

INF421, Lecture 8 Shortest paths

Leo Liberti

LIX, École Polytechnique, France

Course

- **Objective:** teach notions AND develop intelligence
- **Evaluation:** TP noté en salle info, Contrôle à la fin. Note: $\max(CC, \frac{3}{4}CC + \frac{1}{4}TP)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)

Books:

- 1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
- 2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
- 3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
- 4. Ph. Baptiste & L. Maranget, *Programmation et Algorithmique*, Ecole Polytechnique (Polycopié), 2006
- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

Cost of a path

- We consider a weighted digraph G = (V, A) with arc costs
- I.e. we are given a function $c: A \to \mathbb{Q}$
- If $P \subseteq G$ is a path $u \to v$ in G then

$$c(P) = \sum_{(u,v)\in P} c_{uv},$$

where $c_{uv} = c((u, v))$

 $\ \ \, {\color{black} \hbox{ For example, the path $1 \rightarrow 2 \rightarrow 3 \rightarrow 7$ has cost $2+1+5=8$ } } \\$

Shortest path = path P having minimum cost c(P)

Negative cycles

Negative cycles: comments

- **)** If c yields no negative cycles, call c conservative
- In order to construct Q in proof of above thm., we toured several times around negative cycle C
- $\blacksquare \Rightarrow Q$ is not a simple path
- If we look for the shortest simple path in graphs then we don't have this unboundedness problem
- The SHORTEST SIMPLE PATH (SSP) problem, however, is NP-hard on general non-conservatively weighted graphs
- Solving the LONGEST PATH problem is also NP-hard (Prove this by polynomially transforming SSP to LONGEST PATH)

Assumptions

For the rest of these slides, if not otherwise specified, assume:

- The arc costs c are conservative

Point-to-point shortest path

POINT-TO-POINT SHORTEST PATH (P2PSP). Given a digraph G = (V, A), a function $c : A \to \mathbb{Q}$ and two distinct nodes $s, t \in V$, find a SP $s \to t$

Shortest path tree

SHORTEST PATH TREE (SPT). Given a digraph G = (V, A), a function $c : A \to \mathbb{Q}$ and a source node $s \in V$, find SPs $s \to v$ for all $v \in V \setminus \{s\}$

- $\blacksquare \ \underline{\textit{Remark}}: \text{ there may be more than one SP } s \to v$
- Consistency: one can always choose SP $P_{sv} \ u \to v$ so that $T = \bigcup_{v \neq s} P_{sv}$ is a spanning oriented tree ($\Leftrightarrow \forall v \neq s \ (N_T^-(v) = 1)$)
- Thm. A If *c* is conservative, every initial subpath of a SP is a SP (e.g. subpath $1 \rightarrow 4$ of SP $1 \rightarrow 7$ below is a SP $1 \rightarrow 4$)

Let
$$P$$
 be a $SP \ s \to w$ and Q a $SP \ s \to v$
through w ; if the predecessor of w in P
is $p_P(w) = z_1$ and $p_Q(w) = z_2$ with
 $z_1 \neq z_2$, then no sp. or. tree T can con-
tain $P \cup Q$. By Thm. A above, the ini-
tial subpath P' to w of Q is also a SP
 $s \to w$, so replace P with P' and obtain
 $|N_{P'\cup Q}^-(w)| = 1$ as required.

All shortest paths

ALL SHORTEST PATHS (ASP). Given a digraph G = (V, A) and a function $c : A \to \mathbb{Q}$, find SPs $u \to v$ for all pairs u, v of distinct nodes in V

Variants

- Unit costs: for all $(u, v) \in A$ we have $c_{uv} = 1$
- SPT on unit costs: use BFS (see Lectures 2, 6), O(m+n)
- ▶ Non-negative costs: for all $(u, v) \in A$ we have $c_{uv} \ge 0$
- Several others, too many to list them all
- A remarkable one: SPT on undirected graphs with
 $c: E → \mathbb{N}$ can be solved in linear time [Thorup 1997]

Dijkstra's algorithm

The problem it targets

Dijkstra's algorithm solves the SPT on weighted digraphs G = (V, A) with non-negative costs (with a given source node $s \in V$)

