INF421, Lecture 8 Shortest paths

Leo Liberti

LIX, École Polytechnique, France

Course

- Objective: teach notions AND develop intelligence
- Evaluation: TP noté en salle info, Contrôle à la fin. Note:
$\max \left(C C, \frac{3}{4} C C+\frac{1}{4} T P\right)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
- Books:

1. K. Mehlhorn \& P. Sanders, Algorithms and Data Structures, Springer, 2008
2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
4. Ph. Baptiste \& L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2006

- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr(e-mail subject: INF421)

Cost of a path

- We consider a weighted digraph $G=(V, A)$ with arc costs
- l.e. we are given a function $c: A \rightarrow \mathbb{Q}$
- If $P \subseteq G$ is a path $u \rightarrow v$ in G then

$$
c(P)=\sum_{(u, v) \in P} c_{u v}
$$

where $c_{u v}=c((u, v))$

- For example, the path $1 \rightarrow 2 \rightarrow 3 \rightarrow 7$ has cost $2+1+5=8$

Shortest path $=$ path P having minimum cost $c(P)$

Negative cycles

The red cycle has negative cost $1+0-4+2=-1<0$

Thm.

If $G=(V, A)$ has a cycle C with $c(C)<0, \exists$ no SP in G

Proof

Suppose P is SP $u \rightarrow v$ with cost c^{*}. Let $w \in V(C)$, consider path $Q=Q_{1} \cup Q_{2} \cup Q_{3}$ where $Q_{1} u \rightarrow w, Q_{2}=Q_{1}^{-1}$, and Q_{3} consists of $k=\left\lceil\frac{c\left(Q_{1}\right)+c\left(Q_{2}\right)+c^{*}}{|c(C)|}\right\rceil+1$ tours around C. Then $c(Q)=c\left(Q_{1}\right)+c\left(Q_{2}\right)+k c(C)<c^{*} \Rightarrow Q$ shorter than P (contradiction)
\Rightarrow Need to assume c yields no negative cycles

Negative cycles: comments

- If c yields no negative cycles, call c conservative
- In order to construct Q in proof of above thm., we toured several times around negative cycle C
- $\Rightarrow Q$ is not a simple path
- If we look for the shortest simple path in graphs then we don't have this unboundedness problem
- The Shortest Simple Path (SSP) problem, however, is NP-hard on general non-conservatively weighted graphs
- Solving the Longest Path problem is also NP-hard (Prove this by polynomially transforming SSP to Longest Path)

Assumptions

For the rest of these slides, if not otherwise specified, assume:

- G is connected (graph) or strongly connected (digraph)
- The arc costs c are conservative

F
 Point-to-point shortest path

Point-To-Point Shortest Path (P2PSP). Given a digraph $G=(V, A)$, a function $c: A \rightarrow \mathbb{Q}$ and two distinct nodes $s, t \in V$, find a SP $s \rightarrow t$

A shortest path $1 \rightarrow 7$

Shortest path tree

Shortest Path Tree (SPT). Given a digraph $G=(V, A)$, a function c : $A \rightarrow \mathbb{Q}$ and a source node $s \in V$, find SPs $s \rightarrow v$ for all $v \in V \backslash\{s\}$

- Remark: there may be more than one SP $s \rightarrow v$
- Consistency: one can always choose SP $P_{s v} u \rightarrow v$ so that $T=\bigcup_{v \neq s} P_{s v}$ is a spanning oriented tree $\left(\Leftrightarrow \forall v \neq s\left(N_{T}^{-}(v)=1\right)\right)$
- Thm. A If c is conservative, every initial subpath of a SP is a SP (e.g. subpath $1 \rightarrow 4$ of SP $1 \rightarrow 7$ below is a SP $1 \rightarrow 4$)

Let P be a $S P s \rightarrow w$ and Q a $S P s \rightarrow v$ through w; if the predecessor of w in P is $\mathrm{p}_{P}(w)=z_{1}$ and $\mathrm{p}_{Q}(w)=z_{2}$ with $z_{1} \neq z_{2}$, then no sp. or. tree T can contain $P \cup Q$. By Thm. A above, the initial subpath P^{\prime} to w of Q is also a $S P$ $s \rightarrow w$, so replace P with P^{\prime} and obtain $\left|N_{P^{\prime} \cup Q}^{-}(w)\right|=1$ as required.

