INF421, Lecture 4 Trees and DFS

Leo Liberti

LIX, École Polytechnique, France

Course

- Objective: teach notions AND develop intelligence
- Evaluation: TP noté en salle info, Contrôle à la fin. Note:
$\max \left(C C, \frac{3}{4} C C+\frac{1}{4} T P\right)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
- Books:

1. K. Mehlhorn \& P. Sanders, Algorithms and Data Structures, Springer, 2008
2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
4. Ph. Baptiste \& L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2006

- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr(e-mail subject: INF421)

Lecture summary

- Introduction and reminders
- Spanning trees
- Chemical trees
- Grammars and languages
- Depth-First Search (DFS)

Introduction and reminders

Trees

How we draw them

Nomenclature

Graphical representation

height/depth = length (\#branches) of longest walk [root \rightarrow leaf]
width = max (\#nodes) with same depth

Mathematical definition of a tree

Tree: a connected graph $G=(V, E)$ without cycles

- root node \Rightarrow rooted tree
- If v has $|N(v)|=1, v$ is a dangling node

$$
v_{1}-v_{2}-v_{3}-v_{4}
$$

v_{1}, v_{3} : dangling nodes

- Leaf: non-root dangling node
- Branch: edge of a rooted tree

Orientations

- Orientation of a tree $T=(V, E)$ with root $r \in V$: digraph $U=(V, A)$ s.t.:

$$
\forall\{u, v\} \in E \quad(u, v) \in A \text { XOR }(v, u) \in A
$$

- Outward orient.: an orientation s.t.:

$$
\begin{aligned}
& \forall \ell \in V \quad \operatorname{leaf}(\ell) \rightarrow \exists \text { path in } U: r \rightarrow \ell \\
& v _ { 1 } - r \longdiv { v _ { 3 } - v _ { 4 } } \rightarrow v _ { 1 } \leftarrow r v _ { 3 } \leftarrow v _ { 4 }
\end{aligned}
$$

- Inward orient.: an orientation s.t.:

$$
\begin{aligned}
& \forall \ell \in V \quad \operatorname{leaf}(\ell) \rightarrow \exists \text { path in } U: \ell \rightarrow r \\
& v _ { 1 } - r \longdiv { v _ { 3 } - v _ { 4 } } \rightarrow v _ { 1 } \rightarrow r _ { \kappa } v _ { 3 } \rightarrow v _ { 4 }
\end{aligned}
$$

A tree has $|V|-1$ edges

Thm.

A tree T on a set V has $|V|-1$ edges

Proof

```
Let m(T) be the number of edges in T
Show m(T)=|V|-1 by induction on |V|
If |V| = 2, a spanning tree has one edge
Induction hypothesis: Suppose m(T)=|V|-2 for all trees T on |V|-1 nodes
Let T be any tree on }
Any tree must have at least one leaf node \ell (why?)
Because \ell is a leaf, it is incident to only one edge e
Consider the tree T}\mp@subsup{T}{}{\prime}=T\{e}\mathrm{ on }\mp@subsup{V}{}{\prime}=V\{\ell
Because }|\mp@subsup{V}{}{\prime}|=|V|-1,m(\mp@subsup{T}{}{\prime})=|V|-2 by the induction hypothesi
Thus,T has exactly m(T)=m(T\cup{e})=m(T)+1=|V|-1 edges
```

Spanning trees

Distribution networks

- A network is another term for a digraph (V, A), when used to model a distribution process
- E.g. V : production sites, customer sites
- Arc between two sites: transfer of material
- Arc between two production sites: transfer of raw material
- Arc between production and customer: transfer of finished material
- Main cost of distribution: transportation
- How do you guarantee that each site has access to the material?

