=1

λivi with λi ≥ 0 for all i ≤ p and

p∑
i=1

λi = 1. Thus,

c>x′ =

p∑
i=1

λic
>vi.

Let j ≤ p be such that c>vj ≤ c>vi for all i ≤ p. Then

p∑
i=1

λic
>vi ≥ c>vj

p∑
i=1

λi = c>vj ,

whence c>x′ ≥ c>vj . But since c>x′ is minimal, we have c>x′ = c>vj , which implies that there exists a
vertex of P , which by Thm. 7.1.4 corresponds to a bfs, having mimum objective function value; in other
words, there is a bfs which solves the problem. For the second part of the theorem, consider a convex
combination x = λx′ + (1 − λ)x′′ with λ ≥ 0. We have c>x = λc>x′ + (1 − λ)c>x′′. Since x′, x′′ are
solutions, we have c>x′ = c>x′′, and hence

c>x = c>x′(λ+ (1− λ)) = c>x′,
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which shows that x is also a solution. 2

Theorem 7.1.9 states that P should be closed and bounded, so it requires that P should in fact be a
polytope (polyhedra may be unbounded). In fact, this theorem can be modified [20, Prop. 2.4.2] to apply
to unbounded polyhedra by keeping track of the unboundedness directions (also called extreme rays).

7.1.2 Moving from vertex to vertex

Since vertices of a polyhedron correspond to bfs by Theorem 7.1.4, and a bfs has at most m nonzero
components out of n, there are at worst (nm) vertices in a given polyhedron. Thus, unfortunately,
polyhedra may possess a number of vertices which is exponential in the size of the instance, so the above
approach is not practical.

However, it is possible to look for the optimal vertex by moving from vertex to vertex along the edges
of the polyhedron, following the direction of decreasing cost, and checking at each vertex if an optimality
condition is satisfied: this is a summary description of the simplex method. In order to fully describe it,
we need an efficient way of moving along a path of edges and vertices.

Consider a bfs x∗ for P = {x ≥ 0 | Ax = b} and let β be the set of indices of the basic variables. Let
Ai be the i-th column of A. We have: ∑

i∈β

x∗iAi = b. (7.3)

Now, fix a j 6∈ β; Aj is a linear combination of the Ai in the basis. Thus, there exist multipliers xij such
that for all j 6∈ β, ∑

i∈β

xijAi = Aj . (7.4)

Multiply Eq. (7.4) by a scalar θ and subtract it from Eq. 7.3 to get:∑
i∈β

(x∗i − θxij)Ai + θAj = b. (7.5)

Now suppose we want to move (by increasing θ from its initial value 0) from the current bfs to another
point inside the feasible region. In order to move to a feasible point, we need x∗i − θxij ≥ 0 for all i ∈ β.
If xij ≤ 0 for all i, then θ can grow indefinitely (this means the polyhedron P is unbounded). Assuming
a bounded polyhedron, we have a bounded θ > 0. This means

θ = min
i∈β
xij>0

x∗i
xij

. (7.6)

If θ = 0 then there is i ∈ β such that x∗i = 0. This means that the bfs x∗ is degenerate (see Example 7.1.5
and Remark 7.1.6). We assume a nondegenerate x∗ in this summary treatment. Let k ∈ β be the index
minimizing θ in the expression above. The coefficient of Ak in Eq. 7.5 becomes 0, whereas the coefficient
of Aj is nonzero.

7.1.10 Proposition
Let x∗ be a bfs, j 6∈ β, xij be as in Eq. (7.5) for all i ∈ β and θ be as in Eq. (7.6). The point
x′ = (x′1, . . . , x

′
n) defined by

x′i =

 x∗i − θxij ∀i ∈ β r {k}
θ i = k
0 otherwise

is a bfs.
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Proof. First notice that x′ is a feasible solution by construction. Secondly, for all i 6∈ β, i 6= we have
x′i = x∗i = 0 and for all i ∈ β, i 6= k we have x′i ≥ 0. By the definition of x′, we have x′j ≥ 0 and
x′k = 0. Thus, if we define β′ = β\{k} ∪ {j}, it only remains to be shown that {xi | i ∈ β′} is a set
of basic variables for A. In other words, if we partition the columns of A according to the index set β′,
obtaining A = (B′|N ′), we have to show that B′ is nonsingular. Notice (B|N) = A = (B′|N ′) implies
B−1A = (I|B−1N) = (B−1B′|B−1N ′) (here the equality sign is considered “modulo the column order”:
i.e. the two matrices are equal when considered as sets of columns). Eq. (7.4) can be stated in matrix
form as BX> = N where X is the (n−m)×m matrix whose (p, q)-th entry is xpq, thus B−1N = X>.
By construction of B′ we have B′ = B\{Ak}∪{Aj}. Thus, B−1B′ = (e1, . . . , ek−1, B

−1Aj , ek+1, . . . , en),
where ei is the vector with i-th component set to 1 and the rest set to zero, and B−1Aj is the j-th

column of X, i.e. (x1j , . . . , xnj)
>

. Hence, |det(B−1B′)| = |xkj | > 0, since θ > 0 implies xkj 6= 0. Thus,
detB′ 6= 0 and B′ is nonsingular. 2

Intuitively, Theorem 7.1.10 says that any column Aj outside the basis can replace a column Ak in the
basis if we choose k as the index that minimizes θ in Eq. 7.6. Notice that this implies that the column
Ak exiting the basis is always among those columns i in Eq. 7.4 which have multiplier xij > 0. In other
words, a column Aj can replace column Ak in the basis only if the linear dependence of Aj on Ak is
nonzero (Ak is a “nonzero component” of Aj). Informally, we say that xj enters the basis and xk leaves
the basis.

In order to formalize this process algorithmically, we need to find the value of the multipliers xij . By
the proof of Prop. 7.1.10, xij is the (i, j)-th component of a matrix X satisfying X> = B−1N . Knowing
xij makes it possible to calculate β′ and the corresponding partition B′, N ′ of the columns of A. The
new bfs x′ can be obtained as (B′)−1b, since Ax′ = b implies (B′|N ′)x′ = b and hence Ix′ = (B′)−1b
(recall N ′x′ = 0 since x′ is a bfs).

7.1.3 Decrease direction

All we need now is a way to identify “convenient” variables to enter the basis. In other words, from
a starting bfs we want to move to other bfs (with the method described above) so that the objective
function value decreases. To this end, we iteratively select the variable xj having the most negative
reduced cost to enter the basis (the reduced costs are the coefficients of the objective function expressed
in terms of the current nonbasic variables). Writing c as (cB , cN ) according to the current basic/nonbasic
partition, the reduced costs c̄> are obtained as c> − cBB−1A. The algorithm terminates when there is
no negative reduced cost (i.e. no vertex adjacent to the current solution has a smaller objective function
value). This criterion defines a local optimum. Since LP problems are convex, any local minimum is also
a global one by Theorem 6.1.7.

7.1.4 Bland’s rule

When a vertex is degenerate, an application of the simplex algorithm as stated above may cause the
algorithm to cycle. This happens because a reduced cost in the objective function identifies a variable
xj to enter the basis, replacing xk, with (degenerate) value x′j = θ = 0. This results in a new basis
yielding exactly the same objective function value as before; at the next iteration, it may happen that
the selected variable to enter the basis is again xk. Thus, the current basis alternatively includes xk and
xj without any change to the objective function value. It can be shown that the following simple rule
entirely avoids these situations: whenever possible, always choose the variable having the lowest index
for entering/leaving the basis [33, Thm. 3.3].
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7.1.5 Simplex method in matrix form

Here we give a summary of the algebraic operations involved in a simplex algorithm step applied to a LP
in standard form

min{c>x | Ax = b ∧ x ≥ 0}. (7.7)

Suppose we are given a current bfs x ordered so that variables xB = (x1, . . . , xm, 0, . . . , 0) are basic and
xN = (0, . . . , 0, xm+1, . . . , xn) are nonbasic. We write A = B +N where B consists of the basic columns
1, . . .m of A and 0 in the columns m+ 1, . . . n, and N consists of 0 in the first m columns and then the
nonbasic columns m+ 1, . . . n of A.

1. Express the basic variables in terms of the nonbasic variables. From Ax = b we get BxB+NxN = b.
Let B−1 be the inverse of the square submatrix of B consisting of the first m columns (i.e. the basic
columns). We pre-multiply by B−1 to get:

xB = B−1b−B−1NxN . (7.8)

2. Select an improving direction. Express the objective function in terms of the nonbasic variables:
c>x = c>BxB + c>NxN = c>B(B−1b−B−1NxN ) + c>NxN , whence:

c>x = c>BB
−1b+ c̄>NxN , (7.9)

where c̄>N = c>N − c>BB−1N are the reduced costs. If all the reduced costs are nonnegative there
is no nonbasic variable which yields an objective function decrease if inserted in the basis, since
the variables must also be nonegative. Geometrically speaking it means that there is no adjacent
vertex with a lower objective function value, which in turn, by Thm. 6.1.7, means that we are at an
optimum, and the algorithm terminates. Otherwise, select an index h ∈ {m+1, . . . n} of a nonbasic
variable xh with negative reduced cost (or, as in Section 7.1.4, select the least such h). We now
wish to insert xh in the basis by increasing its value from its current value 0. Geometrically, this
corresponds to moving along an edge towards an adjacent vertex.

3. Determine the steplength. Inserting xh in the basis implies that we should determine an index
l ≤ m of a basic variable which exits the basis (thereby taking value 0). Let b̄ = B−1b, and let
āij be the (i, j)-th component of B−1N (notice āij = 0 for j ≤ m). By Eq. (7.8) we can write

xi = b̄i−
n∑

j=m+1

āijxj for all i ≤ m. Since we only wish to increase the value of xh and all the other

nonbasic variables will keep value 0, we can write xi = b̄i − āihxh. At this point, increasing the
value of xh may impact on the feasibility of xi only if it becomes negative, which can only happen
if āih is positive. Thus, we get xh ≤ b̄i

āih
for each i ≤ m and āih > 0, and hence:

l = argmin{ b̄i
āih
| i ≤ m ∧ āih > 0} (7.10)

xh =
b̄l
ālh

. (7.11)

The above procedure fails if āih ≤ 0 for all i ≤ m. Geometrically, it means that xh can be increased
in value without limit: this implies that the value of the objective function becomes unbounded. In
other words, the problem is unbounded.
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7.1.6 Sensitivity analysis

Material from this section has been taken from [53]. We write the optimality conditions as follows:

b̄ = B−1b ≥ 0 (7.12)

c̄> = c> − c>BB−1A ≥ 0. (7.13)

Eq. (7.12) expresses primal feasibility and Eq. (7.13) expresses dual feasibility.

Suppose now we have a variation in b, say b → b + ∆b: Eq. (7.12) becomes B−1b ≥ −B−1∆b. This
system defines a polyhedron in ∆b where the optimal basis does not change. The variable values and
objective function obviously change. The variation of the objective function is (c>BB

−1)∆b = y∗∆b, where
y∗ are the optimal dual variable values: these, therefore, can be seen to measure the sensitivity of the
objective function value to a small change in the constraint coefficients.

7.1.7 Simplex variants

We briefly describe some of the most popular variants of the simplex algorithm. Material in this section
has been taken from [119, 53].

7.1.7.1 Revised Simplex method

The revised simplex mehod is basically a smart storage and update scheme for the data of the current
iteration of the simplex algorithm. In practice, we only need to store B−1, as the rest of the data can be
obtained via premultiplication by B−1. The disadvantages of this method reside in the high numerical
instability of updating B−1 directly. This issue is usually addressed by storing B−1 in various factorized
forms.

7.1.7.2 Two-phase Simplex method

If no starting bfs is available for Eq. (7.7), we can artificially look for one by solving the auxiliary LP:

min
x,y

1y

s.t. Ax+ yI = b
x ∈ Rn+
y ∈ Rm+


where 1 is the row vector consisting of all 1’s. Here, the bfs where B = I is immediately evident (all
x are nonbasic, all y are basic), and if Eq. (7.7) is feasible, the optimal objective function value of the
auxiliary LP will be 0 with y = 0, yielding a bfs in the x variables only. This solution can then be used
as a starting bfs for the original LP.

7.1.7.3 Dual Simplex method

Another way to deal with the absence of a starting bfs is to apply the dual simplex method. What
happens in the (primal) simplex algorithm is that we maintain primal feasibility by moving from vertex
to vertex, while trying to decrease the objective function until this is no longer possible. In the dual
simplex algorithm, we maintain the optimality of the objective function (in the sense that the current
dual simplex objective function value is always a lower bound with respect to the primal minimum value)
whilst trying to achieve feasibility. We use the same notation as in Section 7.1.5.
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We start with a (possibly infeasible) basic primal solution where all the reduced costs are nonnegative.
If b̄ = B−1b = xB ≥ 0 the algorithm terminates: if xB is primal feasible, then we have an optimal basis.
Otherwise, the primal problem is infeasible. If b 6≥ 0, we select l ≤ m such that b̄l < 0. We then find
h ∈ {m + 1, . . . , n} such that ālh < 0 and alh is minimum among { c̄j

|ālj | | j ≤ n ∧ ālj < 0} (this ensures

that the reduced costs will stay nonnegative), and we swap xl with xh in the current basis. If ālj ≥ 0 for
all j ≤ n, then the primal problem is infeasible.

The advantage of the dual simplex method is that we can add cutting planes (valid inequalities) to
the main data structure of the simplex algorithm (called simplex tableau) during the execution of the
algorithm. A valid cut should make the current optimal solution infeasible, but since dual simplex bases
are not primal feasible, this is not an issue.

7.1.8 Column generation

It may sometimes happen that the number of variables in a LP is much larger than the number of
constraints. Consequently, while the basis has a manageable cardinality, the computational costs of
running the simplex algorithm on the LP are huge. If there exists an efficient procedure for finding the
reduced cost of minimum value, we can insert columns in the simplex tableau as the need arises, thus
eliminating the need of dealing with all variables at once. The problem of determining the reduced cost
of minimum value (of a variable that is not yet in the simplex tableau) is called pricing problem. Column
generation techniques are only useful if the pricing problem can be solved efficiently. The procedure stops
when the pricing problem determines a minimum reduced cost of non-negative value.

One example of application of column generation is the multicommodity network flow problem formu-
lated so that each variable corresponds to a path on the network. There are exponentially many paths,
but the pricing problem is a shortest path problem, which can be solved very efficiently.

7.2 Polytime algorithms for LP

Material for this section (except for Sect. 7.3) has been taken from [13, 54, 140, 74, 26].

L. Khachiyan showed in 1979 that finding an optimal solution to a LP problem has polynomial worst-
case complexity. Even though Kachiyan’s ellipsoid algorithm has polynomial worst-case complexity, it
does not work well in practice. In 1984, Karmarkar presented another polynomial algorithm for solving
LP which was claimed to have useful practical applicability. Gill et al. showed in 1985 that Karmarkar’s
algorithm was in fact an IPM with a log-barrier function applied to an LP. IPMs had been applied to
nonlinear problems with considerable success in the late 60’s [52]. This spawned considerable interest in
IPMs applied to LP; so-called barrier solvers for LP were incorporated in most commercial software codes
[73]. Barrier solvers compete well with simplex-based implementations especially on large-scale LPs. We
look at these methods below.

7.3 The ellipsoid algorithm

Material for this section has been taken from [117, 79, 119]. The ellipsoid algorithm actually solves a
different problem, which is called

Linear Strict Inequalities (LSI). Given b ∈ Qm and a rational m × n matrix A, decide
whether there is a rational vector x ∈ Qn such that Ax < b.
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First, we show a computational complexity equivalence between LP and LSI, by reducing the former to
the latter in polytime.

7.3.1 Equivalence of LP and LSI

By the term LP we mean both a MP formulation and a problem. Formally, but rather unusually, LP “as
a problem” is stated as a conditional sequence of (formal) subproblems:

Linear Optimization Problem (LOP). Given a vector c ∈ Qn, an m × n rational matrix
A, and a vector b ∈ Qm, consider the LP formulation in Eq. (7.7), and:

1. decide whether the feasible set is empty;

2. if not, decide whether Eq. (7.7) is unbounded in the objective direction

3. if not, find the optimum and the optimal objective function value.

Namely, we check feasibility, unboundedness (two decision problems) and then optimality (an optimization
problems). We must show that all of these tasks can be carried out in a polynomial number of calls to
the “oracle” algorithm A .

7.3.1.1 Reducing LOP to LI

Instead of reducing LOP to LSI directly, we show a reduction to

Linear Inequalities (LI). Given b ∈ Qm and a rational m × n matrix A, decide whether
there is a rational vector x ∈ Qn such that Ax ≤ b.

7.3.1.1.1 Addressing feasibility First, we note that if A is an algorithm for LI, A also trivially
solves (with just one call) the feasibility subproblem 1 of LOP: it suffices to reformulate {x ≥ 0 | Ax = b}
to {x ≥ 0 | Ax ≤ b ∧Ax ≥ b}.

7.3.1.1.2 Instance size For boundedness and optimality, we need to introduce some notions about
the maximum possible size of LOP solutions (if they exist) in function of the input data A, b, c. We define
the size L = mn+ dlog2 P e of the LOP instance (A, b, c), where P is the product of all numerators and
denominators occurring in the components of A, b, c (L is an upper bound to the storage required to
write A, b, c in binary representation).

7.3.1.1.3 Bounds on bfs components By [119, Lemma 8.5], bfs consist of rational components
such that the absolute values of numerators and denominators are bounded above by 2L (while this is
not the strictest possible bound, it is a valid bound). This bound arises a consequence of three facts: (i)
bfs can be computed as xB = B−1b (see Eq. (7.8) and set nonbasic variables xN to zero), where B is a
basis of A; (ii) components of B−1 can be expressed in terms of the determinants of the adjoints of B;
(iii) the absolute value of the determinant of B is bounded above by the product of the absolute values
of the numerators of the components of B. Thus, we know that

x is a bfs of Eq. (7.7) ⇐⇒ ∀j ≤ n (0 ≤ xj ≤ 2L), (7.14)

which implies in particular that if the instance is feasible and bounded and x∗ is a bfs which solves
Eq. (7.7), then x∗ ∈ [0, 2L].
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7.3.1.1.4 Addressing unboundedness This observation allows us to bound the optimal objective
function min c>x below: since cj ≥ −2L for each j ≤ n, c>x∗ ≥ −n22L. On the other hand, if the
LOP instance is unbounded, there are feasible points yielding any value of the objective function, namely
strictly smaller than n22L. This allows us to use LSI in order to decide the boundedness subproblem 2
of LOP: we apply A (the LI oracle) to the system Ax ≤ b ∧ Ax ≥ b ∧ x ≥ 0 ∧ c>x ≤ −n22L − 1. If the
system is feasible, then the LOP is unbounded.

7.3.1.1.5 Approximating the optimal bfs If the LOP instance was not found infeasible or un-
bounded, we know it has an optimal bfs x∗. We first find an approximation x̂ of x∗ using bisection search,
one of the most efficient generic algorithms in combinatorial optimization More precisely, we determine
x̂ and an integer K ∈ [−24L, 24L] such that K22L < c>x̂ ≤ (K + 1)22L as follows:

1. Let aL = −22L, aU = 22L;

2. Let a = aL+aU

2 ;

3. Solve the LI instance:
Ax ≤ b ∧ Ax ≥ b ∧ x ≥ 0 ∧ c>x ≤ a ; (7.15)

using the oracle A ;

4. If Eq. (7.15) is infeasible:

• update aL ← a and repeat from Step 2;

5. If Eq. (7.15) is feasible:

• let x̂ be the solution of Eq. (7.15)

• if aU − aL < 2−2L return x̂ and stop, else aU ← a and repeat from Step 2.

