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Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrôle à la fin. Note:
max(CC, 3

4CC + 1
4TP )

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
Books:
1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique
(Polycopié), 2006

Website: www.enseignement.polytechnique.fr/informatique/INF421

Blog: inf421.wordpress.com

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)
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Today, a “research seminar”!
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At a glance
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Which graph has most symmetries?
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How does a weighted graph look?

Like this?
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How does a weighted graph look?

Like this?
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Don’t confuse a graph with its
drawing
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Clean energy

Use hydrogen to produce chemical energy

How to produce “pure hydrogen”?

Photosystem II : complex molecular conglomerate

Molecular function↔ 3D shape

Molecule = graph
Atoms = vertices
Known inter-atomic distances = edges

Draw a weighted graph in 3D
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Other applications

Applications:

Clock synchronization, phase retrieval (A. D’Aspremont,
CMAP) — 1D

Wireless sensor network localization — 2D

Molecule conformation (me, LIX) / submarine
localization — 3D

Multidimensional scaling — (whatever)D
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Drawing a graph

Given a simple weighted undirected
graph G = (V,E) with a distance
function d : E → R+, solve the
constraint system:

∀{u, v} ∈ E ‖xu − xv‖ = duv (1)

Obtain an embedding x : V → R2
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Global optimization

Reformulate (1) to

min
x

∑

{u,v}∈E

(‖xu − xv‖2 − d2uv)
2 (2)

G has an embedding⇔ optimum x∗ of
(2) has value 0.

Eq (2) is nonconvex in x, many local optima

Try it on Matlab/Octave/Maple/whatever for simple data, you won’t get
very far (< 10 vertices)
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The number of embeddings

Uncountably many (incongruent) embeddings
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The number of embeddings
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The number of embeddings
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K-lateration

u1 u2

u3

v

v has ≥ K + 1 adjacencies with known general positions⇒
Find unique position for xv in RK in polytime
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Example with K = 3

Given U = {1, 2, 3, 4} ⊆ V and a partial embedding x1, x2, x3, x4 ∈ R3

1. Consider v adjacent to all u ∈ U

2. Extend x to v by solving a linear system:

‖xv − x1‖2 = d21v

‖xv − x2‖2 = d22v

‖xv − x3‖2 = d23v

‖xv − x4‖2 = d23v

⇒

‖xv‖2 − 2xv · x1 + ‖x1‖2 = d21v (3)

‖xv‖2 − 2xv · x2 + ‖x2‖2 = d21v (4)

‖xv‖2 − 2xv · x3 + ‖x3‖2 = d21v (5)

‖xv‖2 − 2xv · x4 + ‖x4‖2 = d21v (6)

(6)-(7)

(6)-(8)

(6)-(9)

⇒







2(x1 − x4)
T

2(x2 − x4)
T

2(x3 − x4)
T






xv=







(‖x1‖2 − ‖x4‖2)− (d21v − d24v)

(‖x2‖2 − ‖x4‖2)− (d22v − d24v)

(‖x3‖2 − ‖x4‖2)− (d23v − d24v)







Can do this in O(K3), if K is fixed, this is O(1)
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Combinatorial iterative approach

K = 2; if ∃ vertex order s.t. next vertex has enough adjacent predecessors :
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Combinatorial iterative approach

K = 2; if ∃ vertex order s.t. next vertex has enough adjacent predecessors :
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Proteins
Proteins: backbone and side chains

Backbone: total order < on a set V of atoms

Decompose the problem: embed the backbone, then plug the side
chains in
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Protein distances

Covalent bond distances dv−1,v are known H H

Angles between covalent bonds are known H H

O

⇒ dv−2,v is known for all v > 3 H H

O

Distances dv−3,v are always < 6Å, so they can be measured using
NMR techniques

NMR might give other distances too

Atoms may be distant order-wise but

closer than 6Å in space
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Discretizable MDGP

Protein backbones: 3 consecutive predecessors in 3D

Weaken the condition ≥ K + 1 adjacent predecessors in
RK to:

≥ K consecutive adjacent predecessors in RK

DMDGP: given x1, . . . , xK ∈ R3, and a vertex order as
above, find xK+1, . . . , xn satisfying