- If $c \ge 0$ then c is conservative (why?)
- Worst-case complexity: $O(n^2)$ on general digraphs, $O(m + n \log n)$ on sparse graphs, where n = |V| and m = |A|
- Used as a sub-step in innumerable algorithms
- Main application: routing in networks (usually transportation and communication)

Data structures

We maintain two functions

- $d: V \to \mathbb{Q}_+$ $d_v = d(v)$ is the cost of a SP $s \to v$ for all $v \in V$
- $\mathbf{p}:V \to V$

 $\mathbf{p}_v = \mathbf{p}(v)$ is the predecessor of v in a SP $s \to v$ for all $v \in V$

- Initialization
 - $d_s = 0$ and $d_v = \infty$ for all $v \in V \setminus \{s\}$

•
$$p(v) = s$$
 for all $v \in V$

Settle and Relax

- A node $v \in V$ is settled when d_v no longer changes
- **•** Relaxing an arc $(u, v) \in A$ consists in:

• When (u, v) is relaxed and v is not settled yet, d_v might change

Description

Dijkstra's algorithm :

- 1: while \exists unsettled nodes do
- 2: Let u be an unsettled node with minimum d_u ;
- 3: Settle u;
- 4: for $(u, v) \in A$ do
- 5: Relax (u, v);
- 6: **end for**
- 7: end while
- If $d_v = \infty$ at Step 4, relaxing (u, v) will necessarily change d_v (why?)
- Nodes $v \in V$ such that $d_v < \infty$ are reached
- A simple implementation is $O(n^2)$

initialize (settle) s = 1

relax $\delta^+(1)$, update 2, 3, 5, 6

settle 3 ($d_3 = 1$ is minimum)

relax $\delta^+(3)$, update 4, 7

settle 4 ($d_4 = 1$ is minimum)

relax $\delta^+(4)$, update 7

settle 5 ($d_5 = 1$ is minimum)

settle 2 ($d_2 = 2$ is minimum)

settle 6 ($d_6 = 2$ is minimum)

settle 7 ($d_7 = 4$ is minimum)

An optimal SPT solution

The algorithm is correct 1/2

Thm.

Whenever $v \in V$ is settled, d_v is the cost of a SP $s \rightarrow v$ where all predecessors of v are settled

Proof

By induction on itn. index k. Let S be the set of settled nodes at itn. k - 1, let v be chosen at Step 2 of itn. k, and P^* be the path $s \to v$ determined by the alg. Suppose \exists another path P from s to v with cost c(P). Since $v \notin S$, there must be $(w, z) \in A$ with $w \in S$ and $z \notin S$ s.t. $P = P_1 \cup \{(w, z)\} \cup P_2$, where $V(P_1) \subseteq S$. Then $c(P) = c(P_1) + c_{wz} + c(P_2) \ge c(P_1) + c_{wz}$ (because we subtracted $c(P_2)$) = $d_w + c_{wz}$ (by induction) = $d_z \ge d_v$ (because otherwise d_v would not be minimum, contradicting the choice of v at Step 2) = $c(P^*)$, so that P^* is a SP $s \to v$

The algorithm is correct 2/2

- Remains to prove: at the end of the algorithm, every node is settled
- Similar to proof that Graph Scanning reaches all vertices in a graph (Lecture 6)
- Left as an exercise

Implementation

- No unreached node v can ever have minimum d_v at Step 2 since $d_v = \infty$ if v unreached
- The minimum choice at Step 2 occurs over unsettled, reached nodes ⇒ maintain a data structure containing unsettled, reached nodes
- Data structure that provides minimum in constant time:
 priority queue
- When arc (u, v) is relaxed and v is already reached, the priority d_v might be updated
- We update a priority by deleting then re-inserting the element with the new priority (can implement delete in O(log n))

