
INF421, Lecture 4
Trees and DFS

Leo Liberti

LIX, École Polytechnique, France

INF421, Lecture 4 – p. 1/46

Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrôle à la fin. Note:

max(CC, 3

4
CC + 1

4
TP)

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)

Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

Website: www.enseignement.polytechnique.fr/informatique/INF421

Blog: inf421.wordpress.com

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 4 – p. 2/46

www.enseignement.polytechnique.fr/informatique/INF421
inf421.wordpress.com
liberti@lix.polytechnique.fr

Lecture summary

Introduction and reminders

Spanning trees

Chemical trees

Grammars and languages

Depth-First Search (DFS)

INF421, Lecture 4 – p. 3/46

Introduction and reminders

INF421, Lecture 4 – p. 4/46

Trees

INF421, Lecture 4 – p. 5/46

How we draw them

INF421, Lecture 4 – p. 6/46

Nomenclature

INF421, Lecture 4 – p. 7/46

Graphical representation

root

leaf

branch

node

leaf leaf

leaf

h
e
ig

h
t
o
r

d
e
p

th
=

2

subtree

width = 3

height/depth = length (#branches) of longest walk [root→ leaf]

width = max (#nodes) with same depth

INF421, Lecture 4 – p. 8/46

Mathematical definition of a tree

Tree: a connected graph G = (V,E) without cycles

root node⇒ rooted tree

If v has |N(v)| = 1, v is a dangling node

v1 v2 v3 v4

v1, v3: dangling nodes

Leaf: non-root dangling node

Branch: edge of a rooted tree

INF421, Lecture 4 – p. 9/46

Orientations
Orientation of a tree T = (V,E) with root r ∈ V :
digraph U = (V,A) s.t.:

∀{u, v} ∈ E (u, v) ∈ A XOR (v, u) ∈ A

Outward orient.: an orientation s.t.:

∀ℓ ∈ V leaf(ℓ)→ ∃ path in U : r → ℓ

v1 r v3 v4 → v1 r v3 v4

Inward orient.: an orientation s.t.:

∀ℓ ∈ V leaf(ℓ)→ ∃ path in U : ℓ→ r

v1 r v3 v4 → v1 r v3 v4

INF421, Lecture 4 – p. 10/46

A tree has |V | − 1 edges

Thm.
A tree T on a set V has |V | − 1 edges

Proof
Let m(T) be the number of edges in T

Show m(T) = |V | − 1 by induction on |V |

If |V | = 2, a spanning tree has one edge

Induction hypothesis: Suppose m(T) = |V | − 2 for all trees T on |V | − 1 nodes

Let T be any tree on V

Any tree must have at least one leaf node ℓ (why?)

Because ℓ is a leaf, it is incident to only one edge e

Consider the tree T ′ = T r {e} on V ′ = V r {ℓ}

Because |V ′| = |V | − 1, m(T ′) = |V | − 2 by the induction hypothesis

Thus, T has exactly m(T) = m(T ∪ {e}) = m(T) + 1 = |V | − 1 edges

INF421, Lecture 4 – p. 11/46

Spanning trees

INF421, Lecture 4 – p. 12/46

Distribution networks

A network is another term for a digraph (V,A), when
used to model a distribution process

E.g. V : production sites, customer sites

Arc between two sites: transfer of material

Arc between two production sites: transfer of raw material

Arc between production and customer: transfer of finished

material

Main cost of distribution: transportation

How do you guarantee that each site has access to the
material?

INF421, Lecture 4 – p. 13/46

Electricity/water distribution

Raw and finished material is the same

Blurred distinction between production and customer sites

Cable/duct reaches customer γ1, it is then extended to customer γ2

(γ1 is both production and customer)

The main cost is laying the cables/ducts

INF421, Lecture 4 – p. 14/46

Spanning trees

Cost is optimized if material can be distributed to all
sites using as few cables/duct as possible

Recall: tree on U ⊆ V is spanning if U = V

If each edge e has weight/cost ce, weight/cost of T is

c(T) =
∑

e∈E(T)

ce

MINIMUM SPANNING TREE (MST): Given an undirected
weighted graph G = (V,E), find a spanning tree of mini-
mum weight in G

INF421, Lecture 4 – p. 15/46

Example

The network

1

1.3

1.3

2

1.4

v1

v2

v3v4

1

1.3

1.3

2

1.4

v1

v2

v3v4

c(T) = 4.4

1.4

1

1.3

1.3

2

v1

v2

v3v4

c(T) = 3.6

INF421, Lecture 4 – p. 16/46

Prim’s algorithm
Idea: grow connected subgraph from vertex s, min. cost at each step

Data structures:
R: set of reached vertices (vertices in the tree)

F : set of edges in the tree

u: best next vertex

ζ : V rR → R: cost of reaching from R a vertex outside R

π : V rR → R: immediate predecessor in T to a vertex outside R.

