INF421, Lecture 5 Balanced Trees

Leo Liberti

LIX, École Polytechnique, France

Course

- Objective: teach notions AND develop intelligence
- Evaluation: TP noté en salle info, Contrôle à la fin. Note:
$\max \left(C C, \frac{3}{4} C C+\frac{1}{4} T P\right)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)
- Books:

1. K. Mehlhorn \& P. Sanders, Algorithms and Data Structures, Springer, 2008
2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
4. Ph. Baptiste \& L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2006

- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr(e-mail subject: INF421)

Lecture summary

- Binary search trees
- AVL trees
- Heaps and priority queues
- Tries

Notation

Tree T	node v	root node $r(T)$
$\mathrm{L}(T)$: left subtree of $r(T)$	$\mathrm{R}(T)$: right subtree of $r(T)$	depth $D(T)$
$\mathrm{L}(v)$: left subnode of v	$\mathrm{R}(v)$: right subnode of v	
$\mathrm{~L}(T)=\mathrm{R}(T)=\varnothing$: leaf	$T=\langle\mathrm{L}(T), r(T), \mathrm{R}(T)\rangle$	$P(v):$ parent of v
$p(v):$ unique path $r(T) \rightarrow v$	path length: $\sum_{v}\|p(v)\|$	$D(T)=\max _{v}\|p(v)\|$

Binary search trees (BST)

Sorted sequences

- Store a set V as a sorted sequence
- Answer the question $v \in V$ efficiently
- Invariant :

$$
\begin{equation*}
\mathrm{L}(v)<v<\mathrm{R}(v) \tag{*}
\end{equation*}
$$

- Example: $V=\{1,3,6,7\}$

BST min/max

- min (v) :

1: if $L(v)=\varnothing$ then
2: return v;
3: else
4: return $\min (\mathrm{L}(v))$;
5: end if

- $\max (v)$:

1: if $\mathrm{R}(v)=\varnothing$ then
2: return v;
3: else
4: return $\max (\mathrm{R}(v))$;
5: end if

Base cases for recursion

All other BST functions $£(k, v)$:
$\mathrm{f}(k, \varnothing)$ returns without doing anything

BST find

- find (k, v) :

1: ret = not_found;
2: if $v=k(\Rightarrow " v$ stores $k ")$ then
3: ret $=v$;
4: else if $k<v$ then
5: \quad ret $=\operatorname{find}(k, \mathrm{~L}(v))$;
6: else
7: \quad ret $=\operatorname{find}(k, \mathrm{R}(v))$;
8: end if
9: return ret;

Successful find

$$
\text { find }(13, r(T))
$$

$13>12$, take right branch

Successful find

Successful find

found 13

Unsuccessful find

$$
\text { find }(1, r(T))
$$

Unsuccessful find

$$
\text { find }(1, r(T))
$$

$1<5$, should take left branch but $L(5)=\varnothing$, not found

BST insert

insert (k, v) :

1: if $k=v$ then

2: return already_in_set;
3: else if $k<v$ then
4: if $\mathrm{L}(v)=\varnothing$ then
5: $\quad \mathrm{L}(v)=k ; \quad / /$ store k in $\mathrm{L}(v)$
6: else
7: insert (k, v);
8: end if
9: else
10: if $\mathrm{R}(v)=\varnothing$ then
11: $\quad \mathrm{R}(v)=k ; \quad / /$ store k in $\mathrm{R}(v)$
12: else
13: insert $(k, \mathrm{R}(v))$;
14: end if
15: end if

Insert example

$$
\text { insert }(1, r(T))
$$

$1<12$, take left branch

Insert example

$$
\text { insert }(1, r(T))
$$

$1<5$, should take left branch but $L(5)=\varnothing$

Insert example

A global invariant

- $\mathrm{L}(v) \leq v \leq \mathrm{R}(v)$ only involves direct subnodes of v
- \Rightarrow it is local
- Is this tree possible?

