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Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrôle à la fin. Note:

max(CC, 3
4CC + 1

4TP )

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)

Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

Website: www.enseignement.polytechnique.fr/informatique/INF421

Blog: inf421.wordpress.com

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 7 – p. 2/42

www.enseignement.polytechnique.fr/informatique/INF421
inf421.wordpress.com
liberti@lix.polytechnique.fr


Lecture summary

Sorting complexity in general

Mergesort

Quicksort

Two-way partition
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The minimal knowledge
mergeSort(s1, . . . , sn)

m = ⌊n
2
⌋;

s′ = mergeSort(s1, . . . , sm);

s′′ = mergeSort(sm+1, . . . , sn);

merge s′, s′′ such that result s̄ is sorted;

return s̄;

Split in half, recurse on shorter

subsequences, then do some

work to reassemble them

quickSort(s1, . . . , sn)

choose a k ≤ n;

s′ = (si | i 6= k ∧ si < sk);

s′′ = (si | i 6= k ∧ si ≥ sk);

return (quickSort(s′), sk, quickSort(s
′′));

Choose a value sk, split s.t. left

subseq. has values < sk, right

subseq. has values ≥ sk, re-

curse on subseq.

twoWaySort(s1, . . . , sn) ∈ {0, 1}
n

i = 1; j = n

while i ≤ j do

if si = 0 them i← i+ 1

else if sj = 1 then j ← j − 1

else swap si, sj ; i++; j-- endif

end while

Only applies to binary se-

quences. Move i to leftmost

1 and j to rightmost 0. These

are out of place, so swap them;

continue until i, j meet
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The sorting problem

Consider the following problem:

SORTING PROBLEM (SP). Given a sequence s =
(s1, . . . , sn), find a permutation π ∈ Sn of n symbols
with the following property:

∀1 ≤ i < j ≤ n (sπ(i) ≤ sπ(j)),

where Sn is the symmetric group of order n

INF421, Lecture 7 – p. 5/42



The sorting problem

Consider the following problem:

SORTING PROBLEM (SP). Given a sequence s =
(s1, . . . , sn), find a permutation π ∈ Sn of n symbols
with the following property:

∀1 ≤ i < j ≤ n (sπ(i) ≤ sπ(j)),

where Sn is the symmetric group of order n

In other words, order s

INF421, Lecture 7 – p. 5/42



The sorting problem

Consider the following problem:

SORTING PROBLEM (SP). Given a sequence s =
(s1, . . . , sn), find a permutation π ∈ Sn of n symbols
with the following property:

∀1 ≤ i < j ≤ n (sπ(i) ≤ sπ(j)),

where Sn is the symmetric group of order n

In other words, order s

Type of s influences efficiency: the more generic, the less
efficient. E.g. mergeSort and quickSort OK for all
types; twoWaySort only OK for boolean
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Problem complexity

Algorithmic complexity : worst-case run time over all

inputs

Problem complexity : worst case run time of most

efficient algorithm for problem

Usually: upper bound on problem complexity

Given problem P , find an O(f) algorithm, say com-
plexity of P is no worse than O(f)

Lower bounds?

Given problem P , show that no algorithm for P can
ever be better than Ω(f)

Seems to require listing all possible algorithms for P

An ill-defined question?
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Comparisons

Sorting algorithms are comparison-based

given si, sj , does si ≤ sj hold?
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Comparisons

Sorting algorithms are comparison-based

given si, sj , does si ≤ sj hold?

Describe any sorting algorithm by tracing calls to comparisons

sorting tree
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Comparisons

Sorting algorithms are comparison-based

given si, sj , does si ≤ sj hold?