All shortest paths

All Shortest Paths (ASP). Given a digraph $G=(V, A)$ and a function $c: A \rightarrow \mathbb{Q}$, find SPs $u \rightarrow v$ for all pairs u, v of distinct nodes in V

Variants

- Unit costs: for all $(u, v) \in A$ we have $c_{u v}=1$
- SPT on unit costs: use BFS (see Lectures 2, 6), $O(m+n)$
- Non-negative costs: for all $(u, v) \in A$ we have $c_{u v} \geq 0$
- Several others, too many to list them all
- A remarkable one: SPT on undirected graphs with $c: E \rightarrow \mathbb{N}$ can be solved in linear time [Thorup 1997]

Dijkstra's algorithm

The problem it targets

Dijkstra's algorithm solves the SPT on weighted digraphs $G=(V, A)$ with non-negative costs (with a given source node $s \in V$)

- If $c \geq 0$ then c is conservative (why?)
- Worst-case complexity: $O\left(n^{2}\right)$ on general digraphs, $O(m+n \log n)$ on sparse graphs, where $n=|V|$ and $m=|A|$
- Used as a sub-step in innumerable algorithms
- Main application: routing in networks (usually transportation and communication)

Data structures

- We maintain two functions
- $d: V \rightarrow \mathbb{Q}_{+}$
$d_{v}=d(v)$ is the cost of a SP $s \rightarrow v$ for all $v \in V$
- $\mathrm{p}: V \rightarrow V$
$\mathrm{p}_{v}=\mathrm{p}(v)$ is the predecessor of v in a $S P s \rightarrow v$ for all $v \in V$
- Initialization
- $d_{s}=0$ and $d_{v}=\infty$ for all $v \in V \backslash\{s\}$
- $\mathrm{p}(v)=s$ for all $v \in V$

Settle and Relax

- A node $v \in V$ is settled when d_{v} no longer changes
- Relaxing an arc $(u, v) \in A$ consists in:

- When (u, v) is relaxed and v is not settled yet, d_{v} might change

Description

- Dijkstra's algorithm :

1: while \exists unsettled nodes do
2: Let u be an unsettled node with minimum d_{u};
3: Settle u;
4: \quad for $(u, v) \in A$ do
5: \quad Relax (u, v);
6: end for
7: end while

- If $d_{v}=\infty$ at Step 4, relaxing (u, v) will necessarily change d_{v} (why?)
- Nodes $v \in V$ such that $d_{v}<\infty$ are reached
- A simple implementation is $O\left(n^{2}\right)$

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ |

$\mathrm{p}:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |

initialize (settle) $s=1$

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $\mathbf{2}$ | $\mathbf{1}$ | ∞ | $\mathbf{1}$ | $\mathbf{2}$ | ∞ | $\mathrm{p}:$1 $\mathbf{2}$ | 3 | 4 | 5 | 6 | 7 |
| 1 | $\mathbf{1}$ | $\mathbf{1}$ | 1 | $\mathbf{1}$ | $\mathbf{1}$ | 1 | | | | | | |

relax $\delta^{+}(1)$, update $2,3,5,6$

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 1 | ∞ | 1 | 2 | ∞ | $\mathrm{p}: \frac{1}{}$ | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | |

settle 3 ($d_{3}=1$ is minimum)

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 1 | 1 | 2 | $\mathbf{6}$ | $\mathrm{p}:$| 1 |
| :--- |

relax $\delta^{+}(3)$, update 4,7

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 1 | 1 | 2 | 6 | $\mathrm{p}:$| 1 |
| :--- |

settle 4 ($d_{4}=1$ is minimum $)$

Example with $s=1$

$\left.d: \begin{array}{c|c|c|c|c|c|cc|c|c|c|c|c|c}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline 0 & 2 & 1 & 1 & 1 & 2 & 4\end{array} \mathrm{p}: \begin{array}{l}1 \\ \hline 1\end{array}\right) 2$
relax $\delta^{+}(4)$, update 7

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 1 | 1 | 2 | 4 | $\mathrm{p}:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 3 | 1 | 1 | 4 |

settle 5 ($d_{5}=1$ is minimum $)$

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 1 | 1 | 2 | 4 | $\mathrm{p}:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 3 | 1 | 1 | 4 |

relax $\delta^{+}(5)$

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 1 | 1 | 2 | 4 | $\mathrm{p}:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 3 | 1 | 1 | 4 |

settle $2\left(d_{2}=2\right.$ is minimum $)$

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 1 | 1 | 2 | 4 | $\mathrm{p}:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 3 | 1 | 1 | 4 |

relax $\delta^{+}(2)$

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 1 | 1 | 2 | 4 | $\mathrm{p}:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 3 | 1 | 1 | 4 |

settle 6 ($d_{6}=2$ is minimum $)$

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 1 | 1 | 2 | 4 | $\mathrm{p}:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 3 | 1 | 1 | 4 |

relax $\delta^{+}(6)$

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 1 | 1 | 2 | 4 | $\mathrm{p}:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 3 | 1 | 1 | 4 |

settle $7\left(d_{7}=4\right.$ is minimum $)$

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 1 | 1 | 2 | 4 | $\mathrm{p}:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 3 | 1 | 1 | 4 |

relax $\delta^{+}(7)$

Example with $s=1$

$d:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 1 | 1 | 1 | 2 | 4 | $\mathrm{p}:$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 3 | 1 | 1 | 4 |