INF421, Lecture 4 – p. 17/46

Prim’s algorithm
Idea: grow connected subgraph from vertex s, min. cost at each step

Data structures:
R: set of reached vertices (vertices in the tree)

F : set of edges in the tree

u: best next vertex

ζ : V rR → R: cost of reaching from R a vertex outside R

π : V rR → R: immediate predecessor in T to a vertex outside R.

1: R = {s}, F = ∅, ∀v ∈ V set ζ(v) =∞, π(v) = s

2: for w ∈ N(s) do

3: ζ(w) = csw

4: end for

5: while R 6= V do

6: let u ∈ V rR such that ζ(u) is minimum

7: mark u as reached by adding it to R

8: add the edge {π(u), u} to T

9: update ζ, π: ∀v ∈ N(u) s.t. ζ(v) > cuv, let ζ(v) = cuv and π(v) = u.

10: end while

INF421, Lecture 4 – p. 17/46

Prim’s algorithm

s = 1

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 18/46

Prim’s algorithm

s = 1

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 18/46

Prim’s algorithm

s = 1

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 18/46

Prim’s algorithm

s = 1

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 18/46

Prim’s algorithm

s = 1

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 18/46

Prim’s algorithm

s = 1

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 18/46

Prim’s algorithm

s = 1

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 18/46

Prim’s algorithm

s = 1

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 18/46

A local property with global scope

1. Local choice : at each step, choose best edge in cutset

2. Global optimum : end up with the globally optimal

spanning tree

INF421, Lecture 4 – p. 19/46

The reason

Thm.

Let T be a spanning tree of G, and c : E(G)→ R+

T has minimum cost⇔
∀∅ (U (V (G) ∃e ∈ E(T) (δ(U) ∩ E(T) = {e} ∧ c(e) = min c(δ(U)))

Proof
(⇒) By contradiction, if ∃U with f ∈ δ(U) having cf < ce, then T ′ =

T r {e} ∪ {f} has lower cost than T

(⇐) Consider T ′ with c(T ′) < c(T) and T ∩T ′ as large as possible, take

f ∈ T r T ′, removing f from T determines U (V (G), consider unique

g ∈ δ(U) ∩ T ′, if c(f) = c(g) then T ∩ T ′ as large as possible implies

f = g, but f ∈ T r T ′ yields a contradiction; otherwise c(f) < c(g) by

hypothesis, then T ′′ = T ′ r {g} ∪ {f} has c(T ′′) < c(T), contradiction,

hence T r T ′ = ∅, i.e. T = T ′

INF421, Lecture 4 – p. 20/46

Complexity

Worst-case complexity of Prim’s algorithm: O(n2)

INF421, Lecture 4 – p. 21/46

Kruskal’s algorithm: a sketch

Idea: grow subgraph keeping minimum cost, connect at termination

Implementation in INF431: requires union-find data structure

1: T = ∅

2: while |T | < |V | − 1 do

3: let e = arg min{ce | e ∈ E}

4: if T ∪ {e} has no cycle then

5: T ← T ∪ {e};

6: end if

7: E ← E r {e};

8: end while

At termination, T has |V | − 1 edges and no cycle

⇒ A tree by definition

Worst-case complexity of best implementation: O(m log n)

INF421, Lecture 4 – p. 22/46

Kruskal’s algorithm

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 23/46

Kruskal’s algorithm

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 23/46

Kruskal’s algorithm

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 23/46

Kruskal’s algorithm

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 23/46

Kruskal’s algorithm

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 23/46

Kruskal’s algorithm

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 23/46

Kruskal’s algorithm

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 23/46

Kruskal’s algorithm

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 23/46

Kruskal’s algorithm

1 2

3

4

5

6

7

INF421, Lecture 4 – p. 23/46

Chemical trees

INF421, Lecture 4 – p. 24/46

Molecular descriptions

Until mid-XIX century: molecules are completely
defined by their atomic formula

E.g. paraffins are CkH2k+2

Experiments showed different bond relations give rise
to substances with different properties: isomers

butane

isobutane

INF421, Lecture 4 – p. 25/46

Listing isomers

Carbons have valence 4

Hydrogens have valence 1

Paraffins known to have tree-like bond relations

Finding paraffin isomers in the mid-XIX century:

list all trees on n = 3k + 2 nodes

remove those whose valences does not match
the paraffin chemical formula

How do we list all trees? How many are there?