We note this bisection search makes O(log2(22L+1) = 2L+ 1 calls to the oracle A .

7.3.1.1.6 Approximation precision Terminating the bisection search when the objective function
approximation of x̂ is within an ε = 2−2L has the following significance: by [119, Lemma 8.6], if there
are two bfs x, y of Eq. (7.7) and K ∈ Z such that

K2−2L < c>x ≤ (K + 1)2−2L ∧ K2−2L < c>y ≤ (K + 1)2−2L, (7.16)

then c>x = c>y. Note that Eq. (7.16) states that the two rational numbers q1 = c>x and q2 = c>y
are as close to each other as 2−2L. We suppose q1 6= q2 to aim at a contradiction: since these are
different rational numbers with denominators bounded above by 2L [119, Lemma 8.5], we must have
|c>x− c>y| ≥ 2−2L, which contradicts Eq. (7.16).

7.3.1.1.7 Approximation rounding Since we found a point x̂ with aL < c>x̂ ≤ aU , and we know
that requiring the objective function value to be equal to aL yields an infeasible LI, by the existence of
optimal bfs, there must be an optimal bfs x∗ such that aL < c>x∗ ≤ aU . We shall now give an algorithm
for finding x∗ using A , which works as long as there is no degeneracy (see Rem. 7.1.6).

• Let S = ∅.

• For j ∈ {1, . . . , n} repeat:

1. Append j to S;
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2. Solve the LI instance:

Ax ≤ b ∧ Ax ≥ b ∧ x ≥ 0 ∧ c>x ≤ aU ∧ c>x ≥ aL ∧ ∀j ∈ S (xj ≤ 0) ; (7.17)

using the oracle A ;

3. If Eq. (7.17) is infeasible then remove j from S.

• Let B be square m × m submatrix of A indexed by any subset of m columns indexed by S̄ =
{1, . . . , n}r S

• Let x∗ = B−1b.

This algorithm is correct since it chooses basic columns from A indexed by variables which could not be
set to zero in Eq. (7.17) (and hence they could not be nonbasic).

This completes the polynomial reduction from LOP to LI.

7.3.1.2 Reducing LI to LSI

By [119, Lemma 8.7], a LI instance Ax ≤ b is feasible if and only if the LSI instance Ax < b + ε, where
ε = 2−2L, is feasible. Let x′ satisfy Ax ≤ b; then by definition it satisfies Ax ≤ (b− ε) + ε, i.e. Ax < b+ ε.
Now let x∗ satisfy Ax < b+ ε. If x∗ also satisfies Ax < b then it satisfies Ax ≤ b by definition, so let I be
the largest set I of constraint indices of Ax < b + ε such that AI = {ai | i ∈ I} is linearly independent.
A technical argument (see [119, p. 174]) shows that the solution x̂ to AIx = bI also satisfies Ax ≤ b.

The ellipsoid algorithm presentation in [132] works with closed polyhedra and hence does not need
this last reduction from LI to LSI (although there is a simpler equivalence between Ax ≤ b and Ax ≤ b+ε
based on Farkas’ lemma [132, p. 169]).

7.3.2 Solving LSIs in polytime

Let Pε be the (open) polyhedron corresponding to the feasible set of the given system of strict linear
inequalities, and let E0 be an ellipsoid such that Pε ⊆ E0. The ellipsoid algorithm either finds a feasible
solution x∗ ∈ Pε or determines that Pε is empty. We assume that the volume of Pε is strictly positive
if Pε is nonempty, i.e. Pε 6= ∅ → Vol(Pε) > 0. Let v be a number such that Vol(Pε) > v if Pε 6= ∅ and
V = Vol(E0), and let

K = d2(n+ 1)(lnV − ln v)e.

Initially, k = 0.

1. Let x(k) be the centre of the ellipsoid Ek. If x(k) ∈ Pε, the algorithm terminates with solution x(k).
Otherwise, there exists a violated strict constraint Aix < bi such that Aix

(k) ≥ bi. The hyperplane
Aix = bi slices Ek through the centre; the part which does not contain Pε can be discarded.

2. Find the minimum volume ellipsoid Ek+1 containing the of part of Ek containing Pε, and let x(k+1)

be the centre of Ek+1.

3. If k ≥ K, stop: Pε = ∅.

4. Repeat from 1.
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An ellipsoid Ek with centre x(k) is described by {x ∈ Rn | (x− x(k))
>
D−1
k (x−x(k)) ≤ 1} where Dk is an

n× n PSD matrix. We compute x(k+1) and Dk+1 as follows:

Γk =
DkAi√
Ai
>DkAi

x(k+1) = x(k) +
Γk
n+ 1

Dk+1 =
n2

n2 − 1

(
Dk −

2ΓkΓk
>

n+ 1

)
.

It turns out that Ek+1 defined by the matrix Dk+1 contains the part of Ek containing Pε, and furthermore

Vol(Ek+1) ≤ e−
1

2(n+1) Vol(Ek). (7.18)

The volume of EK is necessarily smaller than v: by Eq. (7.18) we have

Vol(EK) ≤ e−
K

2(n+1) Vol(E0) ≤ V e−
K

2(n+1) ≤ V e− ln(V/v) = v,

hence by the assumption on v we must have Pε = ∅ if k ≥ K. Since it can be shown that K is polynomial
in the size of the instance (which depends on the number of variables, the number of constraints as well
as the bits needed to store A and b), the ellipsoid algorithm is a polytime algorithm which can be used
to solve LPs.

One last point to be raised is that in Eq. (7.18) we rely on an irrational computation, which is never
precise on a computer. It can be shown that computations carried out to a certain amount of accuracy
can still decide whether Pε is empty or not (see [119, §8.7.4]).

7.4 Karmarkar’s algorithm

Karmarkar’s algorithm addresses all LPs with constraints Ax = 0, x ≥ 0 and 1>x = 1, and known a
priori to have optimal objective function value zero. The constraints evidently imply that x̄ = 1/n is an

initial feasible solution (where 1 = (1, . . . , 1)
>

.

It can be shown that any LP can be reduced to this special form.

• If no constraint
∑
j xj = 1 is present in the given LP instance, one can be added as follows:

– adjoin a constraint
∑
j xj ≤ M = O(2L) (where L is the size of the instance) to the formu-

lation: this will not change optimality properties, though it might turn unboundedness into
infeasibility;

– add a new (slack) variable xn+1 and rewrite the new constraint as
∑

j≤n+1

xj = M ;

– scale all variables so that x ← 1
M x, and accordingly scale the constraint RHSs b ← 1

M b,
yielding

∑
j xj = 1.

• The system Ax = b appearing in Eq. (7.7) can be written as

∀i ≤ m
∑
j≤n

aijxj − b
∑
j≤n

xj = 0
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since we have the constraint 1>x = 1; this yields

∀i ≤ m
∑
j≤n

(aij − bi)xj = 0,

which is homogeneous in x, as desired.

• If the optimal objective function value is known to be c̄ 6= 0, it can be “homogenized” in the same
way as Ax = b, namely optimize the objective c>x − c̄ (adding constants does not change the
optima) and rewrite it as c>x− c̄

∑
j xj based on the constraint 1>x = 1.

• If the optimal objective function value is unknown, proceed with a bisection search (see Sect. 7.3.1).

Let X = diag(x̄) and B =

(
AX
1

)
. The algorithm is as follows:

1. Project Xc into the null space of B: c∗ = (I −B>(BB>)−1B)Xc.

2. Normalize the descent direction: d = γ c∗

||c∗|| . If c∗ = 0 terminate with optimal solution x∗.

3. Move in projected space: y = e/n− sd where s is a fixed step size.

4. Project back into x-space: x̄← Xy
e>Xy

.

5. Repeat from 1.

Taking γ = 1√
n(n−1)

and s = 1
4 guarantees that the algorithm has polynomial complexity.

Let us look at the first iteration of Karmarkar’s algorithm in more detail. The initial point x̄ is taken
to be the feasible solution x̄ = 1/n; notice 1/n is also the centre of the simplex 1>x = 1 ∧ x ≥ 0. Let
Sr = {x ∈ Rn | ||x − x∗|| ≤ r ∧ 1>x = 1 ∧ x ≥ 0} be the largest sphere that can be inscribed in the
simplex, and let SR be the smallest concentric sphere that circumscribes the simplex. It can be shown
that R/r = n − 1. Let xr be the minimum of c>x on Fr = Sr ∩ {x | Ax = 0} and xR the minimum
on FR = SR ∩ {x | Ax = 0}; let fr = c>xr, fR = c>xR and f̄ = c>x̄. By the linearity of the objective

function, we have f̄−fR
f̄−fr

= n− 1. Since FR contains the feasible region of the problem, fR ≤ f∗ = 0, and

so (n− 1)f̄ − (n− 1)fr = f̄ − fR ≥ f̄ − f∗ = f̄ , whence

fr ≤
n− 2

n− 1
f̄ < e−

1
n−1 f̄ . (7.19)

Finally, we update x̄ with xr and repeat the process. If this reduction in objective function value
could be attained at each iteration, O(nL) iterations would be required to get within 2−L tolerance
from f∗ = 0, and the algorithm would be polynomial. The only issue lies in the fact that after the
first iteration the updated current point xr is not the centre of the simplex anymore. Thus, we use a
projective transformation (step 4 of the algorithm) to “re-shape” the problem so that the updated current
point is again at the centre of the simplex. The linearity of the objective function is not preserved by
the transformation, so a linear approximation is used (step 1 of the algorithm). Karmarkar showed that
Eq. (7.19) holds for the modified objective function too, thus proving correctness and polytime complexity.

7.5 Interior point methods

Karmarkar’s algorithm turns out to be equivalent to an IPM applied to an LP in standard form with
orthant constraints x ≥ 0 reformulated by means of log-barrier penalties on the objective function [59].
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We consider the LP in Eq. (7.7), and reformulate it as follows:

minx c>x− β
n∑
j=1

lnxj

s.t. Ax = b,

 (7.20)

where β > 0 is a parameter. Notice that since − lnxj tends to ∞ as xj → 0+, minimizing the objective
function of Eq. (7.20) automatically implies that x > 0. Furthermore, as β decreases towards 0, Eq. (7.20)
describes a continuous family of NLP formulations converging to Eq. (7.7). This suggests a solution
method based on solving a discrete sequence of convex problems

minx(β) c>x(β)− β
n∑
j=1

lnxj(β)

s.t. Ax(β) = b

 (7.21)

for β = β1, . . . , βk, . . .. We expect the solutions x∗(βk) of Eq. (7.21) to tend to x∗ as k → ∞, where x∗

is the solution of Eq. (7.7). The set {x∗(β) | β > 0} is a path in Rn called the central path.

7.5.1 Primal-Dual feasible points

We show that each point x(β) on the central path yields a dual feasible point. The Lagrangian L1(x, λ, ν)
for Eq. (7.7) (where λ are the dual variables for the constraints −x ≤ 0 and ν for Ax = b) is:

L1(x, λ, ν) = c>x−
n∑
j=1

λjxj + ν(Ax− b), (7.22)

while the Lagrangian L2(x, ν) for Problem (7.21) is:

L2(x, ν) = c>x(β)− β
n∑
j=1

lnxj(β) + ν(Ax− b).

Deriving the KKT condition (6.6) from L1 we get:

∀j ≤ n (cj − λj + νAj = 0),

where Aj is the j-th column of A. From L2 we get:

∀j ≤ n (cj −
β

xj
+ νAj = 0).

Therefore, by letting

λj =
β

xj
(7.23)

for all j ≤ n, we show that each point x(β) on the central path gives rise to a dual feasible point (λ, ν)
for the dual of Eq. (7.7):

max
ν

b>ν

s.t. A>ν + λ = c
λ ≥ 0.

 (7.24)

Notice that the dual Problem (7.24) has been derived from Eq. (6.16) by setting ν = −µ and using λ
as slack variables for the inequalities in Eq. (6.16). Since λ, ν also depend on β, we indicate them by
λ(β), ν(β). That (λ(β), ν(β)) is dual feasible in Eq. (7.24) follows because (x(β), λ(β), ν(β)) satisfies
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Eq. (6.6) as shown above. Now, notice that by definition λj(β) = β
xj(β) implies

∀j ≤ n (λj(β)xj(β) = β) (7.25)

which means that, as β converges to 0, the conditions (7.25) above imply the KKT complementarity
conditions (6.8). Since λ(β) ≥ 0 by definition Eq. (7.23), we have that (x∗, λ∗, ν∗) = (x(0), λ(0), µ(0)) is
an optimal primal-dual pair solving Eq. (7.7) and Eq. (7.24).

7.5.2 Optimal partitions

LPs may have more than one optimal solution. In such cases, all optimal solutions are on a single (non
full-dimensional) face of the polyhedron. The simplex method would then find more than one optmial
bfs. The analysis of the IPM sketched above provides a unique characterization of the optimal solutions
even when there is no unique optimal solution. We show that the central path converges to a strictly
complementary optimal solution, i.e. an optimal solution for which

(x∗)
>
λ∗ = 0

x∗ + λ∗ > 0.

These solutions are used to construct the optimal partition,, i.e. a partition of the n solution components
in two index sets B,N such that:

B = {j ≤ n | x∗i > 0}
N = {j ≤ n | λ∗i > 0}.

The partition obtained in this way is unique, and does not depend on the strictly complementary optimal
solution used to define it. Optimal partitions provide a unique and well-defined characterization of
optimal faces.

In the rest of this section we write x = x(β) and λ = λ(β) to simplify notation. The proof of the
following theorem was taken from [74].

7.5.1 Theorem (Goldman-Tucker, 1956)
With the same notation of this section, the limit point (x∗, λ∗) of the primal-dual central path (x(β), λ(β))
is a strictly complementary primal-dual optimal solution for Eq. (7.7).

Proof. By Eq. (7.25) we have that x>λ = nβ, thus (x∗)
>
λ∗ converges to zero as β → 0. Now, both x∗

and x are primal feasible, so Ax∗ = Ax = b, hence A(x∗ − x) = 0. Furthermore, since both λ∗ and λ are
dual feasible, we have ν∗A+ λ∗ = νA+ λ = c, i.e. (ν − ν∗)A = λ∗ − λ. In other words, x∗ − x is in the
null space of A and λ∗ − λ is in the range of A>: thus, the two vectors are orthogonal. Hence we have:

0 = (x∗ − x)
>

(λ∗ − λ) = (x∗)
>
λ∗ + x>λ− (x∗)

>
λ− x>λ∗,

and thus
(x∗)

>
λ+ x>λ∗ = nβ.

Dividing throughout by β = xjλj we obtain:

n∑
j=1

(
x∗j
xj

+
λ∗j
λj

)
= n.

Since

lim
β→0

x∗j
xj

=

{
1 if x∗i > 0
0 otherwise
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and similarly for the λ component, for each j ≤ n exactly one of the two components of the pair (x∗j , λ
∗
j )

is zero and the other is positive. 2

7.5.3 A simple IPM for LP

The prototypical IPM for LP is as follows:

1. Consider an initial point x(β0) feasible in Eq. 7.21, a parameter α < 1 and a tolerance ε > 0. Let
k = 0.

2. Solve Eq. (7.21) with initial point x(βk), to get a solution x∗.

3. If nβk < ε, stop with solution x∗.

4. Update βk+1 = αβk, x(βk+1) = x∗ and k ← k + 1.

5. Go to Step 2.

By Eq. (7.22), L1(x, λ, ν) = c>x − nβk, which means that the duality gap is nβk. This implies that
x(βk) is never more than nβk-suboptimal. This is the basis of the termination condition in Step 3. Each
subproblem in Step 2 can be solved by using Newton’s method.

7.5.4 The Newton step

In general, the Newton descent direction d for an unconstrained problem min f(x) at a point x̄ is given
by:

d = −(∇2f(x̄))−1∇f(x̄). (7.26)

If ∇2f(x̄) is PSD, we obtain

(∇f(x̄))
>
d = −(∇f(x̄))

>
(∇2f(x̄))−1∇f(x̄) < 0,

so d is a descent direction. In this case, we need to find a feasible descent direction such that Ad = 0.
Thus, we need to solve the system(

∇2f(x̄) A>

A 0

)(
d
ν>

)
=

(
−∇f(x̄)

0

)
,

for (d, ν), where ν are the dual variables associated with the equality constraints Ax = b. Step 4 in the
IPM of Section 7.5.3 becomes x(βk+1) = x(βk)+γd, where γ is the result of a line search (see Rem. 9.1.1),
for example

γ = argmins≥0f(x̄+ sd). (7.27)

Notice that feasibility with respect to Ax = b is automatically enforced because x̄ is feasible and d is a
feasible direction.



Chapter 8

Fundamentals of Mixed-Integer
Linear Programming

This chapter is devoted to some basic notions arising in MILP. We discuss total unimodularity, valid cuts,
the Branch-and-Bound (BB) algorithm, and Lagrangean relaxation.

8.1 Total unimodularity

The continuous relaxation of a MILP is a MILP formulation where the integrality constraints have been
dropped: in other words, an LP. In Sect. 7.1.1 and 7.1.5 we characterized LP solutions as bfs, which
encode the combinatorics and geometry of an intersection of at least m hyperplanes in Rm.

The question we try and answer in this section is: when does a solution of the continuous relaxation of
a MILP automatically satisfy the integrality constraints too? In other words, when can we solve a MILP
by simply solving an LP? The question is important because, as we noted above (see Sect. 5.2) MILP is
NP-hard, whereas we can solve LPs in polytime (see Sect. 7.2): and this is a worst-case analysis which
applies to practical computation (see Sect. 2.2.5).

As mentioned in Sect. 7.1.5, if we consider the continuous relaxation of a MILP as an LP in standard
form (7.7), a bfs x∗ corresponds to a basis B of the constraint matrix A appearing in the linear system
Ax = b. The values of the basic variables in x∗ are computed as x∗B = B−1b, whereas the nonbasic
variables have value zero. So the question becomes: what are the conditions on a square nonsingular
matrix B and on a vector b such that B−1b is an integer vector?

We first note that any MILP with rational input (A, b, c) can be reformulated to a MILP with integer
input by simply rescaling by the minimum common multiple (mcm) of all the denominators (a better
rescaling can be carried out by considering each constraint in turn). So we shall assume in the rest of
this chapter that A, b, c all have integer components.

8.1.1 Definition
An m × n integral matrix A such that each m ×m invertible square submatrix has determinant ±1 is
called unimodular.

8.1.2 Proposition
If A is unimodular, the vertices of the polyhedron Ps = {x ≥ 0 | Ax = b} all have integer components.

8.1.3 Exercise
Prove Prop. 8.1.2.

121
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Proving unimodularity is hard (computationally) for any instance, and even harder (theoretically) for
problems. We now consider a stronger condition.

8.1.4 Definition
An m × n integral matrix A where all square submatrices of any size have determinant in {0, 1,−1} is
called totally unimodular (TUM).

8.1.5 Example
The identity matrix is TUM: square submatrices on the diagonal have determinant 1, while off-diagonal
square submatrices have determinant zero.

The following propositions give some characterizations of TUM matrices which can be used to prove
the TUM property for some interesting problems.

