INF421, Lecture 3 Graphs

Leo Liberti

LIX, École Polytechnique, France

Course

- Objective: teach notions AND develop intelligence
- Evaluation: TP noté en salle info, Contrôle à la fin. Note:
$\max \left(C C, \frac{3}{4} C C+\frac{1}{4} T P\right)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
- Books:

1. K. Mehlhorn \& P. Sanders, Algorithms and Data Structures, Springer, 2008
2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
4. Ph. Baptiste \& L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2006

- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

Lecture summary

- Graph definitions
- Operations on graphs
- Combinatorial problems on graphs
- Easy and hard problems
- Modelling problems for a generic solution method

The minimal knowledge

- Operations on graphs: complement, line graph, contraction
- Decision/optimization problems: finding subgraphs with given properties
- Easy problems: solvable in polynomial time (P), e.g. minimum cost spanning tree, shortest paths, maximum matching
- Hard problems: efficient method for solving one would solve all of them (NP-hard), e.g. maximum clique, maximum stable set, vertex colouring
- Mathematical Programming: a generic model-and-solve approach

Graph definitions

Motivation

The ultimate data structure

Most data structures can be represented by graphs

Graphs and digraphs

- Digraph $G=(V, A)$: relation A on set V
- V : set of nodes
- A : set of arcs (u, v) with $u, v \in V$

- Graph $G=(V, E)$: symmetric relation E on set V
- V : set of vertices
- E : set of edges $\{u, v\}$ with $u, v \in V$

- Simple (di)graphs: relation is irreflexive (I.e., v not related to itself for all $v \in V$)

Remarks

- Mainly, results for undirected graphs
- Many trivial extensions to digraphs
- Warning: not all trivial

Example

- G a graph: $V(G)$ set of vertices, $E(G)$ set of edges
- Extension to digraphs:
$V(G)$ set of nodes, $A(G)$ set of arcs

Stars

Stars: vertices or edges adjacent to a given vertex
$\forall v \in V(G)$,

- if G is undirected, neighbourhood

Stars

Stars: vertices or edges adjacent to a given vertex
$\forall v \in V(G)$,

- if G is undirected, neighbourhood

$$
\text { - } N(v)=\{u \in V \mid\{u, v\} \in E(G)\}
$$

Stars

Stars: vertices or edges adjacent to a given vertex
$\forall v \in V(G)$,

- if G is undirected, neighbourhood
- $N(v)=\{u \in V \mid\{u, v\} \in E(G)\}$
- Cutset $\delta(v)=\{\{u, v\} \mid u \in N(v)\}$

Stars

Stars: vertices or edges adjacent to a given vertex
$\forall v \in V(G)$,

- if G is undirected, neighbourhood
- $N(v)=\{u \in V \mid\{u, v\} \in E(G)\}$
- Cutset $\delta(v)=\{\{u, v\} \mid u \in N(v)\}$
- if G is directed,

Stars

Stars: vertices or edges adjacent to a given vertex
$\forall v \in V(G)$,

- if G is undirected, neighbourhood
- $N(v)=\{u \in V \mid\{u, v\} \in E(G)\}$
- Cutset $\delta(v)=\{\{u, v\} \mid u \in N(v)\}$
- if G is directed,
- $N^{+}(v)=\{u \in V \mid(v, u) \in E(G)\}$

Stars

Stars: vertices or edges adjacent to a given vertex
$\forall v \in V(G)$,

- if G is undirected, neighbourhood
- $N(v)=\{u \in V \mid\{u, v\} \in E(G)\}$
- Cutset $\delta(v)=\{\{u, v\} \mid u \in N(v)\}$
- if G is directed,
- $N^{+}(v)=\{u \in V \mid(v, u) \in E(G)\}$
- $\delta^{+}(v)=\left\{(v, u) \mid u \in N^{+}(v)\right\}$

Stars

Stars: vertices or edges adjacent to a given vertex
$\forall v \in V(G)$,

- if G is undirected, neighbourhood
- $N(v)=\{u \in V \mid\{u, v\} \in E(G)\}$
- Cutset $\delta(v)=\{\{u, v\} \mid u \in N(v)\}$
- if G is directed,
- $N^{+}(v)=\{u \in V \mid(v, u) \in E(G)\}$
- $\delta^{+}(v)=\left\{(v, u) \mid u \in N^{+}(v)\right\}$