∀{u, v} ∈ E ‖xu − xv‖ = duv

An NP-hard problem
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Can we adapt the iterative method?
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Sphere intersection

For given v > 3,

xv−3, xv−2, xv−1 are known

dv,v−1, dv,v−2, dv,v−3 are known

find xv

Non-empty intersection of K spheres in RK contains 2
points in general
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Failure: collinearity

v − 3

v − 2

v − 1

v

v
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Probability 1

We can develop a theory “modulo collinearity”

Set of (configurations of n points in RK): all RK

Collinearity in general: all points obey an equation
g(x) = 0

{x | g(x) = 0}: lower-dimensional manifold in RK ,
volume in RK is 0

Probability of sampling collinear embedding x: 0

Results holding “with probability 1” ≡ apart from a set of
cases having volume 0 in the set of all possible cases

INF421, Lecture 9 – p. 21/63



Finding the 2 points (K = 3)

Given U = {1, 2, 3} ⊆ V and a partial embedding x1, x2, x3 ∈ R3

1. Consider v adjacent to all u ∈ U

2. Extend x to v by solving a linear system:

‖xv − x1‖2 = d21v

‖xv − x2‖2 = d22v

‖xv − x3‖2 = d23v

⇒
‖xv‖2 − 2xv · x1 + ‖x1‖2 = d21v (7)

‖xv‖2 − 2xv · x2 + ‖x2‖2 = d21v (8)

‖xv‖2 − 2xv · x3 + ‖x3‖2 = d21v (9)

(9)-(7)

(9)-(8)
⇒




2(x1 − x3)

T

2(x2 − x3)
T



xv=




(‖x1‖2 − ‖x3‖2)− (d21v − d23v)

(‖x2‖2 − ‖x3‖2)− (d22v − d23v)





3. Diagonalize the 2× 3 linear system (one pivot)

4. Express xv1, xv2 in function of xv3 linearly (∗)

5. Replace xv3 in Eq. (9), solve quadratic in xv3

6. Obtain two values for xv3, use (∗) to find two points for xv
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Branch-and-Prune

v: rank of current atom x<v: partial embedding to rank v − 1

G: instance X: current pool of embeddings
S(y, r): RK sphere centered at y with radius r

BRANCHANDPRUNE(v, x<v, G, X):

Let S ←
⋂

i∈{1,...,K}

S(xv−i, dv−i,v) =({s1, s2} or ∅)

for s ∈ S do

Extend current embedding to x = (x<v, s)

if ∀u ∈ AdjPred(v) ‖xu − xv‖ = duv then

if (v = n) then

Let X ← X ∪ {x}
else

BRANCHANDPRUNE(v + 1, x, G, X)
end if

end if

end for
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BP properties

BP: worst-case exponential time

With probability 1, find all incongruent embeddings of
G extending initial partial embedding

Performs very efficiently (speed and accuracy)
Embed 10,000 vertices in a 13 seconds of CPU time

Two empirical observations:
1. the number of solutions it finds is always a power of two

2. |V | versus CPU time plots are always linear-like for PDB
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Symmetry
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BP root node symmetry

x′4 is a reflection of x4
w.r.t. the plane defined
by x1, x2, x3

⇒ BP tree symmetric
below level 3

Start branching from
level 4, not 3

e1

e2

e3

x1

x2

x3

x4

x′
4
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Number of solutions

Instance |X|

mmorewu-2 2
mmorewu-3 2
mmorewu-4 4
mmorewu-5 4
mmorewu-6 4

lavor10 0 4
lavor15 0 16
lavor20 0 8
lavor25 0 8
lavor30 0 2
lavor35 0 64
lavor40 0 2
lavor45 0 2
lavor50 0 4096
lavor55 0 64
lavor60 0 64

Instance |X|

1brv 2
1aqr 4
2erl 2
1crn 2
1ahl 16
1ptq 2
1brz 4
1hoe 2
1lfb 2
1pht 2
1jk2 2
1f39a 2
1acz 8
1poa 2
1fs3 2
1mbn 2
1rgs 2
1m40 2
1bpm 2
1n4w 2
1mqq 2
1rwh 2
3b34 2
2e7z 2
1epw 2