Pseudocode

1:
$$\forall v \in V \ d_v = \infty, \ d_s = 0;$$

2: $\forall v \in V \ p_v = s;$
3: $Q.insert(s, d_s);$
4: while $Q \neq \emptyset$ do
5: Let $u = Q.popMin();$
6: for $(u, v) \in \delta^+(u)$ do
7: Let $\Delta = d_u + c_{uv};$
8: if $\Delta < d_v$ then
9: Let $d_v = \Delta;$
10: Let $p_v = u;$
11: $Q.delete(v); // if \ v \notin Q$ this does nothing
12: $Q.insert(v, d_v);$
13: end if
14: end for
15: ord while

15: end while

Worst-case complexity

- Each node is settled exactly once (why? argue by contradiction) \Rightarrow
 - **1.** popMin() is called O(n) times $\Rightarrow O(n \log n)$
 - 2. each arc is relaxed exactly once $\Rightarrow O(m \log n)$
- This yields an $O((n+m)\log n)$ algorithm
- Worse than $O(n^2)$ if graph is dense, however graphs in practice are usually sparse: competitive
- Can improve to $O(m + n \log n)$ with more refined data structures

Point-to-point SPs

- The P2PSP from s to t on nonnegatively weighted digraphs can be solved by Dijkstra's algorithm
- Simply terminate as soon as t is settled
- Insert the following code between Step 5 and 6:

if u = t then
 exit;
end if

Floyd-Warshall's algorithm

Solves ASP

- \checkmark Solves the ASP with any arc costs c
- **Data structures: two** $n \times n$ matrices d, p
 - $d_{uv} = \text{cost of SP } u \to v$
 - $p_{uv} = predecessor of v in SP from u$
- For each node z and pair u, v of nodes, see if SP $u \to v$ can be improved by passing through z

If so, update d_{uv} to $d_{uz} + d_{zv}$ and p_{uv} to p_{zv}

The simplest algorithm!

1:
$$\forall u, v \in V \ d_{uv} = \begin{cases} c_{uv} & \text{if } (u, v) \in A \\ \infty & \text{otherwise} \end{cases}$$

2: $\forall u, v \in V \ p_{uv} = u$
3: for $z \in V \ do$
4: for $u \in V \ do$
5: for $v \in V \ do$
6: $\Delta = d_{uz} + d_{zv};$
7: if $\Delta < d_{uv}$ then
8: $d_{uv} = \Delta;$
9: $p_{uv} = p_{zv};$
10: end if
11: end for
12: end for
13: end for

Remarks

- Worst-case complexity: clearly $O(n^3)$
- Algorithm is correct: every possible triangulation was tested
- Also solves Negative Cycle (NC):
 - \checkmark Assume there is a negative cycle through u
 - When u = v, triangulations will eventually yield $d_{uu} < 0$
 - Whenever that happens, terminate: a negative cycle was found
 - After Step 6, insert code:
 - if $\Delta < 0$ then exit; end if

Definitions

Defn.

A flow is a pair of functions $(x : A \to \mathbb{R}, b : V \to \mathbb{R})$ s.t.:

$$\forall u \in V \quad \sum_{(u,v)\in A} x_{uv} - \sum_{(v,u)\in A} x_{vu} = b_u$$

• Whenever $b_v = 0$ for some $v \in V$, then the above becomes

$$\forall v \in V \quad b_v = 0 \to \sum_{(u,v) \in A} x_{uv} = \sum_{(v,u) \in A} x_{vu} \tag{1}$$

 \checkmark The entering flow in v is equal to the exiting flow

Eq. (1) are the flow conservation equations

Mathematical Programming

Flow equations help define connected subgraphs:

 $\begin{array}{l} \underline{G \ connected} \Rightarrow \forall u \neq v \in V(G) \ \text{a unit of flow entering } u \ \text{will exit } u \ \text{as long} \\ \text{as } b_z \ = \ 0 \ \text{for all } z \neq u, v. \ \underline{Conversely:} \ \forall u \neq v \in V(G) \ \exists \ \text{a flow } (x, b) \\ \text{where } b_u = 1, b_v = -1, \forall z \neq u, v(b_z = 0) \Rightarrow G \ \text{connected} \end{array}$