- $N^{-}(v)=\{u \in V \mid(u, v) \in E(G)\}$

Stars

Stars: vertices or edges adjacent to a given vertex
$\forall v \in V(G)$,

- if G is undirected, neighbourhood
- $N(v)=\{u \in V \mid\{u, v\} \in E(G)\}$
- Cutset $\delta(v)=\{\{u, v\} \mid u \in N(v)\}$
- if G is directed,
- $N^{+}(v)=\{u \in V \mid(v, u) \in E(G)\}$
- $\delta^{+}(v)=\left\{(v, u) \mid u \in N^{+}(v)\right\}$

- $N^{-}(v)=\{u \in V \mid(u, v) \in E(G)\}$
- $\delta^{-}(v)=\left\{(u, v) \mid u \in N^{-}(v)\right\}$

Stars

Stars: vertices or edges adjacent to a given vertex
$\forall v \in V(G)$,

- if G is undirected, neighbourhood
- $N(v)=\{u \in V \mid\{u, v\} \in E(G)\}$
- Cutset $\delta(v)=\{\{u, v\} \mid u \in N(v)\}$
- if G is directed,
- $N^{+}(v)=\{u \in V \mid(v, u) \in E(G)\}$
- $\delta^{+}(v)=\left\{(v, u) \mid u \in N^{+}(v)\right\}$
- $N^{-}(v)=\{u \in V \mid(u, v) \in E(G)\}$
- $\delta^{-}(v)=\left\{(u, v) \mid u \in N^{-}(v)\right\}$
- $|N(v)|=$ degree,$\left|N^{+}(v)\right|=$ outdegree, $\left|N^{-}(v)\right|=$ indegree of v
- If v in both G, H write $N_{G}(v)$ and $N_{H}(v)$
(similarly for other star notation)

Subgraphs

- Subgraph $H=(U, F)$ of $G=(V, E)$ if H a graph s.t. $U \subseteq V \wedge F \subseteq E$

- Spanning subgraph $H=(U, F)$ of $G=(V, E): U=V$
- Subgraph $H=(U, F)$ of $G=(V, E)$ induced by U :

$$
\forall u, v \in U(\{u, v\} \in E \rightarrow\{u, v\} \in F)
$$

Induced subgraph notation: $H=G[U]$

Cutsets

- $H=(U, F)$ a subgraph of $G=(V, E)$
- Cutset: $\delta(H)=\left(\bigcup_{u \in U} \delta(u)\right) \backslash F$ edge set "separating" U and $V \backslash U$
- E.g. $U=\{1,2,6\}$ and $H=G[U]$, then $\delta(H)$ shown in red

- Similar definitions for directed cutsets

Thm.

- If G is undirected then $\forall U \subseteq V(G) \quad \delta(U)=\delta(V \backslash U)$

Connectedness

- Connected: \nexists empty nontrivial cutsets

Connected

Not connected: $\delta(\{1,2,6\})=\varnothing$

- Connected component: maximal connected subgraph

Most algorithms assume connected graphs
If not, apply alg. to each connected component

Paths and cycles

- G a graph and $u, v \in V(G)$
- A simple path P from u to v in G : connected subgraph of G s.t.:

1. $\forall w \in V(P)(w \neq u \wedge w \neq v \rightarrow|N(w)|=2)$
2. if $u \neq v$ then $|N(u)|=|N(v)|=1$
3. if $u=v$ then $|N(u)|=|N(v)|=2$

- Notation: path from u to $v: P: u \rightarrow v$
- In $P: u \rightarrow v, u, v$ are endpoints
- A simple cycle is a simple path with equal endpoints
- Mostly, say paths/cycles to mean simple ones

Complete graph

- Complete graph or n-clique K_{n} on n vertices: all possible edges

- Clique on vertex set U : denote by $K(U)$

Complement graph

- Graph $G=(V, F)$ with n vertices
- Complement of $G: \bar{G}=\left(V, E\left(K_{n}\right) \backslash F\right)$

