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Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrôle à la fin. Note:

max(CC, 3
4
CC + 1

4
TP )

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)

Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

Website: www.enseignement.polytechnique.fr/informatique/INF421

Blog: inf421.wordpress.com

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)
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Lecture summary

Stacks

Recursion
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Motivating example
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How functions are called

f calls g calls h

Memory

CPU is 
executing

f top

INF421, Lecture 3 – p. 5/37



How functions are called

f calls g calls h

Memory

CPU is 
executing

current state of ff ::call g push

top

INF421, Lecture 3 – p. 5/37



How functions are called

f calls g calls h

Memory

CPU is 
executing

current state of f

current state of g

g::call h

push

top

INF421, Lecture 3 – p. 5/37



How functions are called

f calls g calls h

Memory

CPU is 
executing

current state of f

current state of g

h::return

pop

top

INF421, Lecture 3 – p. 5/37



How functions are called

f calls g calls h

Memory

CPU is 
executing

current state of fg::return pop

top

INF421, Lecture 3 – p. 5/37



How functions are called

f calls g calls h

Memory

CPU is 
executing

f top

INF421, Lecture 3 – p. 5/37



Stacks

Linear data structure

Accessible from only one end (top)

Operations:

push data on the top of the stack

pop data from the top of the stack

test whether stack is empty

Every operation is O(1)

Implement using arrays or lists
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Hack the stack

Back in 1996, hackers would get into systems by writing disguised code in the execution stack

INF421, Lecture 3 – p. 7/37



How does it work?

bottom

top

h::x = 1

h::y = 2

:

:

:

address Ah in g to pass

control to at end of h

g::x = 10

g::t = "url"

address Ag in f to pass

control to at end of g

f::y = 6.2

f::t = "config"

address Af in main to

pass control to at end of f

10

x

"url"

t

t

. . . Ag

u r l 1 A 6 4

address where Ag is stored
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How does it work?

bottom

top

h::x = 1

h::y = 2

:

:

:

address Ah in g to pass

control to at end of h

g::x = 10

g::t = "url"

address Ag in f to pass

control to at end of g

f::y = 6.2

f::t = "config"

address Af in main to

pass control to at end of f

10

x

"url"

t

t

. . . Ag

u r l 1 A 6 4

address where Ag is stored

g::t: user input (e.g. URL from browser)

Code for g does not check input length

User might input strings longer than 3 chars

For example, input "leo5B"
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How does it work?

bottom

top

h::x = 1

h::y = 2

:

:

:

address Ah in g to pass

control to at end of h

g::x = 10

g::t = "url"

address Ag in f to pass

control to at end of g

f::y = 6.2

f::t = "config"

address Af in main to

pass control to at end of f

10

x

"url"

t

t

. . . Ag

l e o 5 B 6 4

address where Ag is stored

User input t = "leo5B" changes return addr

Ag =0x1A64 becomes A′ =0x5B64

When g ends, CPU jumps to address A′ 6= Ag

Set it up so that code at A′ opens a root shell

Machine hacked
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The Tower of Hanoi

Move stack of discs to different pole, one at a time, no larger over smaller
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Checking brackets

Given a mathematical sentence with two types of brackets
“()” and “[]”, write a program that checks whether they
have been embedded correctly

1 + ([(x(y − z[log(n)]/(3− x2) + exp(2/[yz])) + 1)− 2xyz]/2)

([(([((([(((([1]))))])))])])
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Pseudocode

1: input string s

2: for i ∈ (1, . . . , |s|) do

3: if si = ‘(’ or si = ‘[’ then

4: push ‘)’ or ‘]’ on stack

5: else if si = ‘)’ or si = ’]’ then

6: pop t from stack

7: if t = ∅ (stack is empty) then

8: error: (too many closing brackets)

9: else if t 6= si then

10: error: (closing bracket has wrong type)

11: end if

12: end if

13: end for

14: if stack is not empty then

15: error: (not enough closing brackets)

16: end if
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Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented

as a subset of operations of lists or vectors. Here are some reasons

why you might want to rewrite a stack code

You’re a student and learning to program
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Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented

as a subset of operations of lists or vectors. Here are some reasons

why you might want to rewrite a stack code

You’re a student and learning to program

You’re writing an interpreter or a compiler

You’re writing an operating system

You’re writing some graphics code which must execute
blighteningly fast and existing libraries are too slow

You’re a security expert wishing to write an
unsmashable stack

You’re me trying to teach you stacks
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Recursion

INF421, Lecture 3 – p. 13/37



Compare iteration and recursion

while (true) do
print "hello";

end while

function f() {

print "hello";
f();

}

f();

both programs yield the same infinite loop

What are the differences?

Why should we bother?
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Difference? Forget assignments

input n;
r = 1
for (i = 1 to n) do
r = r × i

end for
output r

function f(n) {

if (n = 0) then
return 1

end if
return n× f(n− 1)

}

output f(n);

Both programs compute n!