For all tested DMDGP in-
stances, ∃! ∈ N such that
|X| = 2!
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A BP search tree example
Typical BP search tree (embeddings = paths root→leaves)

1

2

3

4 29

5 17

6 13

7 12

8
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30 42

31 38

32 37
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34
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36

39 40

41

43 47

44 46

45

48 49

50

51

52

53

Root node symmetry: |X| is even

No evident reason why |X| should be a power of two
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A BP search tree example
Typical BP search tree (embeddings = paths root→leaves)

Root node symmetry: |X| is even

No evident reason why |X| should be a power of two
(why not symmetric paths to level |V | from nodes 16 and 45?)
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Discretization/pruning distances

Let ED = {{u, v} | |u− v| ≤ K} and EP = E " ED

ED: discretization distances

they guarantee that the instance is a DMDGP
they allow the construction of the complete BP tree
this tree has 2|V |−3 leaves, 2|V |−4 if we consider root
node symmetry

EP : pruning distances

they allow pruning of the BP tree
not clear why they should prune branches
symmetrically
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Structure of the BP tree (R2)
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Structure of the BP tree (R2)
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Structure of the BP tree (R2)
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Effect of pruning distance d14
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Effect of pruning distance d14
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Effect of pruning distance d25
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Effect of pruning distance d25
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Effect of pruning distance d15
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Effect of pruning distance d15
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Effect of pruning distance d15
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Effect of pruning distance d15
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Symmetry by pruning distances
Given embedding x, Rv

x = reflection w.r.t. hyperplane xv−K , . . . , xv−1

xv−3

xv−2

xv−1
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Symmetry by pruning distances
Given embedding x, Rv

x = reflection w.r.t. hyperplane xv−K , . . . , xv−1

xv−3

xv−2

xv−1

Thm.

With prob. 1, for each u, v ∈ V with v > K, u < v −K,

∀x 2= x′ ∈ X ‖xu − xv‖ = ‖x′
u − x′

v‖ ⇔ x′
v = Ru+K

x (xv)

Moreover, ∃ a finite set Huv ⊆ R+ with |Huv| = 2v−u−K s.t.

∀x ∈ X ( ‖xu − xv‖
︸ ︷︷ ︸

plays the role of pruning dist.

∈ Huv)
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Groups fixing the trees
Let TD be a full BP binary search tree

Let TP be the subtree of TD representing only feasible branches

Draw them so TP ⊆ TP

Invariant group for TD: all partial reflections (g1, g2, g3)

Invariant group for TP : only some partial reflections (g1)

TD TP

g1g1g2 g3
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Partial reflections

gv(x) = (x1, . . . , xv−1, R
v
x(xv), . . . , R

v
x(xn))

Only reflect starting from vertex v
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Discretization group

Group of partial reflections fixing the
complete BP tree (no pruning distances)

The following hold with probability 1 ∀v > K:
1. gv is injective with probability 1 (by reflection)

2. gv is idempotent (by reflection)

3. ∀u > K, u 2= v, gu and gv commute (nontrivial)

Thus, GD = 〈gv | v > K〉 is an Abelian group under composition

⇒ isomorphic to Cn−K
2 )

By previous thm, discretization distances are invariant under GD

The action of GD on X is transitive,
i.e. ∀x, x′ ∈ X∃g ∈ GD (x′ = g(x))

This action has only one orbit, i.e. X = GDx
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Pruning group

Group of partial reflections fixing the actual
BP tree (with pruning distances)

Assume DMDGP instance is YES, consider {u, v} ∈ EP

With probability 1, duv ∈ Huv (otherwise the instance would be NO)
Notice duv = ‖xv − xu‖ %= ‖gw(x)v − gw(x)u‖ for all w ∈ {u+K + 1, . . . , v}

u

w v

In order to keep invariance we remove such gw ’s from the group
Pruning group: GP = 〈gw | w > K ∧ ∀{u, v} ∈ EP (w %∈ {u+K + 1, . . . , v})〉

GP ≤ GD and all distances are invariant w.r.t. the pruning group

Again, action of GP on X is transitive (nontrivial proof)
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Power of two

Thm.