- $\overline{K_{n}}$: empty graph on n vertices

Complement graph

- Graph $G=(V, F)$ with n vertices
- Complement of $G: \bar{G}=\left(V, E\left(K_{n}\right) \backslash F\right)$

- $\overline{K_{n}}$: empty graph on n vertices

Forests and trees

- Forest: graph with no cycles

- Tree: connected forest

- Spanning tree subgraph of a graph G : spanning tree of G

Graph isomorphism

- $|V|=n, S_{n}$ symmetric group of order n $\pi \in S_{n}$ permutes V, get new graph $H=\pi G=(\pi V, \pi E)$

- $\exists \pi \in S_{n}(G=\pi H) \Rightarrow G, H$ isomorphic, π graph isomorphism
- If $(\pi G=G)$, then π is an automorphism of G

Automorphism group of G is $\operatorname{Aut}(G)=\langle(1,5),(4,7)\rangle \cong C_{2} \times C_{2}$

$$
\begin{aligned}
& N(1)=\{2,3,5,6\}, N(2)=\{1,3,5\} \\
& N(3)=\{1,2,4,5,7\}, N(4)=\{3,6,7\} \\
& N(5)=\{1,2,3,6\}, N(6)=\{1,4,5,7\} \\
& N(7)=\{3,4,6\}
\end{aligned} \quad=\begin{aligned}
& N(5)=\{2,3,1,6\}, N(2)=\{5,3,1\} \\
& N(3)=\{5,2,7,1,4\}, N(7)=\{3,6,4\} \\
& N(1)=\{5,2,3,6\}, N(6)=\{5,7,1,4\} \\
& N(4)=\{3,7,6\}
\end{aligned}
$$

Graphs modulo symmetry

- Symmetries act on vertex labels
- Ignore labels: equivalence classes of graphs modulo symmetry

- Unlabelled graphs

Line graphs

- Graph $G=(V, E)$ with $E=\left\{e_{1}, \ldots, e_{m}\right\}$
- Line graph of G :

$$
L(G)=\left(E,\left\{\left\{e_{i}, e_{j}\right\} \mid e_{i} \cap e_{j} \neq \varnothing\right\}\right)
$$

Vertex of $L(G) \Leftrightarrow$ edge of G

- $e_{i}, e_{j} \in V(L(G))$ are adjacent $\Leftrightarrow \exists v \in V$ s.t. $e_{i}, e_{j} \in \delta_{G}(v)$

> Property: the degree $\left|N_{L(G)}(e)\right|$ of a vertex $e=\{u, v\}$ of $L(G)$ is $\left|N_{G}(u)\right|+\left|N_{G}(v)\right|-2$.

Property: $L(G)$ can be constructed from G in polynomial time (how?)

Operations on graphs

Addition and removal

- Add a vertex v : update $V \leftarrow V \cup\{v\}$
- Add an edge $e=\{u, v\}$:
add vertices u, v, update $E \leftarrow E \cup\{e\}$
- Remove an edge $e=\{u, v\}$:

$$
\text { update } E \leftarrow E \backslash\{e\}
$$

- Remove a vertex v :
update $V \leftarrow V \backslash\{v\}$ and $E \leftarrow E \backslash \delta(v)$
- Operations on sets of vertices/edges: apply operation to each set element

Subdivision and contraction

- Subdivide an edge $e=\{u, v\}$:
remove e, let $z \notin V$, add edges $\{u, z\}$ and $\{z, v\}$

- Contract an edge $e=\{u, v\}$:
contract (G, e) :
1: Let $N(e)=(N(u) \cup N(v)) \backslash\{u, v\}$
2: Let z be a vertex $\notin V$;
3: Add vertex z;
4: for $v \in N(e)$ do
5: Add edge $\{v, z\}$;
6: end for
7: Remove edge e;