Describe any sorting algorithm by tracing calls to comparisons

sorting tree

E.g. sorting tree to order s1, s2, s3:

1 2

2 3

31

32

1 3

s1
?
≤ s2

s1
?
≤ s3s1

?
≤ s3

s2
?
≤ s3s2

?
≤ s3

e

(23) (132) (12) (123)

(13)
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Sorting trees

Sorting tree: different inputs⇒ different paths root→leaf
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Sorting trees

Sorting tree: different inputs⇒ different paths root→leaf

Encodes behaviour of comparison-based (CB) sorting
algorithm over all inputs

INF421, Lecture 7 – p. 8/42



Sorting trees

Sorting tree: different inputs⇒ different paths root→leaf
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Sorting trees

Sorting tree: different inputs⇒ different paths root→leaf

Encodes behaviour of comparison-based (CB) sorting
algorithm over all inputs

∃ mapping Γ:CB sorting algorithms→ sorting trees

Two CB sorting algorithms with same sorting tree
behave the same way
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Sorting trees

Sorting tree: different inputs⇒ different paths root→leaf

Encodes behaviour of comparison-based (CB) sorting
algorithm over all inputs

∃ mapping Γ:CB sorting algorithms→ sorting trees

Two CB sorting algorithms with same sorting tree
behave the same way

⇒ Assume WLOG Γ is 1-1⇒ | domΓ| ≤ | ran Γ|
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Sorting trees

Sorting tree: different inputs⇒ different paths root→leaf

Encodes behaviour of comparison-based (CB) sorting
algorithm over all inputs

∃ mapping Γ:CB sorting algorithms→ sorting trees

Two CB sorting algorithms with same sorting tree
behave the same way

⇒ Assume WLOG Γ is 1-1⇒ | domΓ| ≤ | ran Γ|

At most |sorting trees| CB sorting algorithms
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Sorting trees

Sorting tree: different inputs⇒ different paths root→leaf

Encodes behaviour of comparison-based (CB) sorting
algorithm over all inputs

∃ mapping Γ:CB sorting algorithms→ sorting trees

Two CB sorting algorithms with same sorting tree
behave the same way

⇒ Assume WLOG Γ is 1-1⇒ | domΓ| ≤ | ran Γ|

At most |sorting trees| CB sorting algorithms

Also: best possible CB sorting algorithm = best possible
sorting tree
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Best worst-case complexity

Tn = set of all sorting trees for n-sequences
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Best worst-case complexity
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Best worst-case complexity

Tn = set of all sorting trees for n-sequences

Different inputs⇒ different ordering permutations π in
leaves

For T ∈ Tn and π ∈ Sn,

ℓ(T, π) = length of path root→leaf(π) in T

ℓ(T, π): trace length of a CB sorting algorithm on given input

upper bound on ℓ over π = worst-case complexity of alg.
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Best worst-case complexity

Tn = set of all sorting trees for n-sequences

Different inputs⇒ different ordering permutations π in
leaves

For T ∈ Tn and π ∈ Sn,

ℓ(T, π) = length of path root→leaf(π) in T

ℓ(T, π): trace length of a CB sorting algorithm on given input

upper bound on ℓ over π = worst-case complexity of alg.

Best worst-case complexity is, for each n ≥ 0:

Bn = min
T∈Tn

max
π∈Sn

ℓ(T, π).

INF421, Lecture 7 – p. 9/42



Best worst-case complexity

Tn = set of all sorting trees for n-sequences

Different inputs⇒ different ordering permutations π in
leaves

For T ∈ Tn and π ∈ Sn,

ℓ(T, π) = length of path root→leaf(π) in T

ℓ(T, π): trace length of a CB sorting algorithm on given input

upper bound on ℓ over π = worst-case complexity of alg.