8.1.6 Proposition
A matrix A is TUM iff A> is TUM.

8.1.7 Exercise
Prove Prop. 8.1.6.

8.1.8 Proposition
If a matrix is TUM, then its entries can only be {0, 1,−1}.

8.1.9 Exercise
Prove Prop. 8.1.8.

8.1.10 Proposition
The m × n matrix A is TUM iff the matrix (A, I), obtained by appending an m ×m identity to A, is
TUM.

Proof. Let B be a square submatrix of (A, I): if it is wholly contained in A or in I, then its determinant
is {0, 1,−1} because A is TUM. Otherwise, by permuting its rows, we can write B as follows:

B =

(
A′ 0
A′′ I`

)
,

where A′ is a k × k submatrix of A and A′′ is an ` × k submatrix of A. By elementary linear algebra,
|B| = |A′| ∈ {0, 1,−1} since A′ is a square submatrix of a TUM matrix. 2

We now give a sufficient condition for checking the TUM property.

8.1.11 Proposition
An m × n matrix A is TUM if: (a) for all i ≤ m, j ≤ n we have aij ∈ {0, 1,−1}; (b) each column of A
contains at most two nonzero coefficients; (c) there is a partition R1, R2 of the set of rows such that for
all columns j having exactly two nonzero coefficients, we have

∑
i∈R1

aij −
∑
i∈R2

aij = 0.

Proof. Suppose that conditions (a), (b), (c) hold but A is not TUM. Let B be the smallest square
submatrix of A such that det(B) 6∈ {0, 1,−1}. B cannot contain a column with just one nonzero entry,
otherwise B would not be minimal (just eliminate the row and column of B containing that single nonzero
entry). Hence B must contain two nonzero entries in every column. By condition (c), adding the rows
in R1 to those in R2 gives the zero vector, and hence det(B) = 0, contradicting the hypothesis. 2

8.1.12 Theorem
If A is TUM, the vertices of the polyhedron Pc = {x ≥ 0 | Ax ≥ b} all have integer components.
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Proof. Let x∗ be a vertex of Pc, and s∗ = Ax∗ − b. Then (x∗, s∗) is a vertex of the standardized
polyhedron P̄c = {(x, s) ≥ 0 | Ax− s = b}: suppose it were not, then by Lemma 6.1.5 there would be two
distinct points (x1, s1), (x2, s2) in P̄c such that (x∗, s∗) is a strict convex combination of (x1, s1), (x2, s2),
i.e. there would be a λ ∈ (0, 1) such that (x∗, s∗) = λ(x1, s1) + (1 − λ)(x2, s2). Since s1 = Ax1 − b ≥ 0
and s2 = Ax2 − b ≥ 0, both x1 and x2 are in Pc, and thus x∗ = λx1 + (1 − λ)x2 is not a vertex of Pc
since 0 < λ < 1, which is a contradiction. Now, since A is TUM, (A,−I) is unimodular by Prop. 8.1.10,
and (x∗, s∗) is an integer vector. 2

8.1.13 Example
The transportation formulation Eq. (2.8) and network flow formulation Eq. (2.9) both have TUM con-
straint matrices. Solving them using the simplex method yields an integer solution vector.

8.1.14 Exercise
Prove that network flow constraints (see Eq. (2.9)) yield a TUM constraint matrix.

8.1.15 Exercise
Prove that transportation constraints (see Eq. (2.8)) yield a TUM constraint matrix.

8.2 Cutting planes

The convex hull of the feasible region of any MILP is a polyhedral set. Moreover, optimizing over
the convex hull yields the same optima as optimizing over the mixed-integer feasible region of the MILP.
Therefore, potentially, any MILP could be reformulated to an LP. Let me refrain the reader from jumping
to the conclusion that the complexity of MILP (NP-hard) is the same as that of LP (P): there are
obstacles of description and size. First, in order to even cast this equivalent LP formulation, we need to
explicitly know all integer vectors in the feasible region of the MILP, including the optimal one: so already
writing this LP formulation is as hard as solving the MILP. Moreover, there might be exponentially (or
even infinitely) many feasible vectors to a given MILP instance, yielding an exponentially large description
of the convex hull. On the other hand, finding some inequalities belonging (or just close) to the convex
hull improves the performance of MILP solution methods, which is the subject of this section.

Consider a MILP min{c>x | x ∈ Zn ∩ P} where P = {x ≥ 0 | Ax ≥ b}. Let P̄ be the convex hull of
its integer feasible solutions (thus min{c>x | x ∈ P̄} has the same solution as the original MILP). We
are interested in finding linear constraints defining the facets of P̄ . The polyhedral analysis approach is
usually expressed as follows: given an integral vector set X ⊆ Zn and a valid inequality h>x ≤ d for X,
show that the inequality is a facet of conv(X). We present two approaches below.

1. Find n points x1, . . . , xn ∈ X such that h>xi = d∀i ≤ n and show that these points are affinely
independent (i.e. that the n− 1 directions x2 − x1, . . . , xn − x1 are linearly independent).

2. Select t ≥ n points x1, . . . , xt satisfying the inequality. Suppose that all these points are on a generic
hyperplane µ>x = µ0. Solve the equation system

∀k ≤ t
n∑
j=1

xkjµj = µ0

in the t+ 1 unknowns (µj , µ0). If the solution is (λhj , λd) with λ 6= 0 then the inequality h>x ≤ d
is facet defining.

One of the limits of polyhedral analysis is that the theoretical devices used to find facets for a given
MILP are often unique to the problem it models.
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8.2.1 Separation Theory

Finding all of the facets of P̄ is overkill, however. Since the optimization direction points us towards a
specific region of the feasible polyhedron, what we really need is an oracle that, given a point x′ ∈ P ,
tells us that x′ ∈ P̄ or else produces a separating hyperplane h>x = d such that for all h>x̄ ≤ d, x̄ ∈ P̄
and h>x′ > d, adjoining the constraint h>x ≥ d to the MILP formulation tightens the feasible region
P of the continuous relaxation. The problem of finding a valid separating hyperplane is the separation
problem. It is desirable that the separation problem for a given NP-hard problem should have polynomial
complexity.

8.2.1 Example (Valid cuts for the TSP)
A classic example of a polynomial separation problem for a NP-hard problem is the Travelling Sales-
man Problem (TSP): given a nonnegatively edge-weighted clique Kn, with weight cij ≥ 0 on each edge
{i, j} ∈ E(Kn), find the shortest Hamiltonian cycle in Kn.

Now consider the following MILP:

min
∑

i6=j∈V
cijxij

s.t.
∑

i6=j∈V
xij = 2 ∀ i ∈ V

xij ∈ {0, 1} ∀ i 6= j ∈ V.

 (8.1)

Some of its feasible solutions are given by disjoint cycles. However, we can exclude them from the feasible
region by requesting that each cut should have cardinality at least 2, as follows:

∀ S ( V (
∑

i∈S,j 6∈S

xij ≥ 2).

There is an exponential number of such constraints (one for each subset S of V ), however we do not need
them all: we can add them iteratively by identifying cuts δ(S) where

∑
{i,j}∈δ(S) xij is minimum. We

can see this as the problem of finding a cut of minimum capacity in a flow network (so the current values
xij are used as arc capacities — each edge is replaced by antiparallel arcs). The formulation we look for
is the LP dual of Eq. (2.9); we can solve it in weakly polytime with the ellipsoid method or in strongly
polytime with a combinatorial algorithm (O(n3) if we use the Goldberg-Tarjan push-relabel algorithm
[61]). So if each nontrivial cut has capacity at least 2, the solution is an optimal Hamiltonian cycle.

Otherwise, supposing that δ(S) has capacity K < 2, the following is a valid cut:∑
{i,j}∈δ(S)

xij ≥ 2,

which can be added to the formulation. The problem is then re-solved iteratively to get a new current
solution until the optimality conditions are satisfied. This approach is also known as row generation.

In the following sections 8.2.2-8.2.6 we shall give examples of four different cut families which can be
used to separate the incumbent (fractional) solution from the convex hull of the integer feasible set.

8.2.2 Chvátal Cut Hierarchy

A cut hierarchy is a finite sequence of cut families that generate tighter and tighter relaxed feasible sets
P = P0 ⊇ P1 ⊇ . . . ⊇ Pk = P̄ , where P̄ = conv(X).

Given the relaxed feasible region P = {x ≥ 0 | Ax = b} in standard form, define the Chvátal first-
level closure of P as P1 = {x ≥ 0 | Ax = b,∀u ∈ Rn+buAc ≤ bubc}. Although formally the number of
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inequalities defining P1 is infinite, it can be shown that these can be reduced to a finite number [153].
We can proceed in this fashion by transforming the Chvátal first-level inequalities to equations via the
introduction of slack variables. Reiterating the process on P1 to obtain the Chvátal second-level closure
P2 of P , and so on. It can be shown that any fractional vertex of P can be “cut” by a Chvátal inequality.

8.2.3 Gomory Cuts

Gomory cuts are a special kind of Chvátal cuts. Their fundamental property is that they can be inserted
in the simplex tableau very easily. This makes them a favorite choice in cutting plane algorithms, which
generate cuts iteratively in function of the current incumbent.

Suppose x∗ is the optimal solution found by the simplex algorithm deployed on a continuous relaxation
of a given MILP. Assume the component x∗h is fractional. Since x∗h 6= 0, column h is a basic column; thus
there corresponds a row t in the simplex tableau:

xh +
∑
j∈ν

ātjxj = b̄t, (8.2)

where ν are the nonbasic variable indices, ātj is a component of B−1A (B is the nonsingular square
matrix of the current basic columns of A) and b̄t is a component of B−1b. Since bātjc ≤ ātj for each row
index t and column index j,

xh +
∑
j∈ν
bātjcxj ≤ b̄t.

Furthermore, since the LHS must be integer, we can restrict the RHS to be integer too:

xh +
∑
j∈ν
bātjcxj ≤ bb̄tc. (8.3)

We now subtract Eq. (8.3) from Eq. (8.2) to obtain the Gomory cut:∑
j∈ν

(bātjc − ātj)xj ≤ (bb̄tc − bt). (8.4)

We can subsequently add a slack variable to the Gomory cut, transform it to an equation, and easily add
it back to the current dual simplex tableau as the last row with the slack variable in the current basis.

8.2.3.1 Cutting plane algorithm

In this section we illustrate the application of Gomory cut in an iterative fashion in a cutting plane
algorithm. This by solving a continuous relaxation at each step. If the continuous relaxation solution
fails to be integral, a separating cutting plane (a valid Gomory cut) is generated and added to the
formulation, and the process is repeated. The algorithm terminates when the continuous relaxation
solution is integral.

Let us solve the following MILP in standard form:

min x1 − 2x2

t.c. −4x1 + 6x2 + x3 = 9
x1 + x2 + x4 = 4

x ≥ 0 , x1, x2 ∈ Z


In this example, x3, x4 can be seen as slack variables added to an original formulation in canonical form
with inequality constraints expressed in x1, x2 only.
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We identify xB = (x3, x4) as an initial feasible basis; we apply the simplex algorithm obtaining the

following tableau sequence, where the pivot element is framed .

x1 x2 x3 x4

0 1 -2 0 0

9 -4 6 1 0
4 1 1 0 1

x1 x2 x3 x4

3 − 1
3 0 1

3 0
3
2 − 2

3 1 1
6 0

5
2

5
3 0 − 1

6 1

x1 x2 x3 x4
7
2 0 0 3

10
1
5

5
2 0 1 1

10
2
5

3
2 1 0 − 1

10
3
5

The solution of the continuous relaxation is x̄ = ( 3
2 ,

5
2 ), where x3 = x4 = 0.

We derive a Gomory cut from the first row of the optimal tableau: x2 + 1
10x3 + 2

5x4 = 5
2 . The cut is

formulated as follows:
xi +

∑
j∈N
bāijcxj ≤ bb̄ic, (8.5)

where N is the set of nonbasic variable indices and i is the index of the chosen row. In this case we obtain
the constraint x2 ≤ 2.

We introduce this Gomory cut in the current tableau. Note that if we insert a valid cut in a simplex
tableau, the current basis becomes primal infeasible, thus a dual simplex iteration is needed. First of all,
we express x2 ≤ 2 in terms of the current nonbasic variables x3, x4. We subtract the i-th optimal tableau
row from Eq. (8.5), obtaining:

xi +
∑
j∈N

āijxj ≤ b̄i

⇒
∑
j∈N

(bāijc − āij)xj ≤ (bb̄ic − b̄i)

⇒ − 1

10
x3 −

2

5
x4 ≤ −1

2
.

Recall that the simplex algorithm requires the constraints in equation (rather than inequality) form, so
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we add a slack variable x5 ≥ 0 to the formulation:

− 1

10
x3 −

2

5
x4 + x5 = −1

2
.

We ajoin this constraint as the bottom row of the optimal tableau. We now have a current tableau with
an additional row and column, corresponding to the new cut and the new slack variable (which is in the
basis):

x1 x2 x3 x4 x5
7
2 0 0 3

10
1
5 0

5
2 0 1 1

10
2
5 0

3
2 1 0 − 1

10
3
5 0

− 1
2 0 0 − 1

10 − 2
5 1

The new row corresponds to the Gomory cut x2 ≤ 2 (labelled “constraint (3)” in the figure below).

We carry out an iteration of the dual simplex algorithm using this modified tableau. The reduced costs
are all non-negative, but b̄3 = − 1

2 < 0 implies that x5 = b̄3 has negative value, so it is not primal feasible
(as x5 ≥ 0 is now a valid constraint). We pick x5 to exit the basis. The variable j entering the basis is
given by:

j = argmin{ c̄j
|āij |

| j ≤ n ∧ āij < 0}.

In this case, j = argmin{3, 1
2}, corresponding to j = 4. Thus x4 enters the basis replacing x5 (the pivot

element is indicated in the above tableau). The new tableau is:

x1 x2 x3 x4 x5
13
4 0 0 1

4 0 1
2

2 0 1 0 0 1
3
4 1 0 − 1

4 0 3
2

5
4 0 0 1

4 1 − 5
2

The optimal solution is x̃ = ( 3
4 , 2). Since this solution is not integral, we continue. We pick the second
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tableau row:

x1 −
1

4
x3 +

3

2
x5 =

3

4
,

to generate a Gomory cut
x1 − x3 + x5 ≤ 0,

which, written in terms of the variables x1, x2 is

−3x1 + 5x2 ≤ 7.

This cut can be written as:

−3

4
x3 −

1

2
x5 ≤ −

3

4
.

The new tableau is:

x1 x2 x3 x4 x5 x6
13
4 0 0 1

4 0 1
2 0

2 0 1 0 0 1 0
3
4 1 0 − 1

4 0 3
2 0

5
4 0 0 1

4 1 − 5
2 0

− 3
4 0 0 − 3

4 0 − 1
2 1

The pivot is framed; the exiting row 4 was chosen because b̄4 < 0, the entering column 5 because
c̄3
|ā43| = 1

3 < 1 = c̄5
|ā45| ). Pivoting, we obtain:

x1 x2 x3 x4 x5 x6

3 0 0 0 0 1
3

1
3

2 0 1 0 0 1 0
1 1 0 0 0 5

3 − 1
3

1 0 0 0 1 − 8
3

1
3

1 0 0 1 0 2
3 − 4

3

This tableau has optimal solution x∗ = (1, 2), which is integral (and hence optimal). The figure below
shows the optimal solution and the last Gomory cut to be generated.
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8.2.4 Disjunctive cuts

A condition such as “either. . . or. . . ” can be modelled using disjunctive constraints (stating e.g. mem-
bership of a variable vector in a disjunction of two or more sets), wchich are themselves written using
binary variables.

8.2.2 Example
Consider two polyhedra P = {x ∈ Rm | Ax ≤ b} and Q = {x ∈ Rn | Cx ≤ d}. Then the constraint
x ∈ P ∪Q can be written as (x ∈ P ) ∨ (x ∈ Q) by means of an additional binary variable y ∈ {0, 1}:

yAx ≤ yb

(1− y)Cx ≤ (1− y)d.

We remark that the above constraints are bilinear, as they involve products of variables yxj for all j ≤ n.
This can be dealt with using the techniques in Rem. 2.2.8. On the other hand, if P,Q are polytopes
(i.e. they are bounded), it suffices to find a large constant M such that Ax ≤ b + M and Cx ≤ d + M
hold for all x ∈ P ∪Q, and then adjoin the linear constraints:

Ax ≤ b+My

Cx ≤ d+M(1− y)

We caution the reader against the indiscriminate use of “big M” constants (see Sect. 2.2.7.5.1). How
would one find a “good” big M? First of all, if one really needed to find a single constant M valid
for x ∈ P ∪ Q, one possible way to go about it would be to find the smallest possible hyper-rectangle
containnig P and Q, describe it by xL ≤ x ≤ xU , and then compute M as the maximum upper bound
w.r.t. each row in Ax − b: this involves using interval arithmetic on A[xL, xU ] − b [114]. Secondly, we
need not use the same constant M to bound both Ax ≤ b and Cx ≤ d: we might be able to find smaller
M1,M2 such that Ax ≤ b+M1 and Cx ≤ d+M2 are always valid for all x ∈ P ∪Q. This would allow
us to write

Ax ≤ b+M1y

Cx ≤ d+M2(1− y).
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8.2.3 Exercise
Propose an algorithm for finding the smallest hyper-rectangle [xL, xU ] containing a given polytope P =
{x ∈ Rn | Ax ≤ b}.

We now describe a method for computing a cut valid for the union of two polyhedra P ∪ Q, where
P = {x ≥ 0 | Ax ≤ b} and Q = {x ≥ 0 |;Cx ≤ d} (note that we are explicitly requiring x ≥ 0 for both
P,Q). We construct our cut from row i in the description of P and row ` in the description of Q. For
each j ≤ n choose some hj ≤ min(Aij , C`j) and some h0 ≥ max(bi, d`). Then the inequality

h>x ≤ h0 (8.6)

is valid for P ∪Q.

8.2.4 Exercise
Prove that Eq. (8.6) is valid for P ∪Q.

8.2.5 Lifting

It is possible to derive valid inequalities for a given MILP

min{cx | Ax ≤ b ∧ x ∈ {0, 1}n} (8.7)

by lifting lower-dimensional inequalities to a higher-dimensional space. If the inequality
∑n
j=2 πjxj ≤ π0

(with πj ≥ 0 for all j ∈ {2, . . . , n}) is valid for the restricted

min{
n∑
j=2

cjxj |
n∑
j=2

aijxj ≤ bi∀i ≤ m ∧ xj ∈ {0, 1} ∀ j ∈ {2, . . . , n}},

then by letting

π1 = max (π0 −
n∑
j=2

πjxj)

n∑
j=2

aijxj ≤ bi − ai1 ∀i ≤ m

xj ∈ {0, 1} ∀j ∈ {2, . . . , n}.


we can find the inequality

∑n
j=1 πjxj ≤ π0 which is valid for (8.7), as long as the above formulation is

not infeasible; if it is, then x1 = 0 is a valid inequality. Of course the lifting process can be carried out
with respect to any variable index (not just 1).

8.2.6 RLT cuts

Reformulation-Linearization Techniques (RLT) cuts, described in [137], are a form of nonlinear lifting.
From each constraint a>i x ≥ bi of a feasible set

F = {x ∈ {0, 1}n | Ax ≤ b}

we derive the i-th constraint factor
γ(i) = a>i x− bi

(for i ≤ m). We then form the bound products

p(I, J) =
∏
j∈I

xj
∏
`∈J

(1− x`)
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for all partitions I, J of the index set {1, . . . , d}. The set of all of the cuts

p(I, J) γ(i) ≥ 0 (8.8)

obtained by multiplying each constraint factor γ(i) (for i ≤ m) by all the bound products p(I, J) over all
I, J s.t. I ∪J = {1, . . . , d}, is called the RLT d-th level closure. We remark that d refers to the maximum
degree of the bound products.

