INF421, Lecture 9 Drawing graphs

Leo Liberti

LIX, École Polytechnique, France

Course

- Objective: teach notions AND develop intelligence
- Evaluation: TP noté en salle info, Contrôle à la fin. Note:
$\max \left(C C, \frac{3}{4} C C+\frac{1}{4} T P\right)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
- Books:

1. K. Mehlhorn \& P. Sanders, Algorithms and Data Structures, Springer, 2008
2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
4. Ph. Baptiste \& L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2006

- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

Today, a "research seminar"!

At a glance

Which graph has most symmetries?

m How does a weighted graph look?

m How does a weighted graph look?

- Like this?

3

- Perhaps like this?

Don't confuse a graph with its drawing

Clean energy

- Use hydrogen to produce chemical energy
- How to produce "pure hydrogen"?
- Photosystem II : complex molecular conglomerate
- Molecular function $\leftrightarrow 3$ D shape
- Molecule = graph
- Atoms = vertices
- Known inter-atomic distances = edges

Draw a weighted graph in 3D

Other applications

Applications:

- Clock synchronization, phase retrieval (A. D'Aspremont, CMAP) - 1D
- Wireless sensor network localization - 2D
- Molecule conformation (me, LIX) / submarine localization - 3D
- Multidimensional scaling - (whatever)D

Drawing a graph

- Given a simple weighted undirected graph $G=(V, E)$ with a distance function $d: E \rightarrow \mathbb{R}_{+}$, solve the constraint system:

$$
\begin{equation*}
\forall\{u, v\} \in E \quad\left\|x_{u}-x_{v}\right\|=d_{u v} \tag{1}
\end{equation*}
$$

- Obtain an embedding $x: V \rightarrow \mathbb{R}^{2}$

Global optimization

- Reformulate (1) to

$$
\begin{equation*}
\min _{x} \sum_{\{u, v\} \in E}\left(\left\|x_{u}-x_{v}\right\|^{2}-d_{u v}^{2}\right)^{2} \tag{2}
\end{equation*}
$$

- G has an embedding \Leftrightarrow optimum x^{*} of
(2) has value 0
- Eq (2) is nonconvex in x, many local optima

Try it on Matlab/Octave/Maple/whatever for simple data, you won't get very far (<10 vertices)

The number of embeddings

- Uncountably many (incongruent) embeddings

 The number of embeddings

- Uncountably many (incongruent) embeddings
- Finitely many

\rightarrow
 The number of embeddings

- Uncountably many (incongruent) embeddings
- Finitely many
- At most one

K-lateration

v has $\geq K+1$ adjacencies with known general positions \Rightarrow
Find unique position for x_{v} in \mathbb{R}^{K} in polytime

Example with $K=3$

Given $U=\{1,2,3,4\} \subseteq V$ and a partial embedding $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}^{3}$

1. Consider v adjacent to all $u \in U$
2. Extend x to v by solving a linear system:

$$
\begin{aligned}
& \begin{array}{l}
\left\|x_{v}-x_{1}\right\|^{2}=d_{1 v}^{2} \\
\left\|x_{v}-x_{2}\right\|^{2}=d_{2 v}^{2} \\
\left\|x_{v}-x_{3}\right\|^{2}=d_{3 v}^{2} \\
\left\|x_{v}-x_{4}\right\|^{2}=d_{3 v}^{2}
\end{array} \Rightarrow \begin{array}{l}
\left\|x_{v}\right\|^{2}-2 x_{v} \cdot x_{1}+\left\|x_{1}\right\|^{2}=d_{1 v}^{2}(3) \\
\left\|x_{v}\right\|^{2}-2 x_{v} \cdot x_{2}+\left\|x_{2}\right\|^{2}=d_{1 v}^{2}(4) \\
\left\|x_{v}\right\|^{2}-2 x_{v} \cdot x_{3}+\left\|x_{3}\right\|^{2}=d_{1 v}^{2}(5) \\
\left\|x_{v}\right\|^{2}-2 x_{v} \cdot x_{4}+\left\|x_{4}\right\|^{2}=d_{1 v}^{2}(6)
\end{array} \\
& \begin{array}{l}
\begin{array}{c}
(6)-(7)-(8)-(8) \\
(6)-(9)
\end{array}
\end{array} \Rightarrow\left(\begin{array}{l}
2\left(x_{1}-x_{4}\right)^{\top} \\
2\left(x_{2}-x_{4}\right)^{\top} \\
2\left(x_{3}-x_{4}\right)^{\top}
\end{array}\right) x_{v}=\left(\begin{array}{l}
\left(\left\|x_{1}\right\|^{2}-\left\|x_{4}\right\|^{2}\right)-\left(d_{1 v}^{2}-d_{4 v}^{2}\right) \\
\left(\left\|x_{2}\right\|^{2}-\left\|x_{4}\right\|^{2}\right)-\left(d_{2 v}^{2}-d_{4 v}^{2}\right) \\
\left(\left\|x_{3}\right\|^{2}-\left\|x_{4}\right\|^{2}\right)-\left(d_{3 v}^{2}-d_{4 v}^{2}\right)
\end{array}\right)
\end{aligned}
$$