Electricity/water distribution

- Raw and finished material is the same
- Blurred distinction between production and customer sites
- Cable/duct reaches customer γ_{1}, it is then extended to customer γ_{2} (γ_{1} is both production and customer)
- The main cost is laying the cables/ducts

Spanning trees

- Cost is optimized if material can be distributed to all sites using as few cables/duct as possible
- Recall: tree on $U \subseteq V$ is spanning if $U=V$
- If each edge e has weight/cost c_{e}, weight/cost of T is

$$
c(T)=\sum_{e \in E(T)} c_{e}
$$

Minimum Spanning Tree (MST): Given an undirected weighted graph $G=(V, E)$, find a spanning tree of minimum weight in G

Example

Prim's algorithm

- Idea: grow connected subgraph from vertex s, min. cost at each step
- Data structures:
- R : set of reached vertices (vertices in the tree)
- F : set of edges in the tree
- u : best next vertex
- $\zeta: V \backslash R \rightarrow \mathbb{R}$: cost of reaching from R a vertex outside R
- $\pi: V \backslash R \rightarrow R$: immediate predecessor in T to a vertex outside R.

Prim's algorithm

- Idea: grow connected subgraph from vertex s, min. cost at each step
- Data structures:
- R : set of reached vertices (vertices in the tree)
- F : set of edges in the tree
- u : best next vertex

2 $\zeta: V \backslash R \rightarrow \mathbb{R}$: cost of reaching from R a vertex outside R

- $\pi: V \backslash R \rightarrow R$: immediate predecessor in T to a vertex outside R.

1: $R=\{s\}, F=\varnothing, \forall v \in V$ set $\zeta(v)=\infty, \pi(v)=s$
2: for $w \in N(s)$ do
3: $\quad \zeta(w)=c_{s w}$
4: end for
5: while $R \neq V$ do
6: let $u \in V \backslash R$ such that $\zeta(u)$ is minimum
7: mark u as reached by adding it to R
8: add the edge $\{\pi(u), u\}$ to T
9: update $\zeta, \pi: \forall v \in N(u)$ s.t. $\zeta(v)>c_{u v}$, let $\zeta(v)=c_{u v}$ and $\pi(v)=u$.
10: end while

Prim's algorithm

$$
s=1
$$

Prim's algorithm

$$
s=1
$$

Prim's algorithm

$$
s=1
$$

Prim's algorithm

$$
s=1
$$

Prim's algorithm

$$
s=1
$$

A local property with global scope

1. Local choice : at each step, choose best edge in cutset
2. Global optimum : end up with the globally optimal spanning tree

The reason

Thm.
Let T be a spanning tree of G, and $c: E(G) \rightarrow \mathbb{R}_{+}$
T has minimum $\operatorname{cost} \Leftrightarrow$
$\forall \varnothing \subsetneq U \subsetneq V(G) \exists e \in E(T)(\delta(U) \cap E(T)=\{e\} \wedge c(e)=\min c(\delta(U)))$

Proof

(\Rightarrow) By contradiction, if $\exists U$ with $f \in \delta(U)$ having $c_{f}<c_{e}$, then $T^{\prime}=$ $T \backslash\{e\} \cup\{f\}$ has lower cost than T
(\Leftarrow) Consider T^{\prime} with $c\left(T^{\prime}\right)<c(T)$ and $T \cap T^{\prime}$ as large as possible, take $f \in T \backslash T^{\prime}$, removing f from T determines $U \subsetneq V(G)$, consider unique $g \in \delta(U) \cap T^{\prime}$, if $c(f)=c(g)$ then $T \cap T^{\prime}$ as large as possible implies $f=g$, but $f \in T \backslash T^{\prime}$ yields a contradiction; otherwise $c(f)<c(g)$ by hypothesis, then $T^{\prime \prime}=T^{\prime} \backslash\{g\} \cup\{f\}$ has $c\left(T^{\prime \prime}\right)<c(T)$, contradiction, hence $T \backslash T^{\prime}=\varnothing$, i.e. $T=T^{\prime}$

Complexity

Worst-case complexity of Prim's algorithm: $O\left(n^{2}\right)$

Kruskal's algorithm: a sketch

- Idea: grow subgraph keeping minimum cost, connect at termination
- Implementation in INF431: requires union-find data structure

