INF421, Lecture 7 Sorting

Leo Liberti

LIX, École Polytechnique, France

Course

- Objective: teach notions AND develop intelligence
- Evaluation: TP noté en salle info, Contrôle à la fin. Note:
$\max \left(C C, \frac{3}{4} C C+\frac{1}{4} T P\right)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
- Books:

1. K. Mehlhorn \& P. Sanders, Algorithms and Data Structures, Springer, 2008
2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
4. Ph. Baptiste \& L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2006

- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr(e-mail subject: INF421)

Lecture summary

- Sorting complexity in general
- Mergesort
- Quicksort
- Two-way partition

The minimal knowledge

-

```
mergeSort \(\left(s_{1}, \ldots, s_{n}\right)\)
    \(m=\left\lfloor\frac{n}{2}\right\rfloor ;\)
    \(s^{\prime}=\operatorname{mergeSort}\left(s_{1}, \ldots, s_{m}\right)\);
    \(s^{\prime \prime}=\operatorname{mergeSort}\left(s_{m+1}, \ldots, s_{n}\right)\);
    merge \(s^{\prime}, s^{\prime \prime}\) such that result \(\bar{s}\) is sorted;
    return \(\bar{s}\);
```

- quickSort $\left(s_{1}, \ldots, s_{n}\right)$
choose a $k \leq n$;
$s^{\prime}=\left(s_{i} \mid i \neq k \wedge s_{i}<s_{k}\right) ;$
$s^{\prime \prime}=\left(s_{i} \mid i \neq k \wedge s_{i} \geq s_{k}\right)$;
return (quickSort $\left(s^{\prime}\right), s_{k}$, quickSort $\left(s^{\prime \prime}\right)$);
- twoWaySort $\left(s_{1}, \ldots, s_{n}\right) \in\{0,1\}^{n}$
$i=1 ; j=n$
while $i \leq j$ do
if $s_{i}=0$ them $i \leftarrow i+1$
else if $s_{j}=1$ then $j \leftarrow j-1$
else swap $s_{i}, s_{j} ; i++; j--$ endif
end while

Split in half, recurse on shorter subsequences, then do some work to reassemble them

Choose a value s_{k}, split s.t. left subseq. has values $<s_{k}$, right subseq. has values $\geq s_{k}$, recurse on subseq.

Only applies to binary sequences. Move i to leftmost 1 and j to rightmost 0 . These are out of place, so swap them; continue until i, j meet

The sorting problem

- Consider the following problem:

Sorting Problem (SP). Given a sequence $s=$ $\left(s_{1}, \ldots, s_{n}\right)$, find a permutation $\pi \in S_{n}$ of n symbols with the following property:

$$
\forall 1 \leq i<j \leq n\left(s_{\pi(i)} \leq s_{\pi(j)}\right)
$$

where S_{n} is the symmetric group of order n

The sorting problem

- Consider the following problem:

Sorting Problem (SP). Given a sequence $s=$ $\left(s_{1}, \ldots, s_{n}\right)$, find a permutation $\pi \in S_{n}$ of n symbols with the following property:

$$
\forall 1 \leq i<j \leq n\left(s_{\pi(i)} \leq s_{\pi(j)}\right)
$$

where S_{n} is the symmetric group of order n

- In other words, order s

The sorting problem

- Consider the following problem:

Sorting Problem (SP). Given a sequence $s=$ $\left(s_{1}, \ldots, s_{n}\right)$, find a permutation $\pi \in S_{n}$ of n symbols with the following property:

$$
\forall 1 \leq i<j \leq n\left(s_{\pi(i)} \leq s_{\pi(j)}\right)
$$

where S_{n} is the symmetric group of order n

- In other words, order s

Type of s influences efficiency: the more generic, the less efficient. E.g. mergeSort and quickSort OK for all types; twoWaySort only OK for boolean

Problem complexity

- Algorithmic complexity : worst-case run time over all inputs
- Problem complexity : worst case run time of most efficient algorithm for problem
- Usually: upper bound on problem complexity

Given problem P, find an $O(f)$ algorithm, say complexity of P is no worse than $O(f)$

- Lower bounds?

Given problem P, show that no algorithm for P can ever be better than $\Omega(f)$

- Seems to require listing all possible algorithms for P

An ill-defined question?

Comparisons

- Sorting algorithms are comparison-based
given s_{i}, s_{j}, does $s_{i} \leq s_{j}$ hold?

Comparisons

- Sorting algorithms are comparison-based

$$
\text { given } s_{i}, s_{j} \text {, does } s_{i} \leq s_{j} \text { hold? }
$$

- Describe any sorting algorithm by tracing calls to comparisons
sorting tree

Comparisons

- Sorting algorithms are comparison-based

$$
\text { given } s_{i}, s_{j} \text {, does } s_{i} \leq s_{j} \text { hold? }
$$

- Describe any sorting algorithm by tracing calls to comparisons sorting tree
- E.g. sorting tree to order s_{1}, s_{2}, s_{3} :

Sorting trees

- Sorting tree: different inputs \Rightarrow different paths root \rightarrow leaf

Sorting trees

- Sorting tree: different inputs \Rightarrow different paths root \rightarrow leaf
- Encodes behaviour of comparison-based (CB) sorting algorithm over all inputs

Sorting trees

- Sorting tree: different inputs \Rightarrow different paths root \rightarrow leaf
- Encodes behaviour of comparison-based (CB) sorting algorithm over all inputs
- \exists mapping $\Gamma: C B$ sorting algorithms \rightarrow sorting trees

