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LIX, École Polytechnique, France

INF421, Lecture 4 – p. 1/46



Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrôle à la fin. Note:

max(CC, 3

4
CC + 1

4
TP )

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)

Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

Website: www.enseignement.polytechnique.fr/informatique/INF421

Blog: inf421.wordpress.com

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)
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Lecture summary

Introduction and reminders

Spanning trees

Chemical trees

Grammars and languages

Depth-First Search (DFS)
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Introduction and reminders
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Trees
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How we draw them
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Nomenclature
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Graphical representation
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width = 3

height/depth = length (#branches) of longest walk [root→ leaf]

width = max (#nodes) with same depth
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Mathematical definition of a tree

Tree: a connected graph G = (V,E) without cycles

root node⇒ rooted tree

If v has |N(v)| = 1, v is a dangling node

v1 v2 v3 v4

v1, v3: dangling nodes

Leaf: non-root dangling node

Branch: edge of a rooted tree
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Orientations
Orientation of a tree T = (V,E) with root r ∈ V :
digraph U = (V,A) s.t.:

∀{u, v} ∈ E (u, v) ∈ A XOR (v, u) ∈ A

Outward orient.: an orientation s.t.:

∀ℓ ∈ V leaf(ℓ)→ ∃ path in U : r → ℓ

v1 r v3 v4 → v1 r v3 v4

Inward orient.: an orientation s.t.:

∀ℓ ∈ V leaf(ℓ)→ ∃ path in U : ℓ→ r

v1 r v3 v4 → v1 r v3 v4
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A tree has |V | − 1 edges

Thm.
A tree T on a set V has |V | − 1 edges

Proof
Let m(T ) be the number of edges in T

Show m(T ) = |V | − 1 by induction on |V |

If |V | = 2, a spanning tree has one edge

Induction hypothesis: Suppose m(T ) = |V | − 2 for all trees T on |V | − 1 nodes

Let T be any tree on V

Any tree must have at least one leaf node ℓ (why?)

Because ℓ is a leaf, it is incident to only one edge e

Consider the tree T ′ = T r {e} on V ′ = V r {ℓ}

Because |V ′| = |V | − 1, m(T ′) = |V | − 2 by the induction hypothesis

Thus, T has exactly m(T ) = m(T ∪ {e}) = m(T ) + 1 = |V | − 1 edges
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Spanning trees
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Distribution networks

A network is another term for a digraph (V,A), when
used to model a distribution process

E.g. V : production sites, customer sites

Arc between two sites: transfer of material

Arc between two production sites: transfer of raw material

Arc between production and customer: transfer of finished

material

Main cost of distribution: transportation

How do you guarantee that each site has access to the
material?
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Electricity/water distribution

Raw and finished material is the same

Blurred distinction between production and customer sites

Cable/duct reaches customer γ1, it is then extended to customer γ2

(γ1 is both production and customer)

The main cost is laying the cables/ducts
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Spanning trees

Cost is optimized if material can be distributed to all
sites using as few cables/duct as possible

Recall: tree on U ⊆ V is spanning if U = V

If each edge e has weight/cost ce, weight/cost of T is

c(T ) =
∑

e∈E(T )

ce

MINIMUM SPANNING TREE (MST): Given an undirected
weighted graph G = (V,E), find a spanning tree of mini-
mum weight in G
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Example

The network

1

1.3

1.3

2

1.4

v1

v2

v3v4

1

1.3

1.3

2

1.4

v1

v2

v3v4

c(T ) = 4.4

1.4

1

1.3

1.3

2

v1

v2

v3v4

c(T ) = 3.6
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Prim’s algorithm
Idea: grow connected subgraph from vertex s, min. cost at each step

Data structures:
R: set of reached vertices (vertices in the tree)

F : set of edges in the tree

u: best next vertex

ζ : V rR → R: cost of reaching from R a vertex outside R

π : V rR → R: immediate predecessor in T to a vertex outside R.
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Prim’s algorithm
Idea: grow connected subgraph from vertex s, min. cost at each step

Data structures:
R: set of reached vertices (vertices in the tree)

F : set of edges in the tree

u: best next vertex

ζ : V rR → R: cost of reaching from R a vertex outside R

π : V rR → R: immediate predecessor in T to a vertex outside R.

1: R = {s}, F = ∅, ∀v ∈ V set ζ(v) =∞, π(v) = s

2: for w ∈ N(s) do

3: ζ(w) = csw

4: end for

5: while R 6= V do

6: let u ∈ V rR such that ζ(u) is minimum

7: mark u as reached by adding it to R

8: add the edge {π(u), u} to T

9: update ζ, π: ∀v ∈ N(u) s.t. ζ(v) > cuv, let ζ(v) = cuv and π(v) = u.

10: end while
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Prim’s algorithm

s = 1
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Prim’s algorithm
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A local property with global scope

1. Local choice : at each step, choose best edge in cutset

2. Global optimum : end up with the globally optimal

spanning tree
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The reason

Thm.

