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Introduction



i R Example: Set covering

Fl'here are 12 possible geographical positions A4, ..., A;2 where some T
discharge water filtering plants can be built. These plants are supposed to
service 5 cities (1, ..., C5; building a plant at site j (j € {1,...,12}) has
cost ¢; and filtering capacity (in kg/year) f;; the total amount of discharge
water produced by all cities is 1.2 x 10! kg/year. A plant built on site j can
serve city ¢ if the corresponding (7, j)-th entry is marked by a **’ in the
table below.

A1 As As As As Asg A7 Ag A9 Ao A1n Aio

* * * * * *
C1
02 * * * * * *
* * * * *
C3
04 * * * * * *
05 * * * * * * *

cj 7 9 12 3 4 4 5 11 8 6 7 16
[ 15 39 26 31 34 24 51 19 18 36 41 34

LWhat is the best placement for the plants? J
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Example: Sudoku

Given the Sudoku grid below, find a solution or prove that
no solution exists

2 1
119 2|8
5 /
5 3
/ 6
3 6 9
91 4 5| 2
8 6

-

|
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a4 A Example: Kissing Number

- N

How many unit balls with disjoint interior can be placed
adjacent to a central unit ball in R%?

| g@@
@

In R

(D = 3: problem proposed by Newton in 1694, settled by
[Schitte and van der Waerden 1953] and [Leech 1956])
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Mathematical programming

# The above three problems seemingly have nothing in

common!

® Yet, there is a formal language that can be used to

describe all three: mathematical programming (MP)

-

# Moreover, the MP language comes with a rich supply of
solution algorithms so that problems can be solved right

away
Problem Reformulation
formulation and choice of so- Solution process
in MP lution algorithm
Human intelligence
AMPL Solver
(for now)

|
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4 R MP language implementations

fSoftware packages implementing (sub/supersets of the) MP language: T

® AMPL (our software of choice, mixture of MP and near-C language)

o commercial, but student version limited to 300 vars/constrs is
available from www.ampl.com

# quite a lot of solvers are hooked to AMPL

® GNU MathProg (subset of AMPL)
o free, but only the GLPK solver (for LPs and MILPs) can be used
# itis a significant subset of AMPL but not complete

® GAMS (can do everything AMPL can, but looks like COBOL — ugh!)
o commercial, limited demo available from www.gams . com
# quite a lot of solvers are hooked to GAMS

® Zimpl (free, C++ interface, linear modelling only)
L’ LINDO, MPL, ... (other commercial modelling/solution packages) J
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www.ampl.com
www.gams.com

B . How to model

-

Asking yourself the following questions should help you get started with
your MP model

# The given problem is usually a particular instance of a
problem class; you should model the whole class, not just
the instance (replace given numbers by parameter
symbols)

# What are the decisions to be taken? Are they logical,
integer or continuous?

# What is the objective function? Is it to be minimized or
maximized?

# What constraints are there in the problem? Beware —
some constraints may be “hidden” in the problem text

If expressing objective and constraints is overly difficult, go
back and change your variable definitions J
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Set covering 1

g 5
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s
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¥ POLYTECHNIQUE
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et us now consider the Set Covering problem
What is the problem class?

-

# We replace the number 12 by the parameter symbol n,
the number 5 by m and the number 1.2 x 10'! by d

o We already have symbols for costs (c;) and capacities
(f;j), where j <nandi<m

o We represent the asterisks by a 0-1 matrix A = (a;;)
where a;; = 1 if there is an asterisk at row ¢, column j of
the table, and 0 otherwise

o |
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Set covering 2

f What are the decisions to be taken? T

# The crucial text in the problem is what is the best placement
for the plants?; i.e. we need to place each plant at some
location

1. geographical placement on a plane? (continuous
variables)

2. yes/no placement? (“should the j-th plant be placed
here?” — logical 0-1 variables)

#® Because the text also says there are n possible geographical
positions. . ., It means that for each position we have to
decide whether or not to build a plant there

# For each of geographical position, introduce a binary
variable (taking 0-1 values):

L Vi<n x;€{0,1} J
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Set covering 3

-

What is the objective function?

In this case we only have the indication best placement in
the text

Given our data, two possibilities exist: cost
(minimization) and filtering capacity (maximization)

However, because of the presence of the parameter d, it
wouldn’t make sense to have more aggregated filtering
capacity than d kg/year

Hence, the objective function is the cost, which should
be minimized:
min Z Cjil?j
J<n

|
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Set covering 4

What are the constraints? T

# The total filtering capacity must be at least d:
Z Jir; > d
J<n
# Each city must be served by at least one plant:
Vi <m Zaijazj > 1
J<n

® Because there are no more constraints in the text, this
concludes the first modelling phase

o |
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Analysis
-

What category does this mathematical program belong
to?

s Linear Programming (LP)

s Mixed-Integer Linear Programming (MILP)

s Nonlinear Programming (NLP)

s Mixed-Integer Nonlinear Programming (MINLP)

Does it have any notable mathematical property?

s If an NLP, are the functions/constraints convex?

s |f a MILP, is the constraint matrix Totally Unimodular
(TUM)?

s Does it have any apparent symmetry?

Can it be reformulated to a form for which a fast solver is

available?
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Set covering 5

f.’ The objective function and all constraints are linear forms T
® All the decision variables are binary
® Hence the problem is a MILP (actually, a BLP)

® Good solutions can be obtained via heuristics (e.g. local branching,
feasibility pump, VNS, Tabu Search)

°

Exact solution via Branch-and-Bound (solver: CPLEX)

°

No need for reformulation: CPLEX is a fast enough solver

CPLEX 11.0.1 solution: 24 = z7 = 217 = 1, all the rest 0 (i.e. build
plants at positions 4,7,11)

°

® Notice the paradigm | model & solver — solution

Since there are many solvers already available,

solving the problem| reduces to | modelling the problem J
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AMPL
-

AMPL means “A Mathematical Programming
Language”

AMPL is an implementation of the Mathematical
Programming language
Many solvers can work with AMPL

AMPL works as follows:

1. translates a user-defined model to a low-level

formulation (called flat form) that can be understood
by a solver

2. passes the flat form to the solver

3. reads a solution back from the solver and interprets
it within the higher-level model (called structured form)

|
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o o

Model, data, run

AMPL usually requires three files: T
o the model file (extension .mod) holding the MP formulation

» the data file (extension .dat), which lists the values to be
assigned to each parameter symbol

» the runfile (extension . run), which contains the (imperative)
commands necessary to solve the problem

The model file is written in the MP language

The data file simply contains numerical data together with the
corresponding parameter symbols

The run file is written in an imperative C-like language (many notable
differences from C, however)

Sometimes, MP language and imperative language commands can
be mixed in the same file (usually the run file)

To run AMPL, type ampl < problem.run from the command IineJ
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An elementary run file

-

o Consider the set covering problem, suppose we have
coded the model file (setcovering.mod) and the data
file (setcovering.dat), and that the CPLEX solver is
iInstalled on the system

# Then the following is a basic setcovering. run file

# basic run file for setcovering problem
model setcovering.mod; # specify model file
data setcovering.dat; # specify data file

option solver cplex; # specify solver

solve; # solve the problem
display cost; # display opt. cost
display x; # display opt. soln.

o |
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Set covering model file

# setcovering.mod

param m integer, >= 0;
0;

param n integer, >=
set M := 1..m;
set N := 1..n;

param c{N} >= 0;
param a{M,N} binary;
param f£{N} >= 0;

param d >= 0;
var x{Jj 1n N} binary;

minimize cost: sum{]j in N} c[J]l*x[]];
subject to capacity: sum{j in N} f[3j]*x[]J] >= d;
subject to covering{i 1n M}: sum{J 1in N} al[i,J]l*x[]] >= 1;

INF572 2010/11 — p. 21
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a4 R AMPL+CPLEX solution

liberti@nox$ cat setcovering.run | ampl ___W
ILOG CPLEX 11.010, options: e m b g use=2

CPLEX 11.0.1: optimal integer solution; objective 15

3 MIP simplex iterations

0 branch—-and-bound nodes

cost = 15

X [*

0 J o U b w DN -

L?Z |
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AMPL MP Language

There are 5 main entities: sets, parameters, variables, objectives and
constraints

In AMPL, each entity has a name and can be quantified

® set name [{quantifier}] attributes ;

param name [{quantifier}] attributes ;

var name [{quantifier}] attributes ;

minimize | maximize name [{quantifier}]: iexpr ;

e o o @

subject to name [{quantifier}]: iexpr <=|=|>= iexpr ;

Attributes on sets and parameters is used to validate values read
from data files

Attributes on vars specify integrality (binary, integer) and limit
constraints (>= lower, <= upper)

Entities indices: square brackets (e.g. y[11, x[1i,k])

The above is the basic syntax — there are some advanced options J
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AMPL data specification

.F. g
Yo
Gz
s
ECOLE'
POLYTECHNIQUE

n general, syntax is in map-like form; a
param p{i in S} integer;

IS a map S — Z, and each pair (domain, codomain) must be
specified:
param p :=
1 4
2 =3
3 0;

The grammar is simple but tedious, best way is

learning by example or trial and error

o |
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AMPL imperative language
f.’ model model_filename.mod ; —‘

data data_filename.dat ;

option option_.name literal_string, ... ;

solve ;

display [{quantifier}] iexpr ; / printf (syntax similar to C)
let [{quantifier}] ivar : =number;

if (condition_listy then { commands } [else {commands}]
for {quantifier} {commands}/break; / continue;
shell ’command.line’ ; | exit number; | quit;

cd dir.-name; |/ remove file_.name;

© © o o o o o o o ©

In all output commands, screen output can be redirected to a file by
appending > output filename.txt before the semicolon

.

These are basic commands, there are some advanced ones
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Reformulation commands

£ ix [{quantifier}] ivar [ : =number];

unfix [{quantifier}] ivar;

delete entity_.name;

purge entity_name;

redeclare entity_declaration;

drop/restore [{quantifier}]| constror_.obj_.name;
problem name[{quantifier}] [ : entity_name_list] ;

This list is not exhaustive

|
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Solvers

I—[n order of solver reliability / effectiveness: T
1.