Sorting trees

- Sorting tree: different inputs \Rightarrow different paths root \rightarrow leaf
- Encodes behaviour of comparison-based (CB) sorting algorithm over all inputs
- \exists mapping $\Gamma: C B$ sorting algorithms \rightarrow sorting trees
- Two CB sorting algorithms with same sorting tree behave the same way

Sorting trees

- Sorting tree: different inputs \Rightarrow different paths root \rightarrow leaf
- Encodes behaviour of comparison-based (CB) sorting algorithm over all inputs
- \exists mapping $\Gamma: C B$ sorting algorithms \rightarrow sorting trees
- Two CB sorting algorithms with same sorting tree behave the same way
- \Rightarrow Assume WLOG Γ is $1-1 \Rightarrow|\operatorname{dom} \Gamma| \leq|\operatorname{ran} \Gamma|$

Sorting trees

- Sorting tree: different inputs \Rightarrow different paths root \rightarrow leaf
- Encodes behaviour of comparison-based (CB) sorting algorithm over all inputs
- \exists mapping $\Gamma: C B$ sorting algorithms \rightarrow sorting trees
- Two CB sorting algorithms with same sorting tree behave the same way
- \Rightarrow Assume WLOG Γ is $1-1 \Rightarrow|\operatorname{dom} \Gamma| \leq|\operatorname{ran} \Gamma|$
- At most |sorting trees| CB sorting algorithms

Sorting trees

- Sorting tree: different inputs \Rightarrow different paths root \rightarrow leaf
- Encodes behaviour of comparison-based (CB) sorting algorithm over all inputs
- \exists mapping $\Gamma: C B$ sorting algorithms \rightarrow sorting trees
- Two CB sorting algorithms with same sorting tree behave the same way
- \Rightarrow Assume WLOG Γ is $1-1 \Rightarrow|\operatorname{dom} \Gamma| \leq|\operatorname{ran} \Gamma|$
- At most |sorting trees| CB sorting algorithms
- Also: best possible CB sorting algorithm = best possible sorting tree

Best worst-case complexity

- $\mathbb{T}_{n}=$ set of all sorting trees for n-sequences

Best worst-case complexity

- $\mathbb{T}_{n}=$ set of all sorting trees for n-sequences
- Different inputs \Rightarrow different ordering permutations π in leaves

Best worst-case complexity

- $\mathbb{T}_{n}=$ set of all sorting trees for n-sequences
- Different inputs \Rightarrow different ordering permutations π in leaves
- For $T \in \mathbb{T}_{n}$ and $\pi \in S_{n}$,
$\ell(T, \pi)=$ length of path root $\rightarrow \operatorname{leaf}(\pi)$ in T

Best worst-case complexity

- $\mathbb{T}_{n}=$ set of all sorting trees for n-sequences
- Different inputs \Rightarrow different ordering permutations π in leaves
- For $T \in \mathbb{T}_{n}$ and $\pi \in S_{n}$, $\ell(T, \pi)=$ length of path root $\rightarrow \operatorname{leaf}(\pi)$ in T
- $\ell(T, \pi)$: trace length of a CB sorting algorithm on given input upper bound on ℓ over $\pi=$ worst-case complexity of alg.

Best worst-case complexity

- $\mathbb{T}_{n}=$ set of all sorting trees for n-sequences
- Different inputs \Rightarrow different ordering permutations π in leaves
- For $T \in \mathbb{T}_{n}$ and $\pi \in S_{n}$,

$$
\ell(T, \pi)=\text { length of path root } \rightarrow \operatorname{leaf}(\pi) \text { in } T
$$

- $\ell(T, \pi)$: trace length of a CB sorting algorithm on given input upper bound on ℓ over $\pi=$ worst-case complexity of alg.
- Best worst-case complexity is, for each $n \geq 0$:

$$
B_{n}=\min _{T \in \mathbb{T}_{n}} \max _{\pi \in S_{n}} \ell(T, \pi) .
$$

Best worst-case complexity

- $\mathbb{T}_{n}=$ set of all sorting trees for n-sequences
- Different inputs \Rightarrow different ordering permutations π in leaves
- For $T \in \mathbb{T}_{n}$ and $\pi \in S_{n}$,

$$
\ell(T, \pi)=\text { length of path root } \rightarrow \operatorname{leaf}(\pi) \text { in } T
$$

- $\ell(T, \pi)$: trace length of a CB sorting algorithm on given input upper bound on ℓ over $\pi=$ worst-case complexity of alg.
- Best worst-case complexity is, for each $n \geq 0$:

$$
B_{n}=\min _{T \in \mathbb{T}_{n}} \max _{\pi \in S_{n}} \ell(T, \pi) .
$$

The complexity of sorting

For any tree $T,|V(T)|=$ number of nodes of T

The complexity of sorting

- For any tree $T,|V(T)|=$ number of nodes of T
- Tree depth: max. path length root \rightarrow leaf in tree

The complexity of sorting

- For any tree $T,|V(T)|=$ number of nodes of T
- Tree depth: max. path length root \rightarrow leaf in tree
- A binary tree T with depth $\leq k$ has $|V(T)| \leq 2^{k}$

The complexity of sorting

- For any tree $T,|V(T)|=$ number of nodes of T
- Tree depth: max. path length root \rightarrow leaf in tree
- A binary tree T with depth $\leq k$ has $|V(T)| \leq 2^{k}$
- \Rightarrow The sorting tree T^{*} of best algorithm has $\left|V\left(T^{*}\right)\right| \leq 2^{B_{n}}$

The complexity of sorting

- For any tree $T,|V(T)|=$ number of nodes of T
- Tree depth: max. path length root \rightarrow leaf in tree
- A binary tree T with depth $\leq k$ has $|V(T)| \leq 2^{k}$
- \Rightarrow The sorting tree T^{*} of best algorithm has $\left|V\left(T^{*}\right)\right| \leq 2^{B_{n}} \quad \square$
- $\forall T \in \mathbb{T}_{n}$, each $\pi \in S_{n}$ appears in a leaf node of T