Can do this in $O\left(K^{3}\right)$, if K is fixed, this is $O(1)$

Combinatorial iterative approach

$K=2$; if \exists vertex order s.t. next vertex has enough adjacent predecessors

Combinatorial iterative approach

$K=2$; if \exists vertex order s.t. next vertex has enough adjacent predecessors

.
 Combinatorial iterative approach

$K=2$; if \exists vertex order s.t. next vertex has enough adjacent predecessors

.
 Combinatorial iterative approach

$K=2$; if \exists vertex order s.t. next vertex has enough adjacent predecessors

.
 Combinatorial iterative approach

$K=2$; if \exists vertex order s.t. next vertex has enough adjacent predecessors

Proteins

- Proteins: backbone and side chains

- Backbone: total order $<$ on a set V of atoms

- Decompose the problem: embed the backbone, then plug the side chains in

Protein distances

- Covalent bond distances $d_{v-1, v}$ are known $\mathrm{H}-\mathrm{H}$
- Angles between covalent bonds are known

- $\Rightarrow d_{v-2, v}$ is known for all $v>3$ н
- Distances $d_{v-3, v}$ are always $<6 \AA$, so they can be measured using NMR techniques
- NMR might give other distances too

Atoms may be distant order-wise but closer than $6 \AA \AA$ in space

Discretizable MDGP

- Protein backbones: 3 consecutive predecessors in 3D
- Weaken the condition $\geq K+1$ adjacent predecessors in \mathbb{R}^{K} to:

$\geq K$ consecutive adjacent predecessors in \mathbb{R}^{K}

- DMDGP: given $x_{1}, \ldots, x_{K} \in \mathbb{R}^{3}$, and a vertex order as above, find x_{K+1}, \ldots, x_{n} satisfying

$$
\forall\{u, v\} \in E\left\|x_{u}-x_{v}\right\|=d_{u v}
$$

- An NP-hard problem

Can we adapt the iterative method?

Sphere intersection

For given $v>3$,

- $x_{v-3}, x_{v-2}, x_{v-1}$ are known
- $d_{v, v-1}, d_{v, v-2}, d_{v, v-3}$ are known
find x_{v}
Non-empty intersection of K spheres in \mathbb{R}^{K} contains 2 points in general

Failure: collinearity

Probability 1

- We can develop a theory "modulo collinearity"
- Set of (configurations of n points in \mathbb{R}^{K}): all \mathbb{R}^{K}
- Collinearity in general: all points obey an equation $g(x)=0$
- $\{x \mid g(x)=0\}$: lower-dimensional manifold in \mathbb{R}^{K}, volume in \mathbb{R}^{K} is 0
- Probability of sampling collinear embedding x : 0
- Results holding "with probability 1 " \equiv apart from a set of cases having volume 0 in the set of all possible cases

Finding the 2 points $(K=3)$

Given $U=\{1,2,3\} \subseteq V$ and a partial embedding $x_{1}, x_{2}, x_{3} \in \mathbb{R}^{3}$