Notice that Eq. (8.8) are nonlinear inequalities. As long as they only involve binary variables, we can
apply a linearization which generalizes the one in Rem. 2.2.8: after replacing each occurrence of x2

j by
xj (because xj ∈ {0, 1}) for each j, we linearize the inequalities Eq. (8.8) by lifting them in a higher-
dimensional space: replace all products

∏
j∈H xj by a new added variable wH =

∏
j∈H xj , to obtain

linearized cuts of the form
L i
IJ(x,w) ≥ 0, (8.9)

where L i
IJ is a linear function of x,w. We define the RLT d-th level closure as:

Pd = {x | ∀i ≤ m and I, J partitioning {1, . . . , d}, L i
IJ(x,w) ≥ 0}.

The RLT cut hierarchy is defined as the union of all the RLT d-th level closures Pd up to and including
level n. It was shown in [136] that

conv(F ) = projx(Pn) ⊆ projx(Pn−1) ⊆ . . . ⊆ projx(P0) = relax(F ), (8.10)

where conv(X) denotes the convex hull of a set X, projx(X) denotes the projection on the x variables
of a set description X involving the x variables and possibly other variables (e.g. the w linearization
variables), and relax(X) denotes the continuous relaxation of a mixed-integer set X. In other words, the
whole RLT hierarchy yields the convex hull of any linear set involving binary variables.

This cut hierarchy has two main shortcomings: (a) the high number of additional variables and (b) the
huge number of generated constraints. It is sometimes used heuristically to generate tighter continuous
relaxations various mixed-integer formulations.

8.3 Branch-and-Bound

BB is an iterative method that endows the search space with a tree structure. Each node of this tree
defines a subproblem. BB processes each subproblem in turn. Lower and upper bounds to the objec-
tive function value are computed at the current subproblem, and globally valid upper and lower bounds
(w.r.t. all remaining subproblems) are maintained during the search. Usually, and assuming a minimiza-
tion direction, upper bounds are derived from feasible solutions, computed using various heuristics. Lower
bounds are computed by solving a relaxation of the subproblem (unlike upper bounds, lower bounds do
not always correspond to a feasible solution). If the lower bound at the current subproblem is larger than
the globally valid upper bound, the current subproblem cannot yield a global optimum, so it is pruned
by bound (i.e., discarded because its lower bound is worse than a global upper bound). If the lower and
upper bounds are equal (or sufficiently close), then the current upper bound solution is assumed to be
globally optimal for the subproblem — and if it improves the globally valid optimum (called incumbent),
it is used to update it. Otherwise, a partition of the feasible region of the current subproblem is defined,
and the search is branched, yielding as many new subproblems as there are sets of the partition. The BB
algorithm terminates when there are no more subproblems to process.

Most BB implementations define the search tree implicitly by storing subproblems into a priority
queue, with highest priority given to subproblems with lowest lower bound. This is because, intuitively,
relaxations are expected to yield lowest lower bounds in part of the feasible region containing global
optima. The queue is initialized with the original formulation. In a typical iteration, a subproblem is
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extracted from the priority queue, processed as described above, and then discarded.

For MILP, lower bounds are usually computed by solving the continuous relaxations. If the lower
bound does not prune the current subproblem by bound, the most common branching strategy in MILP
selects an integer variable xj ∈ [xLj , x

U
j ] ∩ Z where the lower bounding solution x̄ obtained from the

continuous relaxation is such that x̄j 6∈ Z. The feasible set is partitioned in two: a part where xj ≤ bx̄jc,
and the other where xj ≥ dx̄je. This is equivalent to splitting the parent subproblem range [xLj , x

U
j ]

in two ranges [xLj , bx̄jc] and [dx̄je, xUj ]. If x̄ ∈ Zn, lower and upper bounds for the current subproblem
clearly have the same value, which is used to update the incumbent if needed. Then the problem is
discarded.

8.3.1 Example

Initially, we let x∗ = (0, 0) e f∗ = −∞. Let L be the list (priority queue) containing the unsolved
subproblems, initialized to the original formulation N1:

max 2x1 + 3x2

x1 + 2x2 ≤ 3
6x1 + 8x2 ≤ 15

x1, x2 ∈ Z+.

 (8.11)

We remark that in this situation we are maximizing rather than minimizing the objective, which implies
that the roles of lower and upper bounds are exchanged.

The solution of the continuous relaxation is P (corresponding to the intersection of line (1) x1+2x2 = 3
with (2) 6x1 + 8x2 = 15), as shown in the Fig. 8.1 We obtain an upper bound f = 21

4 corresponding to a

Figure 8.1: Graphical representation of the problem in Eq. (8.11).

fractionary solution x = P = ( 3
2 ,

3
4 ). We choose the fractionary component x1 as the branching variable,

and form two subproblems N2, N3. We adjoin the constraint x1 ≤ 1 (labelled (3)) to N2 and x1 ≥ 2
(labelled (4)) to N3. Finally, we insert N2 and N3 in L with priority f = 21

4 .

Next, we choose N2 and remove it from L. The solution of the continuous relaxation of N2 is at the
intersection Q of (1) and (3): we therefore obtain x = Q = (1, 1) and f = 5. Since the solution is integral,
we do not branch. Furthermore, since f > f∗ we update x∗ = x and f∗ = f .
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Finally, we choose N3 and remove it from L. The solution of the continuous relaxation of N3 is at
the intersection R of (2) and (4): we obtain x = R = (2, 3

8 ) and f = 41
8 . Since the upper bound is 41/8,

and b 41
8 c = 5, each integral solution found in the feasible region of N3 will never attain a better objective

function value than f∗; hence, again, we do not branch.

Since the L is now empty, the algorithm terminates with solution x∗ = (1, 1). The algorithmic process
can be summarized by the following tree:

8.3.2 Branch-and-Cut

Branch-and-Cut (B&C) algorithms are a mixture of BB and cutting plane algorithms (Sect. 8.2.3.1). In
practice, they follow a BB framework where valid cuts are generated at each subproblem [118].

8.3.3 Branch-and-Price

Branch-and-Price might be described as a mixture of BB and column generation algorithms (Sect. 7.1.8).
Extremely large LP formulations are solved using column generation at each BB subproblem [145].

8.4 Lagrangean relaxation

Although the most common way to obtain a lower bound for a MILP is to solve its continuous relaxation,
as mentioned in Sect. 8.3, there are other techniques. The technique we sketch in this section leverages
duality theory (see Sect. 6.3) in order to exploit the formulation structure, which may be a great help for
large-scale instances.

Consider the following MILP formulation:

minx,y c>1 x+ c>2 y
A1x ≥ b1
A2y ≥ b2

Bx+Dy ≥ d
x ∈ Zn1

+ , y ∈ Zn2
+

 (8.12)

where x, y are two sets of integer variables, c>1 , c
>
2 , b1, b2, d are vectors and A1, A2, B,D are matrices of

appropriate sizes. Observe that, were it not for the “complicating constraints” Bx + Dy ≥ d, we would
be able to decompose Eq. (8.12) into two smaller independet subproblems, and then solve each separately
(usually a much easier task). Such formulations are sometimes referred to as “nearly decomposable”.

A tight lower bound for nearly decomposable formulations can be obtained by solving a Lagrangean
relaxation. The complicating constraints are penalized as part of the objective function, with each
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constraint weighted by a Lagrange multiplier:

L(λ) = minx,y c>1 x+ c>2 y + λ(Bx+Dy − d)
A1x ≥ b1
A2y ≥ b2

x ∈ Zn1
+ , y ∈ Zn2

+

 (8.13)

For each vector λ ≥ 0, L(λ) is a lower bound to the solution of the original formulation. Since we
want to find the tightest possible lower bound, we maximize L(λ) w.r.t. λ:

max
λ≥0

L(λ). (8.14)

The lower bound obtained by solving (8.14) is guaranteed to be at least as tight as that obtained by solving
the continuous relaxation of the original problem: let us see why. Consider the following formulation:

minx c>x
Ax ≤ b
x ∈ X,

 (8.15)

where X is a discrete but finite set X = {x1, . . . , x`}, and its Lagrangean relaxation obtained as if each
constraint were complicating:

max
λ≥0

min
x∈X

c>x+ λ(Ax− b). (8.16)

Let p∗ be the solution of Eq. (8.16). By definition of X, Eq. (8.16) can be written as follows:

maxλ,u u
u ≤ c>xt + λ(Axt − b) ∀t ≤ `
λ ≥ 0.


The above formulation is linear. Hence, its dual:

minv
∑`
t=1 vt(c

>xt)∑`
t=1 vt(Aix

t − bi) ≤ 0 ∀i ≤ m∑`
t=1 vt = 1

vt ≥ 0 ∀t ≤ `


(where Ai is the i-the row of A), has the same optimal objective function value p∗. Notice now that∑`
t=1 vtx

t subject to
∑`
t=1 vt = 1 and vt ≥ 0 for all t ≤ ` is the convex hull of {xt | t ≤ `}, and so the

above dual formulation can be written as follows:

minx c>x
Ax ≤ b
x ∈ conv(X).


Thus, the bound given by the Lagrangean relaxation is at least as strong as that given by the continuous
relaxation restricted to the convex hull of the original discrete domain. Specifically, for problems with
the integrality property, the Lagrangean relaxation bound is no tighter than the continuous relaxationWhat is it?
bound. On the other hand, the above result leaves the possibility open that Lagrangian relaxations may
be tighter.

Solving (8.14) is not straightforward, as L(λ) is a piecewise linear (but non-differentiable) function.
The most popular method for solving such problems is the subgradient method. Its description is very
simple, although the implementation is not.

1. Start with an initial multiplier vector λ∗.



8.4. LAGRANGEAN RELAXATION 135

2. If a pre-set termination condition is verified, exit.

3. Evaluate L(λ∗) by solving Eq. (8.13) with fixed λ, yielding a solution x∗, y∗.

4. Choose a vector d in the subgradient of L w.r.t. λ and a step length t, and set λ′ = max{0, λ∗+ td}. What’s the subgradi-
ent?

5. Update λ∗ = λ′ and go back to step 2.

Choosing appropriate subgradient vectors and step lengths at each iteration to accelerate convergence is,
unfortunately, a non-trivial task that takes a lot of testing.
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Chapter 9

Fundamentals of Nonlinear
Programming

This chapter is devoted to NLP. As we have seen in Chapter 6, much of the existing theory in NLP
concerns local optimality. We start our treatment by summarizing a well-known local optimization
algorithm called sequential quadratic programming (SQP), which can be seen as a solution method for
cNLP as well as a heuristic algorithm for nonconvex NLP. We then overview the field of GO, focusing on
general NLP.

9.1 Sequential quadratic programming

There are many different algorithmic approaches to local optimization of NLPs in the form (6.9), most of
which are based on the theoretical results of Section 6.2. The vast majority of local optimization methods
will take in input a NLP formulation as well as an “starting point” assumed to be feasible: as an output,
it will return a local optimum close to the starting point. The assumption that a feasible starting point
is known a priori is often false in practice: which implies that some of the theoretical guarantees might
not hold. On the other hand, many local NLP algorithms deliver good computational performance and
good quality solutions even from infeasible starting points.

One of the best known local optimization algorithms for NLP is SQP: it aims at solving the KKT con-
ditions (6.6)-(6.8) iteratively by solving a sequence of quadratic approximations of the objective function
subject to linearized constraints.

We start with a given starting point x ∈ X and generate a sequence x(k) of points using the update
relation:

x(k+1) = x(k) + αd,

where α is the step length and d the search direction vector. In other words, at each iteration we move
from x(k) in the direction of d by an amount αd. Both α and d are updated at each iteration. The step
length α ∈ (0, 1] is updated at each iteration using a line search optimization method.

9.1.1 Remark (Line search)
A line search is a lifting of an optimization problem in a single scalar variable into a higher-dimensional

space. Given a multivariate function f(x) where t ∈ [xL, xU ] ⊆ Rn is a decision variable vector, it
sometimes happens that one would wish to optimize f(x) for x belonging to a line, half-line or segment.
Thus, if x = x0+αd, where x0, d ∈ Rn and α ∈ R+, x belongs to a half-line, and f(x) = f(x0+αd) = uf (α)
becomes the problem of optimizing the univariate function uf in the single variable α.

137
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If f is monotonic, line searches can be carried out to a given ε > 0 precision using a bisection search
(see Sect. 7.3.1.1.5). Otherwise, bisection searches might help finding local optima. If f is a polynomial,
global optima can be found by listing all the roots A = {α1, . . . , α`} of the polynomial equation df

dα = 0
and choosing the αi such that uf (αi) is minimum in U = {uf (αj) | j ≤ `}.

The search direction vector d is obtained at each step by solving the following QP, where m, p, f , g
and h are as in Eq. (6.9):

min
d

(∇f(x(k)))
>
d+ 1

2d
>H(x(k))d

s.t. (∇gi(x(k)))
>
d ≤ 0 ∀i ≤ m

(∇hi(x(k)))
>
d = 0 ∀i ≤ p.

 (9.1)

In Eq. (9.1), H(x(k)) is a PSD approximation to the Hessian of the objective function evaluated at x(k).
As remarked in Sect. 5.4.1, a quadratic function can be shown to be convex by verifying that its Hessian
is PSD, so Eq. (9.1) is the best convex quadratic approximation of Eq. (6.9). Thus, a KKT point for
(9.1) is a globally optimal solution of (9.1) by Theorem 6.2.9.

The KKT conditions for each subproblem (9.1) are solved directly (e.g. by Newton’s method) to obtain
the solution of (9.1). If ‖d‖ is smaller than a pre-defined ε > 0 tolerance, the current point x(k) solves
the KKT conditions for (6.9) and the process terminates. Notice that solving the KKT conditions for
Eq. (9.1) also provides current solution values for the Lagrange multipliers µ, λ, which upon termination
are also valid for the original formulation Eq. (6.9).

9.2 The structure of GO algorithms

Most of the algorithms for globally solving NLPs (and MINLPs) have two phases: a global one and a local
one [131]. During the global phase, calls are made to other possibly complex algorithms which belong
to the local phase. The function of the global phase is to survey the whole of the search space, while
local phase algorithms identify local optima. The global phase is also tasked with selecting the best local
optima to return to the user as “global”.

9.2.1 Deterministic vs. stochastic

GO algorithms are usually partitioned into two main categories: deterministic and stochastic. While this
partition mostly concerns the global phase, it may occasionally also refer to the local phase. An algorithm
is stochastic when it involves an element of random choice, whereas a deterministic algorithm does not.
We do not enter into philosophical discussions of what exactly is a “random choice”: for our purposes, a
pseudo-random number generator initialized with the current exact time as a seed is “random enough”
to warrant the qualification of “stochastic” to the calling algorithm.

Stochastic algorithms typically offer a theoretical guarantee of global optimality only in infinite time
with probability 1 (or none at all). Deterministic algorithm typically offer theoretical guarantees of either
local or global optimality in finite time under certain conditions on their input (such as, e.g., Slater’s
constraint qualification in Sect. 6.3.3). Moreover, “global optimality” for NLP incurs the issue of solution
representability (Sect. 4.2). The approach encountered most often in GO is sketched in Sect. 4.2.2, and
is “the easiest approach” in the sense that one uses floating point numbers instead of reals, and hopes
everything will turn out well in the end. In any case, all general-purpose deterministic GO algorithms
require an ε > 0 tolerance in input, which is used to approximate with floating point numbers some
computational tasks that should in theory be performed with real numbers (such as, e.g., whether two
real numbers are equal or not).
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9.2.2 Algorithmic reliability

As we shall see below, GO algorithms are usually quite complicated: either because the global phase is
complicated (this is the case for BB), or because the local phase is complicated, or both. In practice,
complicated algorithms require complicated implementations, and these in turn make it more difficult
for programmers to avoid or even remove bugs. Therefore, the overall (practical) reliability of many
implementations of GO algorithms might not be perfect.

While this is a point that could be made for any sufficiently complicated algorithm, there is however
an inherent unreliability in all local optimization algorithms for NLPs which affects the reliability of the
calling algorithm. In other words, GO algorithms are only as reliable as their most unreliable component.

Let us consider the SQP algorithm of Sect. 9.1 as an example. The theory of SQP guarantees conver-
gence subject to conditions: in general, these conditions are that the starting point should be feasible, and
that some constraint qualification conditions should hold. In practice, SQP implementations are often
called from global phases of GO algorithms with either of these conditions not holding. There are good
reasons for this: (a) verifying feasibility in NLP is just as hard, for computational complexity purposes,
as verifying optimality (see Sections 4.3.1, 4.3.2, 4.3.2.2, 5.1.2.3); (b) verifying constraint qualification
conditions might in general require precise real number computation, which may be impossible. This
implies that the local phase might fail: either in a controlled fashion (reporting some proof of failure),
or, more spectacularly, by not converging or simply crashing.

The following issues provide the most popular reasons why SQP implementations might fail on even
the most innocent-looking NLPs:

• the linearized constraints of (9.1) may be infeasible, even though the original constraints of (6.9)
are feasible;

• the Jacobian of the constraints may not have full rank (see Thm. 6.2.1).

Tracing a definite cause for such occurrences is generally very difficult. Subproblems may be defective
locally (because the approximation is poor) or because the original formulation is ill-posed. Some of these
issues may be overcome by simply changing the starting point.

9.2.3 Stochastic global phase

Stochastic global phases may be based on sampling and/or escaping.

9.2.3.1 Sampling approaches

In sampling approaches, a local phase is deployed from each of many different starting points, sampled
according to various rules (Fig. 9.1). Typical examples are provided by multistart algorithms, such as
Multi-Level Single Linkage (MLSL) [95]. The best local optimum is returned as putative global optimum
One of the most common artificial termination conditions is the Bayesian stopping rule, which is based
on the expected number of local minima in the sampling set. CPU time limit may also be employed.

Sampling stochastic algorithms (without artificial termination) are guaranteed to converge in infinite
time with probability 1, but in practice there is no guarantee that the returned point will actually be
the global optimum. These algorithms work reasonably well for small- and medium-sized instances. The
chance of finding global optima worsens considerably as the number of dimensions of the search space
increases.
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Figure 9.1: Sampling approach of the stochastic global phase. The arrows indicate a local optimization
descent path from a starting point to the target local minimum.

9.2.3.2 Escaping approaches

In the escaping approach (see e.g. Tabu Search [80], Simulated Annealing [93] and tunneling methods
[98]), various strategies are devised in order to “escape from local optima”, so that after the local phase
terminates, the global phase is able to reach another feasible point, from which a new local phase can be
deployed (Fig. 9.2). Termination conditions for these methods are usually based on the number of calls
to the local phase, or on a CPU time limit. As in the sampling approach, there are no definite guarantees
on global optimality apart from convergence in infinite time with probability 1.

9.2.1 Remark
In Tabu Search, successive candidate points are located by performing some “moves” in the search space
(e.g. x ← x + αd for some scalar α and vector d). The inverse of the move is then put into a tabu
list and forbidden from being applied for as long as it stays in the list. This makes it unlikely to fall
back on the same local minimum we are escaping from. In Simulated Annealing, the search procedure
is allowed to escape from local optima with a decreasing probability. Tunneling methods are inspired by
the quantum-mechanical idea of a particle in a potential well which escapes from the well with a certain
probability.

9.2.3.3 Mixing sampling and escaping

There are also some stochastic methods, such as e.g. Variable Neighbourhood Search (VNS), which use
both approaches at the same time. VNS is structured in a major and a minor iteration loop. Each major
iteration is as follows: from the current local optimum x′ loop over increasingly larger neighbourhoods
centered at x′; run a multistart in each neighbourhood (minor iteration) until an improved local optimum
x̄ is found (this concludes a major iteration); if x̄ improves the incumbent, update it with x̄, then update
x′ with x̄ and repeat. If no improving optimum is found during the minor iterations, terminate.