1: $T=\varnothing$
2: while $|T|<|V|-1$ do
3: let $e=\arg \min \left\{c_{e} \mid e \in E\right\}$
4: if $T \cup\{e\}$ has no cycle then
5: $\quad T \leftarrow T \cup\{e\} ;$
6: end if
7: $\quad E \leftarrow E \backslash\{e\}$;
8: end while

- At termination, T has $|V|-1$ edges and no cycle
- $\Rightarrow A$ tree by definition

Worst-case complexity of best implementation: $O(m \log n)$

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

.
 Kruskal's algorithm

Chemical trees

Molecular descriptions

- Until mid-XIX century: molecules are completely defined by their atomic formula
- E.g. paraffins are $C_{k} H_{2 k+2}$
- Experiments showed different bond relations give rise to substances with different properties: isomers

butane

isobutane

Listing isomers

- Carbons have valence 4
- Hydrogens have valence 1
- Paraffins known to have tree-like bond relations
- Finding paraffin isomers in the mid-XIX century:
- list all trees on $n=3 k+2$ nodes
- remove those whose valences does not match the paraffin chemical formula
- How do we list all trees? How many are there?

Listing labelled trees

- Two possible interpretations
- These two are different unlabelled trees:
- These two are different labelled trees:

- Listing labelled trees is easier
- \exists more labelled than unlabelled trees

Prüfer sequences

Mapping trees on V to sequences in $V^{|V|-2}$

- For a tree T let $L(T)$ be the set of leaf nodes of T

1: for $k \in\{1, \ldots,|V|-2\}$ do
2: $\quad v=\min L(T)$;
3: let e be the only edge incident to v;
4: let $t_{k} \neq v$ be the other node incident to e;
5: $T \leftarrow T \backslash\{v\}$;
6: end for
7: return $t=\left(t_{1}, \ldots, t_{|V|-2}\right)$

$$
L(T)=\{5,2,3,7,8\}, v=2, t=(6)
$$

Prüfer sequences

Mapping trees on V to sequences in $V^{|V|-2}$

- For a tree T let $L(T)$ be the set of leaf nodes of T

1: for $k \in\{1, \ldots,|V|-2\}$ do
2: $\quad v=\min L(T)$;
3: let e be the only edge incident to v;
4: let $t_{k} \neq v$ be the other node incident to e;
5: $T \leftarrow T \backslash\{v\}$;
6: end for
7: return $t=\left(t_{1}, \ldots, t_{|V|-2}\right)$

$$
L(T)=\{5,3,7,8\}, v=3, t=(6,9)
$$

Prüfer sequences

Mapping trees on V to sequences in $V^{|V|-2}$

- For a tree T let $L(T)$ be the set of leaf nodes of T

1: for $k \in\{1, \ldots,|V|-2\}$ do
2: $\quad v=\min L(T)$;
3: let e be the only edge incident to v;
4: let $t_{k} \neq v$ be the other node incident to e;
5: $T \leftarrow T \backslash\{v\}$;
6: end for
7: return $t=\left(t_{1}, \ldots, t_{|V|-2}\right)$

$$
L(T)=\{5,7,8,9\}, v=5, t=(6,9,1)
$$

Prüfer sequences

Mapping trees on V to sequences in $V^{|V|-2}$

- For a tree T let $L(T)$ be the set of leaf nodes of T

1: for $k \in\{1, \ldots,|V|-2\}$ do
2: $\quad v=\min L(T)$;
3: let e be the only edge incident to v;
4: let $t_{k} \neq v$ be the other node incident to e;
5: $T \leftarrow T \backslash\{v\}$;
6: end for
7: return $t=\left(t_{1}, \ldots, t_{|V|-2}\right)$

