
INF421, Lecture 6
Recursion

Leo Liberti

LIX, École Polytechnique, France

INF421, Lecture 3 – p. 1/37

Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrôle à la fin. Note:

max(CC, 3
4
CC + 1

4
TP)

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)

Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

Website: www.enseignement.polytechnique.fr/informatique/INF421

Blog: inf421.wordpress.com

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 3 – p. 2/37

www.enseignement.polytechnique.fr/informatique/INF421
inf421.wordpress.com
liberti@lix.polytechnique.fr

Lecture summary

Stacks

Recursion

INF421, Lecture 3 – p. 3/37

Motivating example

INF421, Lecture 3 – p. 4/37

How functions are called

f calls g calls h

Memory

CPU is
executing

f top

INF421, Lecture 3 – p. 5/37

How functions are called

f calls g calls h

Memory

CPU is
executing

current state of ff ::call g push

top

INF421, Lecture 3 – p. 5/37

How functions are called

f calls g calls h

Memory

CPU is
executing

current state of f

current state of g

g::call h

push

top

INF421, Lecture 3 – p. 5/37

How functions are called

f calls g calls h

Memory

CPU is
executing

current state of f

current state of g

h::return

pop

top

INF421, Lecture 3 – p. 5/37

How functions are called

f calls g calls h

Memory

CPU is
executing

current state of fg::return pop

top

INF421, Lecture 3 – p. 5/37

How functions are called

f calls g calls h

Memory

CPU is
executing

f top

INF421, Lecture 3 – p. 5/37

Stacks

Linear data structure

Accessible from only one end (top)

Operations:

push data on the top of the stack

pop data from the top of the stack

test whether stack is empty

Every operation is O(1)

Implement using arrays or lists

INF421, Lecture 3 – p. 6/37

Hack the stack

Back in 1996, hackers would get into systems by writing disguised code in the execution stack

INF421, Lecture 3 – p. 7/37

How does it work?

bottom

top

h::x = 1

h::y = 2

:

:

:

address Ah in g to pass

control to at end of h

g::x = 10

g::t = "url"

address Ag in f to pass

control to at end of g

f::y = 6.2

f::t = "config"

address Af in main to

pass control to at end of f

10

x

"url"

t

t

. . . Ag

u r l 1 A 6 4

address where Ag is stored

INF421, Lecture 3 – p. 8/37

How does it work?

bottom

top

h::x = 1

h::y = 2

:

:

:

address Ah in g to pass

control to at end of h

g::x = 10

g::t = "url"

address Ag in f to pass

control to at end of g

f::y = 6.2

f::t = "config"

address Af in main to

pass control to at end of f

10

x

"url"

t

t

. . . Ag

u r l 1 A 6 4

address where Ag is stored

g::t: user input (e.g. URL from browser)

Code for g does not check input length

User might input strings longer than 3 chars

For example, input "leo5B"

INF421, Lecture 3 – p. 8/37

How does it work?

bottom

top

h::x = 1

h::y = 2

:

:

:

address Ah in g to pass

control to at end of h

g::x = 10

g::t = "url"

address Ag in f to pass

control to at end of g

f::y = 6.2

f::t = "config"

address Af in main to

pass control to at end of f

10

x

"url"

t

t

. . . Ag

l e o 5 B 6 4

address where Ag is stored

User input t = "leo5B" changes return addr

Ag =0x1A64 becomes A′ =0x5B64

When g ends, CPU jumps to address A′ 6= Ag

Set it up so that code at A′ opens a root shell

Machine hacked

INF421, Lecture 3 – p. 8/37

The Tower of Hanoi

Move stack of discs to different pole, one at a time, no larger over smaller

INF421, Lecture 3 – p. 9/37

Checking brackets

Given a mathematical sentence with two types of brackets
“()” and “[]”, write a program that checks whether they
have been embedded correctly

