INF421, Lecture 6 Recursion

Leo Liberti

LIX, École Polytechnique, France

Course

- Objective: teach notions AND develop intelligence
- Evaluation: TP noté en salle info, Contrôle à la fin. Note:
$\max \left(C C, \frac{3}{4} C C+\frac{1}{4} T P\right)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
- Books:

1. K. Mehlhorn \& P. Sanders, Algorithms and Data Structures, Springer, 2008
2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
4. Ph. Baptiste \& L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2006

- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr(e-mail subject: INF421)

Lecture summary

- Stacks
- Recursion

Motivating example

How functions are called

f calls g calls h

Memory

How functions are called

f calls g calls h

Memory

How functions are called

f calls g calls h

Memory

How functions are called

f calls g calls h

Memory

How functions are called

f calls g calls h

Memory

How functions are called

f calls g calls h

Memory

Stacks

- Linear data structure
- Accessible from only one end (top)
- Operations:
- push data on the top of the stack
- pop data from the top of the stack
- test whether stack is empty
- Every operation is $O(1)$
- Implement using arrays or lists

Hack the stack

> Volume Seven, Issue Forty-Nine File 14 of 16 BugTraq, root, and Underground. Org bring you Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx Smashing The Stack For Fun And Profit XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Back in 1996, hackers would get into systems by writing disguised code in the execution stack

How does it work?

How does it work?

How does it work?

The Tower of Hanoi

Move stack of discs to different pole, one at a time, no larger over smaller

Checking brackets

Given a mathematical sentence with two types of brackets "()" and " []", write a program that checks whether they have been embedded correctly

$$
\begin{gathered}
1+\left(\left[\left(x\left(y-z[\log (n)] /\left(3-x^{2}\right)+\exp (2 /[y z])\right)+1\right)-2 x y z\right] / 2\right) \\
([(([((([(((([1]))))])))])])
\end{gathered}
$$

Pseudocode

1: input string s
2: for $i \in(1, \ldots,|s|)$ do
3: if $s_{i}=$ '(' or $s_{i}=$ ' [' then
4: push ')' or ']' on stack
5: else if $s_{i}=$ ')' or $s_{i}=$ ']' then
6: \quad pop t from stack
7: if $t=\varnothing$ (stack is empty) then
8: error: (too many closing brackets)
9: else if $t \neq s_{i}$ then
10: error: (closing bracket has wrong type)
11: end if
12: end if
13: end for
14: if stack is not empty then
15: error: (not enough closing brackets)
16: end if

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program
- You're writing an interpreter or a compiler

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program
- You're writing an interpreter or a compiler
- You're writing an operating system

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program
- You're writing an interpreter or a compiler
- You're writing an operating system
- You're writing some graphics code which must execute blighteningly fast and existing libraries are too slow

Usefulness

> Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program
- You're writing an interpreter or a compiler
- You're writing an operating system
- You're writing some graphics code which must execute blighteningly fast and existing libraries are too slow
- You're a security expert wishing to write an unsmashable stack

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program
- You're writing an interpreter or a compiler
- You're writing an operating system
- You're writing some graphics code which must execute blighteningly fast and existing libraries are too slow
- You're a security expert wishing to write an unsmashable stack
- You're me trying to teach you stacks

Recursion

Compare iteration and recursion

```
```

function f() {

```
```

function f() {
print "hello";
print "hello";
f();
f();
}
}
f();

```
```

f();

```
```

while (true) do print "hello"; end while
both programs yield the same infinite loop

What are the differences?
Why should we bother?

Difference? Forget assignments

input n;
$r=1$
for $(i=1$ to n) do $r=r \times i$
end for
output r

```
function f(n){
    if (n=0) then
        return 1
    end if
    return n\timesf(n-1)
}
output f(n);
```

- Both programs compute n !
- Iteration: assignments; recursion: no assignments
- Computation(\{tests, assignments, iterations\})=Computation(\{tests, recursion\}) Function call \Leftrightarrow saving on a stack (recursion makes implicit assignments)