$$
L(T)=\{7,8,9\}, v=7, t=(6,9,1,4)
$$

Prüfer sequences

Mapping trees on V to sequences in $V^{|V|-2}$

- For a tree T let $L(T)$ be the set of leaf nodes of T

1: for $k \in\{1, \ldots,|V|-2\}$ do
2: $\quad v=\min L(T)$;
3: let e be the only edge incident to v;
4: let $t_{k} \neq v$ be the other node incident to e;
5: $T \leftarrow T \backslash\{v\}$;
6: end for
7: return $t=\left(t_{1}, \ldots, t_{|V|-2}\right)$

$$
L(T)=\{8,9\}, v=8, t=(6,9,1,4,4)
$$

Prüfer sequences

Mapping trees on V to sequences in $V^{|V|-2}$

- For a tree T let $L(T)$ be the set of leaf nodes of T

1: for $k \in\{1, \ldots,|V|-2\}$ do
2: $\quad v=\min L(T)$;
3: let e be the only edge incident to v;
4: let $t_{k} \neq v$ be the other node incident to e;
5: $T \leftarrow T \backslash\{v\}$;
6: end for
7: return $t=\left(t_{1}, \ldots, t_{|V|-2}\right)$

$$
L(T)=\{9,4\}, v=4, t=(6,9,1,4,4,1)
$$

Prüfer sequences

Mapping trees on V to sequences in $V^{|V|-2}$

- For a tree T let $L(T)$ be the set of leaf nodes of T

1: for $k \in\{1, \ldots,|V|-2\}$ do
2: $\quad v=\min L(T)$;
3: let e be the only edge incident to v;
4: let $t_{k} \neq v$ be the other node incident to e;
5: $T \leftarrow T \backslash\{v\}$;
6: end for
7: return $t=\left(t_{1}, \ldots, t_{|V|-2}\right)$

$$
L(T)=\{9\}, v=9, t=(6,9,1,4,4,1,6)
$$

Prüfer sequences

Mapping trees on V to sequences in $V^{|V|-2}$

- For a tree T let $L(T)$ be the set of leaf nodes of T

1: for $k \in\{1, \ldots,|V|-2\}$ do
2: $\quad v=\min L(T)$;
3: let e be the only edge incident to v;
4: let $t_{k} \neq v$ be the other node incident to e;
5: $T \leftarrow T \backslash\{v\}$;
6: end for
7: return $t=\left(t_{1}, \ldots, t_{|V|-2}\right)$

$$
L(T)=\{6\}, t=(6,9,1,4,4,1,6), \text { stop }
$$

Back to the trees

Mapping $V^{|V|-2}$ to trees

1. Given a Prüfer sequence t on V, e.g. $(6,9,1,4,4,1,6)$
2. Find smallest index ℓ in $V \backslash t=\{2,3,5,7,8\}$, e.g. 2
3. Add $\left\{\ell, t_{1}\right\}$ to T, e.g. $\{2,6\} \in E(T)$
4. Remove t_{1} from t, e.g. $t=(9,1,4,4,1,6)$
5. Remove ℓ from V, e.g. $V \backslash t=\{3,5,7,8\}$
6. Repeat from Step 2 until $t=\varnothing$
7. At this point $|V \backslash t|=2$ (it is an edge): add it

$$
\begin{aligned}
& V \backslash t=\{2,3,5,7,8\} \\
& t=(6,9,1,4,4,1,6)
\end{aligned}
$$

Back to the trees

Mapping $V^{|V|-2}$ to trees

1. Given a Prüfer sequence t on V, e.g. $(6,9,1,4,4,1,6)$
2. Find smallest index ℓ in $V \backslash t=\{2,3,5,7,8\}$, e.g. 2
3. Add $\left\{\ell, t_{1}\right\}$ to T, e.g. $\{2,6\} \in E(T)$
4. Remove t_{1} from t, e.g. $t=(9,1,4,4,1,6)$
5. Remove ℓ from V, e.g. $V \backslash t=\{3,5,7,8\}$
6. Repeat from Step 2 until $t=\varnothing$
7. At this point $|V \backslash t|=2$ (it is an edge): add it

$$
\begin{aligned}
& V \backslash t=\{\boxed{2}, 3,5,7,8\}, \ell=2 \\
& t=(6,9,1,4,4,1,6), \text { edge }\{2,6\}
\end{aligned}
$$