The complexity of sorting

- For any tree $T,|V(T)|=$ number of nodes of T
- Tree depth: max. path length root \rightarrow leaf in tree
- A binary tree T with depth $\leq k$ has $|V(T)| \leq 2^{k}$
- \Rightarrow The sorting tree T^{*} of best algorithm has $\left|V\left(T^{*}\right)\right| \leq 2^{B_{n}} \quad \square$
- $\forall T \in \mathbb{T}_{n}$, each $\pi \in S_{n}$ appears in a leaf node of T
- \Rightarrow Any $T \in \mathbb{T}_{n}$ has at least n ! leaf nodes, i.e. $|V(T)| \geq n$!

The complexity of sorting

- For any tree $T,|V(T)|=$ number of nodes of T
- Tree depth: max. path length root \rightarrow leaf in tree
- A binary tree T with depth $\leq k$ has $|V(T)| \leq 2^{k}$
- \Rightarrow The sorting tree T^{*} of best algorithm has $\left|V\left(T^{*}\right)\right| \leq 2^{B_{n}} \quad \square$
- $\forall T \in \mathbb{T}_{n}$, each $\pi \in S_{n}$ appears in a leaf node of T
- \Rightarrow Any $T \in \mathbb{T}_{n}$ has at least n ! leaf nodes, i.e. $|V(T)| \geq n$!
- Hence, n ! $\leq 2^{B_{n}}$, which implies $B_{n} \geq\lceil\log n!\rceil$

The complexity of sorting

- For any tree $T,|V(T)|=$ number of nodes of T
- Tree depth: max. path length root \rightarrow leaf in tree
- A binary tree T with depth $\leq k$ has $|V(T)| \leq 2^{k}$
- \Rightarrow The sorting tree T^{*} of best algorithm has $\left|V\left(T^{*}\right)\right| \leq 2^{B_{n}} \quad \square$
- $\forall T \in \mathbb{T}_{n}$, each $\pi \in S_{n}$ appears in a leaf node of T
- \Rightarrow Any $T \in \mathbb{T}_{n}$ has at least n ! leaf nodes, i.e. $|V(T)| \geq n$!
- Hence, n ! $\leq 2^{B_{n}}$, which implies $B_{n} \geq\lceil\log n!\rceil$
- By Stirling's approx., $\log n!=n \log n-\frac{1}{\ln 2} n+O(\log n)$

The complexity of sorting

- For any tree $T,|V(T)|=$ number of nodes of T
- Tree depth: max. path length root \rightarrow leaf in tree
- A binary tree T with depth $\leq k$ has $|V(T)| \leq 2^{k}$
- \Rightarrow The sorting tree T^{*} of best algorithm has $\left|V\left(T^{*}\right)\right| \leq 2^{B_{n}} \quad \square$
- $\forall T \in \mathbb{T}_{n}$, each $\pi \in S_{n}$ appears in a leaf node of T
- \Rightarrow Any $T \in \mathbb{T}_{n}$ has at least n ! leaf nodes, i.e. $|V(T)| \geq n$!
- Hence, $n!\leq 2^{B_{n}}$, which implies $B_{n} \geq\lceil\log n!\rceil$
- By Stirling's approx., $\log n!=n \log n-\frac{1}{\ln 2} n+O(\log n)$
-

$\Rightarrow B_{n}$ is bounded below by a function proportional to $n \log n$
(we say B_{n} is $\Omega(n \log n)$)

.
 Today's magic result: first part

Complexity of sorting:
 $\Omega(n \log n)$

Simple sorting algorithms

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

$$
(3, \boxed{1}, 4,2), \varnothing
$$

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,
$\rightarrow(3,4, \boxed{2}),(1)$

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

$$
\rightarrow(\boxed{3}, 4),(1,2)
$$

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

$$
\rightarrow(4),(1,2,3)
$$

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,
$\rightarrow(1,2,3,4)$

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

$$
(3, \sqrt{1}, 4,2) \rightarrow(3,4, \sqrt{2}),(1) \rightarrow(\sqrt[3]{3}, 4),(1,2) \rightarrow(\sqrt{4}),(1,2,3) \rightarrow(1,2,3,4)
$$

- and insertion sort, where you insert the next element of s at its proper position in the sorted sequence

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

$$
(3, \sqrt{1}, 4,2) \rightarrow(3,4, \sqrt{2}),(1) \rightarrow(\sqrt[3]{3}, 4),(1,2) \rightarrow(\sqrt{4}),(1,2,3) \rightarrow(1,2,3,4)
$$

- and insertion sort, where you insert the next element of s at its proper position in the sorted sequence

$$
(\boxed{3}, 1,4,2)
$$

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

$$
(3, \sqrt{1}, 4,2) \rightarrow(3,4, \sqrt{2}),(1) \rightarrow(\sqrt[3]{3}, 4),(1,2) \rightarrow(\sqrt{4}),(1,2,3) \rightarrow(1,2,3,4)
$$

- and insertion sort, where you insert the next element of s at its proper position in the sorted sequence

$$
\rightarrow(\boxed{1}, 4,2),(3)
$$

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

$$
(3, \sqrt{1}, 4,2) \rightarrow(3,4, \sqrt{2}),(1) \rightarrow(\sqrt[3]{3}, 4),(1,2) \rightarrow(\sqrt{4}),(1,2,3) \rightarrow(1,2,3,4)
$$