An optimal SPT solution

The algorithm is correct $\mathbf{1 / 2}$

Thm.
Whenever $v \in V$ is settled, d_{v} is the cost of a SP $s \rightarrow v$ where all predecessors of v are settled

Proof
By induction on itn. index k. Let S be the set of settled nodes at itn. $k-1$, let v be chosen at Step 2 of itn. k, and P^{*} be the path $s \rightarrow v$ determined by the alg. Suppose \exists another path P from s to v with cost $c(P)$. Since $v \notin S$, there must be $(w, z) \in A$ with $w \in S$ and $z \notin S$ s.t. $P=P_{1} \cup\{(w, z)\} \cup P_{2}$, where $V\left(P_{1}\right) \subseteq S$. Then $c(P)=$ $c\left(P_{1}\right)+c_{w z}+c\left(P_{2}\right) \geq c\left(P_{1}\right)+c_{w z}$ (because we subtracted $c\left(P_{2}\right)$) $=d_{w}+c_{w z}$ (by induction) $=d_{z} \geq d_{v}$ (because otherwise d_{v} would not be minimum, contradicting the choice of v at Step (2) $=c\left(P^{*}\right)$, so that P^{*} is a SP $s \rightarrow v$

The algorithm is correct $2 / 2$

- Remains to prove: at the end of the algorithm, every node is settled
- Similar to proof that Graph Scanning reaches all vertices in a graph (Lecture 6)
- Left as an exercise

Implementation

- No unreached node v can ever have minimum d_{v} at Step 2 since $d_{v}=\infty$ if v unreached
- The minimum choice at Step 2 occurs over unsettled, reached nodes \Rightarrow maintain a data structure containing unsettled, reached nodes
- Data structure that provides minimum in constant time: priority queue
- When arc (u, v) is relaxed and v is already reached, the priority d_{v} might be updated
- We update a priority by deleting then re-inserting the element with the new priority (can implement delete in $O(\log n)$)

Pseudocode

```
1: \(\forall v \in V d_{v}=\infty, d_{s}=0\);
2: \(\forall v \in V \mathrm{p}_{v}=s\);
3: \(Q\).insert \(\left(s, d_{s}\right)\);
4: while \(Q \neq \varnothing\) do
5: Let \(u=Q\). popMin();
6: \(\quad\) for \((u, v) \in \delta^{+}(u)\) do
7: \(\quad\) Let \(\Delta=d_{u}+c_{u v}\);
8: \(\quad\) if \(\Delta<d_{v}\) then
9: \(\quad\) Let \(d_{v}=\Delta\);
10: \(\quad\) Let \(\mathrm{p}_{v}=u\);
11: \(\quad Q . \operatorname{delete}(v)\); // if \(v \notin Q\) this does nothing
12: \(\quad Q\). insert \(\left(v, d_{v}\right)\);
13: end if
14: end for
15: end while
```


Worst-case complexity

- Each node is settled exactly once (why? argue by contradiction) \Rightarrow

1. popMin() is called $O(n)$ times $\Rightarrow O(n \log n)$
2. each arc is relaxed exactly once $\Rightarrow O(m \log n)$

- This yields an $O((n+m) \log n)$ algorithm
- Worse than $O\left(n^{2}\right)$ if graph is dense, however graphs in practice are usually sparse: competitive
- Can improve to $O(m+n \log n)$ with more refined data structures

Point-to-point SPs

- The P2PSP from s to t on nonnegatively weighted digraphs can be solved by Dijkstra's algorithm
- Simply terminate as soon as t is settled
- Insert the following code between Step 5 and 6:

```
if u=t then
    exit;
end if
```


Floyd-Warshall's algorithm

Solves ASP

- Solves the ASP with any arc costs c
- Data structures: two $n \times n$ matrices d, p
- $d_{u v}=$ cost of SP $u \rightarrow v$
- $\mathrm{p}_{u v}=$ predecessor of v in SP from u
- For each node z and pair u, v of nodes, see if SP $u \rightarrow v$ can be improved by passing through z

- If so, update $d_{u v}$ to $d_{u z}+d_{z v}$ and $\mathrm{p}_{u v}$ to $\mathrm{p}_{z v}$

The simplest algorithm!