Termination

- Make sure your recursions terminate
- If $f(n)$ is recursive,
- recurse on smaller integers, e.g. $f(n-1)$ or $f(n / 2)$
- provide "base cases" where you do not recurse, e.g. $f(0)$ or $f(1)$
- Compare with induction: prove a statement for $n=0$; prove that if it holds for all $i<n$ then it holds for n too; conclude it holds for all n
- Typical recursive algorithm $f(n)$:
if n is a "base case" then compute $f(n)$ directly, do not recurse
else
recurse on $f(i)$ with some $i<n$
end if

Should we bother? Explore this tree

Try instructing the computer to explore this tree structure in "depthfirst order" (i.e. so that it prints 1,2,3,4,5,6)

$$
\begin{aligned}
& A_{1}: A_{11}=2, A_{12}=5 \\
& A_{2}: A_{21}=3, A_{22}=4
\end{aligned}
$$

Encoding: use a jagged array A

$$
A_{i j}=\text { label of } j \text {-th child of node } i
$$

The iterative failure

```
int }a=1
print a;
for(int z=1 to |Aa|) do
    int b= Aaz;
    print b;
    for (int }y=1\mathrm{ to }|\mp@subsup{A}{b}{}|\mathrm{ ) do
        int c= A Ay;
        print c;
```


end for
 end for

Must the code change according to the tree structure???
We want one code which works for all trees!

Rescued by recursion

```
function f(int \ell){
    print \ell;
    for (int i=1 to | }\mp@subsup{A}{\ell}{}|\mathrm{ ) do
    f(\mp@subsup{A}{\elli}{});
    end for
```

$\}$
$\operatorname{main}()\{f(1) ;\}$

Rescued by recursion

function $f($ int $\ell)\{$

print ℓ;

for (int $i=1$ to $\left|A_{\ell}\right|$) do

$$
f\left(A_{\ell i}\right) ;
$$

end for
$\operatorname{main}() \quad\{f(1) ;\}$
\}
$\operatorname{main}()\{f(1)$,

1. $\ell=1$; print 1
2. $\left|A_{1}\right|=2 ; i=1$
3. call $f\left(A_{11}=2\right)$ [push $\left.\ell=1\right]$
4. $\ell=2$; print 2
5. $\left|A_{2}\right|=2 ; i=1$

$$
\text { 6. call } f\left(A_{21}=3\right)[\text { push } \ell=2]
$$

7. $\ell=3$; print 3
8. $A_{3}=\varnothing$
9. return $\quad[$ pop $\ell=2]$
10. $\left|A_{2}\right|=2 ; i=2$
11. call $f\left(A_{22}=4\right)$ [push $\ell=2$]
12. $\ell=4$; print 4
13. $A_{4}=\varnothing$
14. return $\quad[$ pop $\ell=2]$
15. return $\quad[\mathrm{pop} \ell=1]$
16. $\left|A_{1}\right|=2 ; i=2$
17. call $f\left(A_{12}=5\right)$ [push $\ell=1$]
18. $\ell=5$; print 5
19. $\left|A_{5}\right|=1 ; i=1$
20. call $f\left(A_{51}=6\right)$ [push $\ell=5$]
21. $\ell=6$; print 6
22. $A_{6}=\varnothing$
23. return
[pop $\ell=5]$
24. return
25. return; end
\square
.

Recursion power

- Can recursion can express programs that iterations cannot?
- Same "expressive power"
you can write the programs either way
- Some programs easier to write using recursion

Applications of recursion

Listing permutations

- Eg. $n=4$: assume list of permutations of $\{1,2,3\}$

$$
(1,2,3),(1,3,2),(3,1,2),(3,2,1),(2,3,1),(2,1,3)
$$

- Write each four times, write the number 4 in every position:

1	2	3	$\mathbf{4}$	3	2	1	$\mathbf{4}$
1	2	$\mathbf{4}$	3	3	2	$\mathbf{4}$	1
1	$\mathbf{4}$	2	3	3	$\mathbf{4}$	2	1
$\mathbf{4}$	1	2	3	$\mathbf{4}$	3	2	1
1	3	2	$\mathbf{4}$	2	3	1	$\mathbf{4}$
1	3	$\mathbf{4}$	2	2	3	$\mathbf{4}$	1
1	$\mathbf{4}$	3	2	2	$\mathbf{4}$	3	1
$\mathbf{4}$	1	3	2	$\mathbf{4}$	2	3	1
3	1	2	$\mathbf{4}$	2	1	3	$\mathbf{4}$
3	1	$\mathbf{4}$	2	2	1	$\mathbf{4}$	3
3	$\mathbf{4}$	1	2	2	$\mathbf{4}$	1	3
$\mathbf{4}$	3	1	2	$\mathbf{4}$	2	1	3