Best worst-case complexity is, for each n ≥ 0:
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max
π∈Sn

ℓ(T, π).
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The complexity of sorting

For any tree T , |V (T )| = number of nodes of T
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The complexity of sorting

For any tree T , |V (T )| = number of nodes of T

Tree depth: max. path length root→leaf in tree

A binary tree T with depth ≤ k has |V (T )| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn �
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The complexity of sorting

For any tree T , |V (T )| = number of nodes of T

Tree depth: max. path length root→leaf in tree

A binary tree T with depth ≤ k has |V (T )| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn �

∀T ∈ Tn, each π ∈ Sn appears in a leaf node of T
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The complexity of sorting

For any tree T , |V (T )| = number of nodes of T

Tree depth: max. path length root→leaf in tree

A binary tree T with depth ≤ k has |V (T )| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn �

∀T ∈ Tn, each π ∈ Sn appears in a leaf node of T

⇒ Any T ∈ Tn has at least n! leaf nodes, i.e. |V (T )| ≥ n!
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The complexity of sorting

For any tree T , |V (T )| = number of nodes of T

Tree depth: max. path length root→leaf in tree

A binary tree T with depth ≤ k has |V (T )| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn �

∀T ∈ Tn, each π ∈ Sn appears in a leaf node of T

⇒ Any T ∈ Tn has at least n! leaf nodes, i.e. |V (T )| ≥ n!

Hence, n! ≤ 2Bn , which implies Bn ≥ ⌈log n!⌉
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The complexity of sorting

For any tree T , |V (T )| = number of nodes of T

Tree depth: max. path length root→leaf in tree

A binary tree T with depth ≤ k has |V (T )| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn �

∀T ∈ Tn, each π ∈ Sn appears in a leaf node of T

⇒ Any T ∈ Tn has at least n! leaf nodes, i.e. |V (T )| ≥ n!

Hence, n! ≤ 2Bn , which implies Bn ≥ ⌈log n!⌉

By Stirling’s approx., log n! = n log n− 1
ln 2n+O(log n) �
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The complexity of sorting

For any tree T , |V (T )| = number of nodes of T

Tree depth: max. path length root→leaf in tree

A binary tree T with depth ≤ k has |V (T )| ≤ 2k

⇒ The sorting tree T ∗ of best algorithm has |V (T ∗)| ≤ 2Bn �

∀T ∈ Tn, each π ∈ Sn appears in a leaf node of T

⇒ Any T ∈ Tn has at least n! leaf nodes, i.e. |V (T )| ≥ n!

Hence, n! ≤ 2Bn , which implies Bn ≥ ⌈log n!⌉

By Stirling’s approx., log n! = n log n− 1
ln 2n+O(log n) �

⇒ Bn is bounded below by a function proportional to n log n

(we say Bn is Ω(n log n))
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Today’s magic result: first part

Complexity of sorting:

Ω(n log n)
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Simple sorting algorithms
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2),∅
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

→ (3, 4, 2 ), (1)
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

→ ( 3 , 4), (1, 2)
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

→ ( 4 ), (1, 2, 3)
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

→ (1, 2, 3, 4)
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2 ), (1)→ ( 3 , 4), (1, 2)→ ( 4 ), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
at its proper position in the sorted sequence
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2 ), (1)→ ( 3 , 4), (1, 2)→ ( 4 ), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
at its proper position in the sorted sequence

→ ( 1 , 4, 2), (3)
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2 ), (1)→ ( 3 , 4), (1, 2)→ ( 4 ), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
at its proper position in the sorted sequence

→ ( 4 , 2), (1, 3)
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2 ), (1)→ ( 3 , 4), (1, 2)→ ( 4 ), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
at its proper position in the sorted sequence

→ ( 2 ), (1, 3, 4)
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence
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Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2 ), (1)→ ( 3 , 4), (1, 2)→ ( 4 ), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
at its proper position in the sorted sequence

( 3 , 1, 4, 2)→ ( 1 , 4, 2), (3)→ ( 4 , 2), (1, 3)→ ( 2 ), (1, 3, 4)→ (1, 2, 3, 4)

INF421, Lecture 7 – p. 13/42



Simple sorting algorithms

I shall save you the trouble of learning all the numerous
types of sorting algorithms in existence

Let me just mention selection sort, where you repeatedly
select the minimum element of s,