9.2.3.4 Clustering starting points

In both approaches, a nontrivial issue is that of reducing the number of local phase deployments converging
to the same local optimum, which is a waste of computational resources. The idea of clustering for the
stochastic global phase suggests that the sampling of starting points should be grouped into clusters of
nearby points: only one local phase from each cluster should be performed [131]. The MLSL algorithm
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Figure 9.2: Escaping approach of the stochastic global phase. The trail consists of local optimization
descents alternating with random escaping paths. Observe that certain escaping paths (e.g. arc 4) might
position the new starting point in the same basin of attraction as the previous local optimum.

proposes a clustering based on linkage: a point x is clustered with a point y if x is “not too far” from y
and the objective function value at y is better than that at x. The clusters are represented by a directed
tree, and the local phase is deployed with the root of this tree (Fig. 9.3).

Figure 9.3: Linkage clustering in the stochastic global phase. The points in the cluster are those incident
to the arcs; each arc (x, y) expresses the relation “x is clustered to y”. The arcs point in the direction of
objective function descent. The root of the tree isthe “best starting point” in the cluster.

9.2.4 Deterministic global phase

This section contains a very general treatment (mostly taken from [144, §5.5]) of a class of algorithms,
called Branch-and-Select (B&S), which is an abstract model for BB, B&C and sBB algorithms. Although
B&S is not the only deterministic global phase approach to GO, it is nonetheless the most widely used.

B&S algorithms can be used to solve Eq. (2.2) in full generality to global optimality. Without any
“acceleration devices” (such as e.g. pre-processing) they often show their exponential worst-case com-
plexity even on very small-sized instances, and tend to be very inefficient in practice. Furthermore, their
performance may depend strongly on the formulation: a different algebraic form of the same equations
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and inequalities might lead to a different algorithmic performance.

Let Ω ⊆ Rn. A finite family of sets S is a net for Ω if it is pairwise disjoint and it covers Ω, that is,
∀s, t ∈ S (s ∩ t = ∅) and Ω ⊆

⋃
s∈S s. A net S ′ is a refinement of the net S if S ′ has been obtained from

S by finitely partitioning some set s in S and then replacing s by its partition; that is, given s ∈ S with
s =

⋃
i∈I si where I is an index subset of {1, . . . , |S ′|} and each si ∈ S ′, we have

S ′ = (S\s) ∪ {si | i ∈ I}.

Let 〈Sn〉 be an infinite sequence of nets for Ω such that, for all i ∈ N, Si is a refinement of Si−1; let
〈Mn〉 be an infinite sequence of subsets of Ω such that Mi ∈ Si. Then 〈Mn〉 is a filter for 〈Sn〉 if ∀i ∈ N
we have (Mi ⊆Mi−1). We call M∞ =

⋂
i∈NMi the limit of the filter.

We will now present a general algorithmic framework (Fig. 9.4) to solve the generic problem min{f(x) | x ∈
Ω}.

Given any net S for Ω and any objective function value γ ∈ R, we consider a selection rule which
determines:

(a) a distinguished point x∗M for every M ∈ S;

(b) a subfamily of qualified sets R ⊂ S such that, for all x ∈
⋃
s∈S\R s, we have f(x) ≥ γ;

(c) a distinguished set BR of R.

For each set of R, B&S iteratively calculates a distinguished point (for example, by deploying a local
phase within the specified region); BR is then picked for further net refinement.

Branch-and-Select:

1. (Initialization) Start with a net S1 for Ω, set x0 = ∅ and let γ0 be any strict upper bound for
f(Ω). Set P1 = S1, k = 1, σ0 = ∅.

2. (Evaluation) Let σk = {x∗M |M ∈ Pk} be the set of all distinguished points.

3. (Incumbent) Let xk be the point in {xk−1} ∪ σk such that γk = f(xk) is lowest; set x∗ = xk.

4. (Screening) Determine the family Rk of qualified sets of Sk (in other words, from now on ignore
those sets that can be shown not to contain a solution with objective value lower than γk).

5. (Termination) If Rk = ∅, terminate. The problem is infeasible if γk ≥ γ0; otherwise x∗ is the
global optimum.

6. (Selection) Select the distinguished set Mk = BRk ∈ Rk and partition it according to a pre-
specified branching rule. Let Pk+1 be a partition of BRk . In Rk, replace Mk by Pk+1, thus
obtaining a new refinement net Sk+1. Set k ← k + 1 and go back to Step 2.

Figure 9.4: The B&S algorithm.

A B&S algorithm is convergent if γ∗, defined as limk→∞ γk, is such that γ∗ = inf f(Ω). A selection
rule is exact if:

(i) inf(Ω∩M) ≥ γ∗ for all M such that M ∈ Rk for all k (i.e. each region that remains qualified forever
in the solution process is such that inf(Ω ∩M) ≥ γ∗);

(ii) the limit M∞ of any filter 〈Mk〉 is such that inf f(Ω ∩M∞) ≥ γ∗.
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9.2.2 Theorem
A B&S algorithm using an exact selection rule converges.

Proof. Suppose, to get a contradiction, that there is x ∈ Ω with f(x) < γ∗. Let x ∈M with M ∈ Rn for
some n ∈ N. Because of condition (i) above, M cannot remain qualified forever; furthermore, unqualified
regions may not, by hypothesis, include points with better objective function values than the current
incumbent γk. Hence M must necessarily be split at some iteration n′ > n. So x belongs to every Mn in
some filter {Mn}, thus x ∈ Ω ∩M∞. By condition (2) above, f(x) ≥ inf f(Ω ∩M∞) ≥ γ∗. The result
follows. 2

We remark that this algorithmic framework does not provide a guarantee of convergence in a finite
number of steps. Consequently, most B&S implementations make use of the concept of ε-optimality,
(Sect. 4.2.2). By employing this notion and finding lower and upper bound sequences converging to the
incumbent at each step of the algorithm, finite termination can be ensured. For finite termination with
ε = 0, some additional regularity assumptions are needed (see e.g. [135, 7]). While ε-optimality (with
ε > 0) is sufficient for most practical purposes, it is worth pointing out that a ε-optimum x′ is such that
f(x′) is at most ε away from the true globally optimal objective function value f∗: this says nothing at
all about the distance between x′ and a true global optimum x∗; in fact, ‖x′ − x∗‖2 might be arbitrarily
large.

9.2.4.1 Fathoming

Let Sk be the net at iteration k. For each region M ∈ Sk, find a lower bounding solution x∗M for f(x)
defined on Ω ∩M and the corresponding lower bounding objective function value `(M). A set M ∈ Sk
is qualified if `(M) ≤ γk. The distinguished region is usually selected as the one with the lowest `(M).

The algorithm is accelerated if one also computes an upper bound u(M) for inf f(x) on Ω∩M and uses
it to bound the problem from above by rejecting any M for which `(M) exceeds the best upper bound
u(M) encountered so far. In this case, we say that the rejected regions have been fathomed (Fig. 9.5).
This acceleration device has become part of all BB implementations. Usually, the upper bound u(M) is
computed by solving the problem to local optimality in the current region: this also represents a practical
alternative to the implementation of the evaluation step (Step (2) of the B&S algorithm), since we can
take the distinguished points ω(M) to be the local solutions u(M) of the problem in the current regions.
With a numerically precise local phase, the accuracy of ε-global optima is likely to be better than if we
simply use `(M) to define the distinguished points.

Figure 9.5: Fathoming via upper bound computation.

The convergence of B&S with fathoming is ensured if every filter {Mk|k ∈ K} contains an infinite
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nested sequence {Mk|k ∈ K1 ⊆ K} such that:

lim
k→∞
k∈K1

`(Mk) = γ∗. (9.2)

To establish this, we will show that under such conditions the selection procedure is exact, and then invoke
Thm. 9.2.2. Let {Mk|k ∈ K} be any filter and M∞ its limit. Because of equation (9.2), inf f(Ω∩Mk) ≥
`(Mk)→ γ∗, hence inf f(Ω ∩M∞) ≥ γ∗. Furthermore, if M ∈ Rk for all k then inf f(Ω ∩M) ≥ `(M) ≥
`(Mk) → γ∗ as k → ∞, i.e. inf f(Ω ∩M) ≥ γ∗. Thus the selection procedure is exact and, by theorem
9.2.2, the B&S algorithm with fathoming converges.

9.2.5 Example of solution by B&S

The formulation

min{f(x) =
1

4
x+ sin(x) | x ≥ −3, x ≤ 6}

describes a simple NLP with two minima, only one of which is global (Fig. 9.6). We solve it (graphically)
with a sBB approach: at each iteration we find lower and upper bounds to the optimum within a subregion
of the search space; if these bounds are not sufficiently close, say to within a ε > 0 tolerance, we split
the subregion in two, repeating the process on each subregion until all the regions have been examined).
In this example we set ε to 0.15, but note that this is not realistic: in practice ε is set to values between
1 × 10−6 and 1 × 10−3. At the first iteration we consider the region consisting of the whole x variable

Figure 9.6: The problem min{ 1
4x+ sin(x) | x ≥ −3, x ≤ 6}.

range −3 ≤ x ≤ 6. We calculate a lower bound by underestimating the objective function with a convex
function: since for all x we have −1 ≤ sin(x) ≤ 1, the function 1

4x− 1 is a convex underestimator of the
objective function. Limited to this example only, We can draw the tangents to f(x) at the range endpoints
x = −3 and x = 6 to make the underestimator tighter, as in Fig. 9.7. The whole underestimator is the
pointwise maximum of the three linear functions emphasized in Fig. 9.7. The tangent to the objective
function in the point x = −3 is the line y = −0.74x−3.11, whereas in the point x = 6 it is y = 1.21x−6.04.
Thus the convex underestimator is f̄(x) = max{−0.74x−3.11, 1

4x−1, 1.21x−6.04}. Finding the minimum
of f̄(x) in the region −3 ≤ x ≤ 6 yields a solution x̄ = −2.13 with objective function value l = −1.53
which is a valid lower bound for the original problem (indeed, the value of the original objective function
at x̄ is −1.42). Now we find an upper bound to the original objective function by locally solving the
original problem. Suppose we pick the range endpoint x = 6 as a starting point and we employ Newton’s
method in one dimension: we find a solution x̃ = 4.46 with objective function value u = 0.147. Since
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Figure 9.7: Convex underestimation of the objective function in Sect. 9.2.5 and optimal solution of the
convex underestimating problem.

|u− l| = |0.147− (−1.53)| = 1.67 > ε shows that u and l are not sufficiently close to be reasonably sure
that x̃ is the global optimum of the region under examination, we split this region in two. We choose the
current x̃ = 4.46 as the branching point, we add two regions −3 ≤ x ≤ 4.46, 4.46 ≤ x ≤ 6 to a list of
“unexamined regions” and we discard the original region −3 ≤ x ≤ 6. At the second iteration we pick
the region −3 ≤ x ≤ 4.46 for examination and compute lower and upper bounds as in Fig. 9.8. We find

Figure 9.8: Second iteration of the sBB algorithm.

the same underestimating solution x̄ as before (with l = −1.53) and by deploying Newton’s method from
the endpoint x = −3 we locate the local optimum x̃ = −1.823 with u = −1.42. Since |u− l| = 0.11 < ε,
we accept x̃ as the global optimum for the region under examination, and we update the “best solution
found” x∗ = −1.823 with associated function value U = −1.42. Since we have located the global optimum
for this region, no branching occurs. This leaves us with just one region to examine, namely 4.46 ≤ x ≤ 6.
In the third iteration, we select this region and we compute lower and upper bounds (Fig. 9.9) to find
x̄ = x̃ = 4.46 with l = 1.11 and u = 1.147. Since |u− l| = 0.04 < ε, we have located the global optimum
for this region, so there is no need for branching. Since U = −1.42 < 1.147 = u, we do not update
the “best solution found”, so on discarding this region from the list, the list is empty. The algorithm
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Figure 9.9: Third iteration of the sBB algorithm.

terminates with global optimum x∗ = −1.823.

This example shows most of the important features of a typical sBB algorithm run, save three:

(a) the convex underestimation can (and usually is) modified in each region, so that it is tighter;

(b) in formulations with many variables, the choice of the branching variable is a crucial task. This will
be discussed in detail in Sect. 9.4;

(c) in practice, pruning of region occurs when the lower bound in a region is higher than the current
best solution.

In this example there was no pruning, as the region 4.46 ≤ x ≤ 6 did not need to be branched upon. Had
there been need for branching in that region, at the subsequent iterations two new regions would have
been created with an associated lower bound l = 1.11. Since the current best solution has an objective
function value of −1.42, which is strictly smaller than 1.11, both regions would have been pruned before
being processed.

9.3 Variable Neighbourhood Search

The VNS approach was briefly sketched in Sect. 9.2.3.3. Here we describe a version of VNS which
addresses nonconvex NLP formulations. An extension to MINLP was proposed in [89].

As mentioned in Sect. 9.2.3.3, VNS rests on sampling starting points, a local phase, and a neighbour-
hood structure designed both to delimit sampling, and to make it easier to escape from current local
minima towards improved ones. The pseudocode for the VNS algorithm is given in Alg. 1

We adapt Alg. 1 to Eq. (6.9) in the following fashion.

• We employ a local NLP solver, such as SQP (Sect. 9.1), as the local phase delivering the current
local minma x∗, x′.

• We consider a neighbourhood structure formed by a set of embedded hyper-rectangles, each side of
which has length proportional to the corresponding variable range length and scaled by rk = k

kmax
all “centered” at the incumbent x∗.
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Algorithm 1 The VNS algorithm.

0: Input: maximum number of neighbourhoods kmax, number of local searches in each neighbourhood L
0: Output: a putative global optimum x∗.

loop
Set k ← 1, pick a random point x̃, perform a local search to find a local minimum x∗.
while k ≤ kmax do

Consider a neighbourhood Nk(x∗) of x∗ s.t. ∀ k > 1 (Nk(x∗) ⊃ Nk−1(x∗)).
for i = 1 to L do

Sample a random point x̃ from Nk(x∗).
Perform a local search from x̃ to find a local minimum x′.
If x′ is better than x∗, set x∗ ← x′, k ← 0 and exit the FOR loop.

end for
Set k ← k + 1.
Verify termination condition; if true, exit.

end while
end loop

• Termination conditions based on maximum allowable CPU time.

More formally, let Hk(x∗) be the hyper-rectangle yL ≤ x ≤ yU where, for all i ≤ n,

yLi = x∗i −
k

kmax
(x∗i − xLi )

yUi = x∗i +
k

kmax
(xUi − x∗i ).

This construction forms a set of hyper-rectangles “centered” at x∗ and proportional to xL ≤ x ≤ xU .
Two strategies are possible to define each neighbourhood Nk(x∗):

• Nk(x∗) = Hk(x∗);

• Nk(x∗) = Hk(x∗) rHk−1(x∗),

for all k ≤ kmax.

This extremely simple algorithm has a very small number of configurable parameters: the maximum
neighbourhood size kmax, the number of sampling points and local searches started in each neighbourhood
(L in Alg. 1), a ε tolerance to allow accepting a new optimum, and the maximum CPU time allowed for
the search. Notwithstanding its simplicity, this was found to be a very successful algorithm for nonconvex
NLP [86].

9.4 Spatial Branch-and-Bound

In this section we shall give a detailed description of the sBB algorithm, which belongs to the B&S class
(Sect. 9.2.4). This provides an example of a deterministic global phase. Although it is designed to address
nonconvex NLP as in Eq. (6.9), an extension to address Eq. (2.2) in full generality can be provided quite
simply by adding the possibility of branching on integer variables, as is done by the BB algorithm of
Sect. 8.3. The convergence proof theorem 9.2.2 also covers the sBB algorithm described in this section.

The history of sBB algorithms for nonconvex NLP starts in the 1990s [128, 8, 3, 4, 2, 51, 78]. Here, we
follow a particular type of sBB algorithm called spatial Branch-and-Bound with symbolic reformulation
[138, 139, 83].
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sBB algorithms all rely on the concept of a convex relaxation of the original nonconvex NLP. This
is a convex NLP formulation, the solution of which provides a guaranteed lower bound to the optimal
objective function value of the original NLP. At each iteration, the sBB algorithm solves restrictions to
particular subregions of space of the original formulation and of its convex relaxation, in order to obtain
upper and lower bounds to the optimal value of the objective function value in the subregion. If the
bounds are very close, a global optimum relative to the subregion has been identified. The selection rule
choosing next subregions makes it possible to exhaustively explore the search space. When subregions
are defined by hyper-rectangles (i.e. simple variable ranges), starting with the smallest possible ranges
speeds up the sBB considerably. This issue is addressed in Sect. 9.4.1.

Most sBB algorithms have the following form:

1. (Initialization) Initialize a list of regions to a single region comprising the entire set of variable
ranges. Set the convergence tolerance ε > 0; set the best objective function value found up so far
U :=∞ and the corresponding solution x∗ := (∞, . . . ,∞). Optionally, perform Optimization-Based
Bounds Tigthening (OBBT), see 9.4.1.1.

2. (Choice of Region) If the region list is empty, terminate the algorithm with solution x∗ and ob-
jective function value U . Otherwise, choose a region R (the “current region”) from the list (see
Sect. 9.4.2). Remove R from the list. Optionally, perform Feasibility-Based Bounds Tightening on
R (see Sect. 9.4.1.2).

3. (Lower Bound) Generate a convex relaxation from the original formulation in the selected region
R (see Sect. 9.4.3), and solve it to obtain an underestimation ` of the objective function, with
corresponding solution x̄. If ` > U or the relaxation is infeasible, go back to Step 2.

4. (Upper Bound) Attempt to solve the original formulation restricted to the selected region to obtain
a (locally optimal) solution x̃ with objective function value u (see Sect. 9.4.4). If this fails, set
u := +∞ and x̃ = (∞, . . . ,∞).

5. (Pruning) If U > u, set x∗ = x̃ and U := u. Remove all regions from the list having lower bounds
greater than U , since they cannot possibly contain the global minimum.

6. (Check Region) If u− ` ≤ ε, accept u as the global minimum for this region and return to Step 2.
Otherwise, we may not have located the global minimum for the current region yet, so we proceed
to the next step.

7. (Branching) Apply a branching rule to the current region, in order to split it into subregions (see
Sect. 9.4.5). Append these to the list of regions, assigning to them ` as an (initial) lower bound.
Go back to Step 2.

The convex relaxation is generated automatically by means of a symbolic analysis of the mathematical
expressions occurring in the original formulation. Below, we consider some of the key steps of the
algorithm in more detail.

9.4.1 Bounds tightening

Bounds tightening procedures appear in steps 1 and 2. They are optional in the sense that the algorithm
will converge even without them. In practice, however, bounds tightening is essential. Two major bounds
tightening schemes have been proposed in the literature: OBBT and FBBT.

9.4.1.1 Optimization-based bounds tightening

OBBT identifies the smallest range of each variable, subject to feasibility of the convex relaxation. This
prevents the sBB algorithm from exploring subregions that can be proved infeasible a priori.
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OBBT requires the solution of at least 2n convex relaxations, where n is the number of variables.
Let α ≤ ḡ(x) ≤ β be the set of constraints in the convex relaxation: the OBBT procedure, given below,
constructs sequences xL,k, xU,k of possibly tighter lower and upper variable bounds.

1. Set xL,0 ← xL, xU,0 ← xU , k ← 0.

2. Repeat

xL,ki ← min{xi | α ≤ ḡ(x) ≤ β ∧ xL,k−1 ≤ x ≤ xU,k−1}, ∀i ≤ n;

xU,ki ← max{xi | α ≤ ḡ(x) ≤ β ∧ xL,k−1 ≤ x ≤ xU,k−1}, ∀i ≤ n;

k ← k + 1.

until xL,k = xL,k−1 and xU,k = xU,k−1.