LPs: use an LP solver (O(10°) vars/constrs, fast, e.g. CPLEX, CLP,
GLPK)

MILPs: use a MILP solver (O(10%) vars/constrs, can be slow,
e.g. CPLEX, Symphony, GLPK)

NLPs: use a local NLP solver to get a local optimum (O(10%)
vars/constrs, quite fast, e.g. SNOPT, MINQOS, IPOPT)

NLPs/MINLPs: use a heuristic solver to get a good local optimum
(O(103), quite fast, e.g. Bonmin, MINLP_BB)

NLPs: use a global NLP solver to get an (approximated) global
optimum (O(10?) vars/constrs, can be slow, e.g. Couenne, BARON)

. MINLPs: use a global MINLP solver to get an (approximated) global

optimum (O(10%) vars/constrs, can be slow, e.g. Couenne, BARON)

Not all these solvers are available via AMPL
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Solution algorithms (linear)

|7.. LPs. (convex) T

1. simplex algorithm (non-polynomial complexity but
very fast in practice, reliable)

2. interior point algorithms (polynomial complexity,
quite fast, fairly reliable)

® MILPs: (nonconvex because of integrality)

1. Local (heuristics): Local Branching, Feasibility Pump
[Fischetti&Lodi 05], VNS [Hansen et al. 06] (quite
fast, reliable)

2. Global: Branch-and-Bound (exact algorithm,

non-polynomial complexity but often quite fast,
heuristic if early termination, reliable)

o |
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= Solution algorithms (nonlinear)

|7.. NLPs: (may be convex or nonconvex) —‘
1. Local: Sequential Linear Programming (SLP), Sequential
Quadratic Programming (SQP), interior point methods
(linear/polynomial convergence, often quite fast, unreliable)

2. Global: spatial Branch-and-Bound [Smith&Pantelides 99]

(e-approximate, nonpolynomial complexity, often quite slow,
heuristic if early termination, unreliable)

® MINLPs: (nonconvex because of integrality and terms)

1. Local (heuristics): Branching explorations [Fletcher&Leyffer 99],
Outer approximation [Grossmann 86], Feasibility pump [Bonami
et al. 06] (nonpolynomial complexity, often quite fast, unreliable)

2. Global. spatial Branch-and-Bound [Sahinidis&Tawarmalani 05]
(e-approximate, nonpolynomial complexity, often quite slow,
L heuristic if early termination, unreliable) J
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min,
st. < gz) <u
ol < :p) <V 1] 0
Vie Z C{l,...,n} r, € 7 )

where z, 2%, 2V e R*; [,u e R™; f :R* - R; g : R* — R™

® A point z* is feasible in P if | < g(z*) < u, ¥ < z* < 2Y and
Vi e Z (zf € Z); F(P) = set of feasible points of P

® |[f g;(x*) =1 or=wuforsome i, g; is active at x*

® A feasible z* is a local minimum if AB(x*,¢) s.t. Vo € F(P)N B(x*,¢)
we have f(z*) < f(x)

® A feasible =* is a global minimum if Vx € F(P) we have f(z*) < f(x)

o |
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g. 8  Feasibility and optimality

]
.

® ['(P) = feasible region of P, L(P) = set of local optima,
G(P) = set of global optima

# Nonconvexity = G(P) C L(P)

. 1 . /\/
min =x + sin(x 5 T
re[-3,6] 4 (@) \/

-

o |
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g R Convexity
|7.. A function f(x) is convex if the following holds: T
Vxg,z1 € dom(f) VA€ [0,1]
fAzo+ (L= A)z1) < Af(zo) + (1= A)f(x1)

)

Af(xo) + (1 = A)f(x1)
f(zo)

f(Axzo + (1 — N)z1)

5‘130 i il T
ATo + (1 — )\)azl
® AsetC CR"isconvexif Vg, 21 € C;A € [0,1] (Axo+ (1 —N)zy € O)

® [fg:R™ — R™ are convex, then {z | g(x) < 0} is a convex set

L’ If f, g are convex, then every local optimum of min f(x) is global

g(z)<0 J

® Alocal NLP solver suffices to solve the NLP to optimality
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Canonical form

-

® P Is a linear programming problem (LP) if f : R" — R,
g : R" — R™ are linear forms

® LP in canonical form:

min, c'z )
st. Ax <b |[C] (2)
x>0 )

# Can reformulate inequalities to equations by adding a
non-negative slack variable x,.1 > O:

n

n
Zajflfj <b = Zajilij—‘rilfn_|_1:b N Tpy1 =0

o

|
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Standard form

-

LP in standard form: all inequalities transformed to
equations

min, (c)'z

st. Alz=0b ;|S] (3)
x>0
Where L = (5617 covy Iny 41y - - 7ajn—|—m)5
A= (A1,),d =(c0,...,0)
N——

Standard form useful because linear systems of
equations are computationally easier to deal with than
systems of inequalities

Used in simplex algorithm

|
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Geometry of LP

-

® A polyhedron is the intersection of a finite number of
closed halfspaces. A bounded, non-empty polyhedron
IS a polytope

Z2

Canonical feas. polyhedron. F(C) =
{reR"| Az <b A =z >0}

21422 <2 -
B T
"R A( >,b = (2,2)

N+ 2w < 2 21

Q row 1

- Standard feas. polyhedron. F(S) =
row 2 {(I,y) c Rntm ‘ Az + Iy
P s m b A (z,y) >0}

® P=(0,0,2,2),Q=(0,1,0,1),R=(2,2,0,0),S = (1,0,1,0)

# Each vertex corresponds to an intersection of at least n
~ hyperplanes = > n coordinates are zero o
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Basic feasible solutions

-

Consider polyhedron in “equation form”
K={xeR"| Az =bAxz>0}. Aism x n of rank m
(N.B. n here is like n + m In last slide!)

A subset of m linearly independent columns of A is a
basis of A

If 3 is the set of column indices of a basis of A,
variables z; are basic for i € 3 and nonbasic for i ¢ (3

Partition A in a square m x m nonsingular matrix B
(columns indexed by ) and an (n — m) x m matrix N
Write A = (B|N), xp € R™ basics, zx € R"~"" nonbasics

Given a basis (B|N) of A, the vector z = (zp,zn) IS A
basic feasible solution (bfs) of K with respect to the given
basis if Az =b,zp >0and zy =0 J
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Fundamental Theorem of LP

-

Given a non-empty polyhedron K in “equation form”,
there is a surjective mapping between bfs and vertices
of K

For any c € R", either there is at least one bfs that
solves the LP min{c'x |z € K}, or the problem is
unbounded

Proofs not difficult but long (see lecture notes or
Papadimitriou and Steiglitz)

mportant correspondence between bfs’s and vertices
suggests geometric solution method based on exploring
vertices of K

|
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Simplex Algorithm: Summary

-

Solves LPs in form mll%c r Where K = {Ax=bA x>0}
uS

Starts from any vertex x

Moves to an adjacent improving vertex z’
(i,e. 2’ is s.t. 3edge {z,2'} in K and c'2’ < c'x)

Two bfs’s with basic vars indexed by sets 3, 5
correspond to adjacent vertices if |[BN G| =m — 1

Stops when no such 2z’ exists

Detects unboundedness and prevents cycling =
convergence

K convex = global optimality follows from local
optimality at termination

|
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Simplex Algorithm I
- ] ]

® letx = (x1,...,2,) be the current bfs, write Az =b as
Bxrg+ Nxny =0

# Express basics in terms of nonbasics:
rg = B~'b — B~ Nz (this system is a dictionary)

#® Express objective function in terms of nonbasics:
cla = CECI?B + cN:CN — cB(B ' — B INzy) + CJTV:I:N =

= C JJ—CBB 1b+chN

(¢l = ¢ — cg B~IN are the reduced costs)

# Select an improving direction: choose a nonbasic
variable z;, with negative reduced cost; increasing its
value will decrease the objective function value

# |f no such h exists, no improving direction, local
L minimum =- global minimum =- termination J
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: A Simplex Algorithm II
f.o lteration start: x;, is out of basis = its value is zero T

# We want to increase its value to strictly positive to
decrease objective function value

# ...corresponds to “moving along an edge”
# We stop when we reach another (improving) vertex
® ...corresponds to setting a basic variable z; to zero

3 x3
QL = (0,0,2,2) Ol TOW 1
. R: optimum . R: optimum
// row 2 S =(1,0,1,0)
7 increasex; S T1 P x1 enters, x4 exits . § 1

L-’ zp, enters the basis, xz; exits the basis J
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Simplex Algorithm III

How do we determine [ and new positive value for z;,? T
Recall dictionary zz = B~'b — B~ ' Nay,

write b = B~'band A = (a;;) = B~'N

For: ¢ 15 (baSiCS), €Tr; = l_?@ — Zj%ﬁ ;T

Consider nonbasic index % of variable entering basis (all
the other nonbasics stay at 0), get x; = b; — a;pxp, Vi € 5

Increasing x;, may make z; < 0 (infeasible), to prevent
this enforce Vi € 6 (b; — a;pxy, > 0)

Require z;, < % fori € g and a;, > 0:

Aih _

. b b
l:argmln{_—z|z€BAdih>O}, CEh:_—l
Aih an

It all a;;, <0, x;, can increase without limits: problem
unbounded J
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Simplex Algorithm IV
-

Suppose > n hyperplanes cross at vix R (degenerate)
May get improving direction s.t. adjacent vertex is still R
Obijective function value does not change

Seq. of improving dirs. may fail to move away from R

= simplex algorithm cycles indefinitely

Use Bland’s rule: among candidate entering / exiting
variables, choose that with /east index

2
“.3x1 +3x2 < 4

Q 2x1 a0 <2

~. R: crossing of three lines

NS o
NN

e x1 232 <2

H S 1 J
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& R Example: Formulation
S o
f.o Consider problem: T

max I+ I2
XL1,r2

S.t. x1+ 229 <2 \
201 + 19 < 2
x>0

# Standard form:

—min, —I] — T2
S.t. 21 +2x9+ 23 =2
2r1 +x2 14 =2
x>0 )

L.’ Obj. fun.: max f = — min — f, simply solve for min — f J
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Example, itn 1: start

# Obijective function vector ¢' = (—1,—1,0,0)
# Constraints in matrix form:

(1)

BB

# Choose obvious starting basis with

10 19
B(o 1>’N<2 1)’5{3’4}

L.o Corresponds to point P = (0,0, 2, 2)

|
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Example, itn 1: dictionary

o Start the simplex algorithm with basis in P

2

Q row | . 2x1 + x0 < 2 -V f
"R /
\ o x1 4 229 < 2
row 2
P S \\\ I

o Compute dictionary zg = B~'b — B~ 'Nzy = b — Axy,
where

- =(3) =2 1) -
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Example, itn 1: entering var

: N

» Compute reduced costs ¢y = c); — cRA:

(¢1,¢2) = (=1,-1) = (0,0)A = (-1, -1)

# All nonbasic variables {z1, z2} have negative reduced
cost, can choose whichever to enter the basis

# Bland’s rule: choose entering nonbasic with least index
in {z1,22}, 1.e. pick h =1 (move along edge PS)

2

Q! 21+ a2 <2 —VSf

\\\ R
a1+ 2z < 2

N -

P xientersthebasis S =1
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Example, itn 1: exiting var

Select exiting basic index [ T
b; b1 by
| = argmln{— i€ BAa; >0} = argmln{ }
Aih all a21
2 2 .
= argmln{1 5t = argmin{2,1} = 2

Means: “select second basic variable to exit the basis”,
l.e. T4

Select new value 2% for z;, (recall h = 1 corrresponds to

:IZ1)Z

b _ b2
app, a1 2
x1 enters, x4 exits (apply swap (1,4) to 3) -
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1
s (11 g [0 3
2 0 ’ 1 —3