- It satisfies invariant
- By insert, 3 would be stored in $\mathrm{R}(1)$
- \Rightarrow Invariant is global:

$$
\forall u \in \operatorname{tree}(\mathrm{~L}(v)), w \in \operatorname{tree}(\mathrm{R}(v)) \quad u<v<w
$$

Deletion

- If node v to delete is a leaf, easy: "cut" it (unlink)

- If $\mathrm{R}(v)=\varnothing$ and $\mathrm{L}(v) \neq \varnothing$, replace with $\mathrm{L}(v)$

- If $\mathrm{L}(v)=\varnothing$ and $\mathrm{R}(v) \neq \varnothing$, replace with $\mathrm{R}(v)$

- If v has both subtrees, nontrivial

Replacing a node

Replace link $\{P(v), v\}$ with $\{P(v), u\}$, then unlink v

- replace (v, u) // replace v with u

1: if $\mathrm{R}(P(v))=v$ (i.e. u is a right subnode) then
2: $\mathrm{R}(P(v)) \leftarrow u$;
3: else
4: $\mathrm{L}(P(v)) \leftarrow u$;
5: end if
6: if $u \neq \varnothing$ then
7: $\quad P(u) \leftarrow P(v)$;
8: end if
9: unlink v;

- unlink: set $\mathrm{L}(v)=\mathrm{R}(v)=P(v)=\varnothing$

ECOLT
 Deleting $v: \mathrm{L}(v) \neq \varnothing \wedge \mathrm{R}(v) \neq \varnothing$

Idea: swap v with $u=\min \mathrm{R}(v)$ then delete it
Thm.
Invariant $\mathrm{L}(v) \leq v<\mathrm{R}(v)$ holds after swap

- Min of a BST: leftmost node without left subtree
- \Rightarrow Can delete u (case $\mathrm{L}(\cdot)=\varnothing$ above)
- After $\operatorname{swap}(u, v), v=\min (\mathrm{R}(v))$; hence $v<\mathrm{R}(v)$
- Before swap $u \in \operatorname{tree}(\mathrm{R}(v)) \Rightarrow$ after swap $v>\mathrm{L}(v)$
- \Rightarrow Thm. holds

BST delete

- delete (k, v) :

1: if $k<v$ then
2: delete $(k, \mathrm{~L}(v))$;
3: else if $k>v$ then
4: delete $(k, \mathrm{R}(v))$;
5: else
6: if $\mathrm{L}(v)=\varnothing \vee \mathrm{R}(v)=\varnothing$ then
7: delete v; // one of the easy cases
8: else
9: $\quad u=\min (\mathrm{R}(v))$;
10: swap_values(u,v);
11: delete u; // easy case: $L(u)=\varnothing$
12: end if
13: end if

Delete example

Delete example

Delete example

$$
\text { swap values of } 10 \text { and } 12
$$

Delete example

Tree balance

- Balance: $B(T)=D(\mathrm{~L}(T))-D(\mathrm{R}(T))$
- Tree is balanced: $B(T) \in\{-1,0,1\}$
- In a balanced tree, $D(T)$ is $O(\log n)$
- Intuition : if a BST has $n=2^{k}$ nodes at level k, then $k=\log n$
- Intuitively, balance \approx all leaves have same depth
- Not actually true, but close enough
- If T is balanced, $D(T)<\log _{\phi}(n+2)-1$ with ϕ golden ratio

Complexity

- Every call involves at most one recursion
- \Rightarrow Recurse along one path only, no backtracking
- Worst-case complexity proportional to depth $D(T)$
- Tree balanced: $D(T)$ is $O(\log n)$
- Otherwise: $D(T)$ is $O(n)$

Adelson-Velskii \& Landis (AVL) trees

AVL Trees

- Try inserting $1,3,6,7$ in this order: get unbalanced tree

- Worst case find (i.e., find the key 7) is $O(n)$
- Need to rebalance the tree to be more efficient
- AVL trees invariant: $B(T) \in\{-1,0,1\}$

Examples

AVL tree:

Non-AVL tree:

Nodes indicate $B($ tree $(v))$

Insertion example

insert 1

1

$$
\begin{aligned}
& v_{1}=1 \\
& r(T)=v_{1}
\end{aligned}
$$

Insertion example

$$
\begin{aligned}
& v_{2}=2 \\
& \mathrm{R}\left(v_{1}\right)=v_{2} \\
& P\left(v_{2}\right)=v_{1}
\end{aligned}
$$

Insertion example

$$
\begin{aligned}
& v_{3}=3 \\
& \mathrm{R}\left(v_{2}\right)=v_{3} \\
& P\left(v_{3}\right)=v_{2} \\
& D\left(\mathrm{~L}\left(v_{1}\right)\right)=0 \\
& D\left(\mathrm{R}\left(v_{1}\right)\right)=2: \\
& B(T)=-2: \text { out of bal- } \\
& \text { ance }
\end{aligned}
$$

Insertion example

Insertion example

Insertion example

Insertion example

rotate 1/2

$$
\begin{aligned}
& \mathrm{L}\left(v_{4}\right)=v_{3} ; \\
& P\left(v_{3}\right)=v_{4} ;
\end{aligned}
$$