∃! ∈ N (|X| = 2!)

Proof

With probability 1:

GD
∼= Cn−K

2 ⇒ |GD| = 2n−K

GP ≤ GD ⇒ |GP | | |GD|⇒ ∃! ∈ N |GP | = 2!

Action of GP on X is transitive⇒ GPx = X

Idempotency⇒ for g, g′ ∈ GP , if gx = g′x then
g = g′ ⇒ |GPx| = |GP |

Thus, |X| = |GPx| = |GP | = 2!
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Why the “probability 1”?

Not all “YES” DMDGP instances have |X| = 2!

But the set of such instances (with real data) has
Lebesgue measure zero in the set of all DMDGP
instances

x1 = x
(0)
4 x2 = x

(01)
5 = x

(11)
5

x3 x
(1)
4x

(00)
5

x
(10)
5 x1

x2

x3

x
(0)
4 x

(1)
4

x
(00)
5 x

(01)
5 x

(10)
5 x

(11)
5

symmetric

Happens when > 1 vertices are embedded in the same position

x
(01)
5 should be infeasible, but x(01)

5 = x
(11)
5 (event with prob. 0)
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FPT behaviour
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A polynomial BP?

Empirically: never an exponential-time increase
behaviour in our experiments (instances generated
from PDB files)

Embed 10000-atom protein backbones in 10-15s on
one core

Easy to show that BP has worst-case exponential
complexity

Are proteins a polynomial case of the DMDGP?

Complexity depends on BP nodes; since height≤ |V |,
only need to consider treewidth

A pruning edge {u, v} with u < v −K reduces the
number of nodes at level v from 2v−K to 2v−K−(u−1) (by
symmetry)
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Constant-bounded treewidth
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32 64

BP complexity: O(2v0 |V |)
Sufficient: ∃v0 s.t. every subsequence of s consecutive vertices
> v0 with no incident pruning edge is preceded by a vertex vs

s.t. ∃us < vs (vs − us ≥ |s| ∧ {us, vs} ∈ EP )

“Any path under the constant path”
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Fixed parameter tractability

We can also allow treewidth growth as long as it’s
logarithmic in n

This yields a fixed-parameter tractable behaviour for BP
(w.r.t. v0)

We tested all our protein instances: all display either
constant or const-bounded treewidths with very low v0
(i.e. v0 = 4)

BP is polynomial on proteins (?)
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Application to proteomics
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Virtual hydrogen backbone
The most accurate NMR distances are between hydrogen atoms only,
but the actual backbone is a chain of N-Cα-C groups

So find a virtual backbone composed of hydrogens only, and such that
its order satisfies the DMDGP requirements

Certain hydrogens must be enumerated twice
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Listing atoms twice

If a hydrogen is listed twice, then there are i 2= j ∈ V
indexing the same atom

Thus xi = xj and dij = 0

For all k such that {i, k} ∈ E, we have that {j, k} ∈ E as
djk = dik + 0, and

dij + djk = 0 + djk = dik

so STRICT TRIANGULAR INEQUALITIES do not hold for all atom
triplets

However, it only fails on nonconsecutive triplets
Hence, BP still applies

Also, zero pruning distances help keeping floating point errors under
control

INF421, Lecture 9 – p. 49/63



Re-orders

Defn.

A repetition order (re-order) is a finite sequence on V

Re-orders generalize “counting vertices more than once”

They add more flexibility to exploit certain distances as discretization
distances

Essentially, they provide a tool with which to hand-craft convenient
vertex orders for interesting instance classes

Not immediately
evident how to best
order proteins
Here’s a re-order ap-

plying to all backbones
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Uncertain distances

Typically, NMR provides uncertain distances, modelled
by intervals [dLuv, d

U
uv]

Cannot be used for discretization

dL

dU

Two precise distances and an uncertain one
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The actual situation
We know several distances duv precisely because of
chemical properties

Some distances take values in a finite set Duv

The distribution of precise/discrete/uncertain distances on
the protein backbone does not satisfy the DMDGP
requirements
Re-orders provide a solution: use all precise distances for
discretization, plus a few of the discrete whenever
needed; uncertain distances are used for pruning