Because of its computational cost, OBBT is usually only performed at the root node of the sBB.

9.4.1.2 Feasibility-based bounds tightening

FBBT is computationally cheaper than OBBT, and as such it can be applied at each region. Variable
ranges are tightened using the constraints, which are exploited in order to calculate extremal values
attainable by the variables. This is done by isolating a variable on the LHS of a constraint and evaluating
the extremal values of the RHS by means of interval arithmetic.

FBBT is easiest for the case of linear constraints. Given constraints l ≤ Ax ≤ u where A is an m× n
matrix, interval analysis immediately yields:

xj ∈

[
max

(
xLj ,mini

(
1
aij

(
li −

∑
k 6=j

max(aikx
L
k , aikx

U
k )

)))
,

min

(
xUj ,maxi

(
1
aij

(
ui −

∑
k 6=j

min(aikx
L
k , aikx

U
k )

)))]
if aij > 0

xj ∈

[
max

(
xLj ,mini

(
1
aij

(
li −

∑
k 6=j

min(aikx
L
k , aikx

U
k )

)))
,

min

(
xUj ,maxi

(
1
aij

(
ui −

∑
k 6=j

max(aikx
L
k , aikx

U
k )

)))]
if aij < 0

for all 1 ≤ j ≤ n. As pointed out in [138, p. 202], FBBT can also be carried out for factorable nonlinear
constraints.

9.4.1 Remark (Factorable expressions)
A constraint is factorable if it involves factorable expressions. Although a precise definition of factorability
is provided in [106], a more useful characterization is “an expression which can be parsed using an
arithmetic expression language” (see Sect. 2.1.1). In this sense, all expressions occurring in this book are
factorable.

9.4.2 Choice of region

The region selection at Step 2 follows the simple policy of choosing the region in the list with the smallest
lower objective function bound `. Intuitively, this is the most promising region for further analysis.
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9.4.3 Convex relaxation

The convex relaxation solved at Step 3 of the sBB algorithm aims at finding a guaranteed lower bound
to the objective function value in the current region. It is generated automatically for Eq. (2.2) in two
stages.

The formulation is first reduced to a standard form where each nonlinear term is linearized, i.e. replaced
by an additional variable. Each linearization is then encoded in a new constraint of the form:

additional variable = linearized nonlinear term.

These constraints, called defining constraints, are all adjoined to the formulation: this yields a formulation
where nonlinear terms only occur in defining constraints.

In the second stage, each defining constraint is replaced by pair of constraints, each defining a convex
portion of space. One provides a convex underestimator, and the other a concave overestimator. This
pair of convex estimating constraints is known as convexification (the union of all such pairs is also known
as “convexification”).

9.4.3.1 Reformulation to standard form

The symbolic reformulation algorithm scans the expression trees (see Sect. 2.1.1 recursively from the
leaves. If the current node is a nonlinear operator ⊗ with arity k, it will have k subnodes s⊗1 , . . . , s

⊗
k , each

of which is either a variable xj in the original formulation or an additional variable wh (by recursion)
for some index h. We then create a new additional variable wp, where p is the next available unused
additional variable index, and adjoin the defining constraint

wp = ⊗(x,w)

to the standard form reformulation, where (x,w) is an appropriate sequence of k variables (some of
which may be original and some additional). The new additional variable wp replaces the subexpression
represented by the subtree rooted at the current node ⊗. See [138, 139] for more details.

9.4.2 Remark
Note that the linearization process is not well-defined, as there may be different linearizations correspond-
ing to a single mathematical expression, depending on associativity. For example, the expression x1x2x3

might be linearized as w1 = x1x2∧w2 = w1x3, w1 = x1x3∧w2 = w1x2 or as w1 = x2x3∧w2 = w2x3, but
also simply as w1 = x1x2x3, as long as the symbolic algorithm is able to recognize the product operator
as an arbitrary k-ary operator (rather than just binary).

In general, if a tight convexification is available for a complicated subexpression, it is advisable to
generate a single additional variable linearizing the whole subexpression [15, 31].

A standard form reformulation based on a symbolic parser which recognizes nonlinear operators of
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arity k ∈ {1, 2} is as follows:

min vω (9.3)

a ≤ Av ≤ b (9.4)

vk = vivj ∀(i, j, k) ∈M (9.5)

vk =
vi
vj

∀(i, j, k) ∈ D (9.6)

vk = vνi ∀(i, k, ν) ∈ P (9.7)

vk = φµ(vi) ∀(i, k, µ) ∈ U (9.8)

vL ≤ v ≤ vU (9.9)

where v = (v1, . . . , vq) are the decision variables (including both original and additional variables), ω ≤ q,
A is the constraint matrix, a, b are the linear constraint bound vectors, vL, vU are the variable bounds
vectors, and φµ is a given sequence of labels denoting unary functions such as log, exp, sin, cos, which
the parser is aware of.

The defining constraints (9.5)-(9.8) encode all of the nonlinearities occurring in the original formula-
tion: M,D are sets of variable index triplets defining bilinear and linear fractional terms respectively. P
is a set of variable index triplets defining power terms (each triplet consists of two variable indices i, k
and the corresponding power exponent ν ∈ R). U is a set of triplets which define terms involving the
univariate function labels φµ (each triplet consists of two variable indices i, k and a label index µ).

Note that we also replace the objective function with the additional variable xω, corresponding to a
defining constraint of the form xω = objective function.

9.4.3 Example
In this example we show the reformulation obtained for Sect. 9.2.5, together with its graphical repre-
sentation. Since there is only one nonconvex term in the problem (namely, sin(x)), the reformulation is
immediate:

min
x,y

1
4x+ y

s.t. y = sin(x)
−3 ≤ x ≤ 6
−1 ≤ y ≤ 1.


The standard form reformulation is a lifting, since introducing new variables lifts the formulation into a
higher-dimensional space. This is immediately apparent in this simple example. Compare Fig. 9.6 (the
original formulation) and its reformulation shown in Fig. 9.10.

9.4.4 Example (Reformulation of the HPP)
The reformulation obtained for the HPP (see Sect. 2.2.7.7) is as follows:

min
x,y,p,w

6x11 + 16x21 + 10x12 − 9(y11 + y21)− 15(y12 + y22) cost

s.t. x11 + x21 − y11 − y12 = 0 mass balance
x12 − y21 − y22 = 0 mass balance
y11 + y21 ≤ 100 demands
y12 + y22 ≤ 200 demands
3x11 + x21 − w1 = 0 sulphur balance
w1 = pw2 defining constraint
w2 = y11 + y12 (linear) defining constraint
w3 + 2y21 ≤ 2.5(y11 + y21) quality requirement
w3 = py11 defining constraint
w4 + 2y22 ≤ 1.5(y12 + y22) quality requirement
w4 = py12. defining constraint


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Figure 9.10: The problem min{ 1
4x+ sin(x) | x ≥ −3, x ≤ 6} reformulated to standard form.

Note that linear terms do not undergo any linearization. Among the defining constraints, some are
nonlinear (hence nonconvex, since they are equality constraints) and some are linear. This conveniently
splits the problem into a linear and a nonlinear part.

9.4.3.2 Convexification

The convex relaxation of the original formulation consists of the convexification of the defining constraints
in the standard form. The convexification depends on the current region [vL, vU ], and is generated as
follows:

1. The defining constraint vi = vjvk is replaced by four linear inequalities:

vi ≥ vLj vk + vLk vj − vLj vLk (9.10)

vi ≥ vUj vk + vUk vj − vUj vUk (9.11)

vi ≤ vLj vk + vUk vj − vLj vUk (9.12)

vi ≤ vUj vk + vLk vj − vUj vLk . (9.13)

Note that Eq. (9.10)-(9.13) provide the convex envelope of the set B(i, j, k) = {(vi, vj , vk) | vi =
vjvk ∧ v ∈ [vL, vU ]} (i.e. the smallest convex set containing B(i, j, k)).

2. The defining constraint vi = vj/vk is reformulated to vivk = vj , and the convexification rules
for bilinear terms (9.10)-(9.13) are applied. Note that this introduces the possibility that vk =
0 is feasible in the convex relaxation, whereas the original constraint where vk appears in the
denominator forbids it.

3. The defining constraints vi = φµ(vj) where φµ is concave univariate is replaced by two inequalities:
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the function itself and the secant:

vi ≤ fµ(vj) (9.14)

vi ≥ fµ(vLj ) +
fµ(vUj )− fµ(vLj )

vUj − vLj
(vj − vLj ). (9.15)

4. The defining constraint vi = φµ(vj) where φµ is convex univariate is replaced by:

vi ≤ fµ(vLj ) +
fµ(vUj )− fµ(vLj )

vUj − vLj
(vj − vLj ) (9.16)

vi ≥ fµ(vj). (9.17)

5. The defining constraint vi = vνj , where 0 < ν < 1, is treated as a concave univariate function in the
manner described in Step 3 above.

6. The defining constraint vi = v2m
j for any m ∈ N is treated as a convex univariate function in the

manner described in Step 4 above.

7. The defining constraint vi = v2m+1
j for any m ∈ N may be convex, concave, or piecewise convex and

concave with a turning point at 0. If the range of vj does not include 0, the function is convex or
concave and falls into a category described above. A complete discussion of convex underestimators
and concave overestimators for this term when the range includes 0 can be found in [90].

8. Other defining constraints involving trigonometric functions need to be analysed on a case-by-case
basis, similarly to Step 7.

9.4.4 Local solution of the original problem

This is usually obtained by deploying a local phase on the original formulation restricted to the current
region (see Sect. 9.1). This is also typically the most computationally expensive step in each iteration of
the sBB algorithm.

9.4.4.1 Branching on additional variables

An issue arises when branching on additional variables (say wh): when this happens, the current region
is partitioned into two subregions along the wh axis, the convex relaxation is modified to take the new
variable ranges into account, and lower bounds are found in each subregion.

The upper bounds, however, are found by solving the original formulation, which is not dependent on
the additional variables. Thus the same original formulation is solved at least three times in the course
of the algorithm (i.e. once for the original region and once for each of its two sub-regions).

We address this issue by storing the upper bounds to each region. Whenever the branching variable
is an additional variable, we use the stored bounds rather than deploying the local phase.

9.4.4.2 Branching on original variables

Even when branching occurs on an original variable, there are some considerations that help avoid solving
local optimization problems unnecessarily. Suppose that the original variable x is selected for branching
in a certain region. Then its range [xL, xU ] is partitioned into [xL, x′] and [x′, xU ]. If the solution of
the original formulation restricted to [xL, xU ] is x∗, and x∗ ∈ [xL, x′], then deploying the local phase in
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the subregion [xL, x′] is unnecessary. Of course, the lolca phase still needs to be deployed on the other
subregion [x′, xU ] (see Fig. 9.11).

Figure 9.11: If the locally optimal solution in [xL, xU ] has already been determined to be at x∗, solving
in [xL, x′] is unnecessary.

9.4.5 Branching

There are many branching strategies [50, 16] available for use in sBB algorithms, most of which are
based on branching along coordinate directions, i.e. by partitioning the variable ranges. It is known
that best results on some particularly difficult MILP instances (e.g. [38]) are achieved by branching
along constraints [39], but such branching schemes have apparently not been used in sBB algorithms yet.
Other approaches include [94, 40, 41, 125]. Henceforth, we shall assume that “branching” implies “along
coordinate directions”.

Generally, branching involves two steps: determining the index of the variable on which to branch
(called branching variable), and determining the point (called branching point) on which to partition the
branching variable range. Several heuristics exist (see [138, p. 205-207] and [16]). Here, we use the upper
bounding solution x̃ (obtained in Step 4 of the sBB algorithm) as the branching point, if such a solution
is found; otherwise the lower bounding solutoin v̄ (Step 3) is used. Recall that v = (x,w), where x are
the original variables and w the additional ones.

We then employ the standard form to identify the nonlinear term with the largest error with respect
to its convex relaxation. By definition of the standard form Eq. (9.3) (see Sect. 9.4.3.1), this is equivalent
to evaluating the defining constraints (9.5)-(9.8) at v̄ and choosing the one giving rise to the largest error.
In case the chosen defining constraint represents a unary operator, the only variable operand is chosen
as the branching variable; if it represents a binary operator, the branching variable is chosen as the one
having branching point value closest to the range midpoint.
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[60] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme,
I. Monatshefte für Mathematik und Physik, 38:173–198, 1930.

[61] A. Goldberg and R. Tarjan. A new approach to the maximum flow problem. Journal of the ACM,
35:921–940, 1988.
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algorithmics, 36
alphabet, 31, 61, 73, 75

size, 73
ambiguity, 21
amount

total, 21
AMPL, 41, 51–53

dat
syntax, 55

executable, 51
format, 55
GUI, 51
imperative, 52
namespace, 55
snippet, 57

analysis
convex, 93
polyhedral, 123
polytime, 88
symbolic, 148
worst-case, 121

angle
largest, 98
obtuse, 99

application
field, 13

approach
algorithmic, 137
escaping, 140

approximation, 114
bfs, 114
linear, 117
poor, 139
precision, 114
quadratic, 137, 138
rounding, 114

arc, 42
antiparallel, 124
capacity, 124

165
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area, 28
arithmetic

index, 24
arithmetical expression, 32
arity, 32, 150

ero, 33
positive, 32
zero, 34

array, 33
ascending chain, 64
assigment, 15
assignment, 21, 25, 26, 35, 36, 43

constraint, 23, 25
optimal, 22
problem, 22

associativity, 150
atom, 29
axis, 29

B&C, 133, 141
B&S, 141, 147

convergence, 143
fathoming, 144

back-substitution, 63, 64
ball, 49, 94, 101
barrier

self-concordant, 88
solver, 112

barycenter, 29
base

circular, 28
basic, 111

column, 106, 110, 125
feasible

solution, 106
solution

primal, 112
variabkle, 121
variable, 106, 110

index, 110
basis, 106, 108–110, 112, 113, 121, 127

current, 112, 125, 126
enter, 127
enters, 109
exists, 110
exit, 127
leaves, 109
new, 109
optimal, 111, 112

Bayesian, 139
BB, 39, 64, 121, 131, 139, 141

implementation, 131, 143
spatial, 147
subproblem, 133
terminates, 131

best solution, 145
bfs, 106–109, 111, 113, 114, 121

approximation, 114
current, 108, 110
multiple, 106, 107
optimal, 114, 119
starting, 109, 111

big M, 45
bijection, 106
bilinear, 151

bilinear programming, 84
binary

operator, 150
binary optimum, 85
binary string, 74
biquadratic

form, 87
biquadratic form, 87
bisection

search, 114, 117, 138
termination, 114

bit, 77, 78
storage, 116

black-box optimization, 81
blending, 15, 18

problem, 48
BLP, 43
BonMin, 51
boolean, 78
bound, 19, 131, 134, 148

achievable, 102
below, 114
continuous, 134
Lagrangean, 134
lower, 101, 102, 111, 131, 132, 134, 143, 144, 146,

148, 149, 153
best, 103
guaranteed, 63, 150
initial, 148
lowest, 131
maximum, 102
smallest, 149
valid, 144

product, 130, 131
sequence, 143
tightening, 148, 149
tighter, 149
upper, 113, 129, 131–133, 143, 144, 148, 149, 153

best, 143
variable, 29

bounded, 46, 93, 98, 107, 108, 129
above, 113, 114
below, 103
instance, 113

boundedness, 68, 113
certification, 37

box constraints, 80
BPP, 84
brackets, 32
branch, 74, 132, 133, 154

rule, 142
tree, 74

Branch-and-Bound, 39, 121
Branch-and-Cut, 133
Branch-and-Price, 133
Branch-and-Select, 141
branched, 131
branching, 145, 146, 153, 154

point, 154
rule, 148
strategy, 154
variable, 132, 154

additional, 153
original, 153

Buchberger’s algorithm, 63
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budget, 17
bug, 17, 20

canonical
form, 125

capacity, 15, 24, 27
cardinality, 47, 112, 124

maximum, 82, 83
cell, 76
center, 28, 29
centre, 115
certificate, 74, 86

compact, 88
polynomial, 80, 86

character, 31
characterization

unique, 119
well-defined, 119

chordal network, 64
Church’s thesis, 61
Church, A., 61
Chvátal

cut, 125
first-order, 124
second-level, 125

circle
equal, 29
packing, 15, 57

classification, 37
clause, 65, 78, 80
clique, 124

maximal, 83
maximum, 82

clique, 74, 83
clique number, 82
closed, 98, 107, 108
closure, 124, 125, 131

affine, 94
conic, 94
linear, 93
RLT, 131

clusre
convex, 94

cluster, 46, 140
point

nearby, 140
clustering, 46, 140, 141
cMINLP, 39, 64
CNF, 78, 80
cNLP, 39, 64, 87, 88, 103, 137

linear part, 40
co-domain, 62
co-NP-hard, 85
code, 36
coding

practice, 17
coefficient, 107, 108

nonzero, 122
COIN-OR, 35
collinear, 98
column, 106, 108–110, 122, 127

basic, 106, 115, 125
current, 125
entering, 128
generation, 112, 133

nonbasic, 106, 110
partition, 106, 109
set, 109

combination
affine, 94
conic, 94, 97
convex, 94, 107

strict, 94, 106
linear, 93, 96, 108

combinatorics, 121
command-line

workflow, 51
complement, 69
complementarity

condition, 119
complementary

slackness, 100
strictly, 119

complete, 66
completeness, 66
completeness theorem

Gödel, 66
completion

time, 22
complex, 69
complexity

computational, 73, 139
description, 89
exponential, 64, 141
polynomial, 112, 117, 124
polytime, 117
worst-case, 73

complexity class, 62
component, 18, 29, 54, 86, 110, 113, 125

fractionary, 132
integer, 121, 122
nonzero, 83, 107
rational, 113
solution, 55
unreliable, 139
zero, 82

computability, 61
computable, 62
computation

irrational, 116
practical, 121

computation model, 61, 62, 78
TM, 63

computational
complexity, 73

computational complexity, 40, 81, 86
computational geometry, 84
computationally

expensive, 153
computationl model, 68
computing model, 61
concave, 23, 153
concurrent, 74
condition, 26

boolean, 22
boundary, 26
complementarity, 119
first-order, 86
KKT, 86, 118, 137
necessary, 95, 97
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non-negativity, 87
optimality, 108, 124
second-order, 86
sufficiency, 101
sufficient, 95, 122
termination, 120, 135

cone, 94
border, 88
boundary, 88
convex, 88
copositive, 88
dual, 88
matrix, 88
membership, 33
PSD, 88

congruence
invariant, 29

conic
combination, 94

conic solver, 39
conjunction, 33, 65, 80

literal, 65
conjunctive normal form, 78
connected

strongly, 77
connected component, 65
connected components, 69
console, 52
constant, 38, 45, 82

large, 129
numerical, 17
real, 65

constraint, 23, 27, 33, 37, 44, 52, 53, 55, 79, 84, 101,
112, 116–118, 121, 124, 126, 129, 130

active, 80, 100
adjoin, 116, 124, 127, 129
aggregation, 102
allocation, 26
assignment, 23
bilinear, 129
boolean, 23
bound, 151
box, 80
capacity, 25
coefficient, 111
complicating, 133, 134
conditional, 45
convex, 81, 150
defining, 150–152
demand, 27
disjunctive, 129
dual, 102
equality, 38, 53, 97, 100, 120, 152
equation, 126
factor, 130, 131
factorable, 149
functional, 33, 45
generated, 131
gradient, 97
implicit, 33, 34, 45
implied, 35
index, 115
inequality, 38, 84, 97, 100, 125
integrality, 23, 24, 33–35, 39, 46, 121
LHS, 149

