

INF421, Lecture 1 Computability, Complexity Arrays and Lists

Leo Liberti

LIX, École Polytechnique, France

Course

- **Objective:** teach notions AND develop intelligence
- **Evaluation:** TP noté en salle info, Contrôle à la fin. Note: $\max(CC, \frac{3}{4}CC + \frac{1}{4}TP)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)

Books:

- 1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
- 2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
- 3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
- 4. Ph. Baptiste & L. Maranget, *Programmation et Algorithmique*, Ecole Polytechnique (Polycopié), 2006
- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

Breaking news

Too many students!

No space in salles informatiques

ABSOLUTELY NO CHANGE IS POSSIBLE — DON'T EVEN ASK!!!

Other info

- Lectures are meant to develop your intelligence, NOT to prepare you to TDs
- \rightarrow discover links between lectures and TDs yourselves!
- Learn theory and algorithmics in lectures, Java in TDs
- > not much Java code in lectures
- Slides: published online *after* the lectures

Lecture summary

- Computability
- Complexity
- Arrays
- Lists

Computability (informal)

Computer

- Central Processing Unit (CPU)
- Random-Access Memory (RAM)
- Long-term storage:
 - Hard Disks (HD)
 - Compact Discs (CD)
 - Digital Versatile Discs (DVD),
- Input/Output (IO):
 - Keyboard
 - Mouse

. . .

- Ports (network, USB, etc.)
- Screen, ...

Turing Machine (TM)

- A finite alphabet of symbols (e.g. $\{0, 1, \Box\}$)
- An infinitely long tape divided into cells
- A tape "head" that can perform the following actions:
 - read symbols off a cell
 - write symbols on a cell
 - move to the next or previous cell on the tape
 - do nothing

- An infinite amount of time instants
 The head can do one action only at each time instant
- A set of instructions for the head

Simulating in TMs

Would a further action

move to *k*-th next cell on tape

make the TM "more powerful"?

- powerful = able to perform more tasks
- simulate the new TM (T') using the old TM (T):
 "move to k-th next cell" = repeat k times "move to next cell"
- \blacksquare \Rightarrow T can do whatever T' can do
- \blacksquare \Rightarrow same power

A task, a TM

- Set of instructions is given
- Determines the task a TM can do
- read cell content
 if 0, write 1
 else if 1, write 0
 else if □, do nothing
 endif
 move to next cell
 repeat from (Line ??)
- Program makes TM act on input data

Encode the program

- Programs are text
- Text can be encoded as a sequence of numbers
- Any number sequence can be encoded as a sequence of binary numbers
- \blacksquare \Rightarrow A program can be an input to a TM

Universality

Consider the following TM U:

- Input:
 - $\overline{\bullet}$ a TM T encoded as a number
 - a valid input ι for T
- Output: the output $T(\iota)$
- Program: it must be able to "simulate" any TM

$$\forall T, \iota \quad U(T, \iota) = T(\iota)$$

- U is called a Universal Turing Machine (UTM)
- The program of U is known as an interpreter

Other UTMs

Different models of computations

- λ -calculus
- RAM machines
- (some) Diophantine equations
- (some) cellular automata
- Let M be a model of computation
- \blacksquare M is Turing-complete if it can simulate a UTM
- M Turing-complete and can be simulated by a UTM: M is Turing-equivalent

Church's thesis

All Turing-complete models of computations are also Turing-equivalent

Can't find anything more powerful than a UTM

I printed "Church's hypothesis" in the polycopié by mistake: it should be "thesis"

Programming languages

- All programs are expressed in a language
- Consider simple language ℓ :
 - alphabet $\{0, (,)\}$
 - if s is a valid sentence, (0) is valid
 - 0 is a valid sentence
- Question the *expressive power* of a programming language
- If language L can express an interpreter for a UTM, then L is universal
- If L can express concatenation, tests and loops then it is universal [Böhm and Jacopini, 1966]

Imperative vs. declarative

- Consider input and output for a TM T
- $\mathcal{I}(T) = \text{set of all valid inputs for } T$
- $\mathcal{O}(T) = \text{set of all valid outputs for } T$
- TM can be seen as a function $T: \mathcal{I} \to \mathcal{O}$
- Two possible descriptions of the function x!