Back to the trees

Mapping $V^{|V|-2}$ to trees

1. Given a Prüfer sequence t on V, e.g. $(6,9,1,4,4,1,6)$
2. Find smallest index ℓ in $V \backslash t=\{2,3,5,7,8\}$, e.g. 2
3. Add $\left\{\ell, t_{1}\right\}$ to T, e.g. $\{2,6\} \in E(T)$
4. Remove t_{1} from t, e.g. $t=(9,1,4,4,1,6)$
5. Remove ℓ from V, e.g. $V \backslash t=\{3,5,7,8\}$
6. Repeat from Step 2 until $t=\varnothing$
7. At this point $|V \backslash t|=2$ (it is an edge): add it

$$
\begin{aligned}
& V \backslash t=\{\boxed{3}, 5,7,8\}, \ell=3 \\
& t=(9,1,4,4,1,6), \text { edge }\{3,9\}
\end{aligned}
$$

Back to the trees

Mapping $V^{|V|-2}$ to trees

1. Given a Prüfer sequence t on V, e.g. $(6,9,1,4,4,1,6)$
2. Find smallest index ℓ in $V \backslash t=\{2,3,5,7,8\}$, e.g. 2
3. Add $\left\{\ell, t_{1}\right\}$ to T, e.g. $\{2,6\} \in E(T)$
4. Remove t_{1} from t, e.g. $t=(9,1,4,4,1,6)$
5. Remove ℓ from V, e.g. $V \backslash t=\{3,5,7,8\}$
6. Repeat from Step 2 until $t=\varnothing$
7. At this point $|V \backslash t|=2$ (it is an edge): add it

$$
V \backslash t=\{\boxed{5}, 7,8,9\}, \ell=5, t=(1,4,4,1,6)
$$ edge $\{5,1\}$

Back to the trees

Mapping $V^{|V|-2}$ to trees

1. Given a Prüfer sequence t on V, e.g. $(6,9,1,4,4,1,6)$
2. Find smallest index ℓ in $V \backslash t=\{2,3,5,7,8\}$, e.g. 2
3. Add $\left\{\ell, t_{1}\right\}$ to T, e.g. $\{2,6\} \in E(T)$
4. Remove t_{1} from t, e.g. $t=(9,1,4,4,1,6)$
5. Remove ℓ from V, e.g. $V \backslash t=\{3,5,7,8\}$
6. Repeat from Step 2 until $t=\varnothing$
7. At this point $|V \backslash t|=2$ (it is an edge): add it

$$
\begin{aligned}
& V \backslash t=\{[7,8,9\}, \ell=7, t=(4,4,1,6), \\
& \text { edge }\{7,4\}
\end{aligned}
$$

Back to the trees

Mapping $V^{|V|-2}$ to trees

1. Given a Prüfer sequence t on V, e.g. $(6,9,1,4,4,1,6)$
2. Find smallest index ℓ in $V \backslash t=\{2,3,5,7,8\}$, e.g. 2
3. Add $\left\{\ell, t_{1}\right\}$ to T, e.g. $\{2,6\} \in E(T)$
4. Remove t_{1} from t, e.g. $t=(9,1,4,4,1,6)$
5. Remove ℓ from V, e.g. $V \backslash t=\{3,5,7,8\}$
6. Repeat from Step 2 until $t=\varnothing$
7. At this point $|V \backslash t|=2$ (it is an edge): add it

$$
\begin{aligned}
& V \backslash t=\{\boxed{8}, 9\}, \ell=8, t=(4,1,6), \\
& \text { edge }\{8,4\}
\end{aligned}
$$