- and insertion sort, where you insert the next element of s at its proper position in the sorted sequence

$$
\rightarrow(\boxed{4}, 2),(1,3)
$$

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

$$
(3, \sqrt{1}, 4,2) \rightarrow(3,4, \sqrt{2}),(1) \rightarrow(\sqrt[3]{3}, 4),(1,2) \rightarrow(\sqrt{4}),(1,2,3) \rightarrow(1,2,3,4)
$$

- and insertion sort, where you insert the next element of s at its proper position in the sorted sequence

$$
\rightarrow(\boxed{2}),(1,3,4)
$$

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

$$
(3, \sqrt{1}, 4,2) \rightarrow(3,4, \sqrt{2}),(1) \rightarrow(\sqrt[3]{3}, 4),(1,2) \rightarrow(\sqrt{4}),(1,2,3) \rightarrow(1,2,3,4)
$$

- and insertion sort, where you insert the next element of s at its proper position in the sorted sequence
$\rightarrow(1,2,3,4)$

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

$$
(3, \sqrt{1}, 4,2) \rightarrow(3,4, \sqrt{2}),(1) \rightarrow(\sqrt[3]{3}, 4),(1,2) \rightarrow(\sqrt{4}),(1,2,3) \rightarrow(1,2,3,4)
$$

- and insertion sort, where you insert the next element of s at its proper position in the sorted sequence

$$
(\sqrt[3]{3}, 1,4,2) \rightarrow(\boxed{1}, 4,2),(3) \rightarrow(\sqrt[4]{4}, 2),(1,3) \rightarrow(\sqrt{2}),(1,3,4) \rightarrow(1,2,3,4)
$$

Simple sorting algorithms

- I shall save you the trouble of learning all the numerous types of sorting algorithms in existence
- Let me just mention selection sort, where you repeatedly select the minimum element of s,

$$
(3, \boxed{1}, 4,2) \rightarrow(3,4, \sqrt{2}),(1) \rightarrow(\boxed{3}, 4),(1,2) \rightarrow(\boxed{4}),(1,2,3) \rightarrow(1,2,3,4)
$$

- and insertion sort, where you insert the next element of s at its proper position in the sorted sequence

$$
(\sqrt[3]{3}, 1,4,2) \rightarrow(\boxed{1}, 4,2),(3) \rightarrow(\boxed{4}, 2),(1,3) \rightarrow(\boxed{2}),(1,3,4) \rightarrow(1,2,3,4)
$$

- Both are $O\left(n^{2}\right)$; insertion sort is fast for small $|s|$

Mergesort

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition
- Get $s^{\prime}=(2,3,5,6)$ and $s^{\prime \prime}=(1,3,4,9)$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition
- Get $s^{\prime}=(2,3,5,6)$ and $s^{\prime \prime}=(1,3,4,9)$
- Merge $s^{\prime}, s^{\prime \prime}$ into a sorted sequence \bar{s} :

$$
\underset{(1,3,3,4,9)}{(2,3,5,6)} \rightarrow \varnothing
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition
- Get $s^{\prime}=(2,3,5,6)$ and $s^{\prime \prime}=(1,3,4,9)$
- Merge $s^{\prime}, s^{\prime \prime}$ into a sorted sequence \bar{s} :

$$
\underset{(1,3,4,9)}{(2,3,5,6)} \rightarrow(1)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition
- Get $s^{\prime}=(2,3,5,6)$ and $s^{\prime \prime}=(1,3,4,9)$
- Merge $s^{\prime}, s^{\prime \prime}$ into a sorted sequence \bar{s} :

$$
\underset{(1,3,4,9)}{(2, \sqrt{3}, 5,6)} \rightarrow(1,2)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition
- Get $s^{\prime}=(2,3,5,6)$ and $s^{\prime \prime}=(1,3,4,9)$
- Merge $s^{\prime}, s^{\prime \prime}$ into a sorted sequence \bar{s} :

$$
\underset{(1,2,3,4,9)}{(2,3,5,6)} \rightarrow(1,2,3)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition
- Get $s^{\prime}=(2,3,5,6)$ and $s^{\prime \prime}=(1,3,4,9)$
- Merge $s^{\prime}, s^{\prime \prime}$ into a sorted sequence \bar{s} :

$$
\underset{(1,3,4,9,9)}{(2,3,5,6)} \rightarrow(1,2,3,3)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition
- Get $s^{\prime}=(2,3,5,6)$ and $s^{\prime \prime}=(1,3,4,9)$
- Merge $s^{\prime}, s^{\prime \prime}$ into a sorted sequence \bar{s} :

$$
\underset{(1,3,4,9)}{(2,3, \sqrt[5]{5}, 6)} \rightarrow(1,2,3,3,4)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition
- Get $s^{\prime}=(2,3,5,6)$ and $s^{\prime \prime}=(1,3,4,9)$
- Merge $s^{\prime}, s^{\prime \prime}$ into a sorted sequence \bar{s} :

$$
\underset{(1,3,4,9)}{(2,3,5, \sqrt[6]{6})} \rightarrow(1,2,3,3,4,5)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition
- Get $s^{\prime}=(2,3,5,6)$ and $s^{\prime \prime}=(1,3,4,9)$
- Merge $s^{\prime}, s^{\prime \prime}$ into a sorted sequence \bar{s} :

$$
\underset{(1,3,4,9)}{(2,3,5,6)} \rightarrow(1,2,3,3,4,5,6)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition
- Get $s^{\prime}=(2,3,5,6)$ and $s^{\prime \prime}=(1,3,4,9)$
- Merge $s^{\prime}, s^{\prime \prime}$ into a sorted sequence \bar{s} :