- Can use flow equations in Mathematical Programs (MP)
- E.g. a SP $s \rightarrow t$ is the connected subgraph of minimum cost containing s, t:

$$\min_{x:A \to \mathbb{R}} \sum_{(u,v) \in A} c_{uv} x_{uv}$$

$$\forall u \in V \quad \sum_{(u,v) \in A} x_{uv} - \sum_{(v,u) \in A} x_{vu} = \begin{cases} 1 & u = s \\ -1 & u = t \\ 0 & \text{othw.} \end{cases}$$

$$\forall (u,v) \in A \qquad \qquad x_{uv} \in \{0,1\} \end{cases}$$

$$\text{Test this with AMPL}$$

A dual algorithm

MP in flat form

Every MP involving linear forms only can be written in the form

$$\begin{array}{ccc} \min_{x} & \gamma^{\mathsf{T}}x & & \\ & Ax & \leq & \beta \\ & x & \in & X \end{array} \right\} [P]$$

• For P2PSP on our usual graph with s = 1 and t = 7 we have:

•
$$\gamma = (2, 1, 1, 2, 1, 1, 0, 1, 5, 4, 3, 2, 6), \beta = (1, 0, 0, 0, 0, 0, -1), X = \{0, 1\}^{13}$$

$$A =$$

(1	1	1	1	0	0	0	0	0	0	0	0	0	
	-1	0	0	0	1	1	0	0	0	0	0	0	0	
	0	-1	0	0	-1	0	1	1	1	0	0	0	0	
	0	0	0	0	0	0	-1	0	0	1	1	0	0	
	0	0	-1	0	0	-1	0	-1	0	0	0	1	1	
	0	0	0	-1	0	0	0	0	0	-1	0	-1	0	
	0	0	0	0	0	0	0	0	-1	0	-1	0	-1	

$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(turn) \longrightarrow$
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		
$-\frac{1}{1}$ 0 1		1 0 0 0 <u> </u> 0 0
$ \begin{array}{c} 1 \\ 0 \\ -1 \\ 0 \end{array} $		$\begin{array}{c}1\\0\\0\\\end{array}$
$0 - \frac{1}{1}$		0 I I - 0 0 0 0 0
$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		0 I 0 0 - I 0 0
$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$(reflect) \longrightarrow$	$\begin{array}{c} 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
$0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		0 0 - I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$0 \\ 0 \\ 0 \\ 0 \\ -1$		0 1 0 1 1 1
$0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		0 1 0 1 0
$0 \\ 0 \\ 0 \\ 0 \\ -1$		0 1 0 1 - 1
$0 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		0 0 1 - 1 0
$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}$		$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}$

A dual view

	$\begin{pmatrix} 1 \end{pmatrix}$	-1	0	0	0	0	0
	1	0	-1	0	0	0	0
	1	0	0	0	-1	0	0
	1	0	0	0	0	-1	0
	0	1	-1	0	0	0	0
	0	1	0	0	-1	0	0
• Let $A^{T} =$	0	0	1	-1	0	0	0
	0	0	1	0	-1	0	0
	0	0	1	0	0	0	-1
	0	0	0	1	0	-1	0
	0	0	0	1	0	0	-1
	0	0	0	0	1	-1	0
	0	0	0	0	1	0	-1

- Turn rows into columns (constraints into variables)
- ... and columns into rows (variables into constraints)

LP Dual

- For each constraint define a variable y_i ($i \leq 7$)
- The Linear Programming Dual is

$$\max_{y} -y\beta \\ yA \leq \gamma$$

$$\left. \begin{bmatrix} D \end{bmatrix} \right.$$

In the case of the SP formulation, the dual is:

$$\max_{y} \quad y_t - y_s \\ \forall (u, v) \in A \quad y_v - y_u \leq c_{uv} \end{cases} \left[D_{\mathsf{SP}} \right]$$

For the P2PSP formulation, dual gives same optimal value as the "primal" (test with AMPL)

How the hell is this an SP formulation?

A mechanical algorithm

- Weighted arcs = strings as long as the weights
- Nodes = knots
- Pull nodes s, t as far as you can
- At maximum pull, strings corresponding to arcs (u, v) in SP have horizontal projections whose length is exactly c_{uv}

Open question

What is the worst-case complexity of the mechanical algorithm?

End of Lecture 8