Back to the trees

Mapping $V^{|V|-2}$ to trees

1. Given a Prüfer sequence t on V, e.g. $(6,9,1,4,4,1,6)$
2. Find smallest index ℓ in $V \backslash t=\{2,3,5,7,8\}$, e.g. 2
3. Add $\left\{\ell, t_{1}\right\}$ to T, e.g. $\{2,6\} \in E(T)$
4. Remove t_{1} from t, e.g. $t=(9,1,4,4,1,6)$
5. Remove ℓ from V, e.g. $V \backslash t=\{3,5,7,8\}$
6. Repeat from Step 2 until $t=\varnothing$
7. At this point $|V \backslash t|=2$ (it is an edge): add it

$$
\begin{aligned}
& V \backslash t=\{9,4\}, \ell=4, t=(1,6), \\
& \text { edge }\{4,1\}
\end{aligned}
$$

Back to the trees

Mapping $V^{|V|-2}$ to trees

1. Given a Prüfer sequence t on V, e.g. $(6,9,1,4,4,1,6)$
2. Find smallest index ℓ in $V \backslash t=\{2,3,5,7,8\}$, e.g. 2
3. Add $\left\{\ell, t_{1}\right\}$ to T, e.g. $\{2,6\} \in E(T)$
4. Remove t_{1} from t, e.g. $t=(9,1,4,4,1,6)$
5. Remove ℓ from V, e.g. $V \backslash t=\{3,5,7,8\}$
6. Repeat from Step 2 until $t=\varnothing$
7. At this point $|V \backslash t|=2$ (it is an edge): add it

$$
\begin{aligned}
& V \backslash t=\{\boxed{1}, 9\}, \ell=1, t=(6), \\
& \text { edge }\{1,6\}
\end{aligned}
$$

Back to the trees

Mapping $V^{|V|-2}$ to trees

1. Given a Prüfer sequence t on V, e.g. $(6,9,1,4,4,1,6)$
2. Find smallest index ℓ in $V \backslash t=\{2,3,5,7,8\}$, e.g. 2
3. Add $\left\{\ell, t_{1}\right\}$ to T, e.g. $\{2,6\} \in E(T)$
4. Remove t_{1} from t, e.g. $t=(9,1,4,4,1,6)$
5. Remove ℓ from V, e.g. $V \backslash t=\{3,5,7,8\}$
6. Repeat from Step 2 until $t=\varnothing$
7. At this point $|V \backslash t|=2$ (it is an edge): add it

$$
\begin{aligned}
& V \backslash t=\{6,9\}, \\
& \text { edge }\{6,9\}
\end{aligned}
$$

Bijection

Thm.

There is a bijection between trees on V and sequences in $V^{|V|-2}$

Proof

Essentially follows by two algorithms above
Left to prove: no cycles occur when constructing the tree from the sequence
Claim: no cycles, proceed by contradiction
Notice the mapping trees \rightarrow sequences always deletes leaf nodes
By definition, a cycle must have ≥ 3 nodes, and none of these can be a leaf
So the resulting sequence has at most $|V|-3$ nodes, contradiction (why?)

Thm.

[Cayley 1889] Let $|V|=n$. There are n^{n-2} labelled trees on V

Proof

By previous theorem, the number of labelled trees is the same as the number of sequences in $V^{|V|-2}$ (this proof is by Prüfer, 1918)

Grammars and languages

A remark

- Most students (and not just students!), find arrays, lists, maps, queues and stacks "easier" than trees

A remark

- Most students (and not iust students) find arrays, lists, maps, queues and stacks "easier" than trees
- Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

A remark

- Most students (and not iust students) find arrays, lists, maps, queues and stacks "easier" than trees
- Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

- Thesis 2: iterative vs. recursive
- Sequences are models of iteration and trees models of recursion
- Most people think iteratively rather than recursively (?)