Let T be a spanning tree of G, and c : E(G)→ R+

T has minimum cost⇔
∀∅ ( U ( V (G) ∃e ∈ E(T ) ( δ(U) ∩ E(T ) = {e} ∧ c(e) = min c(δ(U)) )

Proof
(⇒) By contradiction, if ∃U with f ∈ δ(U) having cf < ce, then T ′ =

T r {e} ∪ {f} has lower cost than T

(⇐) Consider T ′ with c(T ′) < c(T ) and T ∩T ′ as large as possible, take

f ∈ T r T ′, removing f from T determines U ( V (G), consider unique

g ∈ δ(U) ∩ T ′, if c(f) = c(g) then T ∩ T ′ as large as possible implies

f = g, but f ∈ T r T ′ yields a contradiction; otherwise c(f) < c(g) by

hypothesis, then T ′′ = T ′ r {g} ∪ {f} has c(T ′′) < c(T ), contradiction,

hence T r T ′ = ∅, i.e. T = T ′
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Complexity

Worst-case complexity of Prim’s algorithm: O(n2)
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Kruskal’s algorithm: a sketch

Idea: grow subgraph keeping minimum cost, connect at termination

Implementation in INF431: requires union-find data structure

1: T = ∅

2: while |T | < |V | − 1 do

3: let e = arg min{ce | e ∈ E}

4: if T ∪ {e} has no cycle then

5: T ← T ∪ {e};

6: end if

7: E ← E r {e};

8: end while

At termination, T has |V | − 1 edges and no cycle

⇒ A tree by definition

Worst-case complexity of best implementation: O(m log n)
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Kruskal’s algorithm
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Chemical trees
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Molecular descriptions

Until mid-XIX century: molecules are completely
defined by their atomic formula

E.g. paraffins are CkH2k+2

Experiments showed different bond relations give rise
to substances with different properties: isomers

butane

isobutane
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Listing isomers

Carbons have valence 4

Hydrogens have valence 1

Paraffins known to have tree-like bond relations

Finding paraffin isomers in the mid-XIX century:

list all trees on n = 3k + 2 nodes

remove those whose valences does not match
the paraffin chemical formula

How do we list all trees? How many are there?
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Listing labelled trees

Two possible interpretations

These two are different unlabelled trees:
•

•

•

•

•

•

••

These two are different labelled trees:
1

2

43

3

4

12

Listing labelled trees is easier

∃ more labelled than unlabelled trees
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Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T ) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T );
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T ) = {5, 2, 3, 7, 8}, v = 2, t = (6)
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Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T ) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T );
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T ) = {5, 3, 7, 8}, v = 3, t = (6, 9)
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Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T ) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T );
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T ) = {5, 7, 8, 9}, v = 5, t = (6, 9, 1)
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Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T ) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T );
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T ) = {7, 8, 9}, v = 7, t = (6, 9, 1, 4)
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Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T ) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T );
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T ) = {8, 9}, v = 8, t = (6, 9, 1, 4, 4)
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Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T ) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T );
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T ) = {9, 4}, v = 4, t = (6, 9, 1, 4, 4, 1)
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Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T ) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T );
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T ) = {9}, v = 9, t = (6, 9, 1, 4, 4, 1, 6)
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Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T ) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T );
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T ) = {6}, t = (6, 9, 1, 4, 4, 1, 6), stop
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Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T )

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = {2, 3, 5, 7, 8},
t = (6, 9, 1, 4, 4, 1, 6)
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Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T )

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 2 , 3, 5, 7, 8}, ℓ = 2,
t = (6, 9, 1, 4, 4, 1, 6), edge {2, 6}
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Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T )

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 3 , 5, 7, 8}, ℓ = 3,
t = (9, 1, 4, 4, 1, 6), edge {3, 9}
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Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T )

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 5 , 7, 8, 9}, ℓ = 5, t = (1, 4, 4, 1, 6),
edge {5, 1}
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Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T )

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 7 , 8, 9}, ℓ = 7, t = (4, 4, 1, 6),
edge {7, 4}
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Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T )

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 8 , 9}, ℓ = 8, t = (4, 1, 6),
edge {8, 4}
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Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T )

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = {9, 4 }, ℓ = 4, t = (1, 6),
edge {4, 1}
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Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T )

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 1 , 9}, ℓ = 1, t = (6),
edge {1, 6}
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Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T )

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 6 , 9},
edge {6, 9}
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Bijection

Thm.
There is a bijection between trees on V and sequences in V |V |−2

Proof
Essentially follows by two algorithms above

Left to prove: no cycles occur when constructing the tree from the sequence

Claim: no cycles, proceed by contradiction

Notice the mapping trees → sequences always deletes leaf nodes

By definition, a cycle must have ≥ 3 nodes, and none of these can be a leaf

So the resulting sequence has at most |V | − 3 nodes, contradiction (why?)

