INF421, Lecture 1 Computability, Complexity Arrays and Lists

Leo Liberti

LIX, École Polytechnique, France

Course

- Objective: teach notions AND develop intelligence
- Evaluation: TP noté en salle info, Contrôle à la fin. Note:
$\max \left(C C, \frac{3}{4} C C+\frac{1}{4} T P\right)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
- Books:

1. K. Mehlhorn \& P. Sanders, Algorithms and Data Structures, Springer, 2008
2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
4. Ph. Baptiste \& L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2006

- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

Breaking news

Too many students!

No space in salles informatiques

ABSOLUTELY NO CHANGE IS POSSIBLE — DON’T EVEN ASK!!!

Other info

- Lectures are meant to develop your intelligence, NOT to prepare you to TDs
- \Rightarrow discover links between lectures and TDs yourselves!
- Learn theory and algorithmics in lectures, Java in TDs
- \Rightarrow not much Java code in lectures
- Slides: published online after the lectures

Lecture summary

- Computability
- Complexity
- Arrays
- Lists

Computability (informal)

Computer

- Central Processing Unit (CPU)
- Random-Access Memory (RAM)
- Long-term storage:
- Hard Disks (HD)
- Compact Discs (CD)
- Digital Versatile Discs (DVD),
- Input/Output (IO):
- Keyboard
- Mouse
- Ports (network, USB, etc.)
- Screen, ...

Turing Machine (TM)

- A finite alphabet of symbols (e.g. $\{0,1, \square\}$)
- An infinitely long tape divided into cells
- A tape "head" that can perform the following actions:
- read symbols off a cell
- write symbols on a cell
- move to the next or previous cell on the tape
- do nothing

- An infinite amount of time instants

The head can do one action only at each time instant

- A set of instructions for the head

Simulating in TMs

Would a further action

 move to k-th next cell on tape make the TM "more powerful"?- powerful = able to perform more tasks
- simulate the new TM $\left(T^{\prime}\right)$ using the old TM (T) :
"move to k-th next cell" $=$ repeat k times "move to next cell"
- $\Rightarrow T$ can do whatever T^{\prime} can do
- \Rightarrow same power

A task, a TM

- Set of instructions is given
- Determines the task a TM can do

1. read cell content
2. if 0 , write 1
3. else if 1 , write 0
4. else if \square, do nothing
5. endif

Flip binary digits on
input data
6. move to next cell
7. repeat from (Line ??)

- Program makes TM act on input data

Encode the program

- Programs are text
- Text can be encoded as a sequence of numbers
- Any number sequence can be encoded as a sequence of binary numbers
- \Rightarrow A program can be an input to a TM

Universality

- Consider the following TM U :
- Input:
. a TM T encoded as a number
- a valid input ι for T
- Output: the output $T(\iota)$
- Program: it must be able to "simulate" any TM

$$
\forall T, \iota \quad U(T, \iota)=T(\iota)
$$

- U is called a Universal Turing Machine (UTM)
- The program of U is known as an interpreter

Other UTMs

- Different models of computations
- λ-calculus
- RAM machines
- (some) Diophantine equations
- (some) cellular automata
- Let M be a model of computation
- M is Turing-complete if it can simulate a UTM
- M Turing-complete and can be simulated by a UTM: M is Turing-equivalent

Church's thesis

All Turing-complete models of computations are also Turing-equivalent

Can't find anything more powerful than a UTM

I printed "Church's hypothesis" in the polycopié by mistake: it should be "thesis"

Programming languages

- All programs are expressed in a language
- Consider simple language ℓ :
- alphabet $\{0,()$,
- if s is a valid sentence, (0) is valid
- 0 is a valid sentence
- $\Rightarrow \quad \ell=\{0,(0),((0)), \ldots\}$
- Question the expressive power of a programming language
- If language L can express an interpreter for a UTM, then L is universal
- If L can express concatenation, tests and loops then it is universal [Böhm and Jacopini, 1966]

Imperative vs. declarative

- Consider input and output for a TM T
- $\mathcal{I}(T)=$ set of all valid inputs for T
- $\mathcal{O}(T)=$ set of all valid outputs for T
- TM can be seen as a function $T: \mathcal{I} \rightarrow \mathcal{O}$
- Two possible descriptions of the function x !