Imperative	Declarative
input integer $x \ge 1$	
let $y = 1$	x
for $z\in\{1,\ldots,x\}$ do	$y = \prod z$
let $y \leftarrow yz$	z = 1
end for	

Computable numbers

- $\mathbb{T} = \mathsf{TMs}$ with empty input and output in \mathbb{R}
- The set

$$\mathscr{C} = \bigcup_{T \in \mathbb{T}} \mathcal{O}(T)$$

is the set of computable numbers [Turing, 1936]

- Not all reals are computable
- Proof by cardinality: there are at most countably many TMs, so countably many computable numbers, but uncountably many reals so most reals are uncomputable)

Decision problems

- Problem: a question, parametrized over symbols taking infinitely many values, with possible answers YES or NO
- Every set of parameter values is an instance
- "Is the length of the program of TM T greater than k?"
 - \checkmark parameters: T and k
 - \square there are infinitely many TMs T and integers k
 - only possible answers: YES or NO
- Given a problem P, is there a TM that solves it?
- **Solve** = TM terminates with correct answer in finite time
- If \exists TM solving P, P is decidable, otherwise undecidable

Halting problem

- Consider the halting problem: Given a TM T, will it terminate?
- Suppose \exists TM H solving the halting problem
- So H(T) = YES if T terminates, and NO otherwise
- **Define TM** *K* such that:
 - if H outputs NO then K halts
 - if H outputs YES then K loops forever
- Consider H(K):
 - if H(K) =YES then K does not halt
 - if H(K) = NO then K halts
- \blacksquare \Rightarrow *H* does not solve the halting problem

The halting problem is undecidable

From TM to computer

Code and data segments

- Computer is an approximate UTM
- Must be able to store TM programs
- Memory (RAM) holds both data <u>and</u> program code
- Certain memory addresses point to instructions
- Other addresses point to variable values

Imperative languages

- Variable symbols: x_1, x_2, x_3, \ldots
- Semantics:
 - $x_i \rightarrow \text{address of memory storing value of } x_i$
 - type of data stored in x_i (boolean, integer, float, class,...)
- Logical/arithmetic operators and functions
- Flow control: assignments, if, for, while, ...

Basic operations

- Assignment: write value in memory cell(s) named by variable (i.e. "variable=value")
- Arithmetic: +, -, ×, ÷ for integer and floating point numbers
- Test: evaluate a logical condition: if true, change address of next instruction to be executed
- Loop: instead of performing next instruction in memory, jump to an instruction at a given address (more like a "go to")

WARNING! In these slides, I use "=" to mean two different things:

- in assignments, "<u>variable</u> = <u>value</u>" means "put <u>value</u> in the cell whose address is named by <u>variable</u>"
- 2. in tests, "variable = value" is TRUE if the cell whose address is named by variable contains value, and FALSE otherwise

in C/C++/Java "=" is used for assignments, and "==" for tests

Programs

- By [Böhm and Jacopini, 1966], need loops, tests and concatenation to have a universal language
- Programs are concatenations of basic operations
- Algorithm: program written in "pseudocode"
- Can't be executed, but easier to understand

Complexity

Complexity

- Consider a decidable problem P and two different algorithms to solve it: which is best?
- Time/space complexity:
 - time complexity: time taken to terminate
 - space complexity: necessary memory
- <u>Worst case</u>: max values during execution
- Best case: min values during execution
- *Average case*: average values during execution

P: a program t_P : number of basic operations performed by *P*

Time complexity (worst case)

•
$$\forall P \in \{ \text{assignment}, \text{arithmetic}, \text{test} \}$$
:
 $\boxed{t_P = 1}$

- Concatenation: for P, Q programs: $t_{P;Q} = t_P + t_Q$
- **Jest:** for P, Q programs and R a test:

$$t_{\text{if }(T) P \text{ else } Q} = t_T + \max(t_P, t_Q)$$

max: worst-case policy

 Loop: it's complicated (depends on how and when loop terminates)

Loop complexity example The complete loop

Let *P* be the following program:

1: i = 0; 2: while (i < n) do 3: A; 4: i = i + 1; 5: end while

- Assume A does not change the value of i
- Body of loop executed n times

•
$$t_P(n) = 1 + n(t_A + 3)$$

•
$$t_{(i < n)} = 1$$
, $t_{(i+1)} = 1$, $t_{(i=\cdot)} = 1 \Rightarrow (\dots + 3)$

Orders of complexity

In the above program, suppose $t_A = \frac{1}{2}n$

• Then
$$t_P = \frac{1}{2}n^2 + 3n + 1$$

ÉCOLE

• When n is large, t_P "behaves like" n^2

• A function f(n) is order of g(n) (notation: O(g(n))) if: $\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ (f(n) \le cg(n))$