1. Consider v adjacent to all $u \in U$
2. Extend x to v by solving a linear system:

3. Diagonalize the 2×3 linear system (one pivot)
4. Express $x_{v 1}, x_{v 2}$ in function of $x_{v 3}$ linearly
5. Replace $x_{v 3}$ in Eq. (9), solve quadratic in $x_{v 3}$
6. Obtain two values for $x_{v 3}$, use $(*)$ to find two points for x_{v}

Branch-and-Prune

v : rank of current atom $\quad x_{<v}$: partial embedding to rank $v-1$
G : instance $\quad X$: current pool of embeddings
$S(y, r): \mathbb{R}^{K}$ sphere centered at y with radius r
BranchAndPrune $\left(v, x_{<v}, G, X\right)$:
Let $\mathcal{S} \leftarrow \bigcap_{i \in\{1, \ldots, K\}} S\left(x_{v-i}, d_{v-i, v}\right)=\left(\left\{s_{1}, s_{2}\right\}\right.$ or $\left.\varnothing\right)$
for $s \in \mathcal{S}$ do
Extend current embedding to $x=\left(x_{<v}, s\right)$
if $\forall u \in \operatorname{AdjPred}(v)\left\|x_{u}-x_{v}\right\|=d_{u v}$ then
if $(v=n)$ then
Let $X \leftarrow X \cup\{x\}$
else
BranchandPrune $(v+1, x, G, X)$
end if
end if
end for

BP properties

- BP: worst-case exponential time
- With probability 1 , find all incongruent embeddings of G extending initial partial embedding
- Performs very efficiently (speed and accuracy) Embed 10,000 vertices in a 13 seconds of CPU time
- Two empirical observations:

1. the number of solutions it finds is always a power of two
2. $|V|$ versus CPU time plots are always linear-like for PDB

Symmetry

BP root node symmetry

x_{4}^{\prime} is a reflection of x_{4}

- w.r.t. the plane defined by x_{1}, x_{2}, x_{3}
- $\Rightarrow \mathrm{BP}$ tree symmetric below level 3
- Start branching from level 4, not 3

Number of solutions

> For all tested DMDGP instances, $\exists \ell \in \mathbb{N}$ such that $|X|=2^{\ell}$

A BP search tree example

- Typical BP search tree (embeddings = paths root \rightarrow leaves)

- Root node symmetry: $|X|$ is even
- No evident reason why $|X|$ should be a power of two

A BP search tree example

- Typical BP search tree (embeddings = paths root \rightarrow leaves)

- Root node symmetry: $|X|$ is even
- No evident reason why $|X|$ should be a power of two (why not symmetric paths to level $|V|$ from nodes 16 and 45?)

Discretization/pruning distances

- Let $E_{D}=\{\{u, v\}| | u-v \mid \leq K\}$ and $E_{P}=E \backslash E_{D}$
- E_{D} : discretization distances
- they guarantee that the instance is a DMDGP
- they allow the construction of the complete BP tree
- this tree has $2^{|V|-3}$ leaves, $2^{|V|-4}$ if we consider root node symmetry
- E_{P} : pruning distances
- they allow pruning of the BP tree
- not clear why they should prune branches symmetrically

Structure of the BP tree $\left(\mathbb{R}^{2}\right)$

I

Structure of the BP tree $\left(\mathbb{R}^{2}\right)$

.

Structure of the BP tree $\left(\mathbb{R}^{2}\right)$

Effect of pruning distance d_{14}

Effect of pruning distance d_{14}

I

Effect of pruning distance d_{25}

I

Effect of pruning distance d_{25}

Effect of pruning distance d_{15}

Effect of pruning distance d_{15}

I

Effect of pruning distance d_{15}

I

Effect of pruning distance d_{15}

Symmetry by pruning distances

Given embedding $x, \quad R_{x}^{v}=$ reflection w.r.t. hyperplane x_{v-K}, \ldots, x_{v-1}

Symmetry by pruning distances

Given embedding $x, \quad R_{x}^{v}=$ reflection w.r.t. hyperplane x_{v-K}, \ldots, x_{v-1}