1 + ([(x(y − z[log(n)]/(3− x2) + exp(2/[yz])) + 1)− 2xyz]/2)

([(([((([(((([1]))))])))])])

INF421, Lecture 3 – p. 10/37

Pseudocode

1: input string s

2: for i ∈ (1, . . . , |s|) do

3: if si = ‘(’ or si = ‘[’ then

4: push ‘)’ or ‘]’ on stack

5: else if si = ‘)’ or si = ’]’ then

6: pop t from stack

7: if t = ∅ (stack is empty) then

8: error: (too many closing brackets)

9: else if t 6= si then

10: error: (closing bracket has wrong type)

11: end if

12: end if

13: end for

14: if stack is not empty then

15: error: (not enough closing brackets)

16: end if

INF421, Lecture 3 – p. 11/37

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented

as a subset of operations of lists or vectors. Here are some reasons

why you might want to rewrite a stack code

You’re a student and learning to program

INF421, Lecture 3 – p. 12/37

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented

as a subset of operations of lists or vectors. Here are some reasons

why you might want to rewrite a stack code

You’re a student and learning to program

You’re writing an interpreter or a compiler

INF421, Lecture 3 – p. 12/37

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented

as a subset of operations of lists or vectors. Here are some reasons

why you might want to rewrite a stack code

You’re a student and learning to program

You’re writing an interpreter or a compiler

You’re writing an operating system

INF421, Lecture 3 – p. 12/37

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented

as a subset of operations of lists or vectors. Here are some reasons

why you might want to rewrite a stack code

You’re a student and learning to program

You’re writing an interpreter or a compiler

You’re writing an operating system

You’re writing some graphics code which must execute
blighteningly fast and existing libraries are too slow

INF421, Lecture 3 – p. 12/37

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented

as a subset of operations of lists or vectors. Here are some reasons

why you might want to rewrite a stack code

You’re a student and learning to program

You’re writing an interpreter or a compiler

You’re writing an operating system

You’re writing some graphics code which must execute
blighteningly fast and existing libraries are too slow

You’re a security expert wishing to write an
unsmashable stack

INF421, Lecture 3 – p. 12/37

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented

as a subset of operations of lists or vectors. Here are some reasons

why you might want to rewrite a stack code

You’re a student and learning to program

You’re writing an interpreter or a compiler

You’re writing an operating system

You’re writing some graphics code which must execute
blighteningly fast and existing libraries are too slow

You’re a security expert wishing to write an
unsmashable stack

You’re me trying to teach you stacks

INF421, Lecture 3 – p. 12/37

Recursion

INF421, Lecture 3 – p. 13/37

Compare iteration and recursion

while (true) do
print "hello";

end while

function f() {

print "hello";
f();

}

f();

both programs yield the same infinite loop

What are the differences?

Why should we bother?

INF421, Lecture 3 – p. 14/37

Difference? Forget assignments

input n;
r = 1
for (i = 1 to n) do
r = r × i

end for
output r

function f(n) {

if (n = 0) then
return 1

end if
return n× f(n− 1)

}

output f(n);

Both programs compute n!

Iteration: assignments; recursion: no assignments

Computation({tests, assignments, iterations})=Computation({tests, recursion})

Function call⇔ saving on a stack (recursion makes implicit assignments)

INF421, Lecture 3 – p. 15/37

Termination

Make sure your recursions terminate

If f(n) is recursive,

recurse on smaller integers, e.g. f(n− 1) or f(n/2)

provide “base cases” where you do not recurse, e.g. f(0) or f(1)

Compare with induction:

prove a statement for n = 0; prove that if it holds for all i < n then

it holds for n too; conclude it holds for all n

Typical recursive algorithm f(n):

if n is a “base case” then

compute f(n) directly, do not recurse

else

recurse on f(i) with some i < n

end if

INF421, Lecture 3 – p. 16/37

Should we bother? Explore this tree

1

5

6

2

43

Try instructing the computer to ex-
plore this tree structure in “depth-
first order” (i.e. so that it prints
1, 2, 3, 4, 5, 6)