Iteration: assignments; recursion: no assignments

Computation({tests, assignments, iterations})=Computation({tests, recursion})

Function call⇔ saving on a stack (recursion makes implicit assignments)
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Termination

Make sure your recursions terminate

If f(n) is recursive,

recurse on smaller integers, e.g. f(n− 1) or f(n/2)

provide “base cases” where you do not recurse, e.g. f(0) or f(1)

Compare with induction:

prove a statement for n = 0; prove that if it holds for all i < n then

it holds for n too; conclude it holds for all n

Typical recursive algorithm f(n):

if n is a “base case” then

compute f(n) directly, do not recurse

else

recurse on f(i) with some i < n

end if
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Should we bother? Explore this tree

1

5

6

2

43

Try instructing the computer to ex-
plore this tree structure in “depth-
first order” (i.e. so that it prints
1, 2, 3, 4, 5, 6)

Encoding: use a
jagged array A

A1: A11 = 2, A12 = 5
A2: A21 = 3, A22 = 4
A3: ∅
A4: ∅
A5: A51 = 6
A6: ∅

Aij = label of j-th child of node i
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The iterative failure

int a = 1;
print a;
for (int z = 1 to |Aa|) do
int b = Aaz;
print b;
for (int y = 1 to |Ab|) do
int c = Aby;

print c;
. . .

end for
end for

1

5

6

2

43

Must the code change according to the tree structure???

We want one code which works for all trees!
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Rescued by recursion

function f(int ℓ) {

print ℓ;
for (int i = 1 to |Aℓ|) do
f(Aℓi);

end for

}

main() { f(1); }

1

A12 = 5

A51 = 6

A11 = 2

A22 = 4A21 = 3
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Rescued by recursion

function f(int ℓ) {

print ℓ;
for (int i = 1 to |Aℓ|) do
f(Aℓi);

end for

}

main() { f(1); }

1

A12 = 5

A51 = 6

A11 = 2

A22 = 4A21 = 3

1. ℓ = 1; print 1
2. |A1| = 2; i = 1
3. call f(A11 = 2) [push ℓ = 1]
4. ℓ = 2; print 2
5. |A2| = 2; i = 1
6. call f(A21 = 3) [push ℓ = 2]
7. ℓ = 3; print 3
8. A3 = ∅

9. return [pop ℓ = 2]
10. |A2| = 2; i = 2
11. call f(A22 = 4) [push ℓ = 2]
12. ℓ = 4; print 4
13. A4 = ∅

14. return [pop ℓ = 2]
15. return [pop ℓ = 1]
16. |A1| = 2; i = 2
17. call f(A12 = 5) [push ℓ = 1]
18. ℓ = 5; print 5
19. |A5| = 1; i = 1
20. call f(A51 = 6) [push ℓ = 5]
21. ℓ = 6; print 6
22. A6 = ∅

23. return [pop ℓ = 5]
24. return [pop ℓ = 1]
25. return; end
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Recursion power

Can recursion can express programs that iterations
cannot?

Same “expressive power”

you can write the programs either way

Some programs easier to write using recursion
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Applications of recursion
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Listing permutations

Given an integer n > 1, list all permutations {1, . . . , n}

Eg. n = 4: assume list of permutations of {1, 2, 3}

(1, 2, 3), (1, 3, 2), (3, 1, 2), (3, 2, 1), (2, 3, 1), (2, 1, 3)

Write each four times, write the number 4 in every
position: 1 2 3 4

1 2 4 3
1 4 2 3
4 1 2 3

1 3 2 4

1 3 4 2
1 4 3 2
4 1 3 2

3 1 2 4

3 1 4 2
3 4 1 2
4 3 1 2

3 2 1 4

3 2 4 1
3 4 2 1
4 3 2 1

2 3 1 4

2 3 4 1
2 4 3 1
4 2 3 1

2 1 3 4

2 1 4 3
2 4 1 3
4 2 1 3
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The algorithm
If you can list permutations for n− 1, you can do it for n

Base case: n = 1 yields the permutation (1) (no recursion)

function permutations(n) {

1: if (n = 1) then

2: L = {(1)};

3: else

4: L′ = permutations(n− 1);

5: L = ∅;

6: for (π = (a1, . . . , an−1) ∈ L
′) do

7: for (i ∈ {1, . . . , n}) do

8: L← L ∪ {(a1, . . . , ai−1, n, ai, . . . , an−1)};

9: end for

10: end for

11: end if

12: return L;

}
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Implementation details

L,L′ are (mathematical) sets: implementation?

given perm. (a1, . . . , an−1), need to produce

perm. (a1, . . . , ai−1, n, ai, . . . , an−1): implementation?