Thm.
With prob. 1, for each $u, v \in V$ with $v>K, u<v-K$,

$$
\forall x \neq x^{\prime} \in X \quad\left\|x_{u}-x_{v}\right\|=\left\|x_{u}^{\prime}-x_{v}^{\prime}\right\| \Leftrightarrow x_{v}^{\prime}=R_{x}^{u+K}\left(x_{v}\right)
$$

Moreover, \exists a finite set $H^{u v} \subseteq \mathbb{R}_{+}$with $\left|H^{u v}\right|=2^{v-u-K}$ s.t.

$$
\forall x \in X(\underbrace{\left\|x_{u}-x_{v}\right\|}_{\text {plays the role of pruning dist. }} \in H^{u v})
$$

Groups fixing the trees

- Let T_{D} be a full BP binary search tree
- Let T_{P} be the subtree of T_{D} representing only feasible branches
- Draw them so $T_{P} \subseteq T_{P}$
- Invariant group for T_{D} : all partial reflections $\left(g_{1}, g_{2}, g_{3}\right)$
- Invariant group for T_{P} : only some partial reflections (g_{1})

Partial reflections

$$
g_{v}(x)=\left(x_{1}, \ldots, x_{v-1}, R_{x}^{v}\left(x_{v}\right), \ldots, R_{x}^{v}\left(x_{n}\right)\right)
$$

Only reflect starting from vertex v

Discretization group

Group of partial reflections fixing the complete BP tree (no pruning distances)

- The following hold with probability $1 \forall v>K$:

1. g_{v} is injective with probability 1 (by reflection)
2. g_{v} is idempotent (by reflection)
3. $\forall u>K, u \neq v, g_{u}$ and g_{v} commute (nontrivial)

- Thus, $\mathcal{G}_{D}=\left\langle g_{v} \mid v>K\right\rangle$ is an Abelian group under composition \Rightarrow isomorphic to C_{2}^{n-K})
- By previous thm, discretization distances are invariant under \mathcal{G}_{D}
- The action of \mathcal{G}_{D} on X is transitive,
i.e. $\forall x, x^{\prime} \in X \exists g \in \mathcal{G}_{D}\left(x^{\prime}=g(x)\right)$
- This action has only one orbit, i.e. $X=\mathcal{G}_{D} x$

Pruning group

Group of partial reflections fixing the actual BP tree (with pruning distances)

- Assume DMDGP instance is YES, consider $\{u, v\} \in E_{P}$
- With probability $1, d_{u v} \in H^{u v}$ (otherwise the instance would be NO)
- Notice $d_{u v}=\left\|x_{v}-x_{u}\right\| \neq\left\|g_{w}(x)_{v}-g_{w}(x)_{u}\right\|$ for all $w \in\{u+K+1, \ldots, v\}$

- In order to keep invariance we remove such g_{w} 's from the group
- Pruning group: $\mathcal{G}_{P}=\left\langle g_{w} \mid w>K \wedge \forall\{u, v\} \in E_{P}(w \notin\{u+K+1, \ldots, v\})\right\rangle$
- $\mathcal{G}_{P} \leq \mathcal{G}_{D}$ and all distances are invariant w.r.t. the pruning group
- Again, action of \mathcal{G}_{P} on X is transitive (nontrivial proof)

Power of two

Thm.

```
\exists\ell\in\mathbb{N}(|X|=\mp@subsup{2}{}{\ell})
```

Proof
With probability 1 :

- $\mathcal{G}_{D} \cong C_{2}^{n-K} \Rightarrow\left|\mathcal{G}_{D}\right|=2^{n-K}$
- $\mathcal{G}_{P} \leq \mathcal{G}_{D} \Rightarrow\left|\mathcal{G}_{P}\right|| | \mathcal{G}_{D}|\Rightarrow \exists \ell \in \mathbb{N}| \mathcal{G}_{P} \mid=2^{\ell}$
- Action of \mathcal{G}_{P} on X is transitive $\Rightarrow \mathcal{G}_{P} x=X$
- Idempotency \Rightarrow for $g, g^{\prime} \in \mathcal{G}_{P}$, if $g x=g^{\prime} x$ then $g=g^{\prime} \Rightarrow\left|\mathcal{G}_{P} x\right|=\left|\mathcal{G}_{P}\right|$
- Thus, $|X|=\left|\mathcal{G}_{P} x\right|=\left|\mathcal{G}_{P}\right|=2^{\ell}$