(3, 1 , 4, 2)→ (3, 4, 2 ), (1)→ ( 3 , 4), (1, 2)→ ( 4 ), (1, 2, 3)→ (1, 2, 3, 4)

and insertion sort, where you insert the next element of s
at its proper position in the sorted sequence

( 3 , 1, 4, 2)→ ( 1 , 4, 2), (3)→ ( 4 , 2), (1, 3)→ ( 2 ), (1, 3, 4)→ (1, 2, 3, 4)

Both are O(n2); insertion sort is fast for small |s|
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Mergesort
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)

( 1 ,3,4,9)
→ ∅
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

( 2 ,3,5,6)

(1,3,4,9)
→ (1)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2, 3 ,5,6)

(1,3,4,9)
→ (1, 2)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)

(1, 3 ,4,9)
→ (1, 2, 3)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)

(1,3, 4 ,9)
→ (1, 2, 3, 3)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3, 5 ,6)

(1,3,4,9)
→ (1, 2, 3, 3, 4)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5, 6 )

(1,3,4,9)
→ (1, 2, 3, 3, 4, 5)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)

(1,3,4, 9 )
→ (1, 2, 3, 3, 4, 5, 6)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)
(1,3,4,9)

→ (1, 2, 3, 3, 4, 5, 6, 9) = s̄
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Split s midway: s′ = (5, 3, 6, 2), s′′ = (1, 9, 4, 3)

Sort s′, s′′: |s′| < |s| and |s′′| < |s| ⇒ use recursion

Base case: If |s| ≤ 1 then s already sorted by definition

Get s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9)

Merge s′, s′′ into a sorted sequence s̄:

(2,3,5,6)
(1,3,4,9)

→ (1, 2, 3, 3, 4, 5, 6, 9) = s̄

Return s̄
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Merge

merge(s′, s′′): merges two sorted sequences s′, s′′ in a
sorted sequence containing all elements in s′, s′′

INF421, Lecture 7 – p. 16/42



Merge

merge(s′, s′′): merges two sorted sequences s′, s′′ in a
sorted sequence containing all elements in s′, s′′

Since s′, s′′ are both already sorted, merging them so
that the output is sorted is efficient

Read first (and smallest) elements of s′, s′′: O(1)

Compare these two elements: O(1)

There are |s| elements to process: O(n)
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Merge

merge(s′, s′′): merges two sorted sequences s′, s′′ in a
sorted sequence containing all elements in s′, s′′

Since s′, s′′ are both already sorted, merging them so
that the output is sorted is efficient

Read first (and smallest) elements of s′, s′′: O(1)

Compare these two elements: O(1)

There are |s| elements to process: O(n)

You can implement this using lists: if s′ is empty return

s′′, if s′′ is empty return s′, and otherwise compare the
first elements of both and choose smallest
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Recursive algorithm

mergeSort(s) {

1: if |s| ≤ 1 then
2: return s;
3: else

4: m = ⌊ |s|2 ⌋;

5: s′ = mergeSort(e1, . . . , em);
6: s′′ = mergeSort(em+1, . . . , en);
7: return merge(s′, s′′);
8: end if

}

By INF311, mergeSort has worst-case complexity
O(n log n)
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Today’s magic result: second part

Complexity of sorting:

Θ(n log n)

A function is Θ(g(n)) if it is both O(g(n)) and Ω(g(n))
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Quicksort
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3 , 6, 2, 1, 9, 4, 3)→ ∅,∅
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3),∅
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6 , 2, 1, 9, 4, 3)→ (3),∅
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3), (6)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2 , 1, 9, 4, 3)→ (3), (6)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2), (6)

INF421, Lecture 7 – p. 20/42



Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1 , 9, 4, 3)→ (3, 2), (6)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1), (6)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9 , 4, 3)→ (3, 2, 1), (6)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1), (6, 9)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4 , 3)→ (3, 2, 1), (6, 9)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1, 4), (6, 9)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3 )→ (3, 2, 1, 4), (6, 9)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1, 4, 3), (6, 9)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1, 4, 3), (6, 9)