Insertion example

rotate $2 / 2$

$$
\begin{aligned}
& \mathrm{R}\left(v_{2}\right)=v_{4} ; \\
& P\left(v_{4}\right)=v_{2}
\end{aligned}
$$

Insertion example

Insertion example

Insertion example

In general

- Decompose balanced trees operations into:
- the operation itself
- some rebalancing operations called rotations
- min/max, find: as in BSTs
- Unbalancing can occur on insertion and deletion
- Insert/delete one node at a time \Rightarrow unbalance offset ≤ 1
- I.e., $B(T) \in\{-2,-1,0,1,2\}$
- insert, delete: as in BST with rotations

Left and right rotation

Algebraic interpretation

- Let α, β, γ be trees, u, v be nodes not in α, β, γ
- Define:
- rotateLeft $(\langle\alpha, u,\langle\beta, v, \gamma\rangle\rangle)=\langle\langle\alpha, u, \beta\rangle, v, \gamma\rangle$
- rotateRight $(\langle\langle\alpha, u, \beta\rangle, v, \gamma\rangle)=\langle\alpha, u,\langle\beta, v, \gamma\rangle\rangle$
- A sort of "associativity of trees"
- Remark: rotateLeft, rotateRight are inverses

Thm.

```
rotateRight(rotateLeft (T)) =
rotateLeft(rotateRight (T)) =T
```


Proof

Directly from the definition

Properties of rotation

Thm.

$\forall T$, rotateLeft (T), rotateRight $\left(T^{\prime}\right)$ are BSTs

Proof

(Sketch): The tree order only changes locally for u, v. In T, tree $(v)=\mathrm{R}(u) \Rightarrow u<v$. In rotateLeft (T), tree $(u)=\mathrm{L}(v)$, which is consistent with $u<v$. Similarly for T^{\prime}.

- Suppose $D(\alpha)=D(\beta)=h$ and $D(\gamma)=h+1$
- Let $T=\langle\alpha, u,\langle\beta, v, \gamma\rangle\rangle$: then $B(T)=-2$
- Let $T^{\prime}=\langle\langle\gamma, u, \beta\rangle, v, \alpha\rangle$: then $B\left(T^{\prime}\right)=2$

Thm.
T, T^{\prime} as above $\Rightarrow B($ rotateLeft $(T))=0, B\left(\right.$ rotateRight $\left.\left(T^{\prime}\right)\right)=0$

Proof

(Sketch): since subtrees α, γ are swapped, tree depth is $D=h$ for all subtrees

Is this enough?

Rotating leaves γ at its place, doesn't work

Break γ up into subtrees

Now we can rotate tree $(v)=\mathrm{R}(u)$

Rotate a subtree right

Rotate $\mathrm{R}(u)$ right

Finally, rotate left

Rotate T left

Symmetric cases I

Symmetric cases II

Rebalance: rotateLeft $(\mathrm{L}(u))$, rotateRight (T)

Rotations vs. optimism

- Get rid of rotations, and trust chance: probability that random BST is balanced?
- Given a sequence $\sigma \in\{1, \ldots, n\}^{n}$, we insert it in a BST T
- Assume $|\mathrm{L}(T)|=K$ and $|\mathrm{R}(T)|=n-1-K$
- Assume uniform distribution on K i.e. $\forall k \leq n P(K=k)=\frac{1}{n}$

σ	$(1,2,3)$	$(1,3,2)$	$(2,1,3)$	$(2,3,1)$	$(3,1,2)$	$(3,2,1)$
T	$\begin{array}{lllll}1 & & \\ & \\ & & \\ & & \\ & & \\ & & & \\ & & & \end{array}$	$\begin{aligned} & 1 \\ & { }^{\prime}{ }^{k} 3 \\ & 2^{k} \end{aligned}$	$1^{k^{2}{ }^{2}}$			$3 k^{1^{k}}$
type	A	B	C	C	D	E

Type C (balanced) twice as likely as any other type!

The average BST balance

- Average depth for BSTs: $O(\log n)$ [Devroye, 1986]
- Average path length for BSTs: $O(n \log n)$ [Vitter \& Flajolet, 1990]
- BSTs are well balanced even without rotations!