Imperative	Declarative
input integer $x \geq 1$	
let $y=1$	$y=\prod_{z=1}^{x} z$
for $z \in\{1, \ldots, x\}$ do	
let $y \leftarrow y z$	
end for	

Computable numbers

- $\mathbb{T}=$ TMs with empty input and output in \mathbb{R}
- The set

$$
\mathscr{C}=\bigcup_{T \in \mathbb{T}} \mathcal{O}(T)
$$

is the set of computable numbers [Turing, 1936]

- Not all reals are computable
- (Proof by cardinality: there are at most countably many TMs, so countably many computable numbers, but uncountably many reals so most reals are uncomputable)

Decision problems

- Problem: a question, parametrized over symbols taking infinitely many values, with possible answers YES or NO
- Every set of parameter values is an instance
- "Is the length of the program of TM T greater than k ?"
- parameters: T and k

2 there are infinitely many TMs T and integers k

- only possible answers: YES or NO
- Given a problem P, is there a TM that solves it?
- Solve $=$ TM terminates with correct answer in finite time
- If $\exists \mathrm{TM}$ solving P, P is decidable, otherwise undecidable

Halting problem

- Consider the halting problem:

Given a TM T, will it terminate?

- Suppose \exists TM H solving the halting problem
- So $H(T)=$ YES if T terminates, and NO otherwise
- Define TM K such that:
- if H outputs NO then K halts
- if H outputs YES then K loops forever
- Consider $H(K)$:
- if $H(K)=$ YES then K does not halt
- if $H(K)=\mathrm{NO}$ then K halts
- $\Rightarrow H$ does not solve the halting problem

The halting problem is undecidable

From TM to computer

Code and data segments

- Computer is an approximate UTM
- Must be able to store TM programs
- Memory (RAM) holds both data and program code
- Certain memory addresses point to instructions
- Other addresses point to variable values

Imperative languages

- Variable symbols: $x_{1}, x_{2}, x_{3}, \ldots$
- Semantics:
- $x_{i} \rightarrow$ address of memory storing value of x_{i}
- type of data stored in x_{i} (boolean, integer, float, class,...)
- Logical/arithmetic operators and functions
- Flow control: assignments, if, for, while, ...

Basic operations

- Assignment: write value in memory cell(s) named by variable (i.e. "variable=value")
- Arithmetic:,,$+- \times, \div$ for integer and floating point numbers
- Test: evaluate a logical condition: if true, change address of next instruction to be executed
- Loop: instead of performing next instruction in memory, jump to an instruction at a given address (more like a "go to")

WARNING! In these slides, I use " $=$ " to mean two different things:

1. in assignments, "variable $=\underline{\text { value" means "put value } i n \text { the cell whose address is }}$ named by variable"
2. in tests, "variable $=\underline{\text { value" is TRUE if the cell whose address is named by variable }}$ contains value, and FALSE otherwise
in C/C++/Java "=" is used for assignments, and " $==$ " for tests

Programs

- By [Böhm and Jacopini, 1966], need loops, tests and concatenation to have a universal language
- Programs are concatenations of basic operations
- Algorithm: program written in "pseudocode"
- Can't be executed, but easier to understand

Complexity

Complexity

- Consider a decidable problem P and two different algorithms to solve it: which is best?
- Time/space complexity:
- time complexity: time taken to terminate
- space complexity: necessary memory
- Worst case: max values during execution
- Best case: min values during execution
- Average case: average values during execution
P : a program
t_{P} : number of basic operations performed by P

Time complexity (worst case)

- $\forall P \in\{$ assignment, arithmetic,test $\}$:

$$
t_{P}=1
$$

- Concatenation: for P, Q programs:

$$
t_{P ; Q}=t_{P}+t_{Q}
$$

- Test: for P, Q programs and R a test:

$$
t_{\text {if }}(T) P \text { else } Q=t_{T}+\max \left(t_{P}, t_{Q}\right)
$$

max: worst-case policy

- Loop: it's complicated
(depends on how and when loop terminates)