Thm.
[Cayley 1889] Let |V | = n. There are nn−2 labelled trees on V

Proof
By previous theorem, the number of labelled trees is the same as the number of se-

quences in V |V |−2 (this proof is by Prüfer, 1918)
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Grammars and languages
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A remark

Most students (and not just students!) find arrays, lists, maps,
queues and stacks “easier” than trees
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A remark

Most students (and not just students!) find arrays, lists, maps,
queues and stacks “easier” than trees

Thesis 1: the graphical representation
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A remark

Most students (and not just students!) find arrays, lists, maps,
queues and stacks “easier” than trees

Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

Thesis 2: iterative vs. recursive

Sequences are models of iteration and trees models of

recursion

Most people think iteratively rather than recursively (?)

Thesis 3: trees require decisions

Every node has ≤ 1 next node in a sequence

tree nodes might have more than one subnodes

⇒ Scanning a sequence: no decisions to take

⇒ Exploring a tree: which subnode to process next?
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Languages and grammars

Remember nouns, adjectives, transitive verbs from school?

Sentence analysis: identify and name grammatical
components

Analyze components recursively:

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .
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Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .
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Parse trees

The soft, furry cat purrs
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names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .
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Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

the soft, furry cat purrs
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Parse trees
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Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .
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Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

soft furry
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Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

furry
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Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)
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Formal and natural languages

More than one parse tree to a given sentence⇒
ambiguous grammar

Different parse trees lead to different meanings⇒
ambiguous language

Formal languages: non-ambiguous
(e.g. formal logic, C/C++, Java,. . . )

Natural languages: ambiguous
(e.g. common mathematical language, English, French,. . . )

Richard Montague (1930-1971): grammar based
mechanisms to disambiguate subsets of English
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Depth-First Search
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Tree exploration

Breadth-First Search (BFS — seen in Lecture 2 on graphs)
find the way out of a maze in the smallest number of steps

Depth-First Search (DFS — on trees)

DFS: recursive call to dfs(node v):

1: optionally perform an action on v (prefix);
2: for all subnodes u of v do
3: dfs(u);
4: end for
5: optionally perform an action on v (postfix);

DFS on trees is: dfs(root)
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DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)
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DFS: exploring a parse tree
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DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)
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Digraph scanning

DFS on trees: explore nodes from root, visit each node
once

DFS on digraphs: record visited nodes, don’t visit them

again

Require: G = (V,A), s ∈ V , R = {s}, Q = {s}
1: while Q 6= ∅ do
2: choose v ∈ Q // v is scanned

3: Q← Qr {v}

4: for w ∈ N+(v)rR do
5: R← R ∪ {w}
6: Q← Q ∪ {w}
7: end for
8: end while
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The algorithm is correct

Thm.

If there is an oriented path P from s to z ∈ V , then DIGRAPH

SCANNING scans z

Proof
Suppose not, then ∃(x, y) ∈ P with x ∈ R and y 6∈ R (for

otherwise, by induction on the path length, z ∈ R by Step 5 and

hence in Q by Step 6)

By Step 6 x was added to Q

The algorithm does not stop before eliminating x from Q in Step 3

at some iteration

When this happens, N+(x) ⊆ R by Steps 4-5

Hence y 6∈ N+(x), which implies (x, y) 6∈ P , which yields a contra-

diction
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Storing a digraph

Seen in Lecture 1: use the jagged array representation
(also called adjacency list)

N+(0) = (1, 2, 3)

N+(1) = (2)

N+(2) = (3)
0

1

2

3

Seen in Lecture 2: use the list of arcs representation

L = ((0, 1), (0, 2), (0, 3), (1, 2), (2, 3))

Different efficiency on different algorithms
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The algorithm takes O(n +m)

Thm.

If the digraph is encoded as adjacency lists, DIGRAPH SCAN-

NING takes CPU time proportional O(n + m) in the worst
case

Proof
Each node is considered only once:

Whenever a node x is eliminated from Q, it was previously

inserted by Step 6, which means that it was also added to R

by Step 5

By Step 4, x is never re-added to Q

Each arc (x, y) is considered only once:

When x = v in Step 2 then y ∈ N+(x), so either y = w in Step

4 or it must be verified that y ∈ R

In both cases, the relation (x, y) was considered once
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The choice of v ∈ Q

In Step 2, the choice of v ∈ Q determines the order in
which the nodes are scanned

Can alter this using different data structures for
implementing the set Q

Two data structures are commonly used:

1. Queues (lecture 2)

BREADTH-FIRST SEARCH: this corresponds to the order
being First-In, First-Out (FIFO)

2. Stacks (lecture 6)

DEPTH-FIRST SEARCH (DFS): this corresponds to the
order being Last-In, First-Out (LIFO)
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Stacks: a first peek

Linear data structure

Accessible from only one end (top)

Operations:

push an item on the top

pop an item from the top

test whether stack is empty

Implement using arrays or lists in O(1)
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DFS on a digraph ≡ GRAPH SCANNING

with a stack
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End of Lecture 4
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