Subgraph contraction

- Let $G=(V, E), U \subseteq V$ and $H=G[U]$
- Contraction G / U : " G modulo H "
contract (G, U):
1: Let z be a new vertex $\notin V$
2: Add vertex z
3: for $\{u, v\} \in \delta(H)$ (assume WLOG $u \in U, v \in V \backslash U$) do
4: Add edge $\{v, z\}$
5: Remove edge $\{u, v\}$
6: end for
7: Remove $G[U]$
8: return G;
- At termination, subgraph H replaced by single vertex z
- G / U is formally defined to be contract (G, U)

Thm.
Subgraph contraction is equivalent to a sequence of edge contractions

.
 Subgraph contraction algorithm

$$
U=\{1,2,3,5\}, G[U] \text { in red }
$$

.
 Subgraph contraction algorithm

Add z

Im Subgraph contraction algorithm

$\delta(G[U])$ in blue (edges with just one endpoint in U)

.
 Subgraph contraction algorithm

Add $\{v, z\}$ and remove $\{u, v\}$

.
 Subgraph contraction algorithm

Remove $G[U]$ (end)

Minors

- F minor of $G: F$ isomorphic to a contracted G
- Useful to underline "essential structure"

Contract some triangles

Combinatorial problems on graphs

The subgraph problem

- Decision problem: YES/NO question parametrized over symbols representing the instance (i.e. the input)

The subgraph problem

- Decision problem: YES/NO question parametrized over symbols representing the instance (i.e. the input)
- $\mathbb{G}=$ all graphs, $P(G)$ valid sentence about some $G \in \mathbb{G}$

The subgraph problem

- Decision problem: YES/NO question parametrized over symbols representing the instance (i.e. the input)
- $\mathbb{G}=$ all graphs, $P(G)$ valid sentence about some $G \in \mathbb{G}$
- A class of decision problems in graph theory:

Subgraph Problem Schema (SPS_{P}). Given a graph G, does it have a subgraph H with property P ?

The subgraph problem

- Decision problem: YES/NO question parametrized over symbols representing the instance (i.e. the input)
- $\mathbb{G}=$ all graphs, $P(G)$ valid sentence about some $G \in \mathbb{G}$
- A class of decision problems in graph theory:

Subgraph Problem Schema (SPS_{P}). Given a graph G, does it have a subgraph H with property P ?

- In SPS_{P}, get a decision problem for each P

The subgraph problem

- Decision problem: YES/NO question parametrized over symbols representing the instance (i.e. the input)
- $\mathbb{G}=$ all graphs, $P(G)$ valid sentence about some $G \in \mathbb{G}$
- A class of decision problems in graph theory:

Subgraph Problem Schema (SPS_{P}). Given a graph G, does it have a subgraph H with property P ?

- In SPS_{P}, get a decision problem for each P
- Decision problem $=$ set of all its instances

The subgraph problem

- Decision problem: YES/NO question parametrized over symbols representing the instance (i.e. the input)
- $\mathbb{G}=$ all graphs, $P(G)$ valid sentence about some $G \in \mathbb{G}$
- A class of decision problems in graph theory:

Subgraph Problem Schema (SPS_{P}). Given a graph G, does it have a subgraph H with property P ?

- In SPS_{P}, get a decision problem for each P
- Decision problem = set of all its instances
- Require solution YES or NO with certificate (proof that certifies the answer)

The subgraph problem

- Decision problem: YES/NO question parametrized over symbols representing the instance (i.e. the input)
- $\mathbb{G}=$ all graphs, $P(G)$ valid sentence about some $G \in \mathbb{G}$
- A class of decision problems in graph theory:

Subgraph Problem Schema (SPS_{P}). Given a graph G, does it have a subgraph H with property P ?

- In SPS_{P}, get a decision problem for each P
- Decision problem = set of all its instances
- Require solution YES or NO with certificate (proof that certifies the answer)
- E.g. if $P(H) \equiv(H$ is a cycle) the certificate is the cycle

Complexity classes

- P: decision problems whose YES/NO certificates can be found in polynomial time (of the instance size)
- E.g. Given $p, q, n \in \mathbb{Z}$, is $p q=n$?
- NP: class of decision problems whose YES certificates can be verified in polynomial time
- E.g. Given graphs G, H, are they isomorphic?