1: $\forall u, v \in V d_{u v}=\left\{\begin{aligned} c_{u v} & \text { if }(u, v) \in A \\ \infty & \text { otherwise }\end{aligned}\right.$
2: $\forall u, v \in V \mathrm{p}_{u v}=u$
3: $\mathbf{f o r} z \in V$ do
4: \quad for $u \in V$ do
5: \quad for $v \in V$ do
6: $\quad \Delta=d_{u z}+d_{z v}$;
7: \quad if $\Delta<d_{u v}$ then
8: $\quad d_{u v}=\Delta$;
9: $\quad \mathrm{p}_{u v}=\mathrm{p}_{z v}$;
10: end if
11: end for
12: end for
13: end for

Remarks

- Worst-case complexity: clearly $O\left(n^{3}\right)$
- Algorithm is correct: every possible triangulation was tested
- Also solves Negative Cycle (NC):
- Assume there is a negative cycle through u
- When $u=v$, triangulations will eventually yield $d_{u u}<0$
- Whenever that happens, terminate: a negative cycle was found
- After Step 6, insert code:
if $\Delta<0$ then exit;
end if

Flows

Definitions

Defn.
A flow is a pair of functions $(x: A \rightarrow \mathbb{R}, b: V \rightarrow \mathbb{R})$ s.t.:

$$
\forall u \in V \quad \sum_{(u, v) \in A} x_{u v}-\sum_{(v, u) \in A} x_{v u}=b_{u}
$$

- Whenever $b_{v}=0$ for some $v \in V$, then the above becomes

$$
\begin{equation*}
\forall v \in V \quad b_{v}=0 \rightarrow \sum_{(u, v) \in A} x_{u v}=\sum_{(v, u) \in A} x_{v u} \tag{1}
\end{equation*}
$$

- The entering flow in v is equal to the exiting flow

- Eq. (1) are the flow conservation equations
- Flow equations help define connected subgraphs:
$\underline{G \text { connected } \Rightarrow \forall u \neq v \in V(G) \text { a unit of flow entering } u \text { will exit } u \text { as long }}$ as $b_{z}=0$ for all $z \neq u, v$. Conversely: $\forall u \neq v \in V(G) \exists$ a flow (x, b) where $b_{u}=1, b_{v}=-1, \forall z \neq u, v\left(b_{z}=0\right) \Rightarrow G$ connected
- Can use flow equations in Mathematical Programs (MP)
- E.g. a SP $s \rightarrow t$ is the connected subgraph of minimum cost containing s, t :

$$
\begin{array}{lrl}
\min _{x: A \rightarrow \mathbb{R}} & \sum_{(u, v) \in A} c_{u v} x_{u v} & \\
\forall u \in V & \sum_{(u, v) \in A} x_{u v}-\sum_{(v, u) \in A} x_{v u} & =\left\{\begin{array}{rl}
1 & u=s \\
-1 & u=t \\
0 & \text { othw. }
\end{array}\right\}[\mathrm{SP}] \\
u, v) \in A & x_{u v} \in\{0,1\}
\end{array}
$$

Test this with AMPL

A dual algorithm

MP in flat form

Every MP involving linear forms only can be written in the form

$$
\begin{aligned}
\min _{x} \quad \gamma^{\top} x & \\
& A x
\end{aligned} \leq \beta=[P]
$$

- $\gamma, x \in \mathbb{R}^{n}, \beta \in \mathbb{R}^{m}, A$ is $m \times n, X$ is the set where variables range
- For P2PSP on our usual graph with $s=1$ and $t=7$ we have:
- $\gamma=(2,1,1,2,1,1,0,1,5,4,3,2,6), \beta=(1,0,0,0,0,0,-1)$,

$$
X=\{0,1\}^{13}
$$

- $A=$

$$
\left(\begin{array}{ccccccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & -1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & -1
\end{array}\right)
$$

Transpose

A dual view

- Let $A^{\boldsymbol{\top}}=\left(\begin{array}{ccccccc}1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1\end{array}\right)$
- Turn rows into columns (constraints into variables)
- . . . and columns into rows (variables into constraints)

LP Dual

- For each constraint define a variable $y_{i}(i \leq 7)$
- The Linear Programming Dual is

$$
\left.\begin{array}{rr}
\max _{y} & -y \beta \\
& y A
\end{array}\right\}[D]
$$

- In the case of the SP formulation, the dual is:

$$
\left.\begin{array}{ll}
\max _{y} & y_{t}-y_{s} \\
\forall(u, v) \in A & y_{v}-y_{u} \leq c_{u v}
\end{array}\right\}\left[D_{\mathbf{S P}}\right]
$$

- For the P2PSP formulation, dual gives same optimal value as the "primal" (test with AMPL)

How the hell is this an SP formulation?

- Weighted arcs = strings as long as the weights
- Nodes = knots
- Pull nodes s, t as far as you can
- At maximum pull, strings corresponding to arcs (u, v) in SP have horizontal projections whose length is exactly $c_{u v}$

$\max y_{s}$

A mechanical algorithm

Open question

What is the worst-case complexity of the mechanical algorithm?

End of Lecture 8