$$
\underset{(1,3,4,9)}{(2,3,5,6)} \rightarrow(1,2,3,3,4,5,6,9)=\bar{s}
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Split s midway: $s^{\prime}=(5,3,6,2), s^{\prime \prime}=(1,9,4,3)$
- Sort $s^{\prime}, s^{\prime \prime}:\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s| \Rightarrow$ use recursion
- Base case: If $|s| \leq 1$ then s already sorted by definition
- Get $s^{\prime}=(2,3,5,6)$ and $s^{\prime \prime}=(1,3,4,9)$
- Merge $s^{\prime}, s^{\prime \prime}$ into a sorted sequence \bar{s} :

$$
\underset{(1,3,4,9)}{(2,3,5,6)} \rightarrow(1,2,3,3,4,5,6,9)=\bar{s}
$$

- Return \bar{s}

Merge

- merge $\left(s^{\prime}, s^{\prime \prime}\right)$: merges two sorted sequences $s^{\prime}, s^{\prime \prime}$ in a sorted sequence containing all elements in $s^{\prime}, s^{\prime \prime}$

Merge

- merge $\left(s^{\prime}, s^{\prime \prime}\right)$: merges two sorted sequences $s^{\prime}, s^{\prime \prime}$ in a sorted sequence containing all elements in $s^{\prime}, s^{\prime \prime}$
- Since $s^{\prime}, s^{\prime \prime}$ are both already sorted, merging them so that the output is sorted is efficient
- Read first (and smallest) elements of $s^{\prime}, s^{\prime \prime}: O(1)$
- Compare these two elements: $O(1)$
- There are $|s|$ elements to process: $O(n)$

Merge

- merge $\left(s^{\prime}, s^{\prime \prime}\right)$: merges two sorted sequences $s^{\prime}, s^{\prime \prime}$ in a sorted sequence containing all elements in $s^{\prime}, s^{\prime \prime}$
- Since $s^{\prime}, s^{\prime \prime}$ are both already sorted, merging them so that the output is sorted is efficient
- Read first (and smallest) elements of $s^{\prime}, s^{\prime \prime}: O(1)$
- Compare these two elements: $O(1)$
- There are $|s|$ elements to process: $O(n)$
- You can implement this using lists: if s^{\prime} is empty return $s^{\prime \prime}$, if $s^{\prime \prime}$ is empty return s^{\prime}, and otherwise compare the first elements of both and choose smallest

Recursive algorithm

- mergeSort $(s)\{$

1: if $|s| \leq 1$ then
2: return s;
3: else
4: $\quad m=\left\lfloor\frac{|s|}{2}\right\rfloor$;
5: $\quad s^{\prime}=$ mergeSort $\left(e_{1}, \ldots, e_{m}\right)$;
6: $\quad s^{\prime \prime}=$ mergeSort $\left(e_{m+1}, \ldots, e_{n}\right)$;
7: return merge $\left(s^{\prime}, s^{\prime \prime}\right)$;
8: end if
\}
By INF311, mergeSort has worst-case complexity
$O(n \log n)$

m Today's magic result: second part

Complexity of sorting: $\Theta(n \log n)$

A function is $\Theta(g(n))$ if it is both $O(g(n))$ and $\Omega(g(n))$

Quicksort

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow \varnothing, \varnothing
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3), \varnothing
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3, \boxed{6}, 2,1,9,4,3) \rightarrow(3), \varnothing
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3),(6)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6, \boxed{2}, 1,9,4,3) \rightarrow(3),(6)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3,2),(6)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2, \boxed{1}, 9,4,3) \rightarrow(3,2),(6)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3,2,1),(6)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1, \boxed{9}, 4,3) \rightarrow(3,2,1),(6)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3,2,1),(6,9)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3,2,1),(6,9)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):
$(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3,2,1,4),(6,9)$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3,2,1,4),(6,9)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3,2,1,4,3),(6,9)
$$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3,2,1,4,3),(6,9)
$$

- Sort $s^{\prime}=(3,2,1,4,3)$ and $s^{\prime \prime}=(6,9)$: since $\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s|$ we can use recursion; base case $|s| \leq 1$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3,2,1,4,3),(6,9)
$$

- Sort $s^{\prime}=(3,2,1,4,3)$ and $s^{\prime \prime}=(6,9)$: since $\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s|$ we can use recursion; base case $|s| \leq 1$
- Update s to $\left(s^{\prime}, p, s^{\prime \prime}\right)$

Divide-and-conquer

- Let $s=(5,3,6,2,1,9,4,3)$
- Choose a pivot value $p=s_{1}=5$ (no particular reason for choosing s_{1})
- Partition $\left(s_{2}, \ldots, s_{n}\right)$ in s^{\prime} (elements smaller than p) and $s^{\prime \prime}$ (elements greather than or equal to p):

$$
(\mathbf{5}, 3,6,2,1,9,4,3) \rightarrow(3,2,1,4,3),(6,9)
$$

- Sort $s^{\prime}=(3,2,1,4,3)$ and $s^{\prime \prime}=(6,9)$: since $\left|s^{\prime}\right|<|s|$ and $\left|s^{\prime \prime}\right|<|s|$ we can use recursion; base case $|s| \leq 1$
- Update s to $\left(s^{\prime}, p, s^{\prime \prime}\right)$

Notice: in mergeSort, we recurse first, then work on subsequences afterwards. In quickSort, we work on subsequences first, then recurse on them afterwards

Partition

- partition (s) : produces two subsequences $s^{\prime}, s^{\prime \prime}$ of $\left(s_{2}, \ldots, s_{n}\right)$ such that:
- $s^{\prime}=\left(s_{i} \mid i \neq 1 \wedge s_{i}<s_{1}\right)$
- $s^{\prime \prime}=\left(s_{i} \mid i \neq 1 \wedge s_{i} \geq s_{1}\right)$