linear, 93, 123, 149
linearization, 85
linearized, 137, 139
list, 18
matrix, 106, 121, 123
MILP, 76
non-negativity, 42, 48, 82, 84
nonlinear, 149
nonnegativity, 24
norm, 81
number, 107, 116
original, 152
orthant, 117
precedence, 44
primal, 102
problematic, 35
qualification, 103, 139
range, 20, 33, 43
redundant, 35
RHS, 116
SDP, 34
set, 88
simplex, 82, 88
single-row, 18
string, 34
technical, 17, 18
trivial, 17

forgotten, 20
unmentioned, 23
valid, 127
violated, 115
weighted sum, 103

constriant
adjoin, 132

continuous
relaxation

solution, 126
continuous knapsack, 81
contradiction, 65, 114
convergence, 139, 140, 143

finite, 143
convergent, 142
convex, 39, 87, 93, 94, 109, 150, 153

analysis, 93
combination, 88, 123
function, 94, 144
hull, 88, 94, 123, 124, 131, 134
quadratic

approximation, 138
relaxation, 148
set, 94

smallest, 152
set intersection, 93

convex analysis, 94
convex cone, 88
convexification, 150, 152
convexity, 95, 107

strict, 87
strong, 87
variant, 101

coordinate, 28
change, 96
Euclidean, 48

copositive
programming, 88
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copositive matrix, 87
copositivity, 85, 88
correctness, 117
cost, 20, 27, 48

communication, 44
competitive, 103
computational, 112, 149
decreasing

direction, 108
least, 42
minimization, 48
net, 48
reduced, 109, 112, 127

negative, 109
nonnegative, 112

set-up, 15, 27
transportation, 49
unit, 24
vector, 53, 106

Couenne, 51
countably infinite, 38
countably many, 37
couple, 46
cover, 142
covering, 15, 27
CPLEX, 35, 51
CPU

time, 147
limit, 139, 140

cQKP, 81
cQP, 80, 83
crash, 139
critical point

constrained, 96
curve

piecewise linear, 84
cut, 124, 126, 128

Chvátal, 125
disjunctive, 129
family, 124
generation, 125
Gomory, 125–128
hierarchy, 124, 131
new, 127
nontrivial, 124
RLT, 130
valid, 112, 121, 124, 126, 130

cutting
plane, 112, 123, 133

algorithm, 125
cycle

disjoint, 124
cylinder, 28, 65
cylindrical decomposition, 65

DAG, 32
expression, 32

Dantzig, 105
data, 52

dense, 39
irrelevant, 21
numerical, 52
sparse, 39
structure, 112

data structure, 33

DE, 67, 68
exponential, 67
quadratic, 68
system, 67
universal, 68

decidability, 66
efficient, 87

decidable, 62, 78
incomplete, 66

decision, 62
algorithm, 66
procedure, 65
variable, 20, 22

vector, 137
decision problem, 61, 73, 81
decision variable, 33, 34

assignment, 43
declaration

instruction, 54
declarative, 36
decomposable

nearly, 133
definition

formal, 36
degeneracy, 107
degenerate, 107, 108

vertex, 107
degree, 87

maximum, 131
odd, 87

demand, 15, 25–27, 42, 48
satisfaction, 24, 25, 27

denominator, 113, 114, 121
dense, 39
derivative

directional, 96
partial, 96
second, 86

descent
direction, 97, 120

description, 123
compact, 88

determinant, 113, 121, 122
deterministic, 147

algorithm, 138
diagonal, 69, 81, 122
diagonalization, 64
diet problem, 42
diffeomorphism, 96
differentiable, 101

continuously, 96
digit, 63
digraph, 42–44

infinite, 77
reduction, 77
strongly connected, 77

Dijkstra’s algorithm, 78
dimension, 29

search
space, 139

small, 88
diophantine equation, 67
directed acyclic graph, 32
direction

cooordinate, 154
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descent, 100, 117
feasible, 100
improving, 110
vector, 137

disjoint
pairwise, 142

disjunction, 33, 80, 129
disjunctive

normal
form, 65

distance, 143
Euclidean, 29
geometry

molecular, 15
minimum, 98
pairwise, 29
unit, 29

distinguished
point, 143

distribution
uniform, 107

division, 77
DNF, 65
domain, 46, 62, 94

discrete, 134
dual, 88, 103, 118, 134

basis, 112
constraint, 102
feasible, 118, 119
objective, 102
problem, 102
simplex, 125

iteration, 126
method, 111, 112

variable, 102
dual cone, 88
duality, 93

gap, 120
strong, 88, 101, 103
theorem, 103
theory, 102
weak, 101, 102

dynamic programming, 78
dynamics, 68, 75

EDE, 67
edge, 36, 40, 82, 108, 110, 124

induced, 36
edge-weighted, 124
efficient, 36

practically, 105
eigenvalue

negative, 83
elementary step, 41
ellipsoid, 115, 116

algorithm, 112, 115
centre, 115
method, 124
minimum

volume, 115
ellipsoid method, 78
empty, 113, 115

list, 148
encoding

binary, 78

Thom, 63
unary, 78

endpoint, 145
entity

declaration, 54
symbolic, 52

enumeration, 69
ε-optimality, 143
ε-optimum, 143
equality, 45

sign, 109
equation, 33, 43, 96, 102, 125, 141

linear, 80, 93
polynomial, 138
system, 123

error
largest, 154

escaping, 139, 146
approach, 140

Euclidean Location, 48
Euclidean space, 84
evaluation, 32, 95
exact, 142
exponential

bound, 73
doubly, 65
number, 124
worst-case, 105

exponential complexity, 64
exponential-time, 73
exponentially, 123
exponentiation, 67
expression

arithmetical, 32, 34, 38
DAG, 32
factorable, 149
mathematical, 150
nonlinear, 19
tree, 32

expressions
mathematical, 148

extension, 147

face, 94
full-dimensional, 119
optimal, 119

facet, 94, 123, 124
defining, 123

factorable, 149
failure

proof, 139
family

continuous, 118
Farkas’ lemma, 98, 99
faster

asymptotically, 77
fathomed, 143
FBBT, 148, 149
feasibility, 81, 111, 113, 120, 148

certification, 37
dual, 111
primal, 111
verification, 139

feasibility system, 67
feasibility-only, 34



INDEX 171

feasible, 34, 35, 104, 111, 114, 115, 120, 137, 139, 152
basic, 106
basis

initial, 126
descent, 97
direction, 97, 120
instance, 113
point, 95
polyhedron, 124
primal, 112
region, 93, 101, 103, 117, 123, 124, 133

mixed-integer, 123
set, 37, 113, 130
solution, 37, 117
value, 34
vector, 106

feasible region
nonconvex, 48

file, 52
run, 51, 52

filter, 142–144
limit, 142

finite set
decidable, 69

finitely many, 38
flat

formulation, 18
flattened, 18
floating point, 31, 37, 62, 64

error, 37
number, 138

flow, 25, 43
network, 112, 124

food, 103
form

factorized, 111
functional, 45
normal

disjunctive, 65
standard, 124, 150

formal system, 66, 67
complete, 66
incomplete, 66

formula
satisfiable, 81

formulation, 17, 18, 21, 22, 27, 34, 36, 52, 54, 97, 101,
102, 107, 116, 123–125, 127, 130, 134, 141,
144, 146, 150, 151

correct, 22
difficult, 22
dual, 101, 134
flat, 18, 19, 40, 41, 48
flatten, 55
generality, 17
ill-posed, 139
LP, 42, 123
MILP, 121, 124
minimization, 101
mixed-integer, 131
Motzkin-Strau, 82
Motzkin-Straus, 85, 87
MP, 33–36, 39, 52, 53, 113
NLP, 118, 137, 146

convex, 148
original, 131, 132, 138, 148, 150–153

parameter, 19, 22
primal, 101
QP, 83
restricted, 148
structure, 133
structured, 18, 19, 21, 40, 41
unconstrained, 29
wrong, 21

fraction, 18–21, 67, 81
fractional, 125, 151
full-dimensional, 119
function, 23, 62

barrier, 88
call, 57
callable, 36
class, 101
closed form, 32
computable, 62
concave, 23
convex, 94, 105
evaluation, 77
exponential, 69
linear, 33, 35, 144
nonlinear, 33, 69
penalty, 88
periodic, 69
piecewise

linear, 23
real, 37
separable, 82
unconstrained, 96
univariate, 151
vector, 95

Gödel, 67
Game of Life, 61
GAMS, 41, 51
gap, 46

duality, 120
Gaussian elimination, 63, 64
general-purpose

algorithm, 138
geometry, 121

combinatorial, 29
global, 101, 109, 144

minimum, 93
optimality, 40, 141

guarantee, 140
phase, 138

global optimality, 39
global optimization, 37, 47
global optimum, 63, 80–82
GLPK, 35, 51
GO, 47, 62, 70, 137, 138, 141

algorithm, 138
Gomory

cut, 125
valid, 125

GO
algorithm, 138

GPP, 46
Gröbner basis, 63
gradient

constraint, 97
grammar
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formal, 35
graph, 31, 36, 40, 41, 74, 82, 83

bipartite, 42
directed, 42
neighbourhood, 44
notation, 44
undirected, 46
weighted, 42, 78

graph partitioning, 46
guarantee

theoretical, 138

half-line, 137
half-space, 94

closed, 93, 94
halting problem, 66
Hamiltonian

cycle
optimal, 124

hardware, 36
Haverly, 47
head

read/write, 75
tape, 75

Hessian, 86, 138
constant, 86, 87
form, 87
of the Lagrangian, 86

heuristic, 57, 131
IPM-based, 88

hierarchy
cut, 131

Hilbert’s 10th problem, 67
homogeneous, 117
HPP, 47, 48
hull

affine, 94
conic, 94
convex, 94, 123
linear, 93

hyper-rectangle, 80, 129, 147
embedded, 146
smallest, 130

hyper-rectangles, 148
hyperplane, 93, 96, 106, 115, 121

constraint, 107
generic, 123
intersection, 107
normal, 96
separating, 99, 100, 103, 124

hypothesis, 122

I/O, 36
ideal, 63
identity, 122

matrix, 122
iff, 37, 38
imperative, 35
implementation, 105, 112, 134, 143

B&S, 143
incomplete, 66
incompleteness, 66
inconsistent, 66
incumbent, 131, 132, 140, 142, 143

current, 125, 143

fractional
solution, 124

independence
affine, 123
linear, 123

independent, 66
index, 25, 106, 108

column, 56, 125
lowest, 109
row, 125, 126
set, 19, 22, 53, 55
tuple, 34

index set, 24
inequalities

linear, 113
inequality, 118, 123, 125, 130, 131, 142, 152

linear, 93, 152
strict, 112, 115

lower-dimensional, 130
non-strict, 33
nonlinear, 131
valid, 112, 123, 130

infeasibility, 105, 116
infeasible, 37, 112, 114, 130, 139, 142, 148

primal, 112
infimum, 98
infinite, 125

countably, 69
time, 138

infinitely, 123
initial

vector, 134
initialization, 148
input, 33

array, 78
integer, 121
rational, 121
storage, 78

input/output, 36
instability

numerical, 111
instance, 18, 35, 41, 48, 52, 63, 67, 73, 116, 122

bounded, 113
description, 38
feasible, 113
large-scale, 133
MILP, 154
NO, 74, 79, 85
size, 73, 108, 113, 116
sizer, 113
small-sized, 141
YES, 74, 79, 85

instruction, 51, 52, 75
declarative, 52
imperative, 52
sequence, 74

integer, 74, 114, 125
component, 121
consecutive, 54
feasible

set, 124
programming, 121

integer programming, 45
integral, 125, 128
integrality, 26–28, 33, 81, 84
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constraint, 121
property, 134
solution, 79

integrality constraint, 66
interface, 41
interior

non-empty, 103
point

method, 117
interior point method, 80
interpretation, 33
interpreter, 35, 36, 51
intersection, 121, 132, 133
interval, 19

arithmetic, 129, 149
intractable, 73
invariant, 21, 29, 38, 96
inverse function

theorem, 96
investment, 14, 17
IPM, 80, 88, 112, 117, 120

analysis, 119
IPOPT, 51
IQP, 69
irrational, 62, 81
irrelevance, 21
iteration, 117, 127, 135, 137, 143, 144, 148

current, 111
dual

simplex, 126
first, 117, 144
major, 140
minor, 140
next, 109
second, 145
subsequent, 146
typical, 131

Jacobian, 96, 139
job, 21

last, 22
order, 22

Karush-Kuhn Tucker system, 64
Khachiyan, 112
kissing number, 49

maximum, 49
KKT, 64, 80, 86

complementarity, 119
condition, 101, 118, 138
conditions, 100
point, 100, 101, 138
theorem, 100

knapsack
continuous quadratic, 81

KNP, 49

label, 151
Lagrange

multiplier, 102, 134
Lagrangean

relaxation, 121
Lagrangian, 96, 101, 118

dual, 102
function, 86, 102

language, 13
arithmetical expression, 34
basic, 31
composite, 31
decision variable, 33
declarative, 36, 52, 75
expression, 33
formal, 17, 19, 31
imperative, 35, 36, 52, 57
interpreter, 35
modelling, 41
MP, 33
natural, 17, 19, 21, 31
objective function, 34
parameter, 33
programming, 35

large
arbitrarily, 143

large instance, 40
lcm, 63, 67
leading term, 63
leaf, 74
least common multple, 63
leaves, 150
lemma

Farkas, 99, 100
LHS, 125
lhs, 38
LI, 113

infeasible, 114
instance, 114, 115
oracle, 114

lifting, 130, 131, 137
nonlinear, 130
process, 130

limit
filter, 142
point, 119

line, 94, 137
search, 120, 137

linear, 45, 82, 87
algebra, 122
combination, 93, 96
constraint, 93, 129
dependence, 109
forma, 105
fractional, 151
function, 131
hull, 93
independence, 96, 100, 106, 115, 123
inequalities, 113
part, 152
piecewise, 23, 134
system, 121
term, 37

linear order
dense, 65

linear programming, 105
linear time, 88
linearity, 117
linearization, 45, 131, 150, 152

process, 150
variable, 131

linearized
nonlinear
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term, 150
link, 25

capacity, 25
linkage, 141
Linux, 51
list, 55, 132, 145, 148, 149

empty, 145
region, 148
remove, 148
tabu, 140

literal, 33, 65, 80
local

minimum, 93, 139
optimum, 95

escape, 140
phase, 138, 140, 143
search, 147

local minimum, 85
local optimum, 86
local solution, 143
log-barrier

function, 112
loop, 35, 36, 52, 140

unfolding, 74
LOP, 113, 114

instance, 113, 114
solution, 113

lower
bound, 145, 146

LP, 39, 42, 53, 55, 61, 62, 64, 78, 105, 107, 109, 112,
113, 116, 118–121, 123

algorithm, 105
auxiliary, 111
canonical form, 105
dual, 103, 124
formulation, 113, 133
instance, 116
large-scale, 112
polytime

algorithm, 112
relaxation, 63
solution, 112, 121
standard form, 102, 106, 110, 117, 121
theory, 94
trivial, 106

LSI, 112, 113
instance, 115
polytime, 115

machine, 21
identical, 21
slowest, 22

Machine Learning, 40
MacOSX, 51
major

iteration, 140
makespan, 43, 45
mathematical

programming, 13, 16
Mathematical Programming, 31
MATLAB, 51
Matlab, 41
matrix, 33, 53, 54, 77, 88, 99, 116, 122, 133

cone, 88
constraint, 106, 151

TUM, 123
copositive, 87, 88
copositivity, 85
decision variable, 34
extremal, 88
form, 109
identity

TUM, 122
initialization, 56
integral, 121, 122
inverse, 110
nonsingular, 106, 125
notation, 53
PSD, 34, 87
rank one, 88
rational, 112, 113
sparse, 56
square, 106, 110

nonsingular, 121
symmetric, 86

square diagonal, 81
square symmetric, 34, 87
TUM, 122
upper bound, 43

max clique, 82
maxima, 93
maximization, 22, 40, 105

inner, 45
maximum, 82, 96

global, 49
pointwise, 144

maximum flow, 43, 46
mcm, 121
MDPR

theorem, 67
medium-sized

instance, 139
membership, 33, 129
method

iterative, 131
subgradient, 134

midpoint, 99
MILP, 39, 62, 64, 69, 75, 78, 121, 123–125, 130, 132

constraint, 78, 79
feasibility-only, 76
formulation, 133
instance, 123
reformulation, 123
restricted, 130
size, 39
solution

method, 123
minimization, 22, 101, 105

direction, 131
minimum, 83, 95, 96, 98, 105, 107, 112, 117, 124, 144

constrained, 97, 100
cut, 124
distance, 99
global, 93, 105, 107, 148
local, 93, 97, 101, 105, 109, 146, 147

current, 146
objective

value, 97
vertex, 105

minimum k-cut, 46
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minimum cut, 46
MINLP, 39, 45, 61, 62, 64, 68, 69, 78, 138, 146

complexity, 73
decision version, 77
feasibility, 67
hardness, 73
unbounded, 78
undecidability, 68
undecidable, 67
undecidable problem, 70

minor
iteration, 140

Minsky, 61
ML, 40

unsupervised, 46
MLSL, 139, 140
modelling, 19, 36
modelling language, 41
monomial order, 63
monotonic, 138
Motzkin-Straus formulation, 82, 87
MP, 31, 33, 75, 101

complexity, 88
formulation, 49, 51
instance, 37
reformulation, 39
semantics, 35
systematics, 39
theory, 35

MP, 38
MSPCD, 43
multi-level

single
linkage, 139

multi-objective, 34
multi-period

production, 15
multicommodity

flow, 112
multiple

minimum
common, 121

multiplier, 102, 108
Lagrange, 96, 100, 102, 134, 138
vector, 134

multistart, 140
algorithm, 139

multivariate, 29
function, 137

natural, 69
natural language

description, 17
negation, 33
negative, 85, 109, 110
neighbourhood, 35, 96, 140, 147

incoming, 44
size, 147
structure, 146

net, 142, 143
refinement, 142
sequence, 142

network, 42
flow, 112, 123
topology, 48

network flow, 43
Newton

descent, 120
method, 120, 138
step, 120

Newton’s method, 88, 145
one dimension, 144

NLP, 39, 47, 64, 78, 79, 82, 96, 100, 137–139, 144, 148
continuous, 48
convex, 39
nonconvex, 40, 48, 137, 146, 147
solver

local, 146
undecidable, 70

node, 32, 131
contraction, 32
current, 150
incoming, 43
leaf, 32
outgoing, 43
root, 149

non-differentiable, 134
non-empty, 98, 107
non-negative, 87, 127
non-overlapping, 29
non-positive, 85
nonbasic, 106, 111, 115

column, 106
index, 126
variable, 106, 110, 121, 125

nonconvex, 39, 47, 48, 152
set, 88

nonconvexity, 88
nondeterministic, 74
nonempty, 115
nonlinarity, 151
nonlinear, 39, 45, 152

operator, 150
part, 152
programming, 137
term, 37

nonlinear equation
system, 70

nonlinearity, 22
nonnegative, 17

constraint, 54
nonnegativity, 26, 27
nonsingular, 96, 106, 109
nonzero, 56, 108
norm, 81
normal, 96
NP, 74, 75, 78
NP-complete, 75
NP-complete, 75
NP-hard, 75, 121, 123, 124
NP-hardness, 77
NPO, 77
null

space, 119
null space, 117
number

finite, 93
pseudo-random, 138
rational, 114

numerator, 113
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nutrient, 103