A remark

- Most students (and not just students!), find arrays, lists, maps, queues and stacks "easier" than trees
- Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

- Thesis 2: iterative vs. recursive
- Sequences are models of iteration and trees models of recursion
- Most people think iteratively rather than recursively (?)
- Thesis 3: trees require decisions
- Every node has ≤ 1 next node in a sequence tree nodes might have more than one subnodes
- \Rightarrow Scanning a sequence: no decisions to take \Rightarrow Exploring a tree: which subnode to process next?

Languages and grammars

- Remember nouns, adjectives, transitive verbs from school?
- Sentence analysis: identify and name grammatical components
- Analyze components recursively:

sentence	\longrightarrow	names verb
names	\longrightarrow	name names
name	\longrightarrow	noun
		article noun
		adjectives noun
	1	article adjectives noun
adjectives	\rightarrow	adjective adjectives
verb	\longrightarrow	.

Parse trees

The soft, furry cat purrs

sentence	\longrightarrow	names verb	
names	\longrightarrow	name names	
name	\longrightarrow	noun	
	$\\|$	article noun adjectives noun	
	$\\|$	article adjectives noun	
adjectives	\longrightarrow	adjective adjectives	
verb	\longrightarrow	\ldots	

Parse trees

The soft, furry cat purrs

sentence	\longrightarrow	names verb				
names	\longrightarrow	name names				
name	\longrightarrow	noun article noun				
	$\\|$	adjectives noun article adjectives noun				
	$\\|$	adjective adjectives	\quad	adjectives	\longrightarrow	
---:	:---					

the soft, furry cat purrs

Parse trees

The soft, furry cat purrs

sentence \longrightarrow names	names verb name names		
name	\longrightarrow	noun	
	$\\|$	article noun adjectives noun	
	$\\|$	article adjectives noun	
adjectives	\longrightarrow	adjective adjectives	
verb	\longrightarrow	\ldots	

Parse trees

The soft, furry cat purrs

sentence \longrightarrow names	names verb name names		
name	\longrightarrow	noun	
	$\\|$	article noun adjectives noun	
	$\\|$	article adjectives noun	
adjectives	\longrightarrow	adjective adjectives	
verb	\longrightarrow	\ldots	

Parse trees

The soft, furry cat purrs

sentence \longrightarrow names	names verb name names		
name	\longrightarrow	noun	
	$\\|$	article noun adjectives noun	
	$\\|$	article adjectives noun	
adjectives	\longrightarrow	adjective adjectives	
verb	\longrightarrow	\ldots	

Parse trees

The soft, furry cat purrs

sentence \longrightarrow names	names verb name names		
name	\longrightarrow	noun	
	$\\|$	article noun adjectives noun	
	$\\|$	article adjectives noun	
adjectives	\longrightarrow	adjective adjectives	
verb	\longrightarrow	\ldots	

Parse trees

The soft, furry cat purrs

sentence \longrightarrow names	names verb name names		
name	\longrightarrow	noun	
	$\\|$	article noun adjectives noun	
	$\\|$	article adjectives noun	
adjectives	\longrightarrow	adjective adjectives	
verb	\longrightarrow	\ldots	

Parse trees

The soft, furry cat purrs

sentence	\longrightarrow	names verb	
names	\longrightarrow	name names	
name	\longrightarrow	noun	
	$\\|$	article noun adjectives noun	
	$\\|$	article adjectives noun	
adjectives	\longrightarrow	adjective adjectives	
verb	\longrightarrow	\ldots	

Cocen
 Formal and natural languages

- More than one parse tree to a given sentence \Rightarrow ambiguous grammar
- Different parse trees lead to different meanings \Rightarrow ambiguous language
- Formal languages: non-ambiguous (e.g. formal logic, C/C++, Java,...)
- Natural languages: ambiguous (e.g. common mathematical language, English, French,...)
- Richard Montague (1930-1971): grammar based mechanisms to disambiguate subsets of English

Depth-First Search

Tree exploration

- Breadth-First Search (BFS - seen in Lecture 2 on graphs) find the way out of a maze in the smallest number of steps
- Depth-First Search (DFS — on trees)
- DFS: recursive call to dfs(node v):