Sort s′ = (3, 2, 1, 4, 3) and s′′ = (6, 9): since |s′| < |s| and
|s′′| < |s| we can use recursion; base case |s| ≤ 1
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1, 4, 3), (6, 9)

Sort s′ = (3, 2, 1, 4, 3) and s′′ = (6, 9): since |s′| < |s| and
|s′′| < |s| we can use recursion; base case |s| ≤ 1

Update s to (s′, p, s′′)
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Divide-and-conquer

Let s = (5, 3, 6, 2, 1, 9, 4, 3)

Choose a pivot value p = s1 = 5 (no particular reason for choosing s1)

Partition (s2, . . . , sn) in s′ (elements smaller than p) and
s′′ (elements greather than or equal to p):

(5, 3, 6, 2, 1, 9, 4, 3)→ (3, 2, 1, 4, 3), (6, 9)

Sort s′ = (3, 2, 1, 4, 3) and s′′ = (6, 9): since |s′| < |s| and
|s′′| < |s| we can use recursion; base case |s| ≤ 1

Update s to (s′, p, s′′)

Notice: in mergeSort, we recurse first, then work on subsequences

afterwards. In quickSort, we work on subsequences first, then recurse

on them afterwards
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Partition

partition(s): produces two subsequences s′, s′′ of
(s2, . . . , sn) such that:

s′ = (si | i 6= 1 ∧ si < s1)

s′′ = (si | i 6= 1 ∧ si ≥ s1)
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Partition

partition(s): produces two subsequences s′, s′′ of
(s2, . . . , sn) such that:

s′ = (si | i 6= 1 ∧ si < s1)

s′′ = (si | i 6= 1 ∧ si ≥ s1)

Scan s: if si < s1 put si in s′, otherwise put it in s′′
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Partition

partition(s): produces two subsequences s′, s′′ of
(s2, . . . , sn) such that:

s′ = (si | i 6= 1 ∧ si < s1)

s′′ = (si | i 6= 1 ∧ si ≥ s1)

Scan s: if si < s1 put si in s′, otherwise put it in s′′

There are |s| − 1 elements to process: O(n)
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Partition

partition(s): produces two subsequences s′, s′′ of
(s2, . . . , sn) such that:

s′ = (si | i 6= 1 ∧ si < s1)

s′′ = (si | i 6= 1 ∧ si ≥ s1)

Scan s: if si < s1 put si in s′, otherwise put it in s′′

There are |s| − 1 elements to process: O(n)

You can implement this using arrays; moreover, if you

use a swap function such that, given i, j, swaps si with
sj in s, you don’t even need to create any new
temporary array: you can update s “in place”
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Recursive algorithm

quickSort(s) {

1: if |s| ≤ 1 then
2: return ;
3: else
4: (s′, s′′) = partition(s);
5: quickSort(s′);
6: quickSort(s′′);
7: s← (s′, s1, s

′′);
8: end if

}
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Complexity

Worst-case complexity: O(n2)

Average-case complexity: O(n log n)

Very fast in practice
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Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1
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Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1

Recursion level 1: p = n, s′ = (n− 1, . . . , 1), s′′ = ∅
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Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1

Recursion level 1: p = n, s′ = (n− 1, . . . , 1), s′′ = ∅

Recursion level 2: p = n− 1, s′ = (n− 2, . . . , 1), s′′ = ∅
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Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1

Recursion level 1: p = n, s′ = (n− 1, . . . , 1), s′′ = ∅

Recursion level 2: p = n− 1, s′ = (n− 2, . . . , 1), s′′ = ∅

And so on, down to p = 1 (base case)
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Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1

Recursion level 1: p = n, s′ = (n− 1, . . . , 1), s′′ = ∅

Recursion level 2: p = n− 1, s′ = (n− 2, . . . , 1), s′′ = ∅

And so on, down to p = 1 (base case)

