Subsection 2

NP-hardness
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NP-Hardness

» Do hard problems exist? Depends on P # NP
» Next best thing: define hardest problem in NP

» A problem P is NP-hard if
Every problem @ in NP can be solved in this way:

1. given an instance g of @ transform it in polytime to
an instance p(q) of P s.t. ¢is YES iff p(¢) is YES

2. run the best algorithm for P on p(q), get answer
a € {YES,NO}

3. return o
pis called a polynomial reduction from Q to P
» If Pisin NP and is NP-hard, it is called NP-complete
» Every problem in NP reduces to sat [Cook 1971]
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Cook’s theorem

Theorem 1:

S of strings is

accepted by some nondeterministic Turing
machine within polynomial time, then S
is P-reducible to {DNF tautologies}.

Boolean decision variables store TM dynamics

Proposition symbols:

i :
Ps,t’ for 1s+isg, 1s<s,t<T.

P; t is true iff tape square number s
B

at step t contains the symbol
i

Qe

true iff at step t the machine is in

state q;.

S for 1s<s,tsT is true iff at

s,t

time t square number s is scanned

by the tape head.

Definition of TM dynamics in CNF

B, asserts that at time t one and

only one square is scanned:

By = (S ¢ vSy,p v rer VSp ) &

§ s, vAs, )]
1<i< j<T it .t

for 1<isr, 1<t<T. Qt is

G:F.,' asserts
that if at time t the machine is in
state q; scanning symbol oj, then at
time t + 1 the machine is in state Qs
where ax is the state given by the

transition function for M.
t

Gy 5 = g (et vas, L vapd v oK)
i,j o= t s,t s,t t+1

1

Description of a dynamical system using a declarative program-
ming language (sat) —what MP is all about!
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Reduction graph
After Cook’s theorem
To prove NP-hardness of a new problem P, pick a known NP-hard

problem () that “looks similar enough” to P and find a polynomial
reduction p from @ to P [Karp 1972]

Why it works: suppose P easier than Q, solve Q by calling p o Alg ;,, conclude Q as easy as P, contradiction
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Example of polynomial reduction

» STABLE: given G = (V, E) and k € N, does it contain a stable
set of size k?

» We know k-cLIQUE is NP-complete, reduce from it

» Giveninstance (G, k) of cLIQUE consider the complement
graph (computable in polytime)

» Thm.: G has a clique of size k iff G has a stable set of size k
» p(G) = Gisapolynomial reduction from cLIQUE to
STABLE

» = STABLE is NP-hard
» STABLE is also in NP

U C Vis astable set iff E(G[U]) = @ (polytime verification)
» = STABLE is NP-complete
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MILP is NP-hard

» sATis NP-hard by Cook’s theorem, Reduce from satin

CNF
AV

where /; is either z; or 7; = —z;
» Polynomial reduction p

SAT | x; VoA
MILP | z; 1-2; + >1

» E.g. pmaps (21 V 22) A (T2 V 23) to

min{0 | x1 + 29 > 1 Axs — 25 > 0A 2 € {0,1}7}

» satris YES iff MILP is feasible

(same solution, actually)
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COMPLEXITY OF QUADRATIC PROGRAMMING

min z'Qr + c'x
Ax > b

» QUADRATIC PROGRAMMING = QP

» Quadratic objective, linear constraints, continuous
variables

» Many applications (e.g. portfolio selection)
» If Q PSD then objective is convex, problem is in P
» If @ has at least one negative eigenvalue, NP-hard

» Decision problem: “is the min. obj. fun. value = 0?”
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QP is NP-hard

» By reduction from SAT, let o be an instance

> p(o,z) > 1:linear constraints of satr — MILP reduction

» Consider QP

min f(x) = <nxj(1 )
plo, ) JZ 1 (1)
0<z<1

» Claim: o is YES iff val(1) =
» Proof:
» assume o YES with soln. z*, then 2* € {0,1}", hence
f(z*) =0, since f(z) > 0forall z,val(f) =0
» assume o NO, suppose val(f) = 0, then (}) feasible
with soln. 2/, since f(z') = 0then 2’ € {0, 1}, feasible
in saT hence o 1s YES, contradiction
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Box-constrained QP is NP-hard