The algorithm

- If you can list permutations for $n-1$, you can do it for n
- Base case: $n=1$ yields the permutation (1) (no recursion)

```
function permutations( }n\mathrm{ ) {
    1: if (n=1) then
    2: }L={(1)}
    3: else
    4: }\mp@subsup{L}{}{\prime}=\mathrm{ permutations(n-1);
    5: }L=\varnothing=\varnothing
    6: for (\pi=( }\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n-1}{})\in\mp@subsup{L}{}{\prime})\mathbf{do
    7: for (i\in{1,\ldots,n}) do
    8: }L\leftarrowL\cup{(\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{i-1}{},n,\mp@subsup{a}{i}{},\ldots,\mp@subsup{a}{n-1}{})}
    9: end for
10: end for
11: end if
12: return L;
}
```


Implementation details

- L, L^{\prime} are (mathematical) sets: implementation?
- given perm. $\left(a_{1}, \ldots, a_{n-1}\right)$, need to produce perm. $\left(a_{1}, \ldots, a_{i-1}, n, a_{i}, \ldots, a_{n-1}\right)$: implementation?
- Needed operations:
- size of set L (known a priori: $|L|=n$!)
- scan all elements of set L^{\prime} in some order (for at Step 6)

2 insert list element at arbitrary position at Step 8

- add an element to L
- L^{\prime}, L must have the same type by Steps 4, 12
- L^{\prime}, L can be arrays or lists
- $\left(a_{1}, \ldots, a_{n-1}\right)$ can be a singly-linked (or doubly-linked) list

Hanoi tower

Recursive approach

In order to move k discs from stack 1 to stack 3 :

1. move topmost $k-1$ discs on stack 1 to stack 2
2. move largest disc on stack 1 to stack 3
3. move $k-1$ discs on stack 2 to stack 3

Hanoi tower

Recursive approach

In order to move k discs from stack 1 to stack 3 :

1. move topmost $k-1$ discs on stack 1 to stack 2
2. move largest disc on stack 1 to stack 3
3. move $k-1$ discs on stack 2 to stack 3

Reduce the problem to subproblem with $k-1$ discs

Assumption: subproblems for $k-1$ at Steps 1 and 3 are the same type of problem as for k
The assumption holds because the disc being moved at Step2 is the largest: a Hanoi tower game "works the same way" if you add largest discs at the bottom of the stacks

Hanoi tower

Recursive approach

In order to move k discs from stack 1 to stack 3 :

1. move topmost $k-1$ discs on stack 1 to stack 2
2. move largest disc on stack 1 to stack 3
3. move $k-1$ discs on stack 2 to stack 3

Reduce the problem to subproblem with $k-1$ discs

Assumption: subproblems for $k-1$ at Steps 1 and 3 are the same type of problem as for k
The assumption holds because the disc being moved at Step2 is the largest: a Hanoi tower game "works the same way" if you add largest discs at the bottom of the stacks

Do you need stacks to implement this algorithm?

Recursive functions

Function class

Aim to define a class \mathscr{R} of recursive functions with special properties

Initial functions

The following functions are in \mathscr{R}

- zero: $\forall x \in \mathbb{N} \quad Z(x)=0$
- next: $\forall x \in \mathbb{N} \quad N(x)=x+1$
- projection: $\forall x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{n} \quad P_{i}^{n}(x)=x_{i}$

Replacement schema

- Given:
- $h_{1}, \ldots h_{m}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ in \mathscr{R}
- $g: \mathbb{N}^{m} \rightarrow \mathbb{N}$ in \mathscr{R}
- $x \in \mathbb{N}^{n}$
- $f(x)=g\left(h_{1}(x), \ldots, h_{m}(x)\right)$ is in \mathscr{R}