® rp = (x1,73) = B~'b = (1,1), thus current bfs is

(1,0,1,0) =S
x2
Q row 1 C2x1 + x2 < 2 —Vf
R

s x1 + 229 < 2

row 2

N : e N
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Example, itn 2: entering var

i
X
o e
I
ECOLE'
POLYTECHNIQUE

» Compute dictionary: b = B~1b = (1,1)",

e 4)(30)

# Compute reduced costs:

(527 64) — (_17 O) o (_17 O)"Zl — (_1/27 1/2)
# Pick h =1 (corresponds to x5 entering the basis)
3
Qv 221+ <2V

\\\ R
. T1 + 222 < 2

o enters basis
P \\\

1

DO DO —
| DO|—
DO —
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Example, itn 2: exiting var

-

# Compute [ and new value for zs:

. b1 by .11
| = argmln{c_m, &21} = argm|n{1/2, 32

= argmin{2,2/3} =2

| =

#® [ = 2 corresponds to second basic variable x5
» New value for z, entering basis: 2
® 15 enters, x3 exits (apply swap (2, 3) to 5)

o |
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® xp = (x1,29) = B~'b= (£, %), thus current bfs is
(%,2,0,0) = R
2
é ow 1 2z +a0 <2 VS
R

.1+ 222 < 2

row 2

P S \\‘ 1
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Example, itn 3: termination

.F‘ g
s
s
s
ECOLE'
POLYTECHNIQUE

» Compute dictionary: b= B~1b = (2/3,2/3)",

1 2 1
A=B7IN=| 3 3 e N
_ 0 1 % _

Compute reduced costs:

(637 64) — (Ov O) o (_17 _1)A — (1/37 1/3)

No negative reduced cost: algorithm terminates
Optimal basis: {1, 2}

Optimal solution: R = (3, %)

wIno

Wl

wlino
W=

°

o o o o

Optimal objective function value f(R) = —3
Permutation to apply to initial basis {3,4}: (1,4)(2,3) J

R
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Interior point methods

Simplex algorithm is practically efficient but nobody everT
found a pivot choice rule that proves that it has
polynomial worst-case running time

Nobody ever managed to prove that such a rule does
not exist

With current pivoting rules, simplex worst-case running
time is exponential

Kachiyan managed to prove in 1979 that LP € P using a
polynomial algorithm called ellipsoid method
(http://www.stanford.edu/class/msandeBlO/ellip.pdf)

Ellipsoid method has polynomial worst-case running
time but performs badly in practice

Barrier interior point methods for LP have both
polynomial running time and good practical o
performances
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http://www.stanford.edu/class/msande310/ellip.pdf

IPM I: Preliminaries

® Consider LP P in standard form: T
min{c'z | Ax =bA x> 0}.

# Reformulate by introducing “logarithmic barriers”:

P(3) : min{c'x — ﬁZlog rj| Ar = b}
j=1

—flog(z) ® The term —j3log(z;) is a
“penalty” that ensures that
K z; > 0; the “limit” of this
reformulation for 5 — 0 should
\WK g ensure that z; > 0 as desired
decreasin

#® Notice P(3) is convex V3 > 0
- ) -
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IPM 1I: Central path
-

Let x*(5) the optimal solution of P(3) and z* the optimal
solution of P

The set {z*(3) | B > 0} is called the central path

ldea: determine the central path by
solving a sequence of convex
problems P(3) for some decreasing
sequence of values of 5 and show
that z*(6) - z*as 3 — 0

Since for § > 0, —flog(x;) — +o0
for z; — 0, 2*(5) will never be on the
boundary of the feasible polyhedron
{r > 0| Az = b}; thus the name “inte-
rior point method” J
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d A Optimality Conditions I

~» If we can project improving direction —V f(z') on an
active constraint go and obtain a feasible direction d,
point =’ is not optimal

2

\\\92

g1 / 1

Vgi(z')
® Implies —V f(2') &€ C (cone generated by active constraint

\_ gradients)

|
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Optimality Conditions 11

-

# Geometric intuition: situation as above does not happen
when —V f(z*) € C, * optimum
xo 5
) g1 Vgi(x*) —V/@)
C
Vgi(x*)
S

g2

1

# Projection of —V f(z*) on active constraints is never a
feasible direction

o |
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Optimality Conditions 111

If:

1. 2* is a local minimum of problem
P =min{f(z) | g(z) < 0},

2. I is the index set of the active constraints at z*,
l.e. Vi eI (gi(z*) =0)

3. Vgr(z*) ={Vygi(z*) | i € I} Is a linearly independent
set of vectors

# then —V f(z*) is a conic combination of Vg (z*),

i.e. 3y € Rl such that
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#. 4 Karush-Kuhn-Tucker Conditions

=

-

® Define

L(z,y) = f(x) + > vigi(x)
1=1

as the Lagrangian of problem P

o KKT: If z* is a local minimum of problem P and Vg(z*)
IS a linearly independent set of vectors, Jdy € R™ s.t.

vi<m (yigi(z*) = 0)
Vi<m (y; > 0)

o |
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Weak duality

= min L(z,y) and z* be the global optimum
xeF(P)

of P. ThenVy >0 L(y) < f(z*).
Proof
Since y > 0, if x € F(P) then y;g;(x) < 0, hence

L(xz,y) < f(z); result follows as we are taking the mini-
mum over all x € F(P).

# Important point: L(y) is a lower bound for P for all y > 0

# The problem of finding the tightest Lagrangian lower
bound

max min L(x,
y=>0 xeF(P) ( y)

\_ IS the Lagrangian dual of problem P J
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A Dual of an LP 1
o N

# Consider LP P in form: min{c'z | Az > bA x > 0}

® L(z,s,y)=c'z—s'z+y"(b— Ax) where s € R", y € R™
# Lagrangian dual:

in (yb+ (¢' —s —yA
&rr;%xg;l(r}o)(y + (¢’ —s—yA)r)

o KKT: for a point = to be optimal,

' —s—yA 0 (KKT1)

Vi <n (sjz; =0), Vi <m (yi(b; — Aix) 0) (KKT2)

L’ Consider Lagrangian dual s.t. (KKT1), (KKT3): J
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Dual of an LP 11

# Obtain:
max yb
S7y
st. yA+s = '
s,y = 0

# Interpret s as slack variables, get dual of LP:

min c'x myax yb
st. Az > b ¢[Pl— st ydA <
r > Yy 2
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. & Alternative derivation of LP dual

-

Lagrangian dual = find tightest lower bound for LP
minc'z s.t. Ax >bandz >0

o Multiply constraints Az > b by coefficients y1, ...,y t0
obtain the inequalities y; Ax > y;b, valid provided y > 0

® Sumoveri: >y Ar > > yib=yAx > yb

# Look for y such that obtained inequalities are as
stringent as possible whilst still a lower bound for c¢'z

® = yb<yArandyb<c'z

°

Suggests setting yA = ¢" and maximizing yb
# Obtain LP dual: maxyb s.t. yA =" and y > 0.

o |
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Strong Duality for LP

i
W5,
ECOLE
% :‘-'\-i POLYTECHNIQUE

Thm.

If = Is optimum of a linear problem and y is the optimum
of its dual, primal and dual objective functions attain the
same values at = and respectively y.

Proof
#® Assume x optimum, KKT conditions hold

# Recall (KKT2) Vj < n(s;z; =0),
Vi < m (y;(b; — Ajx) = 0)

® Getyb— Ax) =sz = yb= (yA+ s)x
o By (KKT1) yA +s='
® Obtain yb=c'x

INF572 2010/11 — p. 67



Theory of KKT conditions derived for generic NLP

min f(z) S.t. g(z) <0, independent of linearity of f, g

# Derive strong duality results for convex NLPs

# Slater condition 3z’ € F(P) (g(z") < 0) requires
non-empty interior of F'(P)

® let f* = min,.,,)<o f(z) be the optimal objective
function value of the primal problem P

® Letp* = max,>o min,cp(py L(z,y) be the optimal
objective function value of the Lagrangian dual

Thm.

If f, g are convex functions and Slater’s condition holds,
then /* = p*.

o

|
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%{:WStrong Duality for convex NLPs 11

|—Proof T
~Let A= {(\¢t) | Tz (A >g@)At> f(z)}, B={(0,t)]t< f*}

- A =set of values taken by
constraints and objectives

- AN B = ( for otherwise f* not L

optimal N
- Pis convex = A, B convex \\

- = d separating hyperplane AN

ul + ut = «a S.i. 3 \\

VINt) e A(ud+put > a)  (4) \
V(Nt) e B (uh+put < a) (5

L_ Since A, ¢t may increase indefinitely, (4) bounded below = u > 0, > 0 J
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Proof

& Strong Duality for convex NLPs 111

Since A=0inB, (5) = Vt < f* (ut < «a)
Combining latter with (4) yields

Vi (ug(x) + pf(z) = pf)

Suppose 1 = 0: (6) becomes ug(x) > 0 for all feasible x; by Slater’s
condition dz’ € F(P) (g(«') < 0), so u < 0, which together with « > 0
implies v = 0; hence (u, u) = 0 contradicting separating hyperplane

theorem, thus p > 0

Setting uy = w in (6) yields Yz € F(P) (f(z) + yg(z) > f*)
Thus, for all feasible x we have L(x,y) > f*

In particular, p* = max, min, L(z,y) > f*

Weak duality implies p* < f*

Hence, p* = f*

(6)
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w1 Rules for LP dual
f Primal Dual T

min max
variables & constraints
constraints variables y

objective coefficients ¢ constraint right hand sides ¢
constraint right hand sides b objective coefficients b

Ajx > b; y; > 0
Ajx < b; y; <0
A;x = b; y; unconstrained
r; >0 yAl < ¢;
r; <0 yAl > ¢;
z; unconstrained yAl = c;

L447:: 1-th row of A A7: j-th column of AJ
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max X1+ I9

T1,T2

S.t. 1+ 2x9 <2

201 + 19 < 2
x>0

\

/

# Primal problem P and canonical form:

—min —I] — X2
L1,L2

S.t. —x1— 2x9

AVARAV,
e

—2T1 — T9
x>0

# Dual problem D and reformulation:

— INnax —2y1 — 2y2

Y1,Y2
Ss.t. —y1 —2y9

—2y1 — Y2

o y >0

IA A

\

’

min 2y1 + 2y
Y1,Y2

— Si vy +2y2 >1

201 +y2 > 1
y >0

s Examples: LP dual formulations

-

) ]
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SHORTEST PATH PROBLEM.

Input. weighted digraph G =
(V,A,c),and s, t € V.

