Section 3

Efficiency and Hardness
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Worst-case algorithmic complexity

» Computational complexity theory:
worst-case time/space taken by an algorithm to complete
» Algorithm A
» e.g.to determine whether a graph G = (V, E) is
connected or not
» input: G; size of input: v = |V| + |E|
» How does the CPU time 7(.A) used by A vary with ?
» 7(A) = O(v*) for fixed k: polytime
» 7(A) = O(2”): exponential
» polytime « efficient
» exponential <> inefficient
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Polytime algorithms are “efficient”

» Why are polynomials special?

» Many different variants of Turing Machines (TM)

» Polytime is invariant to all definitions of TM

» Inpractice, O(v)-O(v?) is an acceptable range
covering most practically useful efficient algorithms

» Many exponential algorithms are also usable in
practice for limited sizes
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Instances and problems

» An input to an algorithm A: instance
» Collection of all inputs for A: problem

consistent with “set of sentences” from decidability
» BUT:
» A problem can be solved by different algorithms
» There are problems which no algorithm can solve
» Given a problem P, what is the complexity of the best
algorithm that solves P?
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Complexity classes

» Focus on decision problems
» If 3 polytime algorithm for P, then P € P

» If there is a polytime checkable certificate for all YES
instances of P, then P € NP

» No-one knows whether P = NP (we think not)

» NP includes problems for which we don’t think a
polytime algorithms exist
e.g. k-CLIQUE, SUBSET-SUM, KNAPSACK, HAMILTONIAN
CYCLE, SAT, ...
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Subsection 1

Some combinatorial problems
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k-CLIQUE

» Instance: (G = (V, E), k)
» Problem: determine whether G has a clique of size k

@ 3

» 1-cLiquE? YES (every graph is YES)

» 2-cLiQuE? YES (every non-empty graph is YES)
» 3-cLIQUE? YES (triangle {1, 2,4} is a certificate)
certificate can be checkedin O(k) < O(n)

» 4-cLiQuE? NO
no polytime certificate unless P = NP
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MP formulations for cLIQUE

Variables? Objective? Constraints?



MP formulations for cLIQUE

Variables? Objective? Constraints?
» Pure feasibility problem:

Vi, j} ¢ E xi+r; <
> T =
i€V

T €

{0, 13"

V]
=



MP formulations for cLIQUE

Variables? Objective? Constraints?
» Pure feasibility problem:

Vi, j} ¢ E xi+r; <
> T =
eV

xr €
» Max CLIQUE:
max Y. ¥
=%

Wi,j} ¢ B wi+x; <

xr €

{0, 13"

1
{0, 13"

V]
=



SUBSET-SUM

» Instance: lista = (a1,...,a,) € N"andb € N

» Problem: isthere J C {1,...,n}suchthat > a; = 0?
jeJ

» a=(1,1,1,4,5),b =3: YES J = {1,2,3}
allb € {0,...,12} yield YES instances

> a=(3,6,9,12),b = 20: NO
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MP formulations for SUBSET-suMm

Variables? Objective? Constraints?
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MP formulations for SUBSET-suMm

Variables? Objective? Constraints?
» Pure feasibility problem:

Z ajxj = b
Jj<n
r € {0,1}"
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KNAPSACK

>

>

Instance: c,w € N, K € N
Problem: find J C {1,...,n}s.t.¢(J) < Kandw(J) is

maximum

c=(1,2,3),w=(3,4,5),K =3

» ¢(J) < K feasible for Jin @, {j},{1,2}
» w(@) =0,w{1,2})=3+4="7T,w({j}) <5forj<n
= Jmax = {1,2}

K = 0: infeasible

natively expressed as an optimization problem

notation: c¢(J) = Y~ c;j (similarl for w(.J))
JEJ
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MP formulation for KNAPSACK

Variables? Objective? Constraints?
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MP formulation for KNAPSACK

Variables? Objective? Constraints?

max Z U)jil?j
Jj<n
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HamiLTONIAN CYCLE

» Instance: G = (V, E)
» Problem: does G have a Hamiltonian cycle?

cycle covering every v € V exactly once

NO YES(ccrl.1~>2~>5~>3~>4~>1)

G) : G) °

32/48



MP formulation for HaAmiLToONIAN CYCLE

Variables? Objective? Constraints?
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MP formulation for HaAmiLToONIAN CYCLE

Variables? Objective? Constraints?

Jjev
{i,j}€E

eV
{i,j}€E

i€S,jgs
{i.j}eE

WARNING: second order statement!

quantified over sets

other warning: need arcs not edges in (1)-(3)
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SATISFIABILITY (SAT)
» Instance: open boolean logic sentence f in CNF
AV G
i<m jeC;

where (; € {z;,z;} forj <n
» Problem: isthere ¢ : + — {0, 1}" s.t. ¢(f) = 17

> fE (xl\/fg\/.T?))/\(.’fl\/(L’g)
r1 = 22 = 1,23 = 0is a YES certificate
» = (21 Va) ATy VI) A (T V) A (21 V To)

¢ || z=(1,1) | 2=(0,0) | x=(1,0) | = (0,1)
false CQ C1 03 04
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MP formulation for sart

Exercise
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Subsection 2

NP-hardness



NP-Hardness

» Do hard problems exist? Depends on P # NP
» Next best thing: define hardest problem in NP

» A problem P is NP-hard if
Every problem @ in NP can be solved in this way:

1. given an instance g of Q) transform it in polytime to
an instance p(q) of P s.t. ¢is YES iff p(q) is YES
2. run the best algorithm for P on p(q), get answer

a € {YES,NO}

3. return o
pis called a polynomial reduction from Q to P
» If Pisin NP andis NP-hard, it is called NP-complete
» Every problem in NP reduces to sat [Cook 1971]
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Cook’s theorem

Theorem 1:

If a set

S of strings is

accepted by some nondeterministic Turing
machine within polynomial time, then S
is P-reducible to {DNF tautologies}.

Boolean decision variables store TM dynamics

Proposition symbols:

i :
Ps,t’ for 1s+isg, 1s<s,t<T.

P; t is true iff tape square number s
B

at step t contains the symbol oy .
i

Qe

true iff at step t the machine is in

for 1<isr, 1<t<T. Qt is

state q;.
Ss t for 1s<s,tsT is true iff at
B

time t square number s is scanned

by the tape head.

Definition of TM dynamics in CNF

B, asserts that at time t one and

only one square is scanned:

By = (S ¢ vSy,p v rer VSp ) &

&  (s; . vAs: )]
1<i< j<T it It

t
Gi . asserts

that if at time t the mach;ne is in
state q; scanning symbol oj, then at
time t + 1 the machine is in state Qs
where ax is the state given by the

transition function for M.
t

G, ; = E (1t vas. . vard vk
i,j o= t s,t s,t t+1

1

Description of a dynamical system using a declarative program-
ming language (sat) — what MP is all about!
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