Primitive recursion

- Given:
- $g: \mathbb{N}^{n} \rightarrow \mathbb{N}$ in \mathscr{R}
- $h: \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ in \mathscr{R}
- $x \in \mathbb{N}^{n}$ and $y \in \mathbb{N} \backslash\{0\}$
- The following $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is in \mathscr{R} :

$$
\begin{aligned}
f(x, 0) & =g(x) \\
f(x, N(y)) & =h(x, y, f(x, y))
\end{aligned}
$$

- If $n=0$, then $f: \mathbb{N} \rightarrow \mathbb{N}$ is in \mathscr{R} if $\exists k \in \mathbb{N}$ s.t.:

$$
\begin{aligned}
f(0) & =k \\
f(N(y)) & =h(y, f(y))
\end{aligned}
$$

μ-operator

- Given:
- $g: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ s.t. $\forall x \in \mathbb{N}^{n} \exists y \in \mathbb{N}(g(x, y)=0)$
- a quantifier μ
s.t. $\mu y g(x, y)=\min \{y \in \mathbb{N} \mid g(x, y)=0\}$
- The function $f(x)=\mu y g(x, y)$ is in \mathscr{R}

Examples

- $x+y=+(x, y)$ is in \mathscr{R}
- $+(x, 0)=P_{1}^{1}(x)$
- $+(x, N(y))=P_{3}^{3}(x, y, N(+(x, y)))$
- $\Rightarrow+\in \mathscr{R}$ by proj., next and primitive recursion
- exchange of variables is in \mathscr{R}
- suppose $g: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is in \mathscr{R}
- let $f(x, y)=g(y, x)$ for all $x, y \in \mathbb{N}$: is $f \in \mathscr{R}$?
- we have $x=P_{1}^{2}(x, y)$ and $y=P_{2}^{2}(x, y)$
- so, can write $f(x, y)=g\left(P_{2}^{2}(x, y), P_{1}^{2}(x, y)\right)$
- $\Rightarrow f \in \mathscr{R}$ by projection and replacement

An algorithmic flavour

- Can see these proofs as algorithms
- Extend domains/ranges from \mathbb{N} to arbitrary ordered sets
- The program : explicit expression in terms of initial functions and schema
(provides description of mechanical procedure)
- The tape : variables with values
(recursion stack)
Thm.
A function is recursive iff it is Turing-computable

Recursion is TM-equivalent

Recursion in logic

- Axioms : sentences that are true by definition
- $\Phi \vdash \psi$: sentence ψ is a logical consequence of sentences in set Φ
- Theory : set T of sentences containing set A of axioms such that for each $\phi \in T, A \vdash \phi$
- A theory is consistent when it does not contain pairs of contradictory sentences $\phi, \neg \phi$
- A theory is complete when every true statement is in the theory
- Let T be a theory that can define \mathbb{N}
- Gödel's sentence : define γ as $T \nvdash \gamma$

Gödel's incompleteness theorem

Thm.
If T is consistent, then T is incomplete

Proof

- Assume T consistent, aim to show \exists true sentence $\notin T$
- For all ϕ, exactly one in $\{\phi, \neg \phi\}$ is true
- \Rightarrow exactly one in $\{\gamma, \neg \gamma\}$ is true
- Is $\gamma \in T$? If so, then $T \vdash \gamma$, which means that $T \vdash(T \nvdash \gamma)$,
i.e. $T \nvdash \gamma$, i.e. $\gamma \notin T$ (contradiction)
- Is $\neg \gamma \in T$? If so, then $T \vdash \neg \gamma$, i.e. $T \vdash \neg(T \nvdash \gamma)$, that is
$T \vdash(T \vdash \gamma)$, thus $T \vdash \gamma$
- In other words, assuming $T \vdash \neg \gamma$ leads to $T \vdash \gamma$, which implies T is inconsistent (contradiction)
- \Rightarrow neither γ nor $\neg \gamma$ is in T, one of them is true, T is incomplete

‥ Does this recursion terminate?

- Not immediately evident that the recursive definition $T \nvdash \gamma$ has a "base case"
- In Gödel's proof sentences and theories are encoded as integers
- Most difficult part of Gödel's proof: show γ can be defined by means of a recursive function

End of Lecture 3

