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Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrôle à la fin. Note:

max(CC, 3
4CC + 1

4TP )

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)

Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

Website: www.enseignement.polytechnique.fr/informatique/INF421

Blog: inf421.wordpress.com

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)
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Cost of a path
We consider a weighted digraph G = (V,A) with arc costs

I.e. we are given a function c : A → Q

If P ⊆ G is a path u → v in G then

c(P ) =
∑

(u,v)∈P

cuv,

where cuv = c((u, v))

For example, the path 1 → 2 → 3 → 7 has cost 2 + 1 + 5 = 8
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Shortest path = path P having minimum cost c(P )
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Negative cycles

The red cycle has negative cost 1 + 0− 4 + 2 = −1 < 0
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Thm.

If G = (V,A) has a cycle C with c(C) < 0, ∃ no SP in G

Proof
Suppose P is SP u → v with cost c∗. Let w ∈ V (C), consider path Q = Q1 ∪Q2 ∪Q3

where Q1 u → w, Q2 = Q−1
1 , and Q3 consists of k = ⌈

c(Q1)+c(Q2)+c∗

|c(C)|
⌉ + 1 tours

around C. Then c(Q) = c(Q1)+c(Q2)+kc(C) < c∗ ⇒ Q shorter than P (contradiction)

⇒ Need to assume c yields no negative cycles
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Negative cycles: comments

If c yields no negative cycles, call c conservative

In order to construct Q in proof of above thm., we toured
several times around negative cycle C

⇒ Q is not a simple path

If we look for the shortest simple path in graphs then we
don’t have this unboundedness problem

The SHORTEST SIMPLE PATH (SSP) problem, however, is
NP-hard on general non-conservatively weighted graphs

Solving the LONGEST PATH problem is also NP-hard
(Prove this by polynomially transforming SSP to LONGEST PATH)
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Assumptions

For the rest of these slides, if not otherwise specified,
assume:

G is connected (graph) or strongly connected (digraph)

The arc costs c are conservative
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Point-to-point shortest path

POINT-TO-POINT SHORTEST PATH (P2PSP). Given a digraph
G = (V,A), a function c : A → Q and two distinct nodes
s, t ∈ V , find a SP s → t

A shortest path 1 → 7
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Shortest path tree

SHORTEST PATH TREE (SPT). Given a digraph G = (V,A), a function c :

A → Q and a source node s ∈ V , find SPs s → v for all v ∈ V r {s}

Remark: there may be more than one SP s → v

Consistency: one can always choose SP Psv u → v so that

T =
⋃

v 6=s Psv is a spanning oriented tree (⇔ ∀v 6= s (N−
T (v) = 1))

Thm. A If c is conservative, every initial subpath of a SP is a SP

(e.g. subpath 1 → 4 of SP 1 → 7 below is a SP 1 → 4)
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Let P be a SP s → w and Q a SP s → v

through w; if the predecessor of w in P

is pP (w) = z1 and pQ(w) = z2 with

z1 6= z2, then no sp. or. tree T can con-

tain P ∪ Q. By Thm. A above, the ini-

tial subpath P ′ to w of Q is also a SP

s → w, so replace P with P ′ and obtain

|N−
P ′∪Q

(w)| = 1 as required.
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All shortest paths

ALL SHORTEST PATHS (ASP). Given a digraph G = (V,A) and
a function c : A → Q, find SPs u → v for all pairs u, v of
distinct nodes in V
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Variants

Unit costs: for all (u, v) ∈ A we have cuv = 1

SPT on unit costs: use BFS (see Lectures 2, 6),
O(m+ n)

Non-negative costs: for all (u, v) ∈ A we have cuv ≥ 0

Several others, too many to list them all

A remarkable one: SPT on undirected graphs with
c : E → N can be solved in linear time [Thorup 1997]
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Dijkstra’s algorithm
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The problem it targets

Dijkstra’s algorithm solves the SPT on weighted digraphs
G = (V,A) with non-negative costs (with a given source
node s ∈ V )

If c ≥ 0 then c is conservative (why?)

