
Subsection 2

NP-hardness
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NP-Hardness

I Do hard problems exist? Depends onP 6= NP

I Next best thing: de�ne hardest problem inNP

I A problem P isNP-hard if
Every problemQ inNP can be solved in this way:
1. given an instance q ofQ transform it in polytime to
an instance ρ(q) of P s.t. q is YES i� ρ(q) is YES

2. run the best algorithm for P on ρ(q), get answer
α ∈ {YES,NO}

3. return α
ρ is called a polynomial reduction fromQ to P

I If P is inNP and isNP-hard, it is calledNP-complete

I Every problem inNP reduces to sat [Cook 1971]
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Cook’s theorem

Boolean decision variables store TM dynamics
De�nition of TM dynamics in CNF

Description of a dynamical system using a declarative program-
ming language (sat) — what MP is all about!
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Reduction graph
After Cook’s theorem
To proveNP-hardness of a new problem P , pick a knownNP-hard
problemQ that “looks similar enough” to P and �nd a polynomial
reduction ρ fromQ to P [Karp 1972]

Why itworks: supposeP easier thanQ, solveQ by calling ρ ◦ AlgP , concludeQ as easy asP , contradiction
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Example of polynomial reduction
I stable: givenG = (V,E) and k ∈ N, does it contain a stable
set of size k?

I We know k-clique isNP-complete, reduce from it
I Given instance (G, k) of clique consider the complement
graph (computable in polytime)

Ḡ = (V, Ē = {{i, j} | i, j ∈ V ∧ {i, j} 6∈ E})

I Thm.: G has a clique of size k i� Ḡ has a stable set of size k
I ρ(G) = Ḡ is a polynomial reduction from clique to

stable
I ⇒ stable isNP-hard
I stable is also inNP
U ⊆ V is a stable set i�E(G[U ]) = ∅ (polytime veri�cation)

I ⇒ stable isNP-complete
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MILP isNP-hard
I sat isNP-hard by Cook’s theorem, Reduce from sat in
CNF ∧

i≤m

∨
j∈Ci

`j

where `j is either xj or x̄j ≡ ¬xj
I Polynomial reduction ρ

sat xj x̄j ∨ ∧
MILP xj 1− xj + ≥ 1

I E.g. ρmaps (x1 ∨ x2) ∧ (x̄2 ∨ x3) to

min{0 | x1 + x2 ≥ 1 ∧ x3 − x2 ≥ 0 ∧ x ∈ {0, 1}3}

I sat is YES i�MILP is feasible
(same solution, actually)
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Complexity of Quadratic Programming

min x>Qx + c>x
Ax ≥ b

}
I Quadratic Programming =QP
I Quadratic objective, linear constraints, continuous
variables

I Many applications (e.g. portfolio selection)
I IfQ PSD then objective is convex, problem is inP
I IfQ has at least one negative eigenvalue,NP-hard
I Decision problem: “is the min. obj. fun. value= 0?”
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QP isNP-hard
I By reduction from SAT, let σ be an instance
I ρ̂(σ, x) ≥ 1: linear constraints of sat→ MILP reduction

I Consider QP

min f(x) =
∑
j≤n

xj(1− xj)

ρ̂(σ, x) ≥ 1
0 ≤ x ≤ 1

 (†)

I Claim: σ is YES i� val(†) = 0

I Proof:
I assume σ YES with soln. x∗, then x∗ ∈ {0, 1}n, hence
f(x∗) = 0, since f(x) ≥ 0 for all x, val(†) = 0

I assume σ NO, suppose val(†) = 0, then (†) feasible
with soln. x′, since f(x′) = 0 then x′ ∈ {0, 1}, feasible
in sat hence σ is YES, contradiction
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Box-constrained QP isNP-hard