OBBT, 148, 149
procedure, 149

objective, 48, 52, 117
approximation, 114
coefficient, 109
convex, 101
decrease, 109, 110
direction, 27, 38, 97, 101, 113
dual, 102
function, 20, 22, 37, 44, 55, 107, 110, 111, 114, 117,

133, 137, 144, 151
decrease, 111
optimal, 111
unbounded, 110
value, 131, 144, 148

Hessian, 138
linearity, 117
minimality, 27
minimum, 107
optimal, 101

zero, 116
primal, 102
reduction, 117
tangent, 144
value, 102, 105, 109, 114, 141, 142

best, 148
better, 133
current, 111
lower, 110
lower bounding, 143
optimal, 143

objective function, 33, 34
direction, 93
globally optimal, 37
min max, 45
positive, 85
value, 37

objective function value, 86
obstacle, 123
operation

algebraic, 110
operator

k-ary, 150
binary, 32, 154
implicit, 32
minimum, 17
nonlinear, 150
precedence, 32
primitive, 32
scope, 32
unary, 32, 154

OPTI toolbox, 42
optima, 93, 117, 123

global, 131
optimal, 123, 128

bfs, 119
face, 119
globally, 131
Hamiltonian

cycle, 124
locally, 148
objective, 113

value, 117, 134

partition, 119
set, 37, 38
solution, 119
value

known, 117
optimality, 33, 108, 111, 113

certification, 37
condition, 111
first-order, 64
global, 39, 40, 138
local, 86, 137, 138, 143

QP, 86
properties, 116
verification, 139

optimization, 33
combinatorial, 114
conic, 42
direction, 48, 96, 124
global, 47
local, 137, 139
problem, 13, 31
procedure, 22

optimization direction, 34
optimization problem, 61
optimum, 35, 37, 110, 113, 144

global, 35, 40, 63, 80, 82, 86, 88, 94, 131, 138, 139,
145, 146, 148

putative, 139, 147
region, 145

improved, 140
improving, 140
local, 83, 85, 86, 88, 94, 95, 101, 109, 137, 138, 140,

145
current, 140

true, 143
oracle, 114, 115, 124

algorithm, 113
LI, 114

order
index, 44
linear, 21
partial, 43
precedence, 43
total, 69

origin, 29, 106
original

formulation, 134
LP, 111

orthant, 88, 117
non-negative, 88

orthogonal, 119
output, 33, 35

format, 57
overestimator

concave, 150

P
P, 123

P, 73
packing, 28, 29

circle, 29
pair

unordered, 29, 36, 47
parabolic, 69
parameter, 18, 22, 33, 37, 48, 52, 53, 55, 76, 118, 120



INDEX 177

configurable, 147
continuous, 37
formulation, 53
initialization, 54
input, 35, 45
integer, 54
scalar, 41
symbol, 18, 33, 35, 54
value, 55
vector, 19

parent
subproblem, 132

parser, 35, 150
part, 116

linear, 152
nonlinear, 152

partition, 46, 109, 122, 131
finite, 142
optimal, 119
unique, 119

path, 108, 118
central, 118, 119
default, 55
exponentially many, 112
primal-dual, 119
shortest, 44, 112

penalty
log-barrier, 117

performance
computational, 137

PFP, 64, 69
phase

global, 139, 140, 147
deterministic, 141
stochastic, 139, 140

local, 139, 140, 142, 146, 153, 154
PICOS, 41
piecewise

convex, 153
piecewise linear

curve, 84
pipe

filter, 51
pivot, 126, 128

element, 127
plane

cutting, 123
point, 94, 114, 118

branching, 145
critical, 97
current, 138
distinct, 94, 123
distinguished, 142, 143
dual

feasible, 118
feasible, 95, 108, 140
infeasible, 137
initial, 120
random, 147
returned, 139
saddle, 22
sample, 147
starting, 137
symmetric, 94

polyhedra, 129

union, 130
polyhedron, 93, 105–108, 111, 119

bounded, 108
closed, 115
feasible, 106, 107
open, 115
standardized, 123
unbounded, 108
vertex, 105, 108, 121, 122

polynomial, 73, 116
calls, 113
complexity, 112
convexity, 87
degree, 85
equation, 68
function, 73
integral, 67
minimal, 63
multivariate, 29, 63, 69
quartic, 29
system, 63, 65, 66
undecidable, 67

polynomial division, 63
polynomial feasibility, 64
polynomial programming, 64
polynomial reduction, 75
polynomial time, 35
polynomial-time, 73
polytime, 73, 74, 79, 81, 87, 88, 113, 121

analysis, 88
feasibility, 77
LP

algorithm, 112
strongly, 78, 82, 124
weakly, 78, 80, 124

polytope, 93, 108, 129, 130
pooling problem, 47
position

initiale, 75
vector, 29

positive, 110, 120
strictly, 99, 115

positive semidefinite, 34, 80
power, 151
PP, 64, 78

integer, 70
pre-processing, 141
precise

computation, 139
numerically, 143

precision, 138
premultiplication, 111
price, 103

retail, 19
pricing

problem, 112
primal

constraint, 102
feasible, 112, 119, 127
infeasible, 112, 126
objective, 102
problem, 102
simplex, 111
variable, 102

primal-dual
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central
path, 119

optimal
solution, 119

pair, 119
prime, 77
priority

queue, 131
probability

1, 138–140
zero, 107

problem, 31, 73, 122
assignment, 22
decision, 31, 61, 62, 73, 77, 86, 113
diet, 103
dual, 102
fundamental, 22
hardest, 75
linear

optimization, 113
maximization, 103
MP, 34
nontrivial, 35
optimization, 31, 33, 34, 41, 61, 77, 113
original, 102
pair, 102
pricing, 112
primal, 102
recognition, 31
saddle, 101, 102
search, 61
unconstrained, 120

procedure, 105
efficient, 112

process
output, 36
terminate, 138

processor, 21, 43
product, 22, 76

binary variables, 45
Cartesian, 31
operator, 150

production, 24
level, 24

profit, 20
program variable, 35
programming

computer, 17
nonlinear, 137
quadratic

sequential, 137
project, 117
projection, 131
projective

transformation, 117
proof

by simulation, 73
property

integrality, 134
provability, 66
provable, 66
pruned, 131
pruning, 146, 148
PSD, 34, 80, 87, 116, 120

approximation, 138

cone, 88
PSD cone, 88
pseudo-convex, 87
pseudo-random

generator, 138
pseudocode, 36
pseudoconvex, 101
pseudopolynomial, 77

reduction, 78
push-relabel

algorithm, 124
PyOMO, 41
Python, 41, 57

QDE, 68
QKP

convex, 82
QP, 79, 80, 82–87, 138

NP-complete, 80
box-constrained, 80, 86
constrained, 86
convex, 80, 82
formulation, 83, 86
nonconvex, 83

QP1NE, 83, 84
QPLOC, 86
quadrant, 97
quadratic

DE, 68
form, 69, 79, 85, 87
integer programming, 69
knapsack, 81
objective, 47
programming, 79
structure, 40

quantifier, 18, 41, 44, 48
decision variable, 45
elimination, 65
existential, 67
universal, 67

bounded, 67
quantifier elimination, 65
quantile regression, 39
quartic, 29
quasi-convex, 87
quasiconvex, 101
queue

priority, 131, 132

radius, 49
random, 54

choice, 138
seed, 138

range, 19, 82, 87, 119, 132, 153
endpoint, 144
length, 146
midpoint, 154
partitioning, 154
smallest, 148
variable, 144, 148, 149

range constraint, 33
rank

one, 83
rational, 37, 62, 63, 77, 80

polynomial, 65
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rational input, 61
ray

extreme, 89, 108
real, 62, 64, 65, 69

number, 138
real RAM model, 62
recognition algorithm, 32
rectangle, 29

boundary, 29
recursion, 36, 150

level, 65
recursive, 62
recursively enumerable, 62, 68, 69
reduced

cost, 110
negative, 110
nonnegative, 110, 112

reduction, 77, 80, 82, 84, 87, 113, 116
NP-hardness, 86
polynomial, 75, 115
pseudopolynomial, 78
strongly polytime, 78

redundant, 35
refinement, 142
reflection, 29
reformulation, 23, 39

exact, 45, 47, 76
standard form, 150, 151
symbolic, 150

reformulation-linearization
technique, 130

region, 124, 143–146, 148, 149
check, 148
choice, 148, 149
current, 143, 148, 150, 152, 153
discarding, 145
distinguished, 143
feasible, 37, 103, 108, 124, 131

relaxed, 124
original, 145
pruning, 146
qualified, 142
rejected, 143
remove, 148
selected, 148
selection, 149
unexamined, 145

register machine
universal, 68

relation, 32, 62
asymmetric, 77
decidable, 62

relational operator, 34
relational sign, 34
relaxation, 40, 101, 131, 148

continuous, 46, 121, 124, 125, 131–134
convex, 148–150, 152–154
Lagrangean, 121, 133, 134

reliability
algorithmic, 139

representation, 62
binary, 113
compact, 86

resource
allocation, 26

revenue, 17, 20
revised

simplex
method, 111

RHS, 22, 125, 149
vector, 53

rhs, 38
RLT

closure, 131
cut, 130
hierarchy, 131

robustness, 39
Roghozin, 61
root, 63, 138
rostering, 15
rotation, 29

invariant, 29
routing, 25
row, 122, 125, 134

additional, 127
bottom, 127
exiting, 128
first, 126
generation, 124
last, 125
permute, 122
tableau, 128

optimal, 126

saddle, 101
point, 96

saddle problem, 45
sales, 24
sampling, 139, 140, 146

approach, 140
point, 147

sat, 75, 79, 80
sat, 33
satisfiability, 75
sBB, 40, 62, 144, 147, 148

algorithm, 146, 148, 154
branching, 148
check

region, 148
choice

region, 148
initialization, 148
lower

bound, 148
node

root, 149
pruning, 148
upper

bound, 148
scalar, 54, 96, 106, 108

non-negative, 48
real, 48

schedule, 43
scheduling, 21, 26, 43
SDP, 34
SDP solver, 39
search

bisection, 114, 138
direction

vector, 137
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finite, 105
local, 147
space, 131
variable neighbourhood, 140

search direction, 33
search problem, 61
segment, 93, 98, 137
selection

exact, 144
rule, 142, 148

exact, 143
self-concordant barrier, 88
self-dual, 88
semantics, 33

English, 33
format, 35
MP, 35
MP language, 35

semi-algebraic set, 65
semidefinite programming, 34
sensitivity, 111
senstivity

analysis, 111
sentence, 33, 75

logical, 65
separable, 82
separating

cutting
plane, 125

hyperplane, 99, 103, 124
separation, 124

polynomial, 124
problem, 124

sequence, 34, 137, 149, 150
conditional, 113
exponentially long, 39
finite, 124
nested

infinite, 144
step, 74

sequencing, 43
set, 103, 118, 129, 131, 146, 152

content, 55
convex, 93, 94, 103, 105
decidable, 62
description, 131
distinguished, 142
family, 142
feasible, 37, 115, 130, 132

relaxed, 124
finite, 93
index, 19, 22, 52, 54, 55, 131
infinite, 35
initialization, 54
instance, 35
label, 45
linear, 131
mixed-integer, 131
name, 45
optimal, 37
periodic, 26
polyhedral, 123
qualified, 142, 143
recursive, 62
sampling, 139

stable, 36
set cover, 43
Shannon, 61
shortest

path
problem, 112

shortest path, 78
side

length, 146
sign

opposite, 38
signal processing, 39
simplex, 117

algorithm, 110, 111, 125, 126
centre, 117
dual

iteration, 126
method, 105, 119, 123

dual, 111
revised, 111
two-phase, 111

tableau, 112, 125, 126
translated, 85

simplex method, 61, 64
simulated annealing, 140
simulation, 61
single-objective, 34
size, 123, 133

input, 75
instance, 113
maximum, 113
solution, 39
storage, 77

slack variable, 37
Slater constraint qualification, 103
small-sized

instance, 139
solution, 33, 37, 67, 108, 114, 115, 118, 120, 123, 133–

135, 138, 144, 148, 153
basic

feasible, 106
best, 146
corresponding, 148
current, 109, 112, 124, 138
distinct, 107
feasible, 40, 77, 85, 102, 109, 115, 116, 124, 131
flat, 55
fractional, 85
fractionary, 132
global, 138
integer, 66, 123

feasible, 123
integral, 132, 133
local, 88, 143
lower

bounding, 132
lower bounding, 143
method, 137
not integral, 127
optimal, 35, 117, 119, 125, 127, 128, 138
unique

optimal, 106
upper

bounding, 154
vector, 86
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solution algorithm, 33
solver, 18, 35, 36, 41, 55

commercial, 35
conic, 39
efficient, 35
free, 35
global, 40
input, 38
local, 39
LP, 39, 51
MILP, 39, 51
MP, 39
NLP, 39
off-the-shelf, 35
open-source, 35
robust, 39
robust/efficient, 40
SDP, 39
state-of-the-art, 39
status, 55

source, 25
space

Euclidean, 29
higher-dimensional, 130, 131, 137, 151
projected, 117
search, 131, 138, 144, 148

span, 93
sparse, 39
sphere, 49

circumscribed
smallest, 117

inscribed
largest, 117

SQP, 137
algorithm, 139

square, 67, 81, 83, 106
sum, 29

stable set, 36, 41
standard

form, 125, 152
standard form, 151
standard quadratic programming, 87
starting

point, 139, 140, 146
starting point, 40
state, 75

initial, 75
termination, 75, 76

statement
logical, 36

step, 120, 125
evaluation, 143
length, 135, 137
size, 117

steplength, 110
stochastic, 139

algorithm, 138
stop, 114, 120
storage, 35, 48, 77, 111, 113

balance, 24
empty, 24

StQP, 87
strategy

branching, 132
strict, 93, 94

string, 31
constraint, 34
decision variable, 34
initial, 75
objective, 34
parameter, 34

strongly polytime, 78
structured

format, 55
formulation, 18

subexpression, 150
complicated, 150

subfamily, 142
subgradient, 135

method, 134
vector, 135

subgraph
enumeration, 36

submatrix, 110
invertible, 121, 122
square, 122

smallest, 122
subnode, 150
suboptimal, 120
subproblem, 113, 120, 131–133, 139

current, 131
parent, 132
unsolved, 132

subregion, 144, 148, 153, 154
infeasible, 148

subsequence
convergent, 98
initial, 74

subset, 93
disjoint, 46
largest, 36
minimality, 27

subset-sum, 79–81, 85
subtree, 150
symbol, 33, 76
symmetry, 107
syntax, 35, 41

AMPL, 52
system, 111, 114

linear, 121

tableau, 127, 128
current, 125, 126
modified, 127
optimal, 126, 127
sequence, 126
simplex, 126

tabu
list, 140

tabu search, 140
tangent, 144
tape, 75

half-infinite, 73
multiple, 73
number, 73

target, 25
task, 21, 43

index, 44
order, 43
starting time, 44
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tautology, 65
tensor, 56

form, 20
term

bilinear, 47, 48
linear, 152
nonlinear, 35, 154

termination, 142
artificial, 139
condition, 120, 139, 140, 147
failure, 62
state, 76

test, 35, 36, 52
test branch, 74
text

file, 51
theorem

alternatives, 98
convex analysis, 94
duality, 101

weak, 102
Farkas, 99
inverse function, 96
KKT, 100
Lagrange multiplier, 96
strong duality, 103
weak duality, 104
Weierstraß, 98

theory, 65, 66, 69
DE undecidability, 69
decidable, 64

threshold, 80
time

completion, 22
maximum, 22

current, 138
index, 24
infinite, 139
infinity, 140

timetable, 26
TM, 61, 68, 74

nondeterministic, 74, 75
polytime, 75
variant, 73

tolerance, 120, 138, 144, 147
convergence, 148

TOMLAB, 42
trace, 74

polynomially long, 88
tractable, 73

case, 84
trade-off, 61
transcendental, 62
transformation

projective, 117
symbolic, 39

transition
relation, 75, 76

translation, 29
module, 41

translator, 41
Matlab, 42

transportation, 15, 27, 123
problem, 27

transportation problem, 42

travelling
salesman, 124

tree, 133
directed, 32, 141
expression, 32, 150
parsing, 32
root, 141
search, 131
structure, 131

triangle, 98
triplet, 151
TRS, 81
trust region, 81

radius, 81
TSP, 124
TUM, 122

identity, 122
matrix, 122
property, 122

tunneling, 140
tuple, 34, 75
Turing, 61

machine, 61
universal, 61

Turing machine, 61
universal, 36

Turing-complete, 36, 61
Turing-equivalent, 61
turning

point, 153
two-phase

simplex
method, 111

UDE, 68
complexity measure, 68
degree, 68

unbounded, 37, 87, 102, 108, 113, 114
direction, 108
problem, 110

unboundedness, 69, 85, 105, 113, 114, 116
unconstrained

problem, 120
uncountably many, 37
undecidable, 66–68, 78

problem, 67
underestimating

solution, 145
underestimation, 148

convex, 146
underestimator

convex, 144, 150
tighter, 144

uniform
distribution, 107

unimodular, 121, 123
unimodularity, 122

total, 121
union, 131
unit, 19
univariate

concave, 152
convex, 153
function, 137

universal
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Turing machine, 61
Unix, 51
unquantified, 65
unreliability

inherent, 139
update, 111, 117, 120, 140
updated

current
point, 117

upper
bound, 145

UTM, 36, 68

valid, 130
cut, 112, 124, 133
globally, 131
hyperplane, 124
inequality, 112, 130

valid cut, 35
validation

input, 54
value, 52

current, 110
degenerate, 109
extremal, 149
maximum, 22
minimum, 112

primal, 111
negative, 86, 127

variable, 24, 27, 29, 52, 53, 65, 106, 109–112, 115, 127,
128, 131, 149, 150

additional, 23, 131, 150, 151, 153
basic, 106, 108–110, 121
binary, 22, 23, 27, 76, 78, 129, 131
bound, 151
branching, 132, 146, 153, 154
continuous, 33, 69, 78
decision, 18, 19, 22, 33, 76, 84, 86, 101, 151
dual, 102, 111, 118, 120
eliminated, 65
free, 65
index, 19, 125, 130, 151
integer, 67, 73, 132, 133

branching, 147
many, 146
new, 127
nonbasic, 106, 110, 113, 121

current, 109, 126
nonnegative, 110
number, 107, 116, 149
operand, 154
original, 151, 153
path, 112
primal, 102
product, 22, 129
program, 35, 53
range, 148, 154
ranges, 153
restriction, 17
scalar, 18, 137
scale, 116
slack, 37, 80, 116, 118, 125, 127
symbol, 35, 54
system, 55
unbounded, 69

value, 111
variable neighbourhood

search, 140
variation, 111
vector, 29, 33, 54, 55, 77, 99, 133

cost, 106
direction, 137
feasible, 37, 106, 123
function, 95
integer, 121, 123
parameter, 34
position, 29
rational, 112, 113
row, 102, 111
search

direction, 138
set, 29
unique, 106
variable, 18, 129
zero, 122

vertex, 36, 40, 94, 106, 107, 111, 123
adjacent, 40, 105, 109, 110
degenerate, 107, 109
feasible, 107

polyhedron, 105
fractional, 125
number, 108
optimal, 108
polyhedron, 105
single, 106, 107

vertices
exponentially many, 108

visualization, 52
VNS, 140, 146

algorithm, 146
volume, 115

smaller, 116
Von Neumann, 105

w.r.t., 35
weakly polytime, 78
weight, 124
well-defined, 150
Windows, 51
wlog, 37
worst case, 39, 40

XPress-MP, 35

YALMIP, 42