Output. @ minimum-weight path
In G from s to .

min Z CuvLuyv
>0 (u,v)eA
I v=s 1} P
VoeV 3 wwu-— 3 Tw =  —1 v=t
(v,u)€A (u,v)€A 0 othw.
y
max  Ys — Yt
L v ( ) c A < } [D] J
U, U Yv — Yu Cuw
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Shortest Path Dual

cols |(1,2) (1,3) (4,1) o
rows\c | 2 2 4 b
1 1 1 -1 0|y
2 -1 0 0 0 Y2
3 0 -1 0 0 | y3
4 0 0 1 O | s
t 0 0 0 -1 w
Ti2 T3 T41

|
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KKT2 on [D] = V(u,v) € A (2 (Yo — Yoy — Cuw) = 0) =
V(u,v) c A (xuv =1 =y —yy = Cuv)

o |
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LP example: .mod

F_% lp.mod __1

param n 1nteger, default 3;

param m 1nteger, default 4;
set N := 1..n;

set M := 1..mj;

param a{M,N};

param b{M};

param c{N};

var x{N} >= 0;
minimilize objective: sum{j 1n N} c[J]l*x[]J];
subject to constraints{i in M}

L__ sum{J 1in N} al[i,Jl*x[]J] <= bli]; __J
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param

param

= w DD

= S e

e ww N

|_\

|
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LP example: . run

# lp.run

model lp.mod;
data lp.dat;

option solver cplex;
solve;

display x;

- N
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LP example: output

"
X
)
;1
ECOLE'
POLYTECHNIQUE

CPLEX 11.0.1: optimal solution; objective —1£79015i

0 dual simplex i1iterations (0 1n phase I)
X [*x] :=

1 0

2 0.8

3 4.04615

4

o |
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e A MILP example: .mod
S o
F_# milp.mod __1

param n 1nteger, default 3;
param m 1nteger, default 4;
set N := 1..n;

set M := 1..m;

param a{M,N};

param b{M};

param Cc{N};

var x{N} >= 0, <= 3, integer;
var y >= 0;
minimize objective: sum{j 1in N} c[J]l*x[7]];
L_?ubject to constraints{i in M} : __J
sum{J in N} afi,Jl*x[]J] — vy <= b[1i];
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MILP example: . run
F_# milp.run __T

model milp.mod;

data lp.dat;

option solver cplex;
solve;

display x;

display vy;

o |
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MILP example: output

i
Yo
)
1o
ECOLE'
POLYTECHNIQUE

CPLEX 11.0.1: optimal integer solution; objectiLe :

0 MIP simplex 1terations
0 branch—-and-bound nodes
X [*x] :=

1 0

2 3

3 3

y = 2.2

o |
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f&{

¥ nlp

param
param
set N
set M
param
param

param

var x{N} >= 0.1,

NLP example: .mod

.mod

default
default

n integer,
m integer,
= 1.
= 1..m;
a{M,N};
b{M};

c{N};

.n;

<= 4;

minimize objective:

cl[ll»x[1]*x[2]

3;
4;

subject to constraints{i in M diff {4}}

sum{J in N} afli, Jl»x[7]

subject to constraint4

o

<= b[i]/x[1i];
prod{j in N} x[7]]

<= bl[4];

+ c[2]*x[3]72 4+ c[3]*x[1]1*x[2]/x[371;

|

INF572 2010/11 — p. 84



NLP example: . run

# nlp.run

model nlp.mod;
data lp.dat;
## only enable one of the following methods

## 1: local solution
option solver minos;

# starting point

let x[1] := 0.1;
let x[2] := 0.1; # try 0.1, 0.4
let x[3] := 0.2;

## 2: global solution (heuristic)
#option solver bonmin;
## 3: global solution (guaranteed)

foption solver couenne;

display x;
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NLP example: output

e
X
o e
I
ECOLE'
POLYTECHNIQUE

MINOS 5.51: optimal solution found. __T
140 1terations, objective —-47.9955

Nonlin evals: obj = 358, grad = 357, constrs = 358
X [x] ==

=

1 0
2 0.
3 4

With zo2 = 0.4 we get 47 iterations, objective —38.03000929
and = = (2.84106, 1.37232, 0.205189).

o |
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MINLP example: . mod
minlp.mod __W

param n 1nteger, default 3;

param m 1nteger, default 4;

set N := 1..n;

set M := 1..m;

param a{M,N};

param b{M};

param c{N};

param epsilon := 0.1;

var x{N} >= 0, <= 4, integer;

minimize objective:
cll]*x[1]*x[2] + c[2]*x[3]72 + c[3]1*»x[1]*x[2]/x[3] +
X[1]1*x[3]73;

subject to constraints{i in M diff {4}}
sum{j in N} al[i, jl*x[]j] <= b[i]/(x[1] + epsilon);

{__?ubject to constraintd4 : prod{j in N} x[7]] <= b[4]; __J
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g X MINLP example: . run
S o
F_# minlp.run ——1

model minlp.mod;
data lp.dat;

## only enable one of the following methods:
## 1: global solution (heuristic)

#option solver bonmin;

## 2: global solution (guaranteed)

option solver couenne;

solve;

display x;

o |
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MINLP example: output

Optimal




¥
I
32
m
il
a] e
x
=
o2
[
m

Sudoku



© o o @

°

Sudoku: problem class

What is the problem class?

The class of all sudoku grids
Replace {1,...,9} witha set K
Will need a set H = {1, 2,3} to define 3 x 3 sub-grids

An “instance” is a partial assignment of integers to
cases in the sudoku grid

We model an empty sudoku grid, and then fix certain
variables at the appropriate values

|
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o

Modelling the Sudoku

Q: What are the decisions to be taken? T

A: Whether to place an integerin K ={1,...,9} in the
case at coordinates (i, ) on the square grid (i, j € K)

We might try integer variables y;; € K
Q: What is the objective function?

A: There is no “natural” objective; we might wish to
employ one if needed

Q: What are the constraints?

A: For example, the first row should contain all numbers

In K'; hence, we should express a constraint such as:

s ify;p =1thenyy, #1forall ¢ > 1;

s ify;1 =2thenyy, #2forall ¢ > 2;

s ...(for all values, column and row indices) o
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Sudoku constraints 1

In other words, T
Vi,j,k € K0 # 5 (yij =k — v # k)

Put it another way. a constraint that says “all values should
be different”

In constraint programming (a discipline related to MP) there
IS a constraint

vi € K AlDiff(y;; | j € K)

that asserts that all variables in its argument take
different values: we can attempt to implement it in MP

A set of distinct values has the pairwise distinctness property:
Vi, p,q € K yip # yiq, Which can also be written as:

Vi,p<q €K |yip—uyiql =1 |
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Sudoku constraints 2

v
X
o e
X
g ECOLE'
4 ﬂi POLYTECHNIQUE
ey

f.o We also need the same constraints in each column: T
Vi, p<q €K |yp —ygl =1

# ...and in some appropriate 3 x 3 sub-grids:

1. let H={1,...,3}and a = |K|/|H|;forall h e H
define R, ={ie K |i>(h—1)aAi < ha} and
Ch={j€eK|j>h—-1aAj<ha}

2. show that for all (h,l) € H x H, the set Ry, x (]
contains the case coordinates of the (h,1)-th 3 x 3
sudoku sub-grid

# Thus, the following constraints must hold:

Vhl€ H,i<p€ Rp,j<q€Cy |yij— Ypgl =1

o |
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The Sudoku MINLP

® The whole model is as follows:

min 0
Vi,p<q€K |yip—yiq = 1
Vi,p<q€K |ypj —ygl = 1
\V/h,ZGH,i<p€Rh,j<q€Cl |y¢j—ypq > 1
Vie K7€ K vi; = 1
Vie K,je K Yij < 9
Vie K7€ K Yij € Z

#® This is a nondifferentiable MINLP

# MINLP solvers (BonMin, MINLP BB, CouenNE) can't
solve it

o |
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Absolute value reformulation

This MINLP, however, can be linearized: T
la—bl>=1 <= a—-b>=1Vb—a>=1

For each i, j, p, ¢ € K we introduce a binary variable
wquzlifyij—ypq >1land 0 if ypg —yi; > 1

For all 7, j, p, ¢ € K we add constraints

1. yij — Ypg > 1—M(1—wf]q)
2. Ypg —VYij > 1 — Mw%q
where M = |K|+1

This means: if wff — 1 then constraint 1 is active and 2

IS always inactive (as y,, — v;; Is always greater than
—|K); if wi = 0then 2 is active and 1 inactive

Transforms problematic absolute value terms into J
added binary variables and linear constraints
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The reformulated model

|7.. The reformulated model is a MILP: T
min 0 \

Viip<qE€K wyip—yig = 1—M(1—w)
Vi,p<q €K Yiqg—Yip > 1—Mw,fg
Viip<qe€ K Ypj—Yqi = 1—M(1—wg§)
Vip<qEK yg—yp > 1—Muw}

Vhle Hi<p€Rpj<qeCl Yij —Ypg > 1—M(1—w§;])

Vhyle Hii <p€ Rp,j <qeCl Ypg—Yij > 1—wajq
Vie K,7e K Yi; > 1
Vie K,je K vi; < 9
Vie K,je K vij € 4 )

® It can be solved by CPLEX; however, it has O(|K|*) binary variables
\— on a |K|? cases grid with | K| values per case (O(|K|?) in total) — J
often an effect of bad modelling
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A better model

In such cases, we have to go back to variable definitions T
One other possibility is to define binary variables

Vi,j, k € K (x4, = 1) if the (¢, j)-th case has value k£, and O
otherwise

Each case must contain exactly one value

Vi,j€ Ky m =1
ke K
For each row and value, there is precisely one row that
contains that value, and likewise for cols

Vi,kEKZIi]‘k:1 A \V/j,kEKZIiijI
jeK ieK
Similarly for each R;, x C}, sub-square
VhilcHkeK » ay=1

1€Ry,7€C J
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i
X
o e
s
:i ECOLE'

The Sudoku MILP

f.o The whole model is as follows: T
min 0 \
Vie K, e K injk = 1
keK
Vie K.ke K Zmijk = 1
jEK \
Vie K.ke K Zmi]’k = 1
icK
Vhe Hle H ke K Z Tijk — 1
1€Rp,€C]
Vie K,je K.ke K Tijl € {0,1})