Loop complexity example The complete loop

Let P be the following program: 1: $i=0$;
2: while $(i<n)$ do
3: A;
4: $i=i+1$;
5: end while

- Assume A does not change the value of i
- Body of loop executed n times
- $t_{P}(n)=1+n\left(t_{A}+3\right)$
- $t_{(i<n)}=1, t_{(i+1)}=1, t_{(i=\cdot)}=1 \Rightarrow(\ldots+3)$

Orders of complexity

- In the above program, suppose $t_{A}=\frac{1}{2} n$
- Then $t_{P}=\frac{1}{2} n^{2}+3 n+1$
- When n is large, t_{P} "behaves like" n^{2}

$$
\frac{1}{2} n^{2}+3 \text { is } O\left(n^{2}\right)
$$

- A function $f(n)$ is order of $g(n)$ (notation: $O(g(n))$) if:

$$
\exists c>0 \exists n_{0} \in \mathbb{N} \forall n>n_{0}(f(n) \leq c g(n))
$$

- For $\frac{1}{2} n^{2}+3, c=1$ and $n_{0}=2$

Some examples

Functions	Order
$a n+b$ with a, b constants	$O(n)$
polynomial of degree d^{\prime} in n	$O\left(n^{d}\right)$ with $d \geq d^{\prime}$
$n+\log n$	$O(n)$
$n+\sqrt{n}$	$O(n)$
$\log n+\sqrt{n}$	$O(\sqrt{n})$
$n \log n^{3}$	$O(n \log n)$
$\frac{a n+b}{c n+d}, a, b, c, d$ constants	$O(1)$

- Find the best (most slowly increasing) function $g(n)$ when saying " $f(n)$ is $O(g(n))$ "

$$
2 n+1 \text { is } O\left(n^{4}\right) \text {, but it's best to say } O(n)
$$

Constant complexity

- The complexity order is an asymptotic description of $t_{P}(n)$
- If $t_{P}(n)$ does not depend on n, its order of complexity is $O(1)$ (i.e. constant)
- Example: looping 10^{1000} times over an $O(1)$ code still yields an $O(1)$ program
- In other words, n must appear as a parameter of the program for the complexity order to be anything other than constant

Complexity of easy loops

```
1: input n;
2: int }s=0
3: int i=1;
4: while (i\leqn) do
5: }s=s+i
6: }\quadi=i+1
7: end while
8: output }s\mathrm{ ;
```

1: for $i=0 ; i<n-1 ; i=i+1$ do
2: \quad for $j=i+1 ; j<n ; j=j+1$ do
3: print i, j;
4: end for
5: end for

- $t(n)=3+5 n+1=4 n+4$
- $\Rightarrow t(n)$ is $O(n)$
- $t(n)=1+$ $\underbrace{(5(n-1)+6)+\ldots+(5+6)}_{n-1}$
$=1+5((n-1)+\ldots+1)+$ $6(n-1)=\frac{5}{2} n(n-1)+6 n-5$
$=\frac{5}{2} n^{2}+\frac{7}{2} n-5$
- $t(n)$ is $O\left(n^{2}\right)$

Arrays

Like a vector in maths

- Array: represents a vector $x=\left(x_{0}, \ldots, x_{n-1}\right)$

- Array allocation: reserving the necessary memory
- Size n decided at allocation time
- Usually array size does not change changes are expensive
- Array deallocation when no longer useful can be automatic, e.g. in Java

Array operations

For an array of size n :

Operations	Complexity
Read value of i-th component	$O(1)$
Write value in i-th component	$O(1)$
Size	$O(1)$
Remove element (cell)	${\text { forget } i t^{*}}^{\text {Insert element (cell) }}$
forget i^{*}	
Move subsequence to position i	$O(n)$

Moving (contiguous) subsequence L to position i : start moving from L_{1} if $i<L_{1}$, and from L_{m} if $i>L_{1}$