Worst-case complexity: O(n2) on general digraphs,
O(m+ n log n) on sparse graphs, where n = |V | and
m = |A|

Used as a sub-step in innumerable algorithms

Main application: routing in networks (usually

transportation and communication)
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Data structures

We maintain two functions

d : V → Q+

dv = d(v) is the cost of a SP s → v for all v ∈ V

p : V → V

pv = p(v) is the predecessor of v in a SP s → v for all v ∈ V

Initialization

ds = 0 and dv = ∞ for all v ∈ V r {s}

p(v) = s for all v ∈ V
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Settle and Relax

A node v ∈ V is settled when dv no longer changes

Relaxing an arc (u, v) ∈ A consists in:

if du + cuv < dv then
Let dv = du + cuv;
Let pv = u;

end if
uu

vv

dudu

dv

cuvcuv

du + cuv

When (u, v) is relaxed and v is not settled yet, dv might
change
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Description

Dijkstra’s algorithm :

1: while ∃ unsettled nodes do
2: Let u be an unsettled node with minimum du;
3: Settle u;
4: for (u, v) ∈ A do
5: Relax (u, v);
6: end for
7: end while

If dv = ∞ at Step 4, relaxing (u, v) will necessarily
change dv (why?)

Nodes v ∈ V such that dv < ∞ are reached

A simple implementation is O(n2)
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Example with s = 1
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d :
1 2 3 4 5 6 7

0 ∞ ∞ ∞ ∞ ∞ ∞
p :

1 2 3 4 5 6 7
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initialize ( settle ) s = 1
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Example with s = 1
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d :
1 2 3 4 5 6 7

0 2 1 ∞ 1 2 ∞
p :

1 2 3 4 5 6 7

1 1 1 1 1 1 1

relax δ+(1), update 2, 3, 5, 6
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Example with s = 1
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d :
1 2 3 4 5 6 7

0 2 1 ∞ 1 2 ∞
p :

1 2 3 4 5 6 7

1 1 1 1 1 1 1

settle 3 (d3 = 1 is minimum)
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Example with s = 1
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d :
1 2 3 4 5 6 7

0 2 1 1 1 2 6
p :

1 2 3 4 5 6 7

1 1 1 3 1 1 3

relax δ+(3), update 4, 7
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Example with s = 1
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settle 4 (d4 = 1 is minimum)
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Example with s = 1
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d :
1 2 3 4 5 6 7

0 2 1 1 1 2 4
p :
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relax δ+(4), update 7
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Example with s = 1
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d :
1 2 3 4 5 6 7

0 2 1 1 1 2 4
p :

1 2 3 4 5 6 7
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settle 5 (d5 = 1 is minimum)
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Example with s = 1
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relax δ+(5)
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Example with s = 1
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settle 2 (d2 = 2 is minimum)
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Example with s = 1
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relax δ+(2)

INF421, Lecture 8 – p. 16/37



Example with s = 1
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d :
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p :

1 2 3 4 5 6 7

1 1 1 3 1 1 4

settle 6 (d6 = 2 is minimum)
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Example with s = 1
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relax δ+(6)
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Example with s = 1
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d :
1 2 3 4 5 6 7

0 2 1 1 1 2 4
p :

1 2 3 4 5 6 7

1 1 1 3 1 1 4

settle 7 (d7 = 4 is minimum)
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Example with s = 1
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relax δ+(7)
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Example with s = 1
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An optimal SPT solution
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The algorithm is correct 1/2
Thm.