® This is a MILP with O(|K|?) variables

#® Notice that there is arelation Vi, j € K y;; = > kx;;, between the
keEK

MINLP and the MILP

L.’ The MILP variables have been derived by the MINLP ones by “disaggregation” J
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a4 R Sudoku model file
default 9; ___1

param Kcard integer, >= 1,
param Hcard integer, >= 1, default 3;

set K := 1..Kcard;

set H := 1..Hcard;

set R{H};

set C{H};

param alpha := card(K) / card(H);

param Instance {K,K} integer, >= 0, default O;

let {h in H} R[h] := {1 1n K : 1 > (h-1) % alpha and 1 <= h x alpha};
let {h in H} C[h] := {J in K : 3 > (h-1) % alpha and j <= h * alpha};
var x{K,K,K} binary;

minimize nothing: O;

subject to assignment {1 in K, 3 in K} : sum{k in K} x[1,],k] = 1;
subject to rows {i in K, k in K} : sum{j in K} x[i, J,k] = 1;
subject to columns {j in K, k in K} : sum{i in K} x[i,],k] = 1;

subject to squares {h in H, 1 in H, k in K}

sum{i in R[h], J in C[1]} x[i,],k] = 1;
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Sudoku data file

param Instance :=

OLYTECHNIQUE

"
X
)
1o
ECOLE'
P

4
2

3
1
5

2

9
7

1 1 2

8
4

2
2

6
8
5
2

6
1
2

7

9
4
3
4

6
9
7

5
8

6

4

8

6

3
1

9
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g 3 Sudoku run file

COLE
POLYTECHNIQUE

# sudoku

# replace "/dev/null" with "nul" if using Windows
option randseed 0;

option presolve 0;

option solver_msg 0;

model sudoku.mod;

data sudoku—-feas.dat;

let {i in K, j in K : Instancel[i,]j] > 0} x[i,J,Instance[i,J]] := 1;
fix {1 1n K, J 1n K : Instancel[i,3]] > 0} x[1,],Instanceli, J]];
display Instance;
option solver cplex;
solve > /dev/null;
param Solution {K, K};
if (solve_result = "infeasible") then {
printf "instance is infeasible\n";
} else {
let {1 in K, J in K} Solution[i, Jj] := sum{k in K} k * x[1,],k];

display Solution;
} .
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Sudoku AMPL output

liberti@nox$ cat sudoku.run | ampl

[ %, *]

Instance

4

instance 1s 1nfeasible

o
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Sudoku data file 2

OLYTECHNIQUE

"
X
o e
;1
ECOLE'
P

fBu’[ with a different data file. ..

param Instance

1 1 2

4
2

1

3
1
5

2

1

9
.

38
4

2

6
38
5
2

6
1
2

9
4

6
9
7

5
38

8

6

4

3
1

9
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Sudoku data file 2 grid

h ..corresponding to the grid below. ..
2 1

o |
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Sudoku AMPL output 2

.we find a solution!
liberti@nox$ cat sudoku.run

amp Ll

[ %, *]

Solution
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Kissing Number Problem



KNP: problem class

What is the problem class? T

# There is no number in the problem definition:

How many unit balls with disjoint interior can be placed
adjacent to a central unit ball in R4 ?

# Hence the KNP is already defined as a problem class

# Instances are given by assigning a positive integer to
the only parameter d

o |
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Modelling the KNP

® Q: What are the decisions to be taken?

® A: How many spheres to place, and where to place them

® For each sphere, two types of variables
1. alogical one: y; = 1 if sphere 7 is present, and 0 otherwise

2. a d-vector of continuous ones: z; = (z;1, ..., %iq), POSsition of i-th
sphere center

Q: What is the objective function?
A: Maximize the number of spheres

Q: What are the constraints?

e o o o

A: Two types of constraints
1. the i-th center must be at distance 2 from the central sphere if the
i-th sphere is placed (center constraints)

2. for all distinct (and placed) spheres ¢, j, for their interior to be
L disjoint their centers must be at distance > 2 (distance constraints) J
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o

¥

°

Assumptions

1. Logical variables y

Since the objective function counts the number of placed
spheres, it must be something like > . y;

What set NV does the index ¢ range over?
Denote k*(d) the optimal solution to the KNP in R

Since k*(d) is unknown a priori, we cannot know N a priori;
however, without IV, we cannot express the objective function

Assume We Know an upper bound & to k*(d); then we can define
N=1{1,....k} (and D = {1,...,d})

2. Continuous variables

9

¥

9

Since any sphere placement is invariant by translation, we assume
that the central sphere is placed at the origin

Thus, each continuous variable z;. (¢ € N, k € D) cannot attain
values outside [—2, 2] (why?)

Limit continuous variables: —2 < z;. < 2 J
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Problem restatement

.T: g
Yo
Gz
I
ECOLE'
¥ POLYTECHNIQUE

# The above assumptions lead to a problem restatement

Given a positive integer k, what is the maximum
number (smaller than k) of unit spheres with dis-
joint interior that can be placed adjacent to a unit

sphere centered at the origin of R%?

® Each time assumptions are made for the sake of modelling, one
must always keep track of the corresponding changes to the

problem definition
® The Obijective function can now be written as:

L max ZEZ]V Y; J
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Constraints

® C(Center constraints.
Vie N ||x;|| = 2y;

(if sphere i is placed then y; = 1 and the constraint
requires ||z;|| = 2, otherwise ||z;|| = 0, which implies
Ly = (O,...,O))

® Distance constraints.
Vie NyjeN : i#j |l — x| > 2uiy;

(if spheres i, j are both are placed then y;y; = 1 and the
constraint requires ||z; — z;|| > 2, otherwise
|z; — x;]| > 0 which is always by the definition of norm)

o |
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KNP model

max Z Yi \
iEN
Vi€ N > xh = 2y
keD
VieN,jeN:i#j [ (wan—z)? > 2y,
keD >
Vie N yi = 0
Vie N Y, < 1
Vie N.ke D Tip > —2
Vie N ke D T < 2
Vie N i € 4 )

L For brevity, we shall write y; € {0,1} and x;; € [-2, 2] J
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Reformulation 1

-

o Solution times for NLP/MINLP solvers often also
depends on the number of nonlinear terms

# We square both sides of the nonlinear constraints, and
notice that since y; are binary variables, y? = y; for all
1 € N; we get:

keD
VitkjEN > (zw—xp)? > 4y
keD

which has fewer nonlinear terms than the original
problem

o |
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Reformulation 2

v
X
o e
s
ECOLE'
¥ POLYTECHNIQUE
cln

f.o Distance constraints are called reverse convex (because ifj
we replace > with < the constraints become convex);
these constraints often cause solution times to lengthen
considerably

# Notice that distance constraints are repeated when i, j
are swapped

# Change the quantifiertoi € N,j € N : i < j reduces the
number of reverse convex constraints in the problem;

get:

VieN Y ap = 4y
keD

IV

Vi<jeN Z(Izk — CCjk)Z 4y

L keD J
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KNP model revisited

max Z Yq
iEN
Vie N > wh, = Ay
keD
Vie NjeEN:i<j Y (v —zj)* > 4dyy; >
keD
Vie Nke D vy € |—2,2]
Vie N Yi € {07 1} )

This formulation is a (nonconvex) MINLP

|
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KNP model file
{__; knp.mod __W

param d default 2;

param kbar default 7;
set D := 1..d;
set N := 1..kbar;

var y{i 1n N} binary;

var x{1 in N, k in D} >= -2, <= 2;
maximize kstar : sum{i 1in N} y[i];
subject to center{i in N} : sum{k 1n D} x[1,k]"2 = 4xy[1];
subject to distance{i in N, jJ in N : 1 < 7}
sum{k 1n D} (x[i,k] - x[73,k])"2 >= 4%y [1]l*xvyI[]];

o |
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KNP data file

Since the only data are the parameters d and k (two
scalars), for simplicity we do not use a data file at all, and
assign values in the model file instead

o |
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KNP run file

# knp.run

model knp.mod;

option solver couenne;
let kbar := 12;

let d := 3;

solve;

display x,V;

display kstar;

o |
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KNP solution (?)
-

We tackle the easiest possible KNP instance (d = 2),
and give it an upper bound k = 7

It is easy to see that £*(2) = 6 (place 6 circles adjacent
to another circle in an exagonal lattice)

Yet, after several minutes of CPU time CouenNE has not
made any progress from the trivial feasible solution
y=0,z=0

Likewise, heuristic solvers such as BonMiN and
MINLP_BB only find the trivial zero solution and exit

|
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What do we do next?

In order to solve the KNP and deal with other difficult

MINLPs, we need more advanced techniques

|
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Some useful MP theory



Open sets

In general, MP cannot directly model problems mvolvmgT
sets which are not closed in the usual topology (such as
e.g. open intervals)

The reason is that the minimum/maximum of a
non-closed set might not exist

E.g. what is n%(i)nl)m? Since (0, 1) has no minimum (for
Tre

each § € (0,1), $ < 5 andisin (0,1)), the question has
no answer

This is why the MP language does not allow writing constraints that
involve the <, > and # relations

Sometimes, problems involving open sets can be
reformulated exactly to problems involving closed sets

(e.0.2>0& x> e Y) J
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Best fit hyperplane 1

Consider the following problem: T
Given m points p1,...,p, € R”, find the hyperplane
wix1 + -+ + wux, = wo Minimizing the piecewise linear form

flpsw) = 3 | 22 wipiy — wol

ieP jEN

Mathematical programming formulation:

1. Sets: P={1,....m}, N={1,...,n}

2. Parameters: Vi € P p; € R"”

3. Decision variables: Vj; ¢ N w; € R, wp € R

4. Objective: min,, f(p, w)

9. Constraints: none

Trouble: w = 0 is the obvious, trivial solution of no interest

We need to enforce a constraint (wy, ..., w,,wy) # (0,...,0)

Bad news: R"™1 < {(0,...,0)} is not a closed set J
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o o

o

Best fit hyperplane 2

We can implicitly impose such a constraint by transforming the T
objective function to min,, 22 (for some norm || - ||)

[[w]]

This implies that w is nonzero but the feasible region is R”*!, which
is both open and closed

Obtain fractional objective — difficult to solve

Suppose w* = (w*,wg) € R**! is an optimal solution to the above
problem

Then for all d > 0, f(dw*,p) = df (w*,p)

Hence, it suffices to determine the optimal direction of w*, because the
actual vector length simply scales the objective function value

Can impose constraint ||w|| = 1 and recover original objective
Solve reformulated problem:.

min{f(w,p) | [[w]| = 1} o

INF572 2010/11 —p. 125



Best fit hyperplane 3

The constraint ||w|| = 1 is a constraint schema: we must T
specify the norm

Some norms can be reformulated to linear constraints,
some cannot

max-norm (l,,) 2-sphere (square), Euclidean norm (i»)
2-sphere (circle), abs-norm (i1) 2-sphere (rhombus)

max- and abs-norms are piecewise linear, they can be
linearized exactly by using binary variables (see later) J
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Convexity in practice

~» Recognizing whether an arbitrary function is convexis |
an undecidable problem
# For some functions, however, this is possible

s Certain functions are known to be convex (such as all
affine functions, cz?" forn € Nand ¢ > 0, exp(z),
— log(x))

» Norms are convex functions

s [The sum of two convex functions is convex

# Application of the above rules repeatedly sometimes
works (for more information, see Disciplined Convex
Programming [Grant et al. 2006])

® Warning: problems involving integer variables are in general not
convex; however, if the objective function and constraints are convex
forms, we talk of convex MINLPs
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Recognizing convexity 1

ey
i
ST
s
ECOLE'
POLYTECHNIQUE

onsider the following mathematical program

min 8z — I'7xy + lOy2
z,y€[0,10]

1
1

=Y
:Czy

AV VS

# Objective function and constraints contain nonconvex
term xy

® There is no reason to believe that 2y > 1 might be
convex

# |s this problem convex or not?

o |
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Recognizing convexity 2

The objective function can be written as (z, y)' Q(z, y) T

where@( 89 I(?)