INF421, Lecture 4 – p. 26/46

Listing labelled trees

Two possible interpretations

These two are different unlabelled trees:
•

•

•

•

•

•

••

These two are different labelled trees:
1

2

43

3

4

12

Listing labelled trees is easier

∃ more labelled than unlabelled trees

INF421, Lecture 4 – p. 27/46

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {5, 2, 3, 7, 8}, v = 2, t = (6)

INF421, Lecture 4 – p. 28/46

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {5, 3, 7, 8}, v = 3, t = (6, 9)

INF421, Lecture 4 – p. 28/46

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {5, 7, 8, 9}, v = 5, t = (6, 9, 1)

INF421, Lecture 4 – p. 28/46

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {7, 8, 9}, v = 7, t = (6, 9, 1, 4)

INF421, Lecture 4 – p. 28/46

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {8, 9}, v = 8, t = (6, 9, 1, 4, 4)

INF421, Lecture 4 – p. 28/46

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {9, 4}, v = 4, t = (6, 9, 1, 4, 4, 1)

INF421, Lecture 4 – p. 28/46

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {9}, v = 9, t = (6, 9, 1, 4, 4, 1, 6)

INF421, Lecture 4 – p. 28/46

Prüfer sequences

Mapping trees on V to sequences in V |V |−2

For a tree T let L(T) be the set of leaf nodes of T

1: for k ∈ {1, . . . , |V | − 2} do
2: v = minL(T);
3: let e be the only edge incident to v;
4: let tk 6= v be the other node incident to e;
5: T ← T r {v};
6: end for
7: return t = (t1, . . . , t|V |−2)

1

4

87

6

9

3

2

5

L(T) = {6}, t = (6, 9, 1, 4, 4, 1, 6), stop

INF421, Lecture 4 – p. 28/46

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T)

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = {2, 3, 5, 7, 8},
t = (6, 9, 1, 4, 4, 1, 6)

INF421, Lecture 4 – p. 29/46

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T)

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 2 , 3, 5, 7, 8}, ℓ = 2,
t = (6, 9, 1, 4, 4, 1, 6), edge {2, 6}

INF421, Lecture 4 – p. 29/46

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T)

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 3 , 5, 7, 8}, ℓ = 3,
t = (9, 1, 4, 4, 1, 6), edge {3, 9}

INF421, Lecture 4 – p. 29/46

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T)

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 5 , 7, 8, 9}, ℓ = 5, t = (1, 4, 4, 1, 6),
edge {5, 1}

INF421, Lecture 4 – p. 29/46

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T)

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 7 , 8, 9}, ℓ = 7, t = (4, 4, 1, 6),
edge {7, 4}

INF421, Lecture 4 – p. 29/46

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T)

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 8 , 9}, ℓ = 8, t = (4, 1, 6),
edge {8, 4}

INF421, Lecture 4 – p. 29/46

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T)

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = {9, 4 }, ℓ = 4, t = (1, 6),
edge {4, 1}

INF421, Lecture 4 – p. 29/46

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T)

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 1 , 9}, ℓ = 1, t = (6),
edge {1, 6}

INF421, Lecture 4 – p. 29/46

Back to the trees

Mapping V |V |−2 to trees

1. Given a Prüfer sequence t on V , e.g. (6, 9, 1, 4, 4, 1, 6)

2. Find smallest index ℓ in V r t = {2, 3, 5, 7, 8}, e.g. 2

3. Add {ℓ, t1} to T , e.g. {2, 6} ∈ E(T)

4. Remove t1 from t, e.g. t = (9, 1, 4, 4, 1, 6)

5. Remove ℓ from V , e.g. V r t = {3, 5, 7, 8}

6. Repeat from Step 2 until t = ∅

7. At this point |V r t| = 2 (it is an edge): add it

1

5 6 4

2 9 7 8

3

V r t = { 6 , 9},
edge {6, 9}

INF421, Lecture 4 – p. 29/46

Bijection

Thm.
There is a bijection between trees on V and sequences in V |V |−2

Proof
Essentially follows by two algorithms above

Left to prove: no cycles occur when constructing the tree from the sequence

Claim: no cycles, proceed by contradiction

Notice the mapping trees → sequences always deletes leaf nodes

By definition, a cycle must have ≥ 3 nodes, and none of these can be a leaf

So the resulting sequence has at most |V | − 3 nodes, contradiction (why?)

