INF580 — Advanced Mathematical

Programming
TD3 — Complexity and MP

Leo Liberti

CNRS LIX, Ecole Polytechnique, France

190125

Leo Liberti (CNRS LIX) INF580 / TD3 190125

1/9

Simple AMPL codes

Write AMPL code for the following problems:
» MAX CLIQUE
» SUBSET-SUM
» KNAPSACK
» HAMILTONIAN CYCLE

and test them with the feasible and infeasible (whenever applicable)
instances given in the course slides

Leo Liberti (CNRS LIX) INF580 / TD3 190125 2/9

Random instance generators

v

v

v

v

Coding up instances by hand is boring
Let's use AMPL to generate random instances!
Each problem needs its own generator

In general, for a problem called prob:

1.

copy the index sets / parameters from prob.mod to
prob-instgen.run

set sizes by hand (e.g. “let n := 5;")

use AMPL imperative sublanguage to randomly fill set/param
values

print to file

Leo Liberti (CNRS LIX) INF580 / TD3 190125 3 /9

Random instance generators
Example: generating random graphs, Erdés-Renyi model

option randseed O; # pseudornd gen starts from rnd seed
start from sizes/index sets/params of original problem
param n integer, > 0;
set V := 1..n;
set E within {V,V};
randomly generate missing index sets/params
let n := 50; # initialize number of vertices
param p := 0.5; # probability of creating edge
let E := {}; # initialize the edge set to empty
for {i in V, j in V : i < j} { # no loops or antiparallel arcs

if Uniform(0,1) < p then {

let E := E union {(i,j)}; # create the edge

}
}
print out a .dat file (MIND YOU DON’T OVERWRITE OLD .dat FILES!)
print "# file generated by clique-instgen.run" > rndcliq.dat;
printf "param n := %d;\n", n >> rndcliq.dat;
printf "set E :=" >> rndcliq.dat;
for {(i,j) in E} {

printf " (%4,%d)", i,j >> rndcliq.dat;
}
printf ";\n" >> rndcliq.dat;

Leo Liberti (CNRS LIX) INF580 / TD3 190125

4/9

Random instance generators
Example: uniformly distributed knapsack instances

option randseed O; # pseudornd gen starts from rnd seed
param n integer, > O;

set N := 1..n;

param c{N} integer;

param w{N} integer;

param K integer, >= 0;

randomly generate missing index sets/params

let n := 20; # initialize number of objects
param cL := 1; param cU := 10; # bounds for object volume
param wL := 1; param wU := 10; # bounds for object value

let {i in N} c[i] := round(Uniform(cL,cU));
let {i in N} w[i] := round(Uniform(wL,wU));
let K := round((sum{i in N} c[i])/2); # generate capacity
print out a .dat file (MIND YOU DON’T OVERWRITE OLD .dat FILES!)
print "# file generated by knapsack-instgen.run" > rndknap.dat;
printf "param n := %d;\n", n >> rndknap.dat;
printf "param K := %d;\n", K >> rndknap.dat;
printf "param : ¢ w :=\n" >> rndknap.dat;
for {i in N} {

printf " %i %d %d\n", i, c[il, w[i] >> rndknap.dat;
}
printf ";\n" >> rndknap.dat;

Leo Liberti (CNRS LIX) INF580 / TD3 190125

5/9

Random instance generators

Example: normally distributed knapsack instances
Change

param cL := 1; param cU := 10; # bounds for object volume
param wL := 1; param wU := 10; # bounds for object value
let {i in N} c[i] := round(Uniform(cL,cU));
let {i in N} wl[il] round (Uniform(wL,wU));

to

param cavg := 4.5; param cstdev := 1.9; # object volume
param wavg := 5.8; param wstdev := 3.1; # object value
let {i in N} c[i] := round(Normal(cavg,cstdev));

let {i in N} w[i] := round(Normal (wavg,wstdev));

Leo Liberti (CNRS LIX) INF580 / TD3 190125

6/9

Playing with instances

» How many vertices/edges does the largest MAx CLIQUE instance have,
that CPLEX can solve in 30s on your laptop?

> Generate 9 random graphs, each with 160 vertices, and with edge
generation probability p € P = {0.1,0.2,...,0.9}

» Find max cliques on all these graphs

>

>

use CPLEX as a solver

use “option cplex_options "mipdisplay=2";" after
‘option solver cplex;’ (shows CPLEX progress)
record size w(Gp) of max clique of each graph G, and CPU
time v, for p € P

with bash: name random instances rndcliq-0.1.dat, ..., then type (1 line):
for i in 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ; do
cp rndclig-$i.dat rndcliq.dat ; ampl clique.run ;
done > clique.log 2>&1 &

plot w(Gp) versus p and -y, versus p
with bash: grep OUT: clique.log | cut -d ’:> -f 2

Leo Liberti (CNRS LIX) INF580 / TD3 190125 7/9

The Motzkin-Straus formulation

Write AMPL code to implement the Motzkin-Straus formulation for
solving MAX CLIQUE

>

make sure this formulation can read the same .dat files as those
you already worked on

test this formulation on the instance given in the course slides

use a global optimization solver (e.g. baron) and also a local
optimization one (e.g. snopt): what results do you obtain?

can this formulation be solved using cplex?

what is the maximum instance size you can solve to global
optimality with this formulation? What about local optimality?

Leo Liberti (CNRS LIX) INF580 / TD3 190125 8/ 9

Structured formulation for SAT

» Propose a numerical encoding for SAT instances
» Based on this, write a structured MP formulation for SAT

» Implement it in AMPL and test it using an appropriate solver

Leo Liberti (CNRS LIX) INF580 / TD3 190125 9/9