The eigenvalues of Q are 9 + /73 (both positive), hence
the Hessian of the objective is positive definite, hence
the objective function is convex

The affine constraint z — y > 1 IS convex by definition

z?y > 1is not, but can be reformulated:

1. Take logarithms of both sides: log 2%y > log 1

2. Implies 2logz +logy > 0= —2logx — logy <0

3. —log Is a convex function, sum of convex functions is
convex, convex < affine IS a convex constraint J
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i A Recognizing convexity 4

model;

var x <= 10, >= 0.1;

var y <= 10, >= 0.1;

minimize f: 8xx"2 —17*xxy + 10xy~2;

subject to cl: x-y >= 1;

subject to c2: x"2xy >= 1;

option solver_msg 0;

printf "solving with sBB (couenne) \n";

option solver couenne;

solve > /dev/null;

display x,vy;

printf "solving with local NLP solver (ipopt)\n";
option solver ipopt; let x := 0.1; let y := 0.1
solve > /dev/null; display x,V;

approx. same solution (1.5, 0.5) from COUENNE and IPOPT

INF572 2010/11 —p. 131



7 A Total Unimodularity
B -

# A matrix A is Totally Unimodular (TUM) if all invertible
square submatrices of A have determinant +1

Thm.
It Ais TUM, then all vertices of the polyhedron

{x >0| Az < b}

have integral components

® Consequence: if the constraint matrix of a given MILP is
TUM, then it suffices to solve the relaxed LP to get a
solution for the original MILP

® An LP solver suffices to solve the MILP to optimality

o |
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TUM in practice 1

If Ais TUM, AT and (A|I) are TUM T

TUM Sufficient conditions. An m x n matrix A is TUM if:

1. foralli <m, j <n we have a;; € {0,1,—1};

2. each column of A contains at most 2 nonzero
coefficients;

3. there is a partition Ry, R, of the set of rows such that
for each column 7, Zz’ERl Ajj — ZiERg (jj = 0.

Example: take R; = {1, 3,4}, Ry = {2}

(101100\
0 -1 0 1 —1 1
-1 -1 0 0 0 1
\ 0 0 —10 -1 0 »
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TUM in practice 2
-

Consider digraph G = (V, A) with nonnegative variables
z;; € Ry defined on each arc

Flow constraints |¥Yi € V. > x;;— >, xj; =b;|yleld a
(i,7)eA (4:9)€A

TUM matrix (partition: Ry = all rows, Ry = () — prove it)

Maximum flow problems can be solved to integrality by
simply solving the continuous relaxation with an LP
solver

The constraints of the set covering problem do not form a TUM. To
prove this, you just need to find a counterexample

|
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Maximum flow problem

.T. g
Yo
Gz
I
ECOLE'
- POLYTECHNIQUE

iven a network on a directed graph G = (V, A) with a
source node s, a destination node ¢, and integer capacities
u;; on each arc (¢, j). We have to determine the maximum
integral amount of material flow that can circulate on the
network from s to ¢. The variables z;; € Z, defined for each

arc (i, j) in the graph, denote the number of flow units.

maxsy. Z X sq ) v
(s,)€A 4
, 1 £ S
VZSV,Z.#t Z l’z’j:’z Lji %
(i,j)€A (j,1)€EA \1
V(Z,]) cA 0< Tij < Uy j 3
L V(Z,]) c A Tij € 7, ) ek J
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arc capacities as shown in italics: find the maximum flow
between node s=1andt =7

o |
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°

Max Flow: MILP formulation

Sets: V={1,....n}, ACV xV
Parameters: s,t € V,u: A — Ry
Variables: © : A — Z

Objective: max »_ wg;
(s,i)€A

Constraints: Vi € V \ {s,t} Y. zi= > xj
(i) €A (ji)eA
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;1
:i ECOLE'

Max Flow: .mod file
{g_maxflow.mod __W

param n 1nteger, > 0, default 7;
param s 1nteger, > 0, default 1;
param t 1nteger, > 0, default n;

set V := 1..n;

set A within {V,V};

param u{A} >= 0;

var x{(1,3) 1n A} >= 0, <= ul1,]], 1nteger;

maximize flow : sum{(s,1) 1n A} X[s,1];

subject to flowcons{i in V diff {s,t}}
sum{ (1, J) 1n A} x[1,3] = sum{(j,1) in A} x[]J,1];
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Max Flow: .dat file

"
X
)
;1
ECOLE'
POLYTECHNIQUE

r_% maxflow.dat
param :

N oYU Ul WWWDNDREFR R R
NN OO W O D NN D 0N
< WU o J NP EFPLPNDRERE NS UOC

o |
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Max Flow: . run file

# maxflow.run

model maxflow.mod;

#fmodel maxflow constrained.mod;
data maxflow.dat;

option solver_msg 0;

option solver cplex;

solve;
for {(1,3) 1n A : x[1,73] > 0} {
printf "x[%d,%d] = %g\n", i, 3,x[i,7];

}
display flow;

o |
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N N N N
< s O B D
NI NI e TANEN N\

w NP =

XoXooxX XX

~

lunit of flow
2 units of flow

4 units of flow

maximum flow =7

’
’
’
4

O\U‘IU‘II-D-

l—h><><><><

—
O

~ o W O1

w = '/

5 units of flow

6 units of flow

INF572 2010/11 —p. 141



Max Flow: LP solution

It
It
COLE
POL)

elax integrality constraints (take away integer keyword)

lunit of flow 5 units of flow
2 units of flow 6 units of flow
4 units of flow maximum flow =7

Get the same solution

o |
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Reformulations



Reformulations

It problems P, are related by a computable function f
through the relation f(P,Q) = 0, Q Is an auxiliary problem
with respect to P.

# Exact reformulations: preserve all optimality properties
# Narrowings: preserve some optimality properties

® Relaxations: provide bounds to the optimal objective
function value

# Approximations: formulation () depending on a
parameter k£ such that “ lim Q(k)” is an exact

k— 00

reformulation, narrowing or relaxation

|
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Exact reformulations

P

Main idea: If we find an optimum of ¢, we can map it back to the same
type of optimum of P, and for all optima of P, there is a correspond-
ing optimum in ). Also known as exact reformulation
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Narrowings

Main idea: if we find a global optimum of ), we can map
it back to a global optimum of P. There may be optima
L of P without a corresponding optimum in Q. J
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Relaxations

N

A problem @ is a relaxation of P if the globally optimal
value of the objective function min fy of Q) is a lower

bound to that of P.

o |
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Approximations

‘ () Is an approximation of P if there exist: (a) an auxiliary problem T
Q* of P; (b) a sequence {Q} of problems; (c) an integer ¢ > 0;
such that:

1. Q=Qq

2. V objective f* in Q* there is a sequence of objectives f;. of Qs
converging uniformly to f*;

3. Vconstraint I} < g/ (x) < wu} of Q* there is a sequence of constraints
¥ < g¥(x) < u¥ of Qp such that g converges uniformly to g7, I¥
converges to [ and u” to u}

There can be approximations to exact reformulations, narrowings,
relaxations.

Q1, Q2, Q3,.. ;Qg,. .. —— (Q* (auxiliary problem of) P

\— approximéition of P J
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Fundamental results

f.o Exact reformulation, narrowing, relaxation, T
approximation are all transitive relations

® An approximation of any type of reformulation is an approximation

# A reformulation consisting of exact reformulations,
narrowings, relaxations is a relaxation

® A reformulation consisting of exact reformulations and narrowings is
a narrowing

# A reformulation consisting of exact reformulations is an
exact reformulation

4 N\
4 N\ 4 N\

[ exact reform} relaxations approximations [ exact reform} narrowings

- J - J
- J

o |
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# Reformulations are used to transform problems into

Reformulations in practice

-

equivalent (or related) formulations which are somehow
“petter”

8 Basic reformulation operations }

=

change parameter values
add / remove variables
adjoin / remove constraints

replace a term with another term (e.g. a product zy
with a new variable w)

|
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Product of binary variables

Consider binary variables =,y and a cost ¢ to be added T

to the objective function only of xy =1
= Add term czy to objective

Problem becomes mixed-integer (some variables are

binary) and nonlinear
Reformulate “xy” to MILP form (ProbpBIN reform.):

1

08 # replace zy by z

® z,yc{0,1} =
z=2xy

J |
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i A Application to the KNP

f.. In the RHS of the KNP’s distance constraints we have 4y;y,, where T
Y, y; are binary variables

® We apply PropBIN (call the added variable w;;):

min Zyz
1eN
Vi € N > oxn, = 4y
keD
Vie NyjEN:i<j > (xix—zk)% >  dw;
keD
Vie Nyge N :1<]J Wi j < \
Vie N,jEN:1<j wi; <Y
VieE N,jEN 1< j wi; 2 Yi+y;—1
Vie N,jEN i< wi; € [0,1]
Vie N, ke D xik € [—2,2]
Vie N y; € {0,1} )

® Sitill a MINLP, but fewer nonlinear terms
L.’ Still numerically difficult (2h CPU time to find £*(2) > 5) J
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Product of bin. and cont. vars.

f.. ProDBINCONT reformulation T

# Consider a binary variable x and a continuous variable
y € [y, yY], and assume product zy is in the problem

o Replace zy by an added variable w
# Add constraints:

w < yUm
(T ny
w < y+y" (1)
w > y—y'(l—x)

® [ Exercise 1|: show that PrRobBINCONT IS an exact reformulation

L’ Exercise 2 : show that if y € {0,1} then PrRopBINCONT is equivalent tOJ
PRODBIN
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4. & Prod. cont. vars.: approximation

f.. BILINAPPROX approximation T
® Consider x € [z, 2],y € [y",yY] and product zy
® Suppose 2V — 2zt < yY — y%, consider an integer d > 0
» Replace [z, 2Y] by a finite set
D= {zF+(i—1)y|1<i<d}, where y = =2
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BILINAPPROX

Replace the product xy by a variable w
Add binary variables z; for i < d
Add assignment constraint for z;’s

i<d
Add definition constraint for x:

T = Z(CEL + (i1 — 1)7v)z

1<d
(x takes exactly one value in D)

Add definition constraint for w

w=3"(@" + (i~ 1)y)ziy

i<d
Reformulate the products z;y via PRODBINCONT

(7)

|
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BILINAPPROX2

ERYSIES: problem P has a term xy where z €

[zl 2Y],y € [y*,yY] are continuous; assume 2V —

xL

1.