Algorithms, problems, classes

Consider worst-case complexity

- Complexity of an algorithm: asymptotic performance on ∞ ly many instances parametrized by n, as $n \rightarrow \infty$
- Problem: ∞ ly many instances
- Complexity of a problem: best algorithm for all instances in problem
- Problem class: all problems with similar complexity
- Complexity classes: classification of problems into "easy" and "hard"

Graph optimization problems

- Given a decision problem, \exists a corresponding optimization problem
- Consider scalar function $\mu: \mathbb{G} \rightarrow \mathbb{R}$
- E.g. μ : number of vertices/edges
- Class of optimization problems on graphs:

Subgraph Optimization Problem Schema $\left.^{\left(S^{2} O P S\right.}{ }_{P, \mu}\right)$. Given a graph G, does it have a subgraph H with property P and min./max. μ value?

- Given a property P and a function μ, the set of instances of SOPS $_{P, \mu}$ is an optimization problem

Easy problems

- $\mathbf{P}=$ decision or optimization problems that can be solved in polynomial time = "easy problems "
- Minimum Spanning Tree (MST)

To be seen in Lecture 4

- Shortest Path Problem (SPP) from a vertex v to all other vertices

To be seen in Lecture 9

- Maximum Matching problem (Matching)

Discussed in INF550

Matching: subgraph given by set of mutually non-adjacent edges

A maximum matching M,
$\mu(M)=|E(M)|$

Hard(er) problems

Maximum clique

Clique Problem (Clique). Given a graph G, what is the largest n such that G has K_{n} as a subgraph?

- In Clique, $P(H) \equiv[H=K(V(H))]$ and $\mu(H)=|V(H)|$

A clique in G

The largest clique in G

- Applications to social networks and bioinformatics

Clique and NP-completeness

- Decision version of Clique:
k-Clique Problem (k-Clique). Given a graph G and an integer $k>0$, does G have K_{k} as a subgraph?
- Consider the following result (which we won't prove) Thm.
[Karp 1972] If Clique $\in \mathbf{P}$ then $\mathbf{P}=\mathbf{N} \mathbf{P}$
- Any decision problem for which such a result holds is called NP-complete
- It is not known whether NP-complete problems can be solved in polynomial time; the current guess is NO

Solving NP-complete problems

- Decision problem P is NP-complete \equiv " P is hard"

Intuition: if P easy, every problem in NP is easy \equiv all computer scientists to date are idiots - hopefully unlikely

Solving NP-complete problems

- Decision problem P is NP-complete \equiv " P is hard"

Intuition: if P easy, every problem in NP is easy \equiv all computer scientists to date are idiots - hopefully unlikely

- Solving an NP-complete decision problem:
- exact but exponential-time algorithms
- heuristic algorithms
provide YES certificates, may not terminate on NO

Solving NP-complete problems

- Decision problem P is NP-complete \equiv " P is hard"

Intuition: if P easy, every problem in NP is easy \equiv all computer scientists to date are idiots - hopefully unlikely

- Solving an NP-complete decision problem:
- exact but exponential-time algorithms
- heuristic algorithms
provide YES certificates, may not terminate on NO
- Optimization problem P s.t. $P \in \mathbf{P} \rightarrow \mathbf{P}=\mathbf{N P}$: P is NP-hard

Solving NP-complete problems

- Decision problem P is NP-complete \equiv " P is hard"

Intuition: if P easy, every problem in NP is easy \equiv all computer scientists to date are idiots - hopefully unlikely

- Solving an NP-complete decision problem:
- exact but exponential-time algorithms
- heuristic algorithms
provide YES certificates, may not terminate on NO
- Optimization problem P s.t. $P \in \mathbf{P} \rightarrow \mathbf{P}=\mathbf{N P}$: P is NP-hard
- P NP-complete $\Leftrightarrow P$ NP-hard $\wedge P \in \mathbf{N P}$

Solving NP-complete problems

- Decision problem P is NP-complete \equiv " P is hard"

Intuition: if P easy, every problem in NP is easy \equiv all computer scientists to date are idiots - hopefully unlikely