Needed operations:

size of set L (known a priori: |L| = n!)

scan all elements of set L′ in some order (for at Step 6)

insert list element at arbitrary position at Step 8

add an element to L

L′, L must have the same type by Steps 4, 12

L′, L can be arrays or lists

(a1, . . . , an−1) can be a singly-linked (or doubly-linked) list
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Hanoi tower
Recursive approach

In order to move k discs from stack 1 to stack 3:

1. move topmost k − 1 discs on stack 1 to stack 2

2. move largest disc on stack 1 to stack 3

3. move k − 1 discs on stack 2 to stack 3
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Hanoi tower
Recursive approach

In order to move k discs from stack 1 to stack 3:

1. move topmost k − 1 discs on stack 1 to stack 2

2. move largest disc on stack 1 to stack 3

3. move k − 1 discs on stack 2 to stack 3

Reduce the problem to subproblem with k − 1 discs

Assumption: subproblems for k − 1 at Steps 1 and 3
are the same type of problem as for k
The assumption holds because the disc being moved at Step 2 is the largest: a

Hanoi tower game “works the same way” if you add largest discs at the bottom

of the stacks
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Hanoi tower
Recursive approach

In order to move k discs from stack 1 to stack 3:

1. move topmost k − 1 discs on stack 1 to stack 2

2. move largest disc on stack 1 to stack 3

3. move k − 1 discs on stack 2 to stack 3

Reduce the problem to subproblem with k − 1 discs

Assumption: subproblems for k − 1 at Steps 1 and 3
are the same type of problem as for k
The assumption holds because the disc being moved at Step 2 is the largest: a

Hanoi tower game “works the same way” if you add largest discs at the bottom

of the stacks

Do you need stacks to implement this algorithm?
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Recursive functions
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Function class

Aim to define a class R of recursive functions with special
properties
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Initial functions

The following functions are in R

zero: ∀x ∈ N Z(x) = 0

next: ∀x ∈ N N(x) = x+ 1

projection: ∀x = (x1, . . . , xn) ∈ Nn Pn
i (x) = xi
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Replacement schema

Given:

h1, . . . hm : Nn → N in R

g : Nm → N in R

x ∈ Nn

f(x) = g(h1(x), . . . , hm(x)) is in R
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Primitive recursion

Given:

g : Nn → N in R

h : Nn+2 → N in R

x ∈ Nn and y ∈ Nr {0}

The following f : Nn+1 → N is in R:

f(x, 0) = g(x)

f(x,N(y)) = h(x, y, f(x, y))

If n = 0, then f : N→ N is in R if ∃k ∈ N s.t.:

f(0) = k

f(N(y)) = h(y, f(y))
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µ-operator

Given:

g : Nn+1 → N s.t. ∀x ∈ Nn ∃y ∈ N (g(x, y) = 0)

a quantifier µ
s.t. µy g(x, y) = min{y ∈ N | g(x, y) = 0}

The function f(x) = µy g(x, y) is in R
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Examples

x+ y = +(x, y) is in R

+(x, 0) = P 1
1 (x)

+(x,N(y)) = P 3
3 (x, y,N(+(x, y)))

⇒ + ∈ R by proj., next and primitive recursion

exchange of variables is in R

suppose g : N2 → N is in R

let f(x, y) = g(y, x) for all x, y ∈ N: is f ∈ R?

we have x = P 2
1 (x, y) and y = P 2

2 (x, y)

so, can write f(x, y) = g(P 2
2 (x, y), P

2
1 (x, y))

⇒ f ∈ R by projection and replacement
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An algorithmic flavour

Can see these proofs as algorithms

Extend domains/ranges from N to arbitrary ordered sets

The program : explicit expression in terms of initial

functions and schema
(provides description of mechanical procedure)

The tape : variables with values
(recursion stack)

Thm.

A function is recursive iff it is Turing-computable

Recursion is TM-equivalent
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Recursion in logic

Axioms : sentences that are true by definition

Φ ⊢ ψ : sentence ψ is a logical consequence of sentences in set Φ

Theory : set T of sentences containing set A of axioms

such that for each φ ∈ T , A ⊢ φ

A theory is consistent when it does not contain pairs of
contradictory sentences φ,¬φ

A theory is complete when every true statement is in

the theory

Let T be a theory that can define N

Gödel’s sentence : define γ as T 6⊢ γ
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Gödel’s incompleteness theorem

Thm.

If T is consistent, then T is incomplete

Proof
Assume T consistent, aim to show ∃ true sentence 6∈ T

For all φ, exactly one in {φ,¬φ} is true

⇒ exactly one in {γ,¬γ} is true

Is γ ∈ T? If so, then T ⊢ γ, which means that T ⊢ (T 6⊢ γ),

i.e. T 6⊢ γ, i.e. γ 6∈ T (contradiction)

Is ¬γ ∈ T? If so, then T ⊢ ¬γ, i.e. T ⊢ ¬(T 6⊢ γ), that is

T ⊢ (T ⊢ γ), thus T ⊢ γ

In other words, assuming T ⊢ ¬γ leads to T ⊢ γ, which implies T

is inconsistent (contradiction)

⇒ neither γ nor ¬γ is in T , one of them is true, T is incomplete
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Does this recursion terminate?

Not immediately evident that the recursive definition
T 6⊢ γ has a “base case”

In Gödel’s proof sentences and theories are encoded
as integers

Most difficult part of Gödel’s proof: show γ can be
defined by means of a recursive function
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End of Lecture 3
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