*: can simulate these operations using pointers, or dealloc/realloc

Incomplete loop

Loop over $x \in\{0,1\}^{n}$ while $x_{i}=1$, setting $x_{i} \leftarrow 0$, stop when $x_{i}=0$
1: input $x \in\{0,1\}^{n}$;
2: int $i=0$;
3: while $\left(i<n \wedge x_{i}=1\right)$ do
4: $\quad x_{i}=0$;
5: $\quad i=i+1$;
6: end while
7: if $(i<n)$ then

Input	Output
$(0,0,0,0)$	$(1,0,0,0)$
$(1,1,0,0)$	$(0,0,1,0)$
$(0,1,1,0)$	$(1,1,1,0)$
$(1,1,1,1)$	$(0,0,0,0)$

8: $\quad x_{i}=1$;
$(1,1,1,1) \quad(0,0,0,0)$
9: end if
10: output x;
Worst-case complexity with input $x=(1, \ldots, 1)$

Average case complexity $\mathbf{1 / 2}$

- Average case analysis needs a probability space:
- assume the event $x_{i}=b$ is independent of the events
$x_{j}=b$ for all $i \neq j$
- assume each cell x_{i} of the array contains 0 or 1 with equal probability $\frac{1}{2}$

Average case complexity $\mathbf{1 / 2}$

- Average case analysis needs a probability space:
- assume the event $x_{i}=b$ is independent of the events $x_{j}=b$ for all $i \neq j$
- assume each cell x_{i} of the array contains 0 or 1 with equal probability $\frac{1}{2}$
- For any vector having first $k+1$ components $(\underbrace{1, \ldots, 1}_{k}, 0)$, the loop is executed k times (for all $0 \leq k<n$)
Event of a binary $(k+1)$-vector having given components has probability $\left(\frac{1}{2}\right)^{k+1}$

Average case complexity $\mathbf{1 / 2}$

- Average case analysis needs a probability space:
- assume the event $x_{i}=b$ is independent of the events $x_{j}=b$ for all $i \neq j$
- assume each cell x_{i} of the array contains 0 or 1 with equal probability $\frac{1}{2}$
- For any vector having first $k+1$ components $(\underbrace{1, \ldots, 1}_{k}, 0)$, the loop is executed k times (for all $0 \leq k<n$)
Event of a binary $(k+1)$-vector having given components has probability $\left(\frac{1}{2}\right)^{k+1}$
- If the vector is $(\underbrace{1, \ldots, 1}_{n})$ the loop is executed n times

Event of a binary n-vector having given components has probability $\left(\frac{1}{2}\right)^{n}$

Average case complexity $2 / 2$

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for $k<n$

Average case complexity $2 / 2$

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for $k<n$
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^{n}$

Average case complexity $2 / 2$

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for $k<n$
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^{n}$
- Average number of executions:

$$
\sum_{k=0}^{n-1} k 2^{-(k+1)}+n 2^{-n} \leq \sum_{k=0}^{n-1} k 2^{-k}+n 2^{-n}=\sum_{k=0}^{n} k 2^{-k}
$$

Average case complexity $2 / 2$

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for $k<n$
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^{n}$
- Average number of executions:

$$
\sum_{k=0}^{n-1} k 2^{-(k+1)}+n 2^{-n} \leq \sum_{k=0}^{n-1} k 2^{-k}+n 2^{-n}=\sum_{k=0}^{n} k 2^{-k}
$$

Thm.

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} k 2^{-k}=2
$$

Proof

Geometric series $\sum_{k \geq 0} q^{k}=\frac{1}{1-q}$ for $q \in[0,1)$. Differentiate w.r.t. q, get $\sum_{k \geq 0} k q^{k-1}=\frac{1}{(1-q)^{2}}$; multiply by q, get $\sum_{k \geq 0} k q^{k}=\frac{q}{(1-q)^{2}}$. For $q=\frac{1}{2}$, get $\sum_{k \geq 0} k 2^{-k}=(1 / 2) /(1 / 4)=2$.