- Solving an NP-complete decision problem:
- exact but exponential-time algorithms
- heuristic algorithms
provide YES certificates, may not terminate on NO
- Optimization problem P s.t. $P \in \mathbf{P} \rightarrow \mathbf{P}=\mathbf{N P}$: P is NP-hard
- P NP-complete $\Leftrightarrow P$ NP-hard $\wedge P \in \mathbf{N P}$
- f-Approximation algorithm: heuristic s.t. μ-value of YES certificate no worse than $f(|G|)$ times optimal μ value

Stables

- Stable (or independent set) in $G=(V, E)$: subset $U \subseteq V$
s.t. $\forall u, v \in U(\{u, v\} \notin E)$

Thm.
U is a stable in G if and only if $\overline{G[U]}$ is a clique
a stable in G

- Decision problem: k-Stable

Given G and $k \in \mathbb{N}$, is there a stable $U \subseteq V(G)$ of size k ?

- Optimization problem: Stable

Given G, find the stable of G of maximum size

Stables

- Stable (or independent set) in $G=(V, E)$: subset $U \subseteq V$
s.t. $\forall u, v \in U(\{u, v\} \notin E)$

Thm.
U is a stable in G if and only if $\overline{G[U]}$ is a clique

- Decision problem: k-Stable

Given G and $k \in \mathbb{N}$, is there a stable $U \subseteq V(G)$ of size k ?

- Optimization problem: Stable

Given G, find the stable of G of maximum size

NP-completeness of k-Stable

Thm.

k-Stable is NP-complete

Proof

```
Consider an instance (G,k) of k-Clique
The complement graph }\overline{G}\mathrm{ can be obtained in polynomial time (*)
It is easy to show that \overline{G}=G (**)
By (**) and previous thm.,
    (G,k) is a YES instance of }k\mathrm{ -Clique iff ( }\overline{G},k)\mathrm{ is a YES instance of }k\mathrm{ -Stable
By (*), if k-Stable }\in\mathbf{P}\mathrm{ then }k\mathrm{ -Clique }\in\mathbf{P}\mathrm{ (transform to }k\mathrm{ -StABLE, solve, transform back)
By NP-completeness of }k\mathrm{ -ClIQUE, }k\mathrm{ -StAble }\in\mathbf{P}\mathrm{ implies P}=\mathbf{NP
Hence k-Stable is NP-complete
```

- How to show that a problem \mathcal{P} is NP-complete:
- Take another NP-complete problem \mathcal{Q} "similar" to \mathcal{P}
- Reduce (in polytime) an instance of \mathcal{Q} to an instance of \mathcal{P}
- Show reduction preserves the YES/NO property

Stable heuristic

- The following greedy method will find a maximal stable

```
1: }U=\varnothing\mathrm{ ;
2: order V by increasing values of |N(v)|;
3: while V}\not=\varnothing\mathrm{ do
4: v= min V;
5: }U\leftarrowU\cup{v}
6: }V\leftarrowV\({v}\cupN(v)
7: end while
```

- Worst-case: $O(n)$ (given by an empty graph)

- Stable heuristic \Rightarrow Clique heuristic

Stable heuristic

- The following greedy method will find a maximal stable

```
1: U = \varnothing;
2: order }V\mathrm{ by increasing values of }|N(v)|
3: while V}\not=\varnothing\mathrm{ do
4: v= min V;
5: U\leftarrowU\cup{v};
6: }V\leftarrowV\({v}\cupN(v)
7: end while
```

- Worst-case: $O(n)$ (given by an empty graph)

```
select min V
put it in U
```


- Stable heuristic \Rightarrow Clique heuristic

Stable heuristic

- The following greedy method will find a maximal stable

```
1: U = \varnothing;
2: order }V\mathrm{ by increasing values of }|N(v)|
3: while V}=\varnothing\mathrm{ do
4: }v=\operatorname{min}V\mathrm{ ;
5: U\leftarrowU\cup{v};
6: }V\leftarrowV\({v}\cupN(v)
7: end while
```

- Worst-case: $O(n)$ (given by an empty graph)
remove v and its star from V
- Stable heuristic \Rightarrow Clique heuristic