<yY -yt

choose integer £ > 0;add ¢ = {¢; | 0 <i < k}
to P so that go = 2%, g1 = 2Y, ¢; < g;1 forall

. add continuous variable w € [w%,w"] (com-

puted from ranges of x, y by interval arithmetic)
and replace term zy by w

. add binary variables z; for 1 < ¢ < k£ and con-

straint ;. 2 =1

. forall 1 <4 < k add constraints:

k — oo: get iden-
tity (exact) reformu-
lation

0

J
Ltlimty — (wV —wh)(1 - z) < w < L=y 4 (wV —wh)(1 - 2),
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& B Relaxing bilinear terms

|7.. IEEEEENSY: quadratic problem P with terms z;z; (i < j) and constrs
Az = b (z can be bin, int, cont); perform exact reformulation
first:

1. add continuous variables Wi (let w; = (’wil, ce ,wln))
2. replace product x;x; with w;; (for all 7, 7)

3. add the reduced RLT (RRLT) system Vk Awy — bz =0
4

. find a partition (B, N) of basic/nonbasic variables of Vi Aw, = 0
such that B corresponds to variables with smallest range

5. for all (¢,5) € N add constraints w;; = x;z; ()

® then replace nonlinear constraints (f) with McCormick’s envelopes

max{zlz; + a:f’a:z —

min{z{ z; + :cfa:z —

IN IV

L.. The effect of RRLT is that of using information in Az = b to eliminate J
some of the problematic product terms (those with indices in B) s s01011 - 5. 157



Linearizing the /., norm

r [Coniglio et al., MSc Thesis, 2007]. P has
vars z € [—1,1]¢ and constr. ||z||s = 1,
st.x* e F(P) — —z* € F(P)and f(z*) = f(—z%).
1. Vk < d add binary var u,,
2. delete constraint ||z||.c =1
3. add constraints:

Vk < d Ll > Zuk — 1
Zuk = 1.
k<d

# Narrowing INFNorm(P) cuts away all optima having
maxjg \:z:k\ =1withz, <1forall £ <d

o |
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1.

Approximating squares
|7.9 : P has a continuous variable

r € [zl, 2Y] and a term 22 appearing as a
convex term In an objective or constraint

U L

add parameters n € N, ¢ = *——7—,
Ti=al +(i—1)efori<n

. add a continuous variable w € [w’, wY],

where wl =0 if ztzY <0 or

min((z%)?, (z¥)?) otherwise and

wY = max((z¥)?, (xV)?)

replace all occurrences of term z? with w

add constraints
Vi<n w>(T;+Ti—1)x — T;Ti_1.

® Replace convex term by piecewise linear ap-

L proximation

n — oo. get
identity (exact)
reformulation

|
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Conditional constraints

f.o Suppose 1 a binary variable y and a constraint g(x) < 0 T
in the problem

#® We want g(x) < 0to be active iff y =1

o Compute maximum value that ¢(x) can take over all z,
call this M

® Write the constraint as:
g(r) < M(1—y)

® This sometimes called the “big M” modelling technique

Example:
Can replace constraint (7) in BiLiNAPPROX as follows:

Vi<d —MQQ-2z)<w-—(@'+GE—-1)7)y<MQ1-z)

Lwhere M st w— (zF + (i —1)y)y € [-M, M] forall w, z, y J
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Example

.T. g
Yo
Gz
o
ECOLE'
E

Consider the problem
min T1 + T2 )
31 + 220 > 1 >
201 + 319 > 1
r1,r2 € {0,1} |
AMPL code. The solution (given by
set J := 1..2; CPLEX) iSZIZ1:1,$2:O
var x{J} binary;
minimize f: sum{j in J} x[3j]; If you swap x1 with x2, you
subject to cl: 3xx[1] + 2xx[2] >= 1; obtain the same problem, with
subject to c2: 2%x[1] + 3xx[2] >= 1; swapped constraints
option solver cplex;
solve; Hence, x1 = 0, 2o = 1 IS
cigiplay x also an optimal solution!

o |
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Permutations

-

We can represent permutations by maps N — N

The permutation of our example is ( Ll )
2 1

Permutations are usually written as cycles: e.g. for a

permutation ( 1 f f ) which sends 1 — 3, 3 — 2 and
3 1 2

2 —1,wewrite (1,3,2)tomean1 — 3 — 2(— 1)

The permutation of our example is (1,2) — a cycle of
length 2 (also called a transposition, Oor swap)

|
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Cycles

Cycles can be multiplied together, but the multiplication T
iIs not commutative: (1,2,3)(1,2) = (1,3) and
(1,2)(1,2,3) = (2,3)

The identity permutation e fixes all N

Notice (1,2)(1,2) =eand (1,2,3)(1,3,2) = e, SO
(1,2) = (1,2)"" and (1,3,2) = (1,2,3)""

Cycles are disjoint when they have no common element

Thm. Disjoint cycles commute

Thm. Every permutation can be written uniquely (up to

order) as a product of disjoint cycles

~or each permutation «, let I'(7) be the set of its disjoint

cycles J
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g Groups

f.o A group is a set G together with a multiplication T
operation, an inverse operation, and an identity element
e € (G, such that:

1. Vg,h € G (gh € G) (multiplication closure)
Vg € G (¢~ € Q) (inverse closure)

. Vf,g9,h € G ((fg)h = f(gh)) (associativity)
Vg € G (eg = g) (identity )

Vg € G (g7 1g = e) (inverse)

SEP AN

# The set {e} is a group (denoted by 1) called the trivial
group

# The set of all permutations over {1,...,n} Is a group,
called the symmetric group of order n, and denoted by .5,

o Forall BC{1,...,n} define Sym(B) as the symmetric
L group over the symbols of B J
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Generators

-

Given any subset T C S,,, the smallest group containing
the permutations in 7' is the group generated by I’, denoted

by (T')
For example, if T = {(

1
(1), (1,2),(1,3),(2,3), (1

Foranyn e N, ((1,...,n)
denoted by C,,

C,, IS commutative, whereas S,, iIs not

,2),(1,2,3)}, then (T) is
2,3),(1,3,2)} = S3
) 18

s the cyclic group of order n,

o Commutative groups are also called abelian

Thm. ((1,2),(1,....n)) = ((i,i + 1) | 1 < i <n) = Sy

|
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3 Subgroups and homomorphisms

-

A subgroup of a group G is a subset H of G which is also a group
(denoted by H < GG); e.g. C5 = {e,(1,2,3),(1,3,2)} is a subgroup of
Ss3

® Giventwo groups G, H, amap ¢ : G — H such that
Vi, g€ G (o(fg) = ¢(f)9(9) ) is @ homomorphism

Kergp = {g € G| ¢(g) = e} is the kernel of ¢ (Kergp < G)
Im¢ ={h € H|3g € G (h=¢(g))} is the image of ¢ (Imp < H)

If ¢ is injective and surjective (i.e. if Ker¢ = 1 and Im¢ = H), then ¢ is
an isomorphism, denoted by G = H

e o 0

® | Thm.[Lagrange] For all groups G and H < G, |H| divides |G|

Thm.[Cayley] Every finite group is isomorphic to a subgroup of .S,, for
somen € N

o |
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Normal subgroups

-

Let H < G;forallge G,gH ={gh | h € H} and
Hg={hg | h € H} are in general subsets (not
necessarily subgroups) of GG, and in general ¢gH # Hyg

If Vg € G (¢gH = Hg) then H is a normal subgroup of G,
denoted by H < G (e.g. (3 <1 .53)

If H <G, then {¢gH | g € G} is denoted by G/H and has
a group structure with multiplication (fH)(gH) = (fg)H,
inverse (gH)™! = (¢ ) H and identity e = H

For every group homomorphism ¢, Ker¢ <1 G and
G/Kergp = Img

|

INF572 2010/11 —p. 168



Group actions

-

Given a group GG and a set X, the action of G on X is a
set of mappings «, : X — X for all g € G, such that
ag(r) = (gr) e X forallz € X

Essentially, the action of G on X is the definition of what
happens to z € X when g is applied to it

For example, if X = R" and G = S,,, a possible action of
G on X Is given by gz being the vector = with
components permuted according to g (e.g. if

r=(0.1,-2,v/2) and g = (1, 2), then gz = (—2,0.1,v/2))

Convention: left multiplication if = is a column vector
(ag(z) = gz), right if  is a row vector (a,(x) = zg): treat
g as a matrix
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Orbits
-

If Gactson X CR", forallz € X, Gz ={gz | g € G}

IS the orbit of z w.r.t. G
gzr=(0,1,2)

_(173)

g$:(2)0’1)
9:(273) !
3 P ///,/,/
RS S e=(1,2,0)
: P s j //// g:(1,2)
*************** z = (2,1,0) -
53(27 17 O)

|
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Stabilizers

Given Y C X, the point-wise stabilizer of Y w.r.t. G is a
subgroup H < Gsuchthathy =yforallhe HyeY

The set-wise stabilizer of Y w.r.t. G is a subgroup H < G
such that HY =Y (denote H by stab(Y, ))

Let 7 € S,, with disjoint cycle product o, - - - 03 and
NC{l...,n}

w(N]= ][] o restrictionof mto N
o€l (m)Nsym(N)

-

|
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Groups and graphs
Given a digraph G = (V, A) with V = {vy,...,v,}, the T
action of r € S,, on G Is the natural action of r on V
7 IS @ graph automorphism if V(i,7) € A (w(2),7(j)) € A
For example:

X M

G2 = (1,3)G1 is a graph automorphism of G
Gs = (1,2,3,4)G; is not an automorphism of G1: e.g. (4,2) € A but
(m(4),7(2)) = (1,3) ¢ A

The automorphism group of GGy Is (e, (1,3)) = C5 (denoted J
by Aut(G1))
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& Back to MP: Symmetries and BB
-

-

#® Symmetries are bad for Branch-and-Bound techniques:
many branches will contain (symmetric) optimal
solutions and therefore will not be pruned by bounding

= deep and large BB trees
«— BB tree for symmetric @

<
problem

BB tree for
problem o a
dulo symmetries” —
@O

How do we write a “mathematical programming formu-
lation modulo symmetries”?

o |
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Solution symmetries

The set of solutions of the following problem:

min x11 +Z12 +x13 +x21 +T22 +x23
11 +T12 +Zx13 > 1
x21  +x22 +wx23 > 1
11 +x21 > 1
T12 +T 292 > 1
13 +x23 > 1

{(0,1,1,1,0,0),(1,0,0,0,1,1),(0,0,1,1,1,0),

is G(P) =
(1,1,0,0,0,1),(1,0,1,0,1,0),(0,1,0,1,0,1)}

G* = stab(G(P), S,,) is the solution group (variable permutations keeping
G(P) fixed)

For the above problem, G* is
((2,3)(5,6),(1,2)(4,5),(1,4)(2,5)(3,6)) = D12

Forall x* € G(P), G*x* = G(P) = 3 only 1 orbit = 3 only one
solution in G(P) (modulo symmetries)

How do we find G* before solving P?

|
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Formulation symmetries
Cost vector c = (1,1,1,1,1,1): ¢Sg = {c}
RHS vector b = (1,1,1,1,1): Ssb = {b}

Constraint matrix A (constraint order independence = can
always permute rows arbitrarily).