I Add surplus vars v to sat→MILP constraints:
ρ̂(σ, x)− 1− v = 0

(denote by ∀i ≤ m (a>i x− bi − vi = 0))
I Now sum them on the objective

min
∑
j≤n

xj(1− xj) +
∑
i≤m

(a>i x− bi − vi)2

0 ≤ x ≤ 1, v ≥ 0

}

I Issue: v not bounded above
I Reduce from 3sat, get≤ 3 literals per clause
⇒ can consider 0 ≤ v ≤ 2
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cQKP isNP-hard
I continuous Quadratic Knapsack Problem (cQKP)

min f(x) = x>Qx + c>x∑
j≤n

ajxj = γ

x ∈ [0, 1]n,


I Reduction from subset-sum

given list a ∈ Qn and γ, is there J ⊆ {1, . . . , n} s.t.
∑
j∈J

aj = γ?

reduce to f(x) =
∑
j xj(1− xj)

I σ is a YES instance of subset-sum
I let x∗j = 1 i� j ∈ J , x∗j = 0 otherwise
I feasible by construction
I f is non-negative on [0, 1]n and f(x∗) = 0: optimum

I σ is a NO instance of subset-sum
I suppose opt(cQKP) = x∗ s.t. f(x∗) = 0

I then x∗ ∈ {0, 1}n because f(x∗) = 0

I feasibility of x∗→ supp(x∗) solves σ, contradiction, hence f(x∗) > 0
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QP on a simplex isNP-hard

min f(x) = x>Qx + c>x∑
j≤n

xj = 1

∀j ≤ n xj ≥ 0


I Reducemax clique to subclass f(x) = −

∑
{i,j}∈E

xixj

Motzkin-Straus formulation (MSF)

I Theorem [Motzkin& Straus 1964]
LetC be themaximum clique of the instanceG = (V,E) ofmax clique

∃x∗ ∈ opt (MSF) f∗ = f(x∗) = 1
2

(
1− 1

ω(G)

)
∀j ∈ V x∗j =

{ 1
ω(G) if j ∈ C
0 otherwise
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Proof of theMotzkin-Straus theorem
x∗ = opt( max

x∈[0,1]n∑
j xj=1

∑
ij∈E

xixj) s.t. |C = {j ∈ V |;x∗j > 0}| smallest (‡)

1. C is a clique
I Suppose 1, 2 ∈ C but {1, 2} 6∈ E[C], then x∗1, x

∗
2 > 0, can perturb by small

ε ∈ [−x∗1, x∗2], get xε = (x∗1 + ε, x∗2 − ε, . . .), feasible w.r.t. simplex and bounds

I {1, 2} 6∈ E ⇒ x1x2 does not appear in f(x)⇒ f(xε) depends linearly on ε; by

optimality of x∗, f achieves max for ε = 0, in interior of its range⇒ f(ε)

constant

I set ε = −x∗1 or= x∗2 yields global optima withmore zero components than x
∗,

against assumption (‡), hence {1, 2} ∈ E[C], by relabelingC is a clique
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Proof of theMotzkin-Straus theorem
x∗ = opt( max

x∈[0,1]n∑
j xj=1

∑
ij∈E

xixj) s.t. |C = {j ∈ V |;x∗j > 0}| smallest (‡)

2. |C| = ω(G)
I square simplex constraint

∑
j xj = 1, get∑

j∈V
x2j + 2

∑
i<j∈V

xixj = 1

I by construction x∗j = 0 for j 6∈ C⇒

ψ(x∗) =
∑
j∈C

(x∗j )
2 + 2

∑
i<j∈C

x∗jx
∗
j =

∑
j∈C

(x∗j )
2 + 2f(x∗) = 1

I ψ(x) = 1 for all feasible x, so f(x) achieves maximumwhen
∑
j∈C(x

∗
j )

2 is

minimum, i.e. x∗j = 1
|C| for all j ∈ C

I again by simplex constraint

f(x∗) = 1−
∑
j∈C

(x∗j )
2 = 1− |C|

1

|C|2
≤ 1−

1

ω(G)

so f(x∗) attains maximum 1− 1/ω(G) when |C| = ω(G)
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Portfolio optimization

You, a private investment banker, are seeing a customer.
She tells you “I have 3,450,000$ I don’t need in the next three
years. Invest them in low-risk assets so I get at least 2.5% re-
turn per year.”

Model the problem of determining the required portfolio.
Missing data are part of the fun (and of real life).

[Hint: what are the decision variables, objective, constraints? What data are missing?]
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