Average case complexity $2 / 2$

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for $k<n$
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^{n}$
- Average number of executions:

$$
\sum_{k=0}^{n-1} k 2^{-(k+1)}+n 2^{-n} \leq \sum_{k=0}^{n-1} k 2^{-k}+n 2^{-n}=\sum_{k=0}^{n} k 2^{-k}
$$

Thm.

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} k 2^{-k}=2
$$

Proof

Geometric series $\sum_{k \geq 0} q^{k}=\frac{1}{1-q}$ for $q \in[0,1)$. Differentiate w.r.t. q, get $\sum_{k \geq 0} k q^{k-1}=\frac{1}{(1-q)^{2}} ;$ multiply by q, get $\sum_{k \geq 0} k q^{k}=\frac{q}{(1-q)^{2}}$. For $q=\frac{1}{2}$, get $\sum_{k \geq 0} k 2^{-k}=(1 / 2) /(1 / 4)=2$.

Hence, the average complexity is constant $O(1)$

Jagged arrays

- Jagged array: components are vectors of possibly different sizes
- E.g. $x=\left(\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}, x_{12}\right)\right)$

- Special case: when all subvector sizes are the same, get a matrix: int $x[][]=$ new int [2][3];

$$
x=\left(\begin{array}{lll}
x_{00} & x_{01} & x_{02} \\
x_{10} & x_{11} & x_{12}
\end{array}\right)
$$

Representing relations

- Jagged arrays represent a relation
- Let $V=\left\{v_{1} \ldots, v_{n}\right\}$ and E a relation on V E is a set of ordered pairs (u, v)
- Representation:
- jagged array with n components
- i-th array contains all v_{j} 's related to v_{i}
- Example: $V=\{1,2,3\}$,
$E=\{(1,1),(1,2),(2,3),(3,1),(3,2),(3,3)\}$

$E:$| | 1 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| | 2 | 3 | |
| 3 | 1 | 2 | 3 |

Application: Networks

facebook

Array shortcomings

- Fixed size known in advance
- Inserting/removing is inefficient
- Changing relative positions of elements is inefficient

Lists

Doubly linked list

- Node N : a list element

> | N. prev | $=$ address of previous node in list |
| :--- | :--- |
| N. next | $=$ address of next node in list |
| N. datum | $=$ the data element stored in the node |

- Placeholder node \perp : before the first element, after the last element, no stored data
- Every node has two pointers, and is pointed to by two nodes

Remove a node

Remove current node (this)

In the example, this $=x_{2}$

1: this.prev.next $=$ this.next ;
2: this.next.prev $=$ this.prev;
Worst case complexity: $O(1)$

Insert a node

Insert current node (this) after node x_{1}

In the example, this $=N$
1: this.prev $=x_{1}$;
2: this.next $=x_{1}$.next ;
3: x_{1}.next $=$ this ;
4: this.next.prev = this ;
Worst case complexity: $O(1)$

Find next

- Given a list L and a node x, find next occurrence of element b
- If $b \in L$ return node where b is stored, else return \perp

1: while (x.datum $\neq b \wedge x \neq \perp$) do
2: $x=x$.next
3: end while
4: return x
Warning: every test costs 2 basic operations

Find next

- Given a list L and a node x, find next occurrence of element b
- If $b \in L$ return node where b is stored, else return \perp

1: while (x.datum $\neq b \wedge x \neq \perp$) do
2: $x=x$.next
3: end while
4: return x
Warning: every test costs 2 basic operations
1: \perp.datum $=b$
2: while (x.datum $\neq b$) do
3: $\quad x=x$.next
Now $t_{\text {test }}=1$
4: end while
5: return x

List operations

For a doubly-linked list of size n :

Operations	Complexity
Read/write value of i-th node	$O(n)$
Find next	$O(n)$
Size a	$O(n)$
Is it empty?	$O(1)$
Read/write value of first/last node	$O(1)$
Remove element	$O(1)$
Insert element	$O(1)$
Move subsequence to position i	$O(1)$
Pop from front/back	$O(1)$
Push to front/back	$O(1)$
Concatenate	$O(1)$

End of Lecture 1