Encoding: use a
jagged array A

A1: A11 = 2, A12 = 5
A2: A21 = 3, A22 = 4
A3: ∅
A4: ∅
A5: A51 = 6
A6: ∅

Aij = label of j-th child of node i

INF421, Lecture 3 – p. 17/37

The iterative failure

int a = 1;
print a;
for (int z = 1 to |Aa|) do
int b = Aaz;
print b;
for (int y = 1 to |Ab|) do
int c = Aby;

print c;
. . .

end for
end for

1

5

6

2

43

Must the code change according to the tree structure???

We want one code which works for all trees!

INF421, Lecture 3 – p. 18/37

Rescued by recursion

function f(int ℓ) {

print ℓ;
for (int i = 1 to |Aℓ|) do
f(Aℓi);

end for

}

main() { f(1); }

1

A12 = 5

A51 = 6

A11 = 2

A22 = 4A21 = 3

INF421, Lecture 3 – p. 19/37

Rescued by recursion

function f(int ℓ) {

print ℓ;
for (int i = 1 to |Aℓ|) do
f(Aℓi);

end for

}

main() { f(1); }

1

A12 = 5

A51 = 6

A11 = 2

A22 = 4A21 = 3

1. ℓ = 1; print 1
2. |A1| = 2; i = 1
3. call f(A11 = 2) [push ℓ = 1]
4. ℓ = 2; print 2
5. |A2| = 2; i = 1
6. call f(A21 = 3) [push ℓ = 2]
7. ℓ = 3; print 3
8. A3 = ∅

9. return [pop ℓ = 2]
10. |A2| = 2; i = 2
11. call f(A22 = 4) [push ℓ = 2]
12. ℓ = 4; print 4
13. A4 = ∅

14. return [pop ℓ = 2]
15. return [pop ℓ = 1]
16. |A1| = 2; i = 2
17. call f(A12 = 5) [push ℓ = 1]
18. ℓ = 5; print 5
19. |A5| = 1; i = 1
20. call f(A51 = 6) [push ℓ = 5]
21. ℓ = 6; print 6
22. A6 = ∅

23. return [pop ℓ = 5]
24. return [pop ℓ = 1]
25. return; end

INF421, Lecture 3 – p. 19/37

Recursion power

Can recursion can express programs that iterations
cannot?

Same “expressive power”

you can write the programs either way

Some programs easier to write using recursion

INF421, Lecture 3 – p. 20/37

Applications of recursion

INF421, Lecture 3 – p. 21/37

Listing permutations

Given an integer n > 1, list all permutations {1, . . . , n}

Eg. n = 4: assume list of permutations of {1, 2, 3}

(1, 2, 3), (1, 3, 2), (3, 1, 2), (3, 2, 1), (2, 3, 1), (2, 1, 3)

Write each four times, write the number 4 in every
position: 1 2 3 4

1 2 4 3
1 4 2 3
4 1 2 3

1 3 2 4

1 3 4 2
1 4 3 2
4 1 3 2

3 1 2 4

3 1 4 2
3 4 1 2
4 3 1 2

3 2 1 4

3 2 4 1
3 4 2 1
4 3 2 1

2 3 1 4

2 3 4 1
2 4 3 1
4 2 3 1

2 1 3 4

2 1 4 3
2 4 1 3
4 2 1 3

INF421, Lecture 3 – p. 22/37

The algorithm
If you can list permutations for n− 1, you can do it for n

Base case: n = 1 yields the permutation (1) (no recursion)

function permutations(n) {

1: if (n = 1) then

2: L = {(1)};

3: else

4: L′ = permutations(n− 1);

5: L = ∅;

6: for (π = (a1, . . . , an−1) ∈ L
′) do

7: for (i ∈ {1, . . . , n}) do

8: L← L ∪ {(a1, . . . , ai−1, n, ai, . . . , an−1)};

9: end for

10: end for

11: end if

12: return L;

}

INF421, Lecture 3 – p. 23/37

Implementation details

L,L′ are (mathematical) sets: implementation?

given perm. (a1, . . . , an−1), need to produce

perm. (a1, . . . , ai−1, n, ai, . . . , an−1): implementation?