Partition

- partition (s) : produces two subsequences $s^{\prime}, s^{\prime \prime}$ of $\left(s_{2}, \ldots, s_{n}\right)$ such that:
- $s^{\prime}=\left(s_{i} \mid i \neq 1 \wedge s_{i}<s_{1}\right)$
- $s^{\prime \prime}=\left(s_{i} \mid i \neq 1 \wedge s_{i} \geq s_{1}\right)$
- Scan s : if $s_{i}<s_{1}$ put s_{i} in s^{\prime}, otherwise put it in $s^{\prime \prime}$

Partition

- partition (s) : produces two subsequences $s^{\prime}, s^{\prime \prime}$ of $\left(s_{2}, \ldots, s_{n}\right)$ such that:
- $s^{\prime}=\left(s_{i} \mid i \neq 1 \wedge s_{i}<s_{1}\right)$
- $s^{\prime \prime}=\left(s_{i} \mid i \neq 1 \wedge s_{i} \geq s_{1}\right)$
- Scan s : if $s_{i}<s_{1}$ put s_{i} in s^{\prime}, otherwise put it in $s^{\prime \prime}$
- There are $|s|-1$ elements to process: $O(n)$

Partition

- partition (s) : produces two subsequences $s^{\prime}, s^{\prime \prime}$ of $\left(s_{2}, \ldots, s_{n}\right)$ such that:
- $s^{\prime}=\left(s_{i} \mid i \neq 1 \wedge s_{i}<s_{1}\right)$
- $s^{\prime \prime}=\left(s_{i} \mid i \neq 1 \wedge s_{i} \geq s_{1}\right)$
- Scan s : if $s_{i}<s_{1}$ put s_{i} in s^{\prime}, otherwise put it in $s^{\prime \prime}$
- There are $|s|-1$ elements to process: $O(n)$
- You can implement this using arrays; moreover, if you use a swap function such that, given i, j, swaps s_{i} with s_{j} in s, you don't even need to create any new temporary array: you can update s "in place"

Recursive algorithm

- quickSort(s) \{

1: if $|s| \leq 1$ then
2: return ;
3: else
4: $\quad\left(s^{\prime}, s^{\prime \prime}\right)=$ partition (s);
5: quickSort $\left(s^{\prime}\right)$;
6: quickSort ($s^{\prime \prime}$);
7: $\quad s \leftarrow\left(s^{\prime}, s_{1}, s^{\prime \prime}\right)$;
8: end if
\}

Complexity

Worst-case complexity: $O\left(n^{2}\right)$

Average-case complexity: $O(n \log n)$

Very fast in practice

Worst-case complexity

- Consider the input $(n, n-1, \ldots, 1)$ with pivot s_{1}

Worst-case complexity

- Consider the input $(n, n-1, \ldots, 1)$ with pivot s_{1}
- Recursion level 1: $p=n, s^{\prime}=(n-1, \ldots, 1), s^{\prime \prime}=\varnothing$

Worst-case complexity

- Consider the input $(n, n-1, \ldots, 1)$ with pivot s_{1}
- Recursion level 1: $p=n, s^{\prime}=(n-1, \ldots, 1), s^{\prime \prime}=\varnothing$
- Recursion level 2: $p=n-1, s^{\prime}=(n-2, \ldots, 1), s^{\prime \prime}=\varnothing$

Worst-case complexity

- Consider the input $(n, n-1, \ldots, 1)$ with pivot s_{1}
- Recursion level 1: $p=n, s^{\prime}=(n-1, \ldots, 1), s^{\prime \prime}=\varnothing$
- Recursion level 2: $p=n-1, s^{\prime}=(n-2, \ldots, 1), s^{\prime \prime}=\varnothing$
- And so on, down to $p=1$ (base case)

Worst-case complexity

- Consider the input $(n, n-1, \ldots, 1)$ with pivot s_{1}
- Recursion level 1: $p=n, s^{\prime}=(n-1, \ldots, 1), s^{\prime \prime}=\varnothing$
- Recursion level 2: $p=n-1, s^{\prime}=(n-2, \ldots, 1), s^{\prime \prime}=\varnothing$
- And so on, down to $p=1$ (base case)
- Each partitioning call takes $O(n)$

Worst-case complexity

- Consider the input $(n, n-1, \ldots, 1)$ with pivot s_{1}
- Recursion level 1: $p=n, s^{\prime}=(n-1, \ldots, 1), s^{\prime \prime}=\varnothing$
- Recursion level 2: $p=n-1, s^{\prime}=(n-2, \ldots, 1), s^{\prime \prime}=\varnothing$
- And so on, down to $p=1$ (base case)
- Each partitioning call takes $O(n)$
- Get $O\left(n^{2}\right)$

2-Way partitioning

Definition by example

Input: (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)
Desired output: ($0,0,0,0,0,1,1,1,1,1$)

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$
- Find leftmost 1 and rightmost 0 (these are out of place)

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$
- Find leftmost 1 and rightmost 0 (these are out of place)
- Swap them

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$
- Find leftmost 1 and rightmost 0 (these are out of place)
- Swap them
- Increase leftmost counter, decrease rightmost counter