Whenever v ∈ V is settled, dv is the cost of a SP s → v where all

predecessors of v are settled

P ∗

s

v

w
z

p(v)

P1

P2

SProof
By induction on itn. index k. Let S be the set of settled nodes at itn. k − 1, let v be

chosen at Step 2 of itn. k, and P ∗ be the path s → v determined by the alg. Suppose

∃ another path P from s to v with cost c(P ). Since v 6∈ S, there must be (w, z) ∈ A

with w ∈ S and z 6∈ S s.t. P = P1 ∪ {(w, z)} ∪ P2, where V (P1) ⊆ S. Then c(P ) =

c(P1) + cwz + c(P2) ≥ c(P1) + cwz (because we subtracted c(P2)) = dw + cwz (by induction)

= dz ≥ dv (because otherwise dv would not be minimum, contradicting the choice of v at Step 2)

= c(P ∗), so that P ∗ is a SP s → v
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The algorithm is correct 2/2

Remains to prove: at the end of the algorithm, every
node is settled

Similar to proof that Graph Scanning reaches all vertices
in a graph (Lecture 6)

Left as an exercise
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Implementation

No unreached node v can ever have minimum dv at
Step 2 since dv = ∞ if v unreached

The minimum choice at Step 2 occurs over unsettled,
reached nodes ⇒ maintain a data structure containing

unsettled, reached nodes

Data structure that provides minimum in constant time:

priority queue

When arc (u, v) is relaxed and v is already reached, the
priority dv might be updated

We update a priority by deleting then re-inserting the
element with the new priority (can implement delete in O(logn))
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Pseudocode

1: ∀v ∈ V dv = ∞, ds = 0;
2: ∀v ∈ V pv = s;
3: Q.insert(s, ds);
4: while Q 6= ∅ do
5: Let u = Q.popMin();

6: for (u, v) ∈ δ+(u) do
7: Let ∆ = du + cuv;
8: if ∆ < dv then
9: Let dv = ∆;

10: Let pv = u;
11: Q.delete(v); // if v 6∈ Q this does nothing

12: Q.insert(v, dv);
13: end if
14: end for
15: end while
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Worst-case complexity

Each node is settled exactly once (why? argue by
contradiction) ⇒

1. popMin() is called O(n) times ⇒ O(n log n)

2. each arc is relaxed exactly once ⇒ O(m log n)

This yields an O((n+m) log n) algorithm

Worse than O(n2) if graph is dense, however graphs in
practice are usually sparse: competitive

Can improve to O(m+ n log n) with more refined data
structures
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Point-to-point SPs

The P2PSP from s to t on nonnegatively weighted
digraphs can be solved by Dijkstra’s algorithm

Simply terminate as soon as t is settled

Insert the following code between Step 5 and 6:

if u = t then
exit;

end if
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Floyd-Warshall’s algorithm

INF421, Lecture 8 – p. 23/37



Solves ASP

Solves the ASP with any arc costs c

Data structures: two n× n matrices d, p

duv =cost of SP u → v

puv =predecessor of v in SP from u

For each node z and pair u, v of nodes, see if SP u → v

can be improved by passing through z

u v

z

puv

pzv

If so, update duv to duz + dzv and puv to pzv
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The simplest algorithm!

1: ∀u, v ∈ V duv =

{

cuv if (u, v) ∈ A

∞ otherwise

2: ∀u, v ∈ V puv = u

3: for z ∈ V do
4: for u ∈ V do
5: for v ∈ V do
6: ∆ = duz + dzv;
7: if ∆ < duv then
8: duv = ∆;
9: puv = pzv;

10: end if
11: end for
12: end for
13: end for
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Remarks

Worst-case complexity: clearly O(n3)

Algorithm is correct: every possible triangulation was
tested

Also solves NEGATIVE CYCLE (NC):

Assume there is a negative cycle through u

When u = v, triangulations will eventually yield
duu < 0

Whenever that happens, terminate: a negative cycle
was found

After Step 6, insert code:

if ∆ < 0 then
exit;

end if
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Flows
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Definitions

Defn.