Why the "probability $1 " ?$

- Not all "YES" DMDGP instances have $|X|=2^{\ell}$
- But the set of such instances (with real data) has Lebesgue measure zero in the set of all DMDGP instances

Happens when >1 vertices are embedded in the same position
$x_{5}^{(01)}$ should be infeasible, but $x_{5}^{(01)}=x_{5}^{(11)}$ (event with prob. 0)

FPT behaviour

A polynomial BP?

- Empirically: never an exponential-time increase behaviour in our experiments (instances generated from PDB files)
- Embed 10000-atom protein backbones in 10-15s on one core
- Easy to show that BP has worst-case exponential complexity
- Are proteins a polynomial case of the DMDGP?
- Complexity depends on BP nodes; since height $\leq|V|$, only need to consider treewidth
- A pruning edge $\{u, v\}$ with $u<v-K$ reduces the number of nodes at level v from 2^{v-K} to $2^{v-K-(u-1)}$ (by symmetry)

Constant treewidth

Constant-bounded treewidth

Fixed parameter tractability

- We can also allow treewidth growth as long as it's logarithmic in n
- This yields a fixed-parameter tractable behaviour for BP (w.r.t. v_{0})

> We tested all our protein instances: all display either constant or const-bounded treewidths with very low v_{0} (i.e. $v_{0}=4$)

BP is polynomial on proteins (?)

Application to proteomics

Virtual hydrogen backbone

- The most accurate NMR distances are between hydrogen atoms only, but the actual backbone is a chain of $\mathrm{N}-\mathrm{C}_{\alpha}-\mathrm{C}$ groups
- So find a virtual backbone composed of hydrogens only, and such that its order satisfies the DMDGP requirements

Certain hydrogens must be enumerated twice

Listing atoms twice

- If a hydrogen is listed twice, then there are $i \neq j \in V$ indexing the same atom
- Thus $x_{i}=x_{j}$ and $d_{i j}=0$
- For all k such that $\{i, k\} \in E$, we have that $\{j, k\} \in E$ as $d_{j k}=d_{i k}+0$, and

$$
d_{i j}+d_{j k}=0+d_{j k}=d_{i k}
$$

so Strict Triangular Inequalities do not hold for all atom triplets

- However, it only fails on nonconsecutive triplets Hence, BP still applies
- Also, zero pruning distances help keeping floating point errors under control

Re-orders

Defn.

A repetition order (re-order) is a finite sequence on V

- Re-orders generalize "counting vertices more than once"
- They add more flexibility to exploit certain distances as discretization distances
- Essentially, they provide a tool with which to hand-craft convenient vertex orders for interesting instance classes

```
Not immediately
evident how to best
order proteins
Here's a re-order ap-
plying to all backbones
```


Uncertain distances

- Typically, NMR provides uncertain distances, modelled by intervals $\left[d_{u v}^{L}, d_{u v}^{U}\right]$
- Cannot be used for discretization

Two precise distances and an uncertain one

The actual situation

- We know several distances $d_{u v}$ precisely because of chemical properties
- Some distances take values in a finite set $D_{u v}$
- The distribution of precise/discrete/uncertain distances on the protein backbone does not satisfy the DMDGP requirements
Re-orders provide a solution: use all precise distances for discretization, plus a few of the discrete whenever needed; uncertain distances are used for pruning
- Pruning with intervals is easy: if the current point x_{v} is s.t. $\left\|x_{v}-x_{u}\right\| \in\left[d_{u v}^{L}, d_{u v}^{U}\right]$ for all $u \in \alpha(v)$ accept it, otherwise prune it
- Discrete distances $D_{u v}$ simply give rise to BP nodes at level $v-1$ with potentially $2\left|D_{u v}\right|$ subnodes
. ${ }^{\text {m }} \mathrm{BP}$