Each partitioning call takes O(n)
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Worst-case complexity

Consider the input (n, n− 1, . . . , 1) with pivot s1

Recursion level 1: p = n, s′ = (n− 1, . . . , 1), s′′ = ∅

Recursion level 2: p = n− 1, s′ = (n− 2, . . . , 1), s′′ = ∅

And so on, down to p = 1 (base case)

Each partitioning call takes O(n)

Get O(n2)
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2-Way partitioning
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Definition by example

Input: (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)
Desired output: (0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
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Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)
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Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)
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Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them
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Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter
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Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

( 1 , 0, 0, 1, 1, 0, 0, 0 , 1, 1)
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Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0, 1, 1, 0, 0,1, 1, 1)
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Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0, 1 , 1, 0, 0 , 1, 1, 1)
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Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0,0, 1, 0,1, 1, 1, 1)
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Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0, 0, 1 , 0 , 1, 1, 1, 1)
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Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0, 0,0,1, 1, 1, 1, 1)
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Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

INF421, Lecture 7 – p. 27/42



Iterating swaps

Let s = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)

Find leftmost 1 and rightmost 0 (these are out of place)

Swap them

Increase leftmost counter, decrease rightmost counter

Repeat until counters become equal

(1, 0, 0, 1, 1, 0, 0, 0, 1, 1)→ (0, 0, 0, 1, 1, 0, 0,1, 1, 1)→

(0, 0, 0,0, 1, 0,1, 1, 1, 1)→ (0, 0, 0, 0,0,1, 1, 1, 1, 1)
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The algorithm

i = 0; j = n− 1;
while i < j do

if si = 0 then
i← i+ 1;

else if sj = 1 then
j ← j − 1;

else
swap(s, i, j);
i← i+ 1;
j ← j − 1;

end if
end while

INF421, Lecture 7 – p. 28/42



Worst-case complexity

Occurs with input (1, . . . , 1, 0, . . . , 0) where number of 1’s
are around the same as the number of 0’s

Requires ⌊n2 ⌋ swaps

Worst-case O(n)
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A paradox?

At the outset, we proved that sorting had complexity
Θ(n log n)
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A paradox?

At the outset, we proved that sorting had complexity
Θ(n log n)

But 2-way partioning requires only O(n)
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A paradox?

At the outset, we proved that sorting had complexity
Θ(n log n)

But 2-way partioning requires only O(n)

Contradiction? Paradox?
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A paradox?

At the outset, we proved that sorting had complexity
Θ(n log n)

But 2-way partioning requires only O(n)

Contradiction? Paradox?

Only apparent: the initial theorem was under the
following assumptions:

no prior knowledge on the type of input (“general input”)

only comparison-based algorithms are concerned
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A paradox?

At the outset, we proved that sorting had complexity
Θ(n log n)

But 2-way partioning requires only O(n)

Contradiction? Paradox?

Only apparent: the initial theorem was under the
following assumptions:

no prior knowledge on the type of input (“general input”)

only comparison-based algorithms are concerned

Neither assumption is true for 2-way partitioning

we know that the input sequence is of binary type

the algorithm never uses a comparison
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Appendix
[P. Cameron, Combinatorics]
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Quicksort: average complexity 1/10

Let n = |s|

Let qn be the average number of comparisons made by
quickSort to sort an n-sequence

partition(s) involves n− 1 comparisons

Assume the pivot p = s1 is the k-th smallest element of s

Then, recursion takes qk−1 + qn−k comparisons on
average

Average this over the n values that k can take

This implies:

qn = n− 1 +
1

n

n
∑

k=1

(qk−1 + qn−k) (1)
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Quicksort: average complexity 2/10

Notice that in the sum
∑n

k=1(qk−1 + qn−k), each qk
occurs twice

k qk−1 qn−k

1 q0 qn−1

2 q1 qn−2
...