1: optionally perform an action on v (prefix);
2: for all subnodes u of v do
3: dfs(u);
4: end for
5: optionally perform an action on v (postfix);

- DFS on trees is: dfs(root)

DFS: exploring a parse tree

sentence

adjective (furry)

DFS: exploring a parse tree

adjective (furry)

DFS: exploring a parse tree

article (the) adjectives noun (cat)
adjective (soft) adjectives
adjective (furry)

DFS: exploring a parse tree

article (the) adjectives noun (cat)
adjective (soft) adjectives
adjective (furry)

DFS: exploring a parse tree

adjective (soft) adjectives
adjective (furry)

DFS: exploring a parse tree

adjective (soft)
adjectives
adjective (furry)

DFS: exploring a parse tree

adjective (furry)

DFS: exploring a parse tree

adjective (furry)

DFS: exploring a parse tree

DFS: exploring a parse tree

DFS: exploring a parse tree

Digraph scanning

- DFS on trees: explore nodes from root, visit each node once
- DFS on digraphs: record visited nodes, don't visit them again
Require: $G=(V, A), s \in V, R=\{s\}, Q=\{s\}$
1: while $Q \neq \varnothing$ do
2: choose $v \in Q / / v$ is scanned
3: $Q \leftarrow Q \backslash\{v\}$
4: \quad for $w \in N^{+}(v) \backslash R$ do
5: $\quad R \leftarrow R \cup\{w\}$
6: $\quad Q \leftarrow Q \cup\{w\}$
7: end for
8: end while

The algorithm is correct

Thm.
If there is an oriented path P from s to $z \in V$, then Digraph ScanNing scans z

Proof

- Suppose not, then $\exists(x, y) \in P$ with $x \in R$ and $y \notin R$ (for otherwise, by induction on the path length, $z \in R$ by Step 5 and hence in Q by Step 6)
- By Step $6 x$ was added to Q
- The algorithm does not stop before eliminating x from Q in Step 3 at some iteration
- When this happens, $N^{+}(x) \subseteq R$ by Steps 4-5
- Hence $y \notin N^{+}(x)$, which implies $(x, y) \notin P$, which yields a contradiction

Storing a digraph

- Seen in Lecture 1: use the jagged array representation (also called adjacency list)

$$
\begin{aligned}
& N^{+}(0)=(1,2,3) \\
& N^{+}(1)=(2) \\
& N^{+}(2)=(3)
\end{aligned}
$$

- Seen in Lecture 2: use the list of arcs representation

$$
L=((0,1),(0,2),(0,3),(1,2),(2,3))
$$

Different efficiency on different algorithms

The algorithm takes $O(n+m)$

Thm.
If the digraph is encoded as adjacency lists, Digraph Scanning takes CPU time proportional $O(n+m)$ in the worst case
Proof

- Each node is considered only once:
- Whenever a node x is eliminated from Q, it was previously inserted by Step 6, which means that it was also added to R by Step 5
- By Step 4, x is never re-added to Q
- Each arc (x, y) is considered only once:
- When $x=v$ in Step 2 then $y \in N^{+}(x)$, so either $y=w$ in Step 4 or it must be verified that $y \in R$
- In both cases, the relation (x, y) was considered once

The choice of $v \in Q$

- In Step 2, the choice of $v \in Q$ determines the order in which the nodes are scanned
- Can alter this using different data structures for implementing the set Q
- Two data structures are commonly used:

1. Queues (lecture 2)

Breadth-First Search: this corresponds to the order being First-In, First-Out (FIFO)
2. Stacks (lecture 6)

Depth-First Search (DFS): this corresponds to the order being Last-In, First-Out (LIFO)

Stacks: a first peek

- Linear data structure
- Accessible from only one end (top)
- Operations:
- push an item on the top
- pop an item from the top
- test whether stack is empty
- Implement using arrays or lists in $O(1)$

DFS on a digraph \equiv Graph Scanning with a stack

End of Lecture 4