• For
$$\frac{1}{2}n^2 + 3$$
, $c = 1$ and $n_0 = 2$

Some examples

Functions	Order
an + b with a, b constants	O(n)
polynomial of degree d' in n	$O(n^d)$ with $d \ge d'$
$n + \log n$	O(n)
$n + \sqrt{n}$	O(n)
$\log n + \sqrt{n}$	$O(\sqrt{n})$
$n \log n^3$	$O(n \log n)$
$\frac{an+b}{cn+d}$, a, b, c, d constants	O(1)

Find the best (most slowly increasing) function g(n) when saying "f(n) is O(g(n))"

2n+1 is $O(n^4)$, but it's best to say O(n)

Constant complexity

- The complexity order is an asymptotic description of $t_P(n)$
- If $t_P(n)$ does not depend on n, its order of complexity is O(1) (i.e. constant)
- **Example:** looping 10^{1000} times over an O(1) code still yields an O(1) program
- In other words, n must appear as a parameter of the program for the complexity order to be anything other than constant

Complexity of easy loops

- 1: input n;
- **2:** int s = 0;
- **3**: int i = 1;
- 4: while $(i \leq n)$ do
- 5: s = s + i;
- 6: i = i + 1;
- 7: end while
- 8: output *s*;

t(n) = 3 + 5n + 1 = 4n + 4

•
$$\Rightarrow t(n)$$
 is $O(n)$

- 1: for i = 0; i < n 1; i = i + 1 do 2: for j = i + 1; j < n; j = j + 1 do 3: print i, j; 4: end for
- 5: end for

•
$$t(n) = 1 + (5(n-1)+6) + \dots + (5+6)$$

= $1 + 5((n-1) + \dots + 1) + 6(n-1) = \frac{5}{2}n(n-1) + 6n - 5$
= $\frac{5}{2}n^2 + \frac{7}{2}n - 5$
• $t(n)$ is $O(n^2)$

Like a vector in maths

- Array allocation: reserving the necessary memory
- Size *n* decided at allocation time
- Usually array size does not change changes are expensive
- Array deallocation when no longer useful can be automatic, e.g. in Java

Array operations

For an array of size n:

Operations	Complexity
Read value of <i>i</i> -th component	O(1)
Write value in <i>i</i> -th component	O(1)
Size	O(1)
Remove element (cell)	forget it [*]
Insert element (cell)	forget it [*]
Move subsequence to position <i>i</i>	O(n)

Moving (contiguous) subsequence L to position i: start moving from L_1 if $i < L_1$, and from L_m if $i > L_1$

*: can simulate these operations using pointers, or dealloc/realloc

Incomplete loop

Loop over $x \in \{0,1\}^n$ while $x_i = 1$, setting $x_i \leftarrow 0$, stop when $x_i = 0$

1: input $x \in \{0, 1\}^n$;		
2 : int $i = 0$;		
3: while $(i < n \land x_i = 1)$ do	Input	Output
4: $x_i = 0;$	(0,0,0,0)	(1,0,0,0)
5: $i = i + 1;$	(1,1,0,0)	
6: end while	(0,1,1,0)	, , , , , , , , , , , , , , , , , , ,
7: if $(i < n)$ then		
8: $x_i = 1;$	(1,1,1,1)	(0,0,0,0)
9: end if		
10: output x;		

Worst-case complexity with input x = (1, ..., 1)

Average case analysis needs a probability space:

- assume the event $x_i = b$ is independent of the events $x_j = b$ for all $i \neq j$
- assume each cell x_i of the array contains 0 or 1 with equal probability $\frac{1}{2}$

Average case analysis needs a probability space:

- assume the event $x_i = b$ is independent of the events $x_j = b$ for all $i \neq j$
- assume each cell x_i of the array contains 0 or 1 with equal probability $\frac{1}{2}$

• For any vector having first k+1 components $(1, \ldots, 1, 0)$,

the loop is executed k times (for all $0 \le k < n$)

Event of a binary (k+1)-vector having given components has probability $\left(\frac{1}{2}\right)^{k+1}$

The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for k < n

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for k < n
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^n$

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for k < n
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^n$
- Average number of executions:

$$\sum_{k=0}^{n-1} k2^{-(k+1)} + n2^{-n} \le \sum_{k=0}^{n-1} k2^{-k} + n2^{-n} = \sum_{k=0}^{n} k2^{-k}$$

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for k < n
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^n$
- Average number of executions:

$$\sum_{k=0}^{n-1} k2^{-(k+1)} + n2^{-n} \le \sum_{k=0}^{n-1} k2^{-k} + n2^{-n} = \sum_{k=0}^{n} k2^{-k}$$

Thm.

$$\lim_{n \to \infty} \sum_{k=0}^{n} k 2^{-k} = 2$$

Proof

Geometric series $\sum_{k\geq 0} q^k = \frac{1}{1-q}$ for $q \in [0,1)$. Differentiate w.r.t. q, get $\sum_{k\geq 0} kq^{k-1} = \frac{1}{(1-q)^2}$; multiply by q, get $\sum_{k\geq 0} kq^k = \frac{q}{(1-q)^2}$. For $q = \frac{1}{2}$, get $\sum_{k\geq 0} k2^{-k} = (1/2)/(1/4) = 2$.