A flow is a pair of functions (x : A → R, b : V → R) s.t.:

∀u ∈ V
∑

(u,v)∈A

xuv −
∑

(v,u)∈A

xvu = bu

Whenever bv = 0 for some v ∈ V , then the above becomes

∀v ∈ V bv = 0 →
∑

(u,v)∈A

xuv =
∑

(v,u)∈A

xvu (1)

The entering flow in v is equal to the exiting flow

3

0

2

1v

Eq. (1) are the flow conservation equations
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Mathematical Programming

Flow equations help define connected subgraphs:

G connected ⇒ ∀u 6= v ∈ V (G) a unit of flow entering u will exit u as long

as bz = 0 for all z 6= u, v. Conversely: ∀u 6= v ∈ V (G) ∃ a flow (x, b)

where bu = 1, bv = −1, ∀z 6= u, v(bz = 0)⇒G connected

Can use flow equations in Mathematical Programs (MP)

E.g. a SP s → t is the connected subgraph of minimum cost

containing s, t:

min
x:A→R

∑

(u,v)∈A

cuvxuv

∀u ∈ V
∑

(u,v)∈A

xuv −
∑

(v,u)∈A

xvu =















1 u = s

−1 u = t

0 othw.

∀(u, v) ∈ A xuv ∈ {0, 1}











































[SP]

Test this with AMPL
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A dual algorithm
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MP in flat form

Every MP involving linear forms only can be written in the form

minx γTx

Ax ≤ β

x ∈ X















[P ]

γ, x ∈ Rn, β ∈ Rm, A is m× n, X is the set where variables range

For P2PSP on our usual graph with s = 1 and t = 7 we have:

γ = (2, 1, 1, 2, 1, 1, 0, 1, 5, 4, 3, 2, 6), β = (1, 0, 0, 0, 0, 0,−1),

X = {0, 1}13

A =






























1 1 1 1 0 0 0 0 0 0 0 0 0

−1 0 0 0 1 1 0 0 0 0 0 0 0

0 −1 0 0 −1 0 1 1 1 0 0 0 0

0 0 0 0 0 0 −1 0 0 1 1 0 0

0 0 −1 0 0 −1 0 −1 0 0 0 1 1

0 0 0 −1 0 0 0 0 0 −1 0 −1 0

0 0 0 0 0 0 0 0 −1 0 −1 0 −1
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Transpose

(turn)−→

(reflect)−→
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A dual view

Let AT =

































































1 −1 0 0 0 0 0

1 0 −1 0 0 0 0

1 0 0 0 −1 0 0

1 0 0 0 0 −1 0

0 1 −1 0 0 0 0

0 1 0 0 −1 0 0

0 0 1 −1 0 0 0

0 0 1 0 −1 0 0

0 0 1 0 0 0 −1

0 0 0 1 0 −1 0

0 0 0 1 0 0 −1

0 0 0 0 1 −1 0

0 0 0 0 1 0 −1

































































Turn rows into columns (constraints into variables)

. . . and columns into rows (variables into constraints)
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LP Dual

For each constraint define a variable yi (i ≤ 7)

The Linear Programming Dual is

maxy −yβ

yA ≤ γ

}

[D]

In the case of the SP formulation, the dual is:

maxy yt − ys

∀(u, v) ∈ A yv − yu ≤ cuv

}

[DSP]

For the P2PSP formulation, dual gives same optimal
value as the “primal” (test with AMPL)

How the hell is this an SP formulation?
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A mechanical algorithm

Weighted arcs = strings as long as the weights

Nodes = knots

Pull nodes s, t as far as you can

At maximum pull, strings corresponding to arcs (u, v) in SP have

horizontal projections whose length is exactly cuv

1
2

3

ysyt
min yt max ys

st

≤ c13

1 2

3

ysyt

st
= c1t

= c21 = cs2

xuv = 1
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Open question

What is the worst-case complexity of

the mechanical algorithm?
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End of Lecture 8
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