» Add surplus vars v to sar—MILP constraints:
plo,z)—1—v=0
(denote by Vi < m (a; x — b; — v; = 0))

» Now sum them on the objective

min Y z;(1—x;) + Z(ajiﬁ—bi—vi)Q }

j<n i<m
0<z<1,v>0
» Issue: v not bounded above

» Reduce from 3sar, get < 3 literals per clause
= can consider 0 < v < 2
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cQKP is NP-hard

> CONTINUOUS QUADRATIC KNAPSACK PROBLEM (CQKP)

min f(z)=2'Qx + c'x

2 ajry =

j<n
x € [0,1]",
» Reduction from suBsSET-sum
givenlista € Q" and vy, isthere J C {1,... ,n}st 3> a; =~?
reduce to f(z) = 3>, z;(1 — z;) -
» oisaYESinstance of SUBSET-sum
> Ietx; =1iffj € J, T} = 0 otherwise
» feasible by construction
> fisnon-negative on [0, 1] and f(z*) = 0: optimum
» ois aNO instance of SUBSET-sum

> suppose opt(cQKP) = z* s.t. f(z*) =0
» thenz* € {0,1}" because f(z*) =0
> feasibility of 2* — supp(z*) solves o, contradiction, hence f(z*) > 0
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QP on a simplex is NP-hard

min  f(z)=2"Qr + c'x
Yoy = 1
Jj<n
Vi<n z; > 0
» Reduce max cLIQUE to subclass f(z) = — Y~ 2,
{igteE

Motzkin-Straus formulation (MSF)
» Theorem [Motzkin& Straus 1964/

Let C be the maximum clique of the instance G = (V, E) of MAX CLIQUE

3 € opt (MSF)  f* = f(z*) =1 (1 o
A ifjeC
; ) we W
eV { 0 otherwise
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Proof of the Motzkin-Straus theorem

x* =opt( max > xx;) st |C={j €V |z} >0} smallest (})
S0 e

1.|Cis aclique

> Suppose 1,2 € Cbut {1,2} ¢ E[C], thenz], x5 > 0, can perturb by small

€ € [—a7,z3], getz€ = (x] +¢€,25 — ¢, .. .), feasible w.r.t. simplex and bounds
> {1,2} ¢ E = x1z2 does not appear in f(x) = f(x) depends linearly on ¢; by
optimality of 2*, f achieves max for ¢ = 0, in interior of its range = f(¢)
constant
> sete = —z7 or = z} yields global optima with more zero components than z*,

against assumption (f), hence {1,2} € E[C], by relabeling C is a clique
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Proof of the Motzkin-Straus theorem

N

“=opt( max > wzzj)st.|C={j€V [z} >0} smallest (})
sl ijen

C] = w(@)

> square simplex constraint }_; z; = 1, get

S 3 e
jev i<jeV
by constructionz = 0 forj ¢ C=

V) =Y @) +2 Y wjai = (2))° +2f(") =1

jecC i<jeC jec
¥ (x) = 1for all feasible z, so f(z) achieves maximum when Zjec(x;)Q is
minimum, i.e. 2} = ﬁ forallj € C
again by simplex constraint
(2)=1- 3 @2 =1—[C] = <1— ——
2 iC] (G

so f(z*) attains maximum 1 — 1/w(G) when |C| = w(G)
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Portfolio optimization

You, a private investment banker, are seeing a customer.
She tells you “I have 3,450,000 I don’t need in the next three
years. Invest them in low-risk assets so I get at least 2.5% re-
turn per year.”

Model the problem of determining the required portfolio.
Missing data are part of the fun (and of real life).

[Hint: what are the decision variables, objective, constraints? What data are missing?
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