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for k < n
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^n$
- Average number of executions:

$$\sum_{k=0}^{n-1} k2^{-(k+1)} + n2^{-n} \le \sum_{k=0}^{n-1} k2^{-k} + n2^{-n} = \sum_{k=0}^{n} k2^{-k}$$

Thm.

$$\lim_{n \to \infty} \sum_{k=0}^{n} k 2^{-k} = 2$$

Proof

Geometric series $\sum_{k\geq 0} q^k = \frac{1}{1-q}$ for $q \in [0,1)$. Differentiate w.r.t. q, get $\sum_{k\geq 0} kq^{k-1} = \frac{1}{(1-q)^2}$; multiply by q, get $\sum_{k\geq 0} kq^k = \frac{q}{(1-q)^2}$. For $q = \frac{1}{2}$, get $\sum_{k\geq 0} k2^{-k} = (1/2)/(1/4) = 2$.

Hence, the average complexity is constant O(1)

Jagged array: components are vectors of possibly different sizes

• E.g.
$$x = ((x_{00}, x_{01}), (x_{10}, x_{11}, x_{12}))$$

Special case: when all subvector sizes are the same, get a matrix: int x[][] = new int [2][3];

$$x = \left(\begin{array}{cccc} x_{00} & x_{01} & x_{02} \\ x_{10} & x_{11} & x_{12} \end{array}\right)$$

Representing relations

- Jagged arrays represent a relation
- Let $V = \{v_1 \dots, v_n\}$ and E a relation on VE is a set of ordered pairs (u, v)
- Representation:
 - Jagged array with n components
 - *i*-th array contains all v_j 's related to v_i
- Example: $V = \{1, 2, 3\},\ E = \{(1, 1), (1, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$

$$E: \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 \\ 3 & 1 & 2 & 3 \end{bmatrix}$$

Application: Networks

Array shortcomings

- Fixed size known in advance
- Inserting/removing is inefficient
- Changing relative positions of elements is inefficient

Lists

Doubly linked list

Node N: a list element

$N.{\tt prev}$	=	address of previous node in list
$N.{\tt next}$	=	address of next node in list
$N.{\tt datum}$	=	the data element stored in the node

- Placeholder node \perp : before the first element, after the last element, no stored data
 - Every node has two pointers, and is pointed to by two nodes

Remove a node

Remove current node (this)

In the example, this $= x_2$

- 1: this.prev.next = this.next;
- 2: this.next.prev = this.prev;

Worst case complexity: O(1)

Insert a node

Insert current node (this) after node x_1

In the example, this = N

```
1: this.prev = x_1;

2: this.next = x_1.next;

3: x_1.next = this;

4: this.next.prev = this;
```

Worst case complexity: O(1)

Find next

- Given a list L and a node x, find next occurrence of element b
- If $b \in L$ return node where b is stored, else return \bot

```
1: while (x.datum \neq b \land x \neq \bot) do

2: x = x.next

3: end while

4: return x
```

Warning: every test costs 2 basic operations

Find next

- Given a list L and a node x, find next occurrence of element b
- If $b \in L$ return node where b is stored, else return \bot

```
1: while (x.datum \neq b \land x \neq \bot) do
```

```
2: x = x.next
```

- 3: end while
- 4: return x

Warning: every test costs 2 basic operations

```
1: \perp.datum = b
```

- 2: while $(x.datum \neq b)$ do
- 3: x = x.next
- 4: end while
- 5: **return** *x*

Now
$$t_{\text{test}} = 1$$

List operations

For a doubly-linked list of size n:

Operations	Complexity
Read/write value of <i>i</i> -th node	O(n)
Find next	O(n)
Size ^a	O(n)
Is it empty?	O(1)
Read/write value of first/last node	O(1)
Remove element	O(1)
Insert element	O(1)
Move subsequence to position <i>i</i>	O(1)
Pop from front/back	O(1)
Push to front/back	O(1)
Concatenate	O(1)

^{*a*}Some implementations are O(1) by storing and updating size

End of Lecture 1