(1,2)

/N

SO = O =
O = OO =

dr € S, 0 € S,

—_o O O

~

e )

4.5)

O = O = O

0
1
0
0
1

111

0
o 1
o

3,4
34 o
1001

———

SO = O

O = OO =

_o O O =
SO = = O
O = O = O
_ o O = O

= (3,4)A(1,2)(4,5) = A
For general LPs with data A, b, ¢, if

(ecm=cANab=bAo(Am)

fixes the formulation of the LP

= A) then « J
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The MILP formulation group

o |f Pis an LP with data A, b, ¢, then T
Gp={meS,|do e Splct=cNab=bANcAr=A)} (8)

IS the formulation group of P
® For the example, G.,anp1ec = D12 = GF

Thm.
If Pis an LP, then Gp < G%.

# Result can be extended to all MILPs [Margot 2002,
2003, 2007]

o |
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Symmetries in MINLPs

|7.. Consider the following MINLP P T
min f(z) )
glz) < 0 (9)
r € X.

where X may contain integrality constraints on x

# For a row permutation o € S,,, and a column
permutation = € S,,, we define o P as follows:

min  f(xw

N—

m A

og(xm (10)

0
X.

XTC

L.p Define Gp ={r € S, | Jo € S, (6P = P)} J
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A computable definition

|7.. Establishing whether Vz (c Axm = Ax) is easy, just look at T
components of A and c Ax

® In general, the statement Vx (og(xm) = g(x) A f(am) = f(x)) s
undecidable

® Assume we have a computable “equality oracle” equal(hi, hs) SO
that:

if equal(hy, ho) =true, then Vx (hi(x) = ha(x))

The converse may not hold

® Define Gp as G p with = replaced by equal returning t rue

® Canshow Gp < Gp < G%
Decision problems:
FORMULATION SYMMETRY. Given formulations P, () and the oracle equal, are

there permutations o, w such that P = cQn?
\_ FORMULATION GRoup. Given P and equal, find generators for Gp J
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Equality oracle

f.o Consider the expression DAG representation of g T

3

> iy — log(z3/ys3) / \ log
=1

List of expressions = / ‘\ E
expression DAG sharing|| / \ / \ M

variable leaf nodes r1 Y1 T2 Y2 T3

® FEvery function g : R" — R™ is represented by a DAG whose leaf
nodes are variables and constants and whose intermediate nodes

are mathematical operators

equal(g(x),og(xm)) =true if and only if the DAGS rep-
resenting g(x) and og(xm) are isomorphic

# Reduces the FormuLATION SYMMETRY problem to the
\_ GRAPH ISOMORPHISM problem J
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GRAPH ISOMORPHISM

-

Citation: Babai, Automorphism groups, ismorphism,
reconstruction, in Graham, Grotschel, Lovasz (eds.),
Handbook of Combinatorics, vol. 2

Glisin NP
It is unknown whether it is in P or NP-complete

Solving Gl on rooted DAGs is as hard as solving it on
general graphs

Solving Gl on trees has linear complexity

Our DAGs are “close” to trees, can hope they are not
too hard for Gl testing

|
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Co: xgx7 + X809 = 1

Ci: XXy + T7X9

/
)
\

® (ipac = group of automorphisms of expression DAG fixing: (a)
root node set having same constr. direction and
coeff. (constraint permutations), (b) operators with same label
and rank and (c) leaf node set (variable permutations)

Goac = ((45)(67)(89), (23)(68)(79), (01)(24)(35)(78))

® (G p is the projection of Gpag to variable indices
<(67 7) (87 9)7 (67 8)(77 9)7 (77 8)> = D8

o |
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Node colors

|7.. Let Dp = (V, A) be the union of all objective and constraint DAGs in T

the MINLP (a.k.a the DAG of P)
® Colors on the DAG nodes Y are used to identify those subsets of nodes which can

be permuted (€.g. variable and operator nodes can’t be permuted)
1. Root nodes (i.e. constraints) can be permuted if they have the same RHS

2. Operator nodes (including root nodes) can be permuted if they have the
same DAG rank and label; if an operator node is nhon-commutative, then
the order of the children node must be maintained

3. Constant nodes can be permuted if they have the same DAG rank level

and value

4. Variable nodes can be permuted if they have the same bounds and inte-

grality constraints
® The relation (u ~ v <= u,v have the same color) is an equivalence

relation on V (reflexive, symmetric, transitive)
® -~ partitions V into a disjoint union V/ ~ of equivalence classes V1, ..., V),
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MINLP formulation groups

Let Pbe aMINLP and D = (V, A) be the DAG of P |

Let Gpag be the group of automorphisms of D that fix
each color classin V/ ~

Define ¢ : Gpag — S, by ¢(7) =projection of = on
variable indices; then
Thm.

¢ 1S a group homomorphism and Im¢ = Gp

Hence can find Gp by computing Im¢

Although the complexity status (P/NP-complete) of the
GRAPH ISOMORPHISM problem is currently unknown,
nauty IS a practically efficient software for computing

GGpaG

So now we have G p, how do we write “FP modulo G p”? J
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= Symmetry-breaking reformulation

f.o Consider our first example P: T
min Tr1 + X9
3x1+2x9 > 1
201 + 39 > 1
r1,Tro € {07 1}
® Phasg(P)=1{(0,1),(1,0)}, G* =((1,2)) = Cy and
Gp=G*

# The orbit Gp(0,1) is the whole of G(P)

® We look for a reformulation of P where at least one
representative of each orbit is feasible

# Let Q be the reformulation of P consisting of P with the
added constraint z; < x9

L.o We have G(Q) = {(0,1)} and G* =G =1 J
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o o

Breaking orbital symmetries 1

Every group G < S,, acting on the variable indices N = {1,...,n} T
partitions NN into disjoint orbits (all subsets of V)

This follows from the equiv. rel. i ~ j < dg € G (g(i) = j)

Let 2 be the set of nontrivial orbits (w € 2 <— |w| > 1)

Thm. G acts transitively on each of its orbits

This means that Vw € Q Vi £ j € w 3g € G (g(i) = §)

Applied to MP, if 7, 7 are distinct variable indices belonging to the same orbit
of G p acting on IV, then there is m € G p sending x; to

Pick x € G(P); if P is bounded, forallw € Q 3: € ws.t. x;is a
component having minimum value over all components of z

By theorem above, 37 € Gp sending z; 10 i w

Hence x = xm IS S.t. Zmin IS Minimum over all other components of
T, and since Gp < G*, T € G(P)
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Breaking orbital symmetries 2

f.o Thus, for all w € Q) there is at least one optimal solution T
of P which is feasible w.r.t. the constraints
\V/] cw (ajminw < xj)

# Such constraints are called (orbit-based) symmetry
breaking constraints (SBCS)

# Adding these SBCs to P yields a reformulation @ of P
of the narrowing type (prove it!)

Thm. If ¢¥(x) < 0 are SBCs for each orbit w with “ap-
® | propriate properties”, then Vw € A (¢g*(x) < 0) are also
SBCs

#® Thus we can combine orbit-based SBCs for
“appropriate properties”

\_.. Yields narrowings with fewer symmetric optima J
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‘“‘Appropriate properties”

Notation: ¢|B|(x) < 0 if g(x) only involve variable indices in B
Conditions allowing adjunctions of many SBCs

Thm.

Let w,0 C {1,...,n} be such that wn & = 0. Consider p,o €
Gp, and let glw](x) < 0 be SBCs w.r.t. p,G(P) and h|f](z) <0
be SBCsw.rt. o,G(P). If plw], o[0] € G plwUd] then the system
of constraints {g[w](x) <0, h[0](z) < 0} is an SBC system for

00 .

o |
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Breaking the symmetric group

-

The above SBCs work with any group G p, but their
extent is limited (they may not break all that many
symmetries)

If we find A’ C A such that Vw € A’ the action of Gp on w
IS Sym(w), then there are much tighter SBCs

Forallw e A'letw™ =w ~ {maxw} and for all j € w™ let
71 be the successor of j in w

The following are valid SBCs:
Vwe AN Vjew z; <z

which are likely to break many more symmetries

|
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The final attack on the KNP



Decision KNP
-

Recall the binary KNP variables are used to count the
number of spheres

Suggests simply considering whether a fixed number of
spheres can be placed around a central sphere in a
Kissing configuration, or not

This is the decision version of the KNP (dKNP):

Given positive integers n, d, can n unit spheres with disjoint
interior be placed adjacent to a unit sphere centered at the

origin of R%?

Should eliminate binary variables, yielding a
(nonconvex) NLP, simpler than the original MINLP

In order to find the maximum value for n, we proceed by
bisection on n and solve the dKNP repeatedly J
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s A The dKNP formulation
o N

® lLet N ={1,...,n}; the following formulation P correctly

models the dKNP:
max 0 )
Vie N Soar = 4
keD >
Vie NjeEN:i<j > (wip—axjp)? > 4
keD
Vie N ke D v, € |—2,2]

» If F(P) # () then the answer to the dKNP is YES,
otherwise it is NO

# However, solving nonconvex feasibility NLPs is
numerically extremely difficult

o |
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Feasibility tolerance

-

® We therefore add a feasibility tolerance variable «:

max 8} \
Vie N Soaz = 4
keD
Vie N,jeEN:i<j > (g —xjp)* > 4da >
keD
Vie Nk € D v € [—2,2
a > 0 )

# The above formulation () is always feasible (why?)
# Much easier to solve than P, numerically

# () also solves the dKNP: if the optimal o* is > 1 then the
L answer is YES, otherwise it is NO J
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B The KNP group

|7.9 The dKNP turns out to have group Sy (i.e. each spatial dimension T
can be swapped with any other)

® Rewriting the distance constraints as follows:

i —z|° = > (wik — 2j0)°

keD

(for i < j < n) yields an exact reformulation Q' of Q) (prove it)

® The formulation group G’ turns out to be S; x S,, (pairs of distinct
spatial dimensions can be swapped, and same for spheres), much
larger than Sy
\_.’ Yields more effective SBC narrowings J
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Results

Instance | Solver Without SBC With SBC

D N Time Nodes Ol Gap Time Nodes Ol Gap

2 6 | Couenne | 4920.16 /0000 4 0.04% | 100.19 14672 1 0%

2 6 | BARON | 1200 00 A 10% | 59.63 2785 131 0%
465500 o 469780 o

2 7 | Couenne | 7200 T 41.8% | 72007 Slis 1 17.9%

2 7 | BARON | 10800 )00 442 832% | 16632 693162 208 0%

Ol: Iteration where optimum was found

i+ default Couenne CPU time limit
*: default BARON CPU time limit

. total nodes
nOdeS' still on tree

Thus, we finally established by MP that £*(2) = 6

Actually, solutions for k*(3) and k*(4) can be found by using MINLP

Lheuristics (VNS)

|
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The end