Stable heuristic

- The following greedy method will find a maximal stable

```
1: U = \varnothing;
2: order }V\mathrm{ by increasing values of }|N(v)|
3: while V}\not=\varnothing\mathrm{ do
4: }v=\operatorname{min}V\mathrm{ ;
5: U\leftarrowU\cup{v};
6: }V\leftarrowV\({v}\cupN(v)
7: end while
```

- Worst-case: $O(n)$ (given by an empty graph)

```
select min V
put it in U
```


- Stable heuristic \Rightarrow Clique heuristic

Stable heuristic

- The following greedy method will find a maximal stable

```
1: U = \varnothing;
2: order }V\mathrm{ by increasing values of }|N(v)|
3: while V}\not=\varnothing\mathrm{ do
4: }v=\operatorname{min}V\mathrm{ ;
5: U\leftarrowU\cup{v};
6: }V\leftarrowV\({v}\cupN(v)
7: end while
```

- Worst-case: $O(n)$ (given by an empty graph)
remove v and its star from V

- Stable heuristic \Rightarrow Clique heuristic

Stable heuristic

- The following greedy method will find a maximal stable

```
1: U = \varnothing;
2: order }V\mathrm{ by increasing values of }|N(v)|
3: while V}\not=\varnothing\mathrm{ do
4: v= min V;
5: U\leftarrowU\cup{v};
6: }V\leftarrowV\({v}\cupN(v)
7: end while
```

- Worst-case: $O(n)$ (given by an empty graph)

```
select min V
put it in }
```


- Stable heuristic \Rightarrow Clique heuristic

Stable heuristic

- The following greedy method will find a maximal stable

```
1: }U=\varnothing\mathrm{ ;
2: order V by increasing values of |N(v)|;
3: while }V\not=\varnothing\mathrm{ do
4: v= min V;
5:}U\leftarrowU\cup{v}
6: }V\leftarrowV\({v}\cupN(v)
7: end while
```

- Worst-case: $O(n)$ (given by an empty graph)

```
remove v and its star from V
```

stop: maximal stable

- Stable heuristic \Rightarrow Clique heuristic

Heuristic fails

- Heuristic fails to find a maximum stable
- When choosing second element of U, take
- Algorithm stops with a stable of cardinality 2

Polynomial cases

- P an NP-complete decision problem
- Polynomial case: $C \subseteq P$ s.t. $C \in \mathbf{P}$
- E.g. $\mathcal{L}=\{H \in \mathbb{G} \mid \exists G \in \mathbb{G}(H=L(G))\}$
- $\mathcal{L}=$ graphs that are line graphs of another graph

Proof

Thm.
A maximum matching in G is a stable in $L(G)$

- Matching $\in \mathbf{P}$ and finding $L(G)$ is polytime $\Rightarrow \operatorname{Stable}_{\mathcal{L}} \in \mathbf{P}$

Vertex colouring

- Decision problem

```
Vertex }k\mathrm{ -Colouring Problem ( }k\mathrm{ -VCP). Given a graph G = (V,E)
and an integer k>0, find a function c:V 
\forall{u,v}\inE (c(u)\not=c(v))
```

- Optimization problem

Vertex Colouring Problem (VCP). Given a graph $G=(V, E)$, find the minimum $k \in \mathbb{N}$ such that there is a function $c: V \rightarrow$ $\{1, \ldots, k\}$ with $\forall\{u, v\} \in E(c(u) \neq c(v))$

- Applications to scheduling and wireless networks
- In general, allocate resources to minimum number of classes without conflicts

Vertex colouring example

Vertex colouring heuristic

Thm.
Each color set $C_{k}=\{v \in V \mid c(v)=k\}$ is a stable

- Use stable set heuristic as a sub-step

```
1: \(k=1\);
2: \(U=V\);
3: while \(U \neq \emptyset\) do
4: \(\quad C_{k}=\) maximalStable \((G[U])\);
5: \(U \leftarrow U \backslash C_{k}\);
6: \(\quad k \leftarrow k+1\);
7: end while
```

- Worst-case: $O(n)$ (given by an empty or complete graph)