Needed operations:

size of set L (known a priori: |L| = n!)

scan all elements of set L′ in some order (for at Step 6)

insert list element at arbitrary position at Step 8

add an element to L

L′, L must have the same type by Steps 4, 12

L′, L can be arrays or lists

(a1, . . . , an−1) can be a singly-linked (or doubly-linked) list

INF421, Lecture 3 – p. 24/37

Hanoi tower
Recursive approach

In order to move k discs from stack 1 to stack 3:

1. move topmost k − 1 discs on stack 1 to stack 2

2. move largest disc on stack 1 to stack 3

3. move k − 1 discs on stack 2 to stack 3

INF421, Lecture 3 – p. 25/37

Hanoi tower
Recursive approach

In order to move k discs from stack 1 to stack 3:

1. move topmost k − 1 discs on stack 1 to stack 2

2. move largest disc on stack 1 to stack 3

3. move k − 1 discs on stack 2 to stack 3

Reduce the problem to subproblem with k − 1 discs

Assumption: subproblems for k − 1 at Steps 1 and 3
are the same type of problem as for k
The assumption holds because the disc being moved at Step 2 is the largest: a

Hanoi tower game “works the same way” if you add largest discs at the bottom

of the stacks

INF421, Lecture 3 – p. 25/37

Hanoi tower
Recursive approach

In order to move k discs from stack 1 to stack 3:

1. move topmost k − 1 discs on stack 1 to stack 2

2. move largest disc on stack 1 to stack 3

3. move k − 1 discs on stack 2 to stack 3

Reduce the problem to subproblem with k − 1 discs

Assumption: subproblems for k − 1 at Steps 1 and 3
are the same type of problem as for k
The assumption holds because the disc being moved at Step 2 is the largest: a

Hanoi tower game “works the same way” if you add largest discs at the bottom

of the stacks

Do you need stacks to implement this algorithm?

INF421, Lecture 3 – p. 25/37

Recursive functions

INF421, Lecture 3 – p. 26/37

Function class

Aim to define a class R of recursive functions with special
properties

INF421, Lecture 3 – p. 27/37

Initial functions

The following functions are in R

zero: ∀x ∈ N Z(x) = 0

next: ∀x ∈ N N(x) = x+ 1

projection: ∀x = (x1, . . . , xn) ∈ Nn Pn
i (x) = xi

INF421, Lecture 3 – p. 28/37

Replacement schema

Given:

h1, . . . hm : Nn → N in R

g : Nm → N in R

x ∈ Nn

f(x) = g(h1(x), . . . , hm(x)) is in R

INF421, Lecture 3 – p. 29/37

Primitive recursion

Given:

g : Nn → N in R

h : Nn+2 → N in R

x ∈ Nn and y ∈ Nr {0}

The following f : Nn+1 → N is in R:

f(x, 0) = g(x)

f(x,N(y)) = h(x, y, f(x, y))

If n = 0, then f : N→ N is in R if ∃k ∈ N s.t.:

f(0) = k

f(N(y)) = h(y, f(y))

INF421, Lecture 3 – p. 30/37

µ-operator

Given:

g : Nn+1 → N s.t. ∀x ∈ Nn ∃y ∈ N (g(x, y) = 0)

a quantifier µ
s.t. µy g(x, y) = min{y ∈ N | g(x, y) = 0}

The function f(x) = µy g(x, y) is in R

INF421, Lecture 3 – p. 31/37

Examples

x+ y = +(x, y) is in R

+(x, 0) = P 1
1 (x)