Thm.
[Cayley 1889] Let |V | = n. There are nn−2 labelled trees on V

Proof
By previous theorem, the number of labelled trees is the same as the number of se-

quences in V |V |−2 (this proof is by Prüfer, 1918)

INF421, Lecture 4 – p. 30/46

Grammars and languages

INF421, Lecture 4 – p. 31/46

A remark

Most students (and not just students!) find arrays, lists, maps,
queues and stacks “easier” than trees

INF421, Lecture 4 – p. 32/46

A remark

Most students (and not just students!) find arrays, lists, maps,
queues and stacks “easier” than trees

Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

INF421, Lecture 4 – p. 32/46

A remark

Most students (and not just students!) find arrays, lists, maps,
queues and stacks “easier” than trees

Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

Thesis 2: iterative vs. recursive

Sequences are models of iteration and trees models of

recursion

Most people think iteratively rather than recursively (?)

INF421, Lecture 4 – p. 32/46

A remark

Most students (and not just students!) find arrays, lists, maps,
queues and stacks “easier” than trees

Thesis 1: the graphical representation

People are used to read sequence-like rather than tree-like text

Thesis 2: iterative vs. recursive

Sequences are models of iteration and trees models of

recursion

Most people think iteratively rather than recursively (?)

Thesis 3: trees require decisions

Every node has ≤ 1 next node in a sequence

tree nodes might have more than one subnodes

⇒ Scanning a sequence: no decisions to take

⇒ Exploring a tree: which subnode to process next?

INF421, Lecture 4 – p. 32/46

Languages and grammars

Remember nouns, adjectives, transitive verbs from school?

Sentence analysis: identify and name grammatical
components

Analyze components recursively:

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

INF421, Lecture 4 – p. 33/46

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

INF421, Lecture 4 – p. 34/46

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

the soft, furry cat purrs

INF421, Lecture 4 – p. 34/46

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

the soft, furry cat purrs

INF421, Lecture 4 – p. 34/46

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

the soft, furry cat

INF421, Lecture 4 – p. 34/46

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

name

the soft, furry cat

INF421, Lecture 4 – p. 34/46

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

soft furry

INF421, Lecture 4 – p. 34/46

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

furry

INF421, Lecture 4 – p. 34/46

Parse trees

The soft, furry cat purrs

sentence −→ names verb

names −→ name names

name −→ noun

|| article noun

|| adjectives noun

|| article adjectives noun

adjectives −→ adjective adjectives

verb −→ . . .

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 34/46

Formal and natural languages

More than one parse tree to a given sentence⇒
ambiguous grammar

Different parse trees lead to different meanings⇒
ambiguous language

Formal languages: non-ambiguous
(e.g. formal logic, C/C++, Java,. . .)

Natural languages: ambiguous
(e.g. common mathematical language, English, French,. . .)

Richard Montague (1930-1971): grammar based
mechanisms to disambiguate subsets of English

INF421, Lecture 4 – p. 35/46

Depth-First Search

INF421, Lecture 4 – p. 36/46

Tree exploration

Breadth-First Search (BFS — seen in Lecture 2 on graphs)
find the way out of a maze in the smallest number of steps

Depth-First Search (DFS — on trees)

DFS: recursive call to dfs(node v):

1: optionally perform an action on v (prefix);
2: for all subnodes u of v do
3: dfs(u);
4: end for
5: optionally perform an action on v (postfix);

DFS on trees is: dfs(root)

INF421, Lecture 4 – p. 37/46

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 38/46

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 38/46

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 38/46

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 38/46

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 38/46

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 38/46

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 38/46

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 38/46

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 38/46

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 38/46

DFS: exploring a parse tree

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

INF421, Lecture 4 – p. 38/46

Digraph scanning

DFS on trees: explore nodes from root, visit each node
once

DFS on digraphs: record visited nodes, don’t visit them

again

Require: G = (V,A), s ∈ V , R = {s}, Q = {s}
1: while Q 6= ∅ do
2: choose v ∈ Q // v is scanned

3: Q← Qr {v}

4: for w ∈ N+(v)rR do
5: R← R ∪ {w}
6: Q← Q ∪ {w}
7: end for
8: end while

INF421, Lecture 4 – p. 39/46

The algorithm is correct

Thm.