Model-and-solve

Mathematical programming

- Take e.g. the Stable problem
- Input (also called parameters):
- set of vertices V
- set of edges E
- Output: $x: V \rightarrow\{0,1\}$

$$
\forall v \in V \quad x(v)= \begin{cases}1 & \text { if } v \in \text { maximum stable } \\ 0 & \text { otherwise }\end{cases}
$$

- We also write $x_{v}=x(v)$
- We'd like $x=\left(x_{v} \mid v \in V\right) \in\{0,1\}^{|V|}$ to be the characteristic vector of the maximum stable S^{*}
- $x_{1}, \ldots, x_{|V|}$ are also called decision variables

Objective function

- If we take $x=(0,0,0,0,0,0,0), S^{*}=\varnothing$ and $\left|S^{*}\right|=0$ (minimum possible value)
- If we take $x=(1,1,1,1,1,1,1)=1,\left|S^{*}\right|=|V|=7$ has the maximum possible value
- Characteristic vector x should satisfy the objective function

$$
\max _{x} \sum_{v \in V} x_{v}
$$

Constraints

- Consider the solution $x=1$
- x certainly maximizes the objective
- . . . but $S^{*}=V$ is not a stable!

$x=1$ is an infeasible solution

- The feasible set is the set of all vectors in $\{0,1\}^{|V|}$ which encode stable sets
- Defining property of a stable:

Two adjacent vertices cannot both belong to the stable

- In other words, choose at most one vertex adjacent to each edge
- Written formally,

$$
\forall\{u, v\} \in E \quad x_{u}+x_{v} \leq 1
$$

Verify the constraints

- $x=(0,1,0,0,0,0,1,1)$ encodes $S^{*}=\{2,6,7\}$
- $x_{u}+x_{v}=2$ only for $\{u, v\} \in F=\{\{2,6\},\{2,7\},\{6,7\}$
- Notice $F \cap E=\varnothing$
- Hence, $x_{u}+x_{v} \leq 1$ for all $\{u, v\} \in E$

So what?

- OK, so the Mathematical Programming (MP) formulation

$$
\left.\begin{array}{rl}
\max _{x} & \sum_{v \in V} x_{v} \\
\forall\{u, v\} \in E \quad & x_{u}+x_{v}
\end{array}\right) \leq 1 .{ }^{x} \in\{0,1\}^{|V|} .
$$

describes Stable correctly

- As long as we can't solve it, why should we care?

The magical method

- But WE CAN!
- Use generic MP solvers
- These algorithms can solve ANY MP formulation expressed with linear forms, or prove that there is no solution
- Based on Branch-and-Bound (BB)
- The YES certificate is the characteristic vector of a feasible solution
- The NO certificate is the whole BB tree, which implicitly (and intelligently) enumerates the feasible set
- YES certificate lengths are polynomial, NO certificates may have exponential length

Clique and Matching

- Clique (use complement graph):

$$
\begin{aligned}
& \max _{x} \quad \sum_{v \in V} x_{v} \\
& \forall\{u, v\} \notin E, u \neq v \quad x_{u}+x_{v} \leq 1 \\
& x \in\{0,1\}^{|V|}
\end{aligned}
$$

- Matching:

$$
\begin{aligned}
\max _{x} & \sum_{\{u, v\} \in E} x_{u v} \\
\forall u \in V & \sum_{v \in N(u)} x_{u v} \leq 1 \\
& x \in\{0,1\}^{|E|}
\end{aligned}
$$

Warning: although Matching $\in \mathbf{P}$, solving the MP formulation with BB is exponential-time

How to

- Come see me, l'll give you a personal demo
- Go to www.ampl.com and download the AMPL software, student version
- AMPL is for modelling, i.e. writing MP formulations
- Still from www. ampl . com, you can download a student version of the ILOG CPLEX BB implementation

And tomorrow?

If you're interested in modelling problems as MPs

- M1:
- MAP557 (Optimization: Theory and Applications)
- M2:
- MPRO (Master Parisien en Recherche Operationnelle)
http://uma.ensta-paristech.fr/mpro/

The end