+(x,N(y)) = P 3
3 (x, y,N(+(x, y)))

⇒ + ∈ R by proj., next and primitive recursion

exchange of variables is in R

suppose g : N2 → N is in R

let f(x, y) = g(y, x) for all x, y ∈ N: is f ∈ R?

we have x = P 2
1 (x, y) and y = P 2

2 (x, y)

so, can write f(x, y) = g(P 2
2 (x, y), P

2
1 (x, y))

⇒ f ∈ R by projection and replacement

INF421, Lecture 3 – p. 32/37

An algorithmic flavour

Can see these proofs as algorithms

Extend domains/ranges from N to arbitrary ordered sets

The program : explicit expression in terms of initial

functions and schema
(provides description of mechanical procedure)

The tape : variables with values
(recursion stack)

Thm.

A function is recursive iff it is Turing-computable

Recursion is TM-equivalent

INF421, Lecture 3 – p. 33/37

Recursion in logic

Axioms : sentences that are true by definition

Φ ⊢ ψ : sentence ψ is a logical consequence of sentences in set Φ

Theory : set T of sentences containing set A of axioms

such that for each φ ∈ T , A ⊢ φ

A theory is consistent when it does not contain pairs of
contradictory sentences φ,¬φ

A theory is complete when every true statement is in

the theory

Let T be a theory that can define N

Gödel’s sentence : define γ as T 6⊢ γ

INF421, Lecture 3 – p. 34/37

Gödel’s incompleteness theorem

Thm.

If T is consistent, then T is incomplete

Proof
Assume T consistent, aim to show ∃ true sentence 6∈ T

For all φ, exactly one in {φ,¬φ} is true

⇒ exactly one in {γ,¬γ} is true

Is γ ∈ T? If so, then T ⊢ γ, which means that T ⊢ (T 6⊢ γ),

i.e. T 6⊢ γ, i.e. γ 6∈ T (contradiction)

Is ¬γ ∈ T? If so, then T ⊢ ¬γ, i.e. T ⊢ ¬(T 6⊢ γ), that is

T ⊢ (T ⊢ γ), thus T ⊢ γ

In other words, assuming T ⊢ ¬γ leads to T ⊢ γ, which implies T

is inconsistent (contradiction)

⇒ neither γ nor ¬γ is in T , one of them is true, T is incomplete

INF421, Lecture 3 – p. 35/37

Does this recursion terminate?

Not immediately evident that the recursive definition
T 6⊢ γ has a “base case”

In Gödel’s proof sentences and theories are encoded
as integers

Most difficult part of Gödel’s proof: show γ can be
defined by means of a recursive function

INF421, Lecture 3 – p. 36/37

End of Lecture 3

INF421, Lecture 3 – p. 37/37

	Course
	Lecture summary
	Motivating example
	How functions are called
	How functions are called
	How functions are called
	How functions are called
	How functions are called
	How functions are called

	Stacks
	Hack the stack
	How does it work?
	How does it work?
	How does it work?

	The Tower of Hanoi
	Checking brackets
	Pseudocode
	Usefulness
	Usefulness
	Usefulness
	Usefulness
	Usefulness
	Usefulness

	Recursion
	Compare iteration and recursion
	Difference? Forget assignments
	Termination
	Should we bother? Explore this tree
	The iterative failure
	Rescued by recursion
	Rescued by recursion

	Recursion power
	Applications of recursion
	Listing permutations
	The algorithm
	Implementation details
	Hanoi tower
	Hanoi tower
	Hanoi tower

	Recursive functions
	Function class
	Initial functions
	Replacement schema
	Primitive recursion
	$mu $-operator
	Examples
	An algorithmic flavour
	Recursion in logic
	G"odel's incompleteness theorem
	Does this recursion terminate?
	End of Lecture 3