...
...

n− 1 qn−2 q1

n qn−1 q0

Hence we can write:

qn = n− 1 +
2

n

n−1
∑

k=0

qk (2)
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Quicksort: average complexity 3/10

Equation (2) is a recurrence relation

A solution of a recurrence relation is a closed-form
expression for qn which does not include the symbol qk
for any integer k ≥ 0

One solution method consists in writing the solution as
the infinite sequence (q0, q1, q2, . . . , qn, . . .) as a formal

power series:

Q(t) =
∑

n≥0

qnt
n

(3)

If Q(t) is known, then the value for each qn can also be
obtained:

Differentiate Q(t) n times with respect to t, set t = 0, and

divide the result by n!

INF421, Lecture 7 – p. 34/42



Quicksort: average complexity 4/10

Multiply each side of the recurrence relation (2) by ntn

and sum over all n ≥ 0, get:

∑

n≥0

nqnt
n =

∑

n≥0

n(n− 1)tn + 2
∑

n≥0

(

n−1
∑

k=0

qk

)

tn (4)

We now replace each of these three terms so as to be
able to derive a more convenient expression for Q(t)
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Quicksort: average complexity 5/10

Differentiate Q(t) with respect to t and multiply by t to get an

expression for the first term:

t
dQ(t)

dt
= t

∑

n≥0

nqnt
n−1 =

∑

n≥0

nqnt
n, (5)

For the second term: by lecture 1,
∑

n≥0 t
n = 1

1−t

Differentiate this equation twice with respect to t, we get:

∑

n≥0

n(n− 1)tn−2 =
2

(1− t)3
(6)

Now multiply both members by t2 to get an expression for the second

term:
∑

n≥0

n(n− 1)tn =
2t2

(1− t)3
(7)
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Quicksort: average complexity 6/10

Now for the third: the n-th term of the sum
∑

n≥0(
∑n−1

k=0 qk)t
n can be written as

n−1
∑

k=0

tn−k(qkt
k)

Hence, the whole sum over n can be written as the
following product (convince yourself that this is true):

(t+ t2 + t3 + . . .)(q0 + q1t+ q2t
2 + q3t

3 + . . .)

The first factor is
∑

n≥0 t
n = 1

1−t
, and the second is

simply the expression for Q(t)

Hence, the third term is
2tQ(t)
1−t
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Quicksort: average complexity 7/10

Putting it all together, we obtain a first-order differential equation for

Q(t):

tQ′(t) =
2t2

(1− t)3
+

2t

1− t
Q(t) (8)

Remark that if we differentiate the expression (1− t)2Q(t) (which I pulled

out of a hat) w.r.t. t, we get:

d

dt
((1− t)2Q(t)) = (1− t)2Q′(t)− 2(1− t)Q(t) (9)

We rearrange the terms of Eq. (8) to get:

tQ′(t)−
2t

1− t
Q(t) =

2t2

(1− t)3
(10)

We multiply Eq. (10) through by
(1−t)2

t
and get:

(1− t)2Q′(t)− 2(1− t)Q(t) =
2t

1− t
(11)
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The RHS of Eq. (9) is the same as the LHS of Eq. (11),
hence we can rewrite Eq. 9 as:

d

dt
((1− t)2Q(t)) =

2t

1− t
(12)

Now, straightforward integration w.r.t. t yields:

Q(t) =
−2(t+ log(1− t))

(1− t)2
(13)
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The next step consists in writing the power series for log

and 1/(1− t)2, rearrange them in a product, and read off
the coefficient qn of the term in tn. Without going into
details, this yields:

qn = 2(n+ 1)

n
∑

k=1

1

k
− 4n (14)

for all n ≥ 0

For all n ≥ 0, the term
∑n

k=1
1
k

is an approximation of:

∫ n

1

1

x
dx = log(n) +O(1) (15)
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Finally, we get an asymptotic expression for qn:

∀n ≥ 0 qn = 2n log(n) +O(n) (16)

This shows that the average number of comparisons
taken by quickSort is O(n log n)
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