Pruning with intervals is easy: if the current point xv is
s.t. ‖xv − xu‖ ∈ [dLuv, d

U
uv] for all u ∈ α(v) accept it,

otherwise prune it

Discrete distances Duv simply give rise to BP nodes at
level v − 1 with potentially 2|Duv| subnodes
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i BP
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Implementations
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Sequential code

The code is available in open source

Download:
http://www.antoniomucherino.it/en/mdjeep.php

Any doubt, ask the MASTER (Antonio Mucherino)
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Parallel code

Seconds of user CPU on Grid5000 (www.grid5000.fr)

CPUs
|V | 1 2 8 64

5000 3.21 1.30 0.54 0.36
7500 4.73 3.15 1.25 0.93
10000 13.38 5.49 2.49 1.57

Embed subgraphs then glue embeddings (rigidity⇒ exact)
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A selection of current work

Work with biochemists/bioinformaticians at Institut
Pasteur to access and treat real NMR data

Use GPx = X result from symmetry to obtain all
solutions from just one

Extend complexity study to actual problem with
discrete/uncertain distances

Progress on “MDGP ∈ NP?” question

See http://www.lix.polytechnique.fr/~liberti/publications.html for
more papers
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Surveys

Survey 1: Liberti, Lavor, Mucherino, Maculan, Molecular

distance geometry methods: from continuous to discrete,
International Transactions in Operational Research,
18:33-51, 2010

Survey 2: Lavor, Liberti, Maculan, Mucherino, Recent

advances on the discretizable molecular distance geometry

problem, European Journal of Operational Research,
219:698-706, 2012

Survey 3: Liberti, Lavor, Maculan, Mucherino, Euclidean

distance geometry and applications, SIAM Review, to appear
(meanwhile: arXiv 1205.0349v1)

INF421, Lecture 9 – p. 58/63



End of course
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Appendix
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Continuous formulation

Solving the system

∀{i, j} ∈ E ||xi − xj || = dij , (10)

is numerically challenging
LHS involves

√
arg, floating point ops⇒ arg < 0⇒ error and abort

⇒ square both sides

Usually, cast as a penalty objective to be minimized

min
x

∑

{i,j}∈E

(||xi − xj ||2 − d2ij)
2. (11)

Unconstrained minimization of a polynomial of fourth
degree
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General-purpose methods
sBB (exact): OK on small and medium-sized instances
because we know the optimal value of the objective (0), lower bound is

tight at the initial tree levels

VNS (heur): good for large(ish) instances

MultiLevel Single Linkage (heur) [Kucherenko et al. ’06]: so-so
sBB VNS MLSL

Atoms Variables OF Value Time OF Value Time OF Value Time

cube8 24 0 0.22 0 1.21 0 13.56

cube27 81 0 30.39 0 34.01 0 300.285

cube64 192 0 2237.73 0 398.875 0 2765.13

lavor5 15 0 0.02 0 0.48 0 0.57

lavor10 30 0 1.12 0 7.06 0 69.71

lavor20 60 0 2.25 0 49.99 0 411.152

lavor30 90 0 488.87 0 352.06 0 1634.09

lavor40 120 - - 0.09 1258.13 0.547 2376.01

lavor50 150 - - 0 673.48 0 3002.88
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MDGP-specific methods
Smoothing-based:

Continuation method (heur) [Moré, Wu ’97]

Double VNS with smoothing (heur) [L. et al. ’09]

DC optimization with smoothing (heur) [An et al. ’03]

Hyperbolic smoothing (heur) [Xavier ’08]

Alternating projections algorithm (heur) [Glunt et al. 90]:
iterative updating of a dissimilarity matrix

Geometric build-up (exact/heur) [Dong, Wu ’03 and ’07]: triangulation

GNOMAD (heur) [Williams et al. ’01]
iterative updating of atomic ordering minimizing error contribution

Monotonic Basin Hopping (heur) [Grosso et al. ’09]
funnel-based population heuristic

Self-organization heuristic (heur) [Xu et al. ’03]
pairwise atomic position modification heuristic

SDP-based formulation [Ye et al. ’09]
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