If there is an oriented path P from s to z ∈ V , then DIGRAPH

SCANNING scans z

Proof
Suppose not, then ∃(x, y) ∈ P with x ∈ R and y 6∈ R (for

otherwise, by induction on the path length, z ∈ R by Step 5 and

hence in Q by Step 6)

By Step 6 x was added to Q

The algorithm does not stop before eliminating x from Q in Step 3

at some iteration

When this happens, N+(x) ⊆ R by Steps 4-5

Hence y 6∈ N+(x), which implies (x, y) 6∈ P , which yields a contra-

diction

INF421, Lecture 4 – p. 40/46

Storing a digraph

Seen in Lecture 1: use the jagged array representation
(also called adjacency list)

N+(0) = (1, 2, 3)

N+(1) = (2)

N+(2) = (3)
0

1

2

3

Seen in Lecture 2: use the list of arcs representation

L = ((0, 1), (0, 2), (0, 3), (1, 2), (2, 3))

Different efficiency on different algorithms

INF421, Lecture 4 – p. 41/46

The algorithm takes O(n +m)

Thm.

If the digraph is encoded as adjacency lists, DIGRAPH SCAN-

NING takes CPU time proportional O(n + m) in the worst
case

Proof
Each node is considered only once:

Whenever a node x is eliminated from Q, it was previously

inserted by Step 6, which means that it was also added to R

by Step 5

By Step 4, x is never re-added to Q

Each arc (x, y) is considered only once:

When x = v in Step 2 then y ∈ N+(x), so either y = w in Step

4 or it must be verified that y ∈ R

In both cases, the relation (x, y) was considered once

INF421, Lecture 4 – p. 42/46

The choice of v ∈ Q

In Step 2, the choice of v ∈ Q determines the order in
which the nodes are scanned

Can alter this using different data structures for
implementing the set Q

Two data structures are commonly used:

1. Queues (lecture 2)

BREADTH-FIRST SEARCH: this corresponds to the order
being First-In, First-Out (FIFO)

2. Stacks (lecture 6)

DEPTH-FIRST SEARCH (DFS): this corresponds to the
order being Last-In, First-Out (LIFO)

INF421, Lecture 4 – p. 43/46

Stacks: a first peek

Linear data structure

Accessible from only one end (top)

Operations:

push an item on the top

pop an item from the top

test whether stack is empty

Implement using arrays or lists in O(1)

INF421, Lecture 4 – p. 44/46

DFS on a digraph ≡ GRAPH SCANNING

with a stack

INF421, Lecture 4 – p. 45/46

End of Lecture 4

INF421, Lecture 4 – p. 46/46

	Course
	Lecture summary
	Introduction and reminders
	Trees
	How we draw them
	Nomenclature
	Graphical representation
	Mathematical definition of a tree
	Orientations
	A tree has $|V|-1$ edges
	Spanning trees
	Distribution networks
	Electricity/water distribution
	Spanning trees
	Example
	Prim's algorithm
	Prim's algorithm

	Prim's algorithm
	Prim's algorithm
	Prim's algorithm
	Prim's algorithm
	Prim's algorithm
	Prim's algorithm
	Prim's algorithm
	Prim's algorithm

	A local property with global scope
	The reason
	Complexity
	Kruskal's algorithm: a sketch
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm
	Kruskal's algorithm

	Chemical trees
	Molecular descriptions
	Listing isomers
	Listing labelled trees
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences
	Pr"ufer sequences

	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees
	Back to the trees

	Bijection
	Grammars and languages
	A remark
	A remark
	A remark
	A remark

	Languages and grammars
	Parse trees
	Parse trees
	Parse trees
	Parse trees
	Parse trees
	Parse trees
	Parse trees
	Parse trees

	Formal and natural languages
	Depth-First Search
	Tree exploration
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree
	DFS: exploring a parse tree

	Digraph scanning
	The algorithm is correct
	Storing a digraph
	The algorithm takes $O(n+m)$
	The choice of $vin Q$
	Stacks: a first peek
	DFS on a digraph $equiv $ {sc Graph Scanning} with a stack
	End of Lecture 4