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$
- Find leftmost 1 and rightmost 0 (these are out of place)
- Swap them
- Increase leftmost counter, decrease rightmost counter
- Repeat until counters become equal

$$
(\boxed{1}, 0,0,1,1,0,0, \boxed{0}, 1,1)
$$

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$
- Find leftmost 1 and rightmost 0 (these are out of place)
- Swap them
- Increase leftmost counter, decrease rightmost counter
- Repeat until counters become equal

$$
(\mathbf{0}, 0,0,1,1,0,0, \mathbf{1}, 1,1)
$$

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$
- Find leftmost 1 and rightmost 0 (these are out of place)
- Swap them
- Increase leftmost counter, decrease rightmost counter
- Repeat until counters become equal

$$
(0,0,0, \boxed{1}, 1,0,0,1,1,1)
$$

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$
- Find leftmost 1 and rightmost 0 (these are out of place)
- Swap them
- Increase leftmost counter, decrease rightmost counter
- Repeat until counters become equal

$$
(0,0,0, \mathbf{0}, 1,0, \mathbf{1}, 1,1,1)
$$

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$
- Find leftmost 1 and rightmost 0 (these are out of place)
- Swap them
- Increase leftmost counter, decrease rightmost counter
- Repeat until counters become equal

$$
(0,0,0,0, \boxed{1}, \boxed{0}, 1,1,1,1)
$$

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$
- Find leftmost 1 and rightmost 0 (these are out of place)
- Swap them
- Increase leftmost counter, decrease rightmost counter
- Repeat until counters become equal

$$
(0,0,0,0, \mathbf{0}, \mathbf{1}, 1,1,1,1)
$$

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$
- Find leftmost 1 and rightmost 0 (these are out of place)
- Swap them
- Increase leftmost counter, decrease rightmost counter
- Repeat until counters become equal

$$
(0,0,0,0,0,1,1,1,1,1)
$$

Iterating swaps

- Let $s=(1,0,0,1,1,0,0,0,1,1)$
- Find leftmost 1 and rightmost 0 (these are out of place)
- Swap them
- Increase leftmost counter, decrease rightmost counter
- Repeat until counters become equal

$$
\begin{gathered}
(1,0,0,1,1,0,0,0,1,1) \rightarrow(\mathbf{0}, 0,0,1,1,0,0, \mathbf{1}, 1,1) \rightarrow \\
(0,0,0, \mathbf{0}, 1,0, \mathbf{1}, 1,1,1) \rightarrow(0,0,0,0, \mathbf{0}, \mathbf{1}, 1,1,1,1)
\end{gathered}
$$

The algorithm

$$
\begin{aligned}
& i=0 ; j=n-1 ; \\
& \text { while } i<j \text { do } \\
& \text { if } s_{i}=0 \text { then } \\
& i \leftarrow i+1 ; \\
& \text { else if } s_{j}=1 \text { then } \\
& j \leftarrow j-1 ; \\
& \text { else } \\
& \quad \operatorname{swap}(s, i, j) ; \\
& i \leftarrow i+1 ; \\
& j \leftarrow j-1 \text {; } \\
& \text { end if } \\
& \text { end while }
\end{aligned}
$$

Worst-case complexity

- Occurs with input $(1, \ldots, 1,0, \ldots, 0)$ where number of 1 's are around the same as the number of 0's
- Requires $\left\lfloor\frac{n}{2}\right\rfloor$ swaps
- Worst-case $O(n)$

A paradox?

- At the outset, we proved that sorting had complexity $\Theta(n \log n)$

A paradox?

- At the outset, we proved that sorting had complexity $\Theta(n \log n)$
- But 2-way partioning requires only $O(n)$

A paradox?

- At the outset, we proved that sorting had complexity $\Theta(n \log n)$
- But 2-way partioning requires only $O(n)$
- Contradiction? Paradox?

A paradox?

- At the outset, we proved that sorting had complexity $\Theta(n \log n)$
- But 2-way partioning requires only $O(n)$
- Contradiction? Paradox?
- Only apparent: the initial theorem was under the following assumptions:
- no prior knowledge on the type of input ("general input")
- only comparison-based algorithms are concerned

A paradox?

- At the outset, we proved that sorting had complexity $\Theta(n \log n)$
- But 2-way partioning requires only $O(n)$
- Contradiction? Paradox?
- Only apparent: the initial theorem was under the following assumptions:
- no prior knowledge on the type of input ("general input")
- only comparison-based algorithms are concerned
- Neither assumption is true for 2-way partitioning
- we know that the input sequence is of binary type
- the algorithm never uses a comparison

Appendix
 [P. Cameron, Combinatorics]

guicksort: average complexity $1 / 10$

- Let $n=|s|$
- Let q_{n} be the average number of comparisons made by quickSort to sort an n-sequence
- partition (s) involves $n-1$ comparisons
- Assume the pivot $p=s_{1}$ is the k-th smallest element of s
- Then, recursion takes $q_{k-1}+q_{n-k}$ comparisons on average
- Average this over the n values that k can take
- This implies:

$$
\begin{equation*}
q_{n}=n-1+\frac{1}{n} \sum_{k=1}^{n}\left(q_{k-1}+q_{n-k}\right) \tag{1}
\end{equation*}
$$

meuicksort: average complexity 2/10

- Notice that in the sum $\sum_{k=1}^{n}\left(q_{k-1}+q_{n-k}\right)$, each q_{k} occurs twice

k	q_{k-1}	q_{n-k}
1	q_{0}	q_{n-1}
2	q_{1}	q_{n-2}
\vdots	\vdots	\vdots
$n-1$	q_{n-2}	q_{1}
n	q_{n-1}	q_{0}

- Hence we can write:

$$
\begin{equation*}
q_{n}=n-1+\frac{2}{n} \sum_{k=0}^{n-1} q_{k} \tag{2}
\end{equation*}
$$

. Quicksort: average complexity $3 / 10$

- Equation (2) is a recurrence relation
- A solution of a recurrence relation is a closed-form expression for q_{n} which does not include the symbol q_{k} for any integer $k \geq 0$
- One solution method consists in writing the solution as the infinite sequence ($q_{0}, q_{1}, q_{2}, \ldots, q_{n}, \ldots$) as a formal power series:

$$
\begin{equation*}
Q(t)=\sum_{n \geq 0} q_{n} t^{n} \tag{3}
\end{equation*}
$$

- If $Q(t)$ is known, then the value for each q_{n} can also be obtained:

Differentiate $Q(t)$ n times with respect to t, set $t=0$, and divide the result by n !