Implementations

Sequential code

- The code is available in open source
- Download:
http://www.antoniomucherino.it/en/mdjeep.php
- Any doubt, ask the MASTER (Antonio Mucherino)

Parallel code

Seconds of user CPU on Grid5000 (www. grid5000.fr)

	CPUs			
$\|V\|$	1	2	8	64
5000	3.21	1.30	0.54	0.36
7500	4.73	3.15	1.25	0.93
10000	13.38	5.49	2.49	1.57

Embed subgraphs then glue embeddings (rigidity \Rightarrow exact)

A selection of current work

- Work with biochemists/bioinformaticians at Institut Pasteur to access and treat real NMR data
- Use $\mathcal{G}_{P} x=X$ result from symmetry to obtain all solutions from just one
- Extend complexity study to actual problem with discrete/uncertain distances
- Progress on "MDGP $\in \mathbf{N P}$?" question

[^0]
Surveys

- Survey 1: Liberti, Lavor, Mucherino, Maculan, Molecular distance geometry methods: from continuous to discrete, International Transactions in Operational Research, 18:33-51, 2010
- Survey 2: Lavor, Liberti, Maculan, Mucherino, Recent advances on the discretizable molecular distance geometry problem, European Journal of Operational Research, 219:698-706, 2012
- Survey 3: Liberti, Lavor, Maculan, Mucherino, Euclidean distance geometry and applications, SIAM Review, to appear (meanwhile: arXiv 1205.0349v1)

End of course

Appendix

Continuous formulation

- Solving the system

$$
\begin{equation*}
\forall\{i, j\} \in E \quad\left\|x_{i}-x_{j}\right\|=d_{i j}, \tag{10}
\end{equation*}
$$

is numerically challenging
LHS involves $\sqrt{\text { arg, floating point ops } \Rightarrow \arg <0 \Rightarrow \text { error and abort }}$
\Rightarrow square both sides

- Usually, cast as a penalty objective to be minimized

$$
\begin{equation*}
\min _{x} \sum_{\{i, j\} \in E}\left(\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}\right)^{2} \tag{11}
\end{equation*}
$$

- Unconstrained minimization of a polynomial of fourth degree

General-purpose methods

- sBB (exact): OK on small and medium-sized instances
because we know the optimal value of the objective (0), lower bound is tight at the initial tree levels
- VNS (heur): good for large(ish) instances
- MultiLevel Single Linkage (heur) [Kucherenko et al. '06]: so-so

		sBB		VNS		MLSL	
Atoms	Variables	OF Value	Time	OF Value	Time	OF Value	Time
cube8	24	0	0.22	0	1.21	0	13.56
cube27	81	0	30.39	0	34.01	0	300.285
cube64	192	0	2237.73	0	398.875	0	2765.13
lavor5	15	0	0.02	0	0.48	0	0.57
lavor10	30	0	1.12	0	7.06	0	69.71
lavor20	60	0	2.25	0	49.99	0	411.152
lavor30	90	0	488.87	0	352.06	0	1634.09
lavor40	120	-	-	0.09	1258.13	0.547	2376.01
lavor50	150	-	-	0	673.48	0	3002.88

MDGP-specific methods

- Smoothing-based:
- Continuation method (heur) [Moré, Wu '97]
- Double VNS with smoothing (heur) [L. et al. '09]
- DC optimization with smoothing (heur) [An et al. '03]
- Hyperbolic smoothing (heur) [Xavier '08]
- Alternating projections algorithm (heur) [Glunt et al. 90]: iterative updating of a dissimilarity matrix
- Geometric build-up (exact/heur) [Dong, Wu '03 and '07]: triangulation
- GNOMAD (heur) [Williams et al. '01]
iterative updating of atomic ordering minimizing error contribution
- Monotonic Basin Hopping (heur) [Grosso et al. '09] funnel-based population heuristic
- Self-organization heuristic (heur) [Xu et al. '03] pairwise atomic position modification heuristic
- SDP-based formulation [Ye et al. '09]

[^0]: See http://www.lix.polytechnique.fr/~liberti/publications.html