. Quicksort: average complexity 4/10

- Multiply each side of the recurrence relation (2) by $n t^{n}$ and sum over all $n \geq 0$, get:

$$
\begin{equation*}
\sum_{n \geq 0} n q_{n} t^{n}=\sum_{n \geq 0} n(n-1) t^{n}+2 \sum_{n \geq 0}\left(\sum_{k=0}^{n-1} q_{k}\right) t^{n} \tag{4}
\end{equation*}
$$

- We now replace each of these three terms so as to be able to derive a more convenient expression for $Q(t)$

편 Quicksort: average complexity 5/10

- Differentiate $Q(t)$ with respect to t and multiply by t to get an expression for the first term:

$$
\begin{equation*}
t \frac{d Q(t)}{d t}=t \sum_{n \geq 0} n q_{n} t^{n-1}=\sum_{n \geq 0} n q_{n} t^{n} \tag{5}
\end{equation*}
$$

- For the second term: by lecture $1, \sum_{n \geq 0} t^{n}=\frac{1}{1-t}$
- Differentiate this equation twice with respect to t, we get:

$$
\begin{equation*}
\sum_{n \geq 0} n(n-1) t^{n-2}=\frac{2}{(1-t)^{3}} \tag{6}
\end{equation*}
$$

- Now multiply both members by t^{2} to get an expression for the second term:

$$
\begin{equation*}
\sum_{n \geq 0} n(n-1) t^{n}=\frac{2 t^{2}}{(1-t)^{3}} \tag{7}
\end{equation*}
$$

Quicksort: average complexity 6/10

- Now for the third: the n-th term of the sum $\sum_{n \geq 0}\left(\sum_{k=0}^{n-1} q_{k}\right) t^{n}$ can be written as

$$
\sum_{k=0}^{n-1} t^{n-k}\left(q_{k} t^{k}\right)
$$

- Hence, the whole sum over n can be written as the following product (convince yourself that this is true):

$$
\left(t+t^{2}+t^{3}+\ldots\right)\left(q_{0}+q_{1} t+q_{2} t^{2}+q_{3} t^{3}+\ldots\right)
$$

- The first factor is $\sum_{n \geq 0} t^{n}=\frac{1}{1-t}$, and the second is simply the expression for $Q(t)$
- Hence, the third term is $\frac{2 t Q(t)}{1-t}$

m Quicksort: average complexity 7/10

- Putting it all together, we obtain a first-order differential equation for $Q(t)$:

$$
\begin{equation*}
t Q^{\prime}(t)=\frac{2 t^{2}}{(1-t)^{3}}+\frac{2 t}{1-t} Q(t) \tag{8}
\end{equation*}
$$

- Remark that if we differentiate the expression $(1-t)^{2} Q(t)$ (which / pulled out of a hat) w.r.t. t, we get:

$$
\begin{equation*}
\frac{d}{d t}\left((1-t)^{2} Q(t)\right)=(1-t)^{2} Q^{\prime}(t)-2(1-t) Q(t) \tag{9}
\end{equation*}
$$

- We rearrange the terms of Eq. (8) to get:

$$
\begin{equation*}
t Q^{\prime}(t)-\frac{2 t}{1-t} Q(t)=\frac{2 t^{2}}{(1-t)^{3}} \tag{10}
\end{equation*}
$$

- We multiply Eq. (10) through by $\frac{(1-t)^{2}}{t}$ and get:

$$
\begin{equation*}
(1-t)^{2} Q^{\prime}(t)-2(1-t) Q(t)=\frac{2 t}{1-t} \tag{11}
\end{equation*}
$$

Quicksort: average complexity $\mathbf{8 / 1 0}$

- The RHS of Eq. (9) is the same as the LHS of Eq. (11), hence we can rewrite Eq. 9 as:

$$
\begin{equation*}
\frac{d}{d t}\left((1-t)^{2} Q(t)\right)=\frac{2 t}{1-t} \tag{12}
\end{equation*}
$$

- Now, straightforward integration w.r.t. t yields:

$$
\begin{equation*}
Q(t)=\frac{-2(t+\log (1-t))}{(1-t)^{2}} \tag{13}
\end{equation*}
$$

M Quicksort: average complexity 9/10

- The next step consists in writing the power series for log and $1 /(1-t)^{2}$, rearrange them in a product, and read off the coefficient q_{n} of the term in t^{n}. Without going into details, this yields:

$$
\begin{equation*}
q_{n}=2(n+1) \sum_{k=1}^{n} \frac{1}{k}-4 n \tag{14}
\end{equation*}
$$

for all $n \geq 0$

- For all $n \geq 0$, the term $\sum_{k=1}^{n} \frac{1}{k}$ is an approximation of:

$$
\begin{equation*}
\int_{1}^{n} \frac{1}{x} d x=\log (n)+O(1) \tag{15}
\end{equation*}
$$

Quicksort: average complexity 10/10

- Finally, we get an asymptotic expression for q_{n} :

$$
\begin{equation*}
\forall n \geq 0 \quad q_{n}=2 n \log (n)+O(n) \tag{16}
\end{equation*}
$$

- This shows that the average number of comparisons taken by quicksort is $O(n \log n)$

End of Lecture 4