Heaps and priority queues

Queues reminder

- Queue operations:
- pushBack (v) : insert v at the end
- popFront (): return and remove element at the beginning
- Used in BFS (compute paths with fewest arcs, see Lecture 2)
- If arcs are prioritized (e.g. travelling times for route segments): want queue to return element with highest priority

This may not be at the beginning of the queue

Priority queues

- V : a set; $(S,<)$: a totally ordered set
- Priority queue on V, S : set Q of pairs $\left(v, p_{v}\right)$ s.t. $v \in V$ and $p_{v} \in S$
- Usually, p_{v} is a number
- E.g., if p_{v} is the rank of entrance of v in Q, then Q is a standard queue
- Supports three main operations:
- insert $\left(v, p_{v}\right)$: inserts v in Q with priority p_{v}
- max (): returns the element of Q with maximum priority
- popMax(): returns and removes max()
- Implemented as heaps

Неар

- A (binary) heap is an abstract, tree-like data structure which offers:
- $O(\log |Q|)$ insert
- $O(1) \max$
- $O(\log |Q|)$ popMax
- max in $O(1)$: store max. priority element at BST root
- Invariants:
- shape property : all levels except perhaps the last are fully filled; the last level is filled left-to-right
- heap property : every node stores an element of higher priority than its subnodes

Example

Let $V=\mathbb{N}$, and for all $v \in V$ we let $p_{v}=v$

A balanced tree

Thm.
If Q is a binary heap, $B(Q) \in\{0,1\}$

Proof

Follows trivially from the shape property. Since all levels are filled completely apart perhaps from the last, $B(Q) \in\{-1,0,1\}$. Since the last is filled left-to-right, $B(Q) \neq-1$

Cor.
A binary heap is a balanced binary tree
Warning: NOT a BST/AVL: heap property not compatible with BST invariant $\mathrm{L}(v) \leq V \mathrm{R}(v)$

Keep the heap balanced: need $O(\log |Q|)$ work to insert/remove

Insert

- Add new element $\left(v, p_{v}\right)$ at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent $\left(u, p_{u}\right)$; if $p_{u}<p_{v}$, swap u and v 's positions in the heap
- Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)
\varnothing

Insert

- Add new element $\left(v, p_{v}\right)$ at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent $\left(u, p_{u}\right)$; if $p_{u}<p_{v}$, swap u and v 's positions in the heap
- Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)
insert $1 \quad 1$

Insert

- Add new element $\left(v, p_{v}\right)$ at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent $\left(u, p_{u}\right)$; if $p_{u}<p_{v}$, swap u and v 's positions in the heap
- Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

```
insert 4
```


Insert

- Add new element $\left(v, p_{v}\right)$ at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent $\left(u, p_{u}\right)$; if $p_{u}<p_{v}$, swap u and v 's positions in the heap
- Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

$$
1<4 \text {, swap } \overbrace{1}^{\boxed{4}}
$$

Insert

- Add new element $\left(v, p_{v}\right)$ at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent $\left(u, p_{u}\right)$; if $p_{u}<p_{v}$, swap u and v 's positions in the heap
- Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

insert 2

Insert

- Add new element $\left(v, p_{v}\right)$ at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent $\left(u, p_{u}\right)$; if $p_{u}<p_{v}$, swap u and v 's positions in the heap
- Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

Insert

- Add new element $\left(v, p_{v}\right)$ at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent $\left(u, p_{u}\right)$; if $p_{u}<p_{v}$, swap u and v 's positions in the heap
- Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

$$
1<3 \text {, swap }
$$

Insert

- Add new element $\left(v, p_{v}\right)$ at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent $\left(u, p_{u}\right)$; if $p_{u}<p_{v}$, swap u and v 's positions in the heap
- Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

$$
\text { insert } 5
$$

Insert

- Add new element $\left(v, p_{v}\right)$ at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent $\left(u, p_{u}\right)$; if $p_{u}<p_{v}$, swap u and v 's positions in the heap
- Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

$$
3<5 \text {, swap }
$$

Insert

- Add new element $\left(v, p_{v}\right)$ at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent $\left(u, p_{u}\right)$; if $p_{u}<p_{v}$, swap u and v 's positions in the heap
- Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

$$
4<5 \text {, swap }
$$

CH
 Insertion maintains the heap

- Worst case: insert takes time proportional to tree depth: $O(\log n)$
- The shape property is maintained:
- when adding a new element at last level in leftmost free slot
- when swapping node values along a path to the root
- The heap property is not maintained after adding a new element
- However, it is restored after the sequence of swaps

Thm.
The insertion operation maintains the heap

Max

- Easy: return the root of the heap tree
- Evidently $O(1)$

Removal of max

- Let last (Q) be the rightmost non-empty element of the last heap level
- Move node last (Q) to the root $r(Q)$
- Compare v with its children u, w : if $p_{v} \geq p_{u}, p_{v} \geq p_{w}$, heap is in correct order
- Otherwise, swap v with $\max _{p}(u, v)$ (use minip if minh-hees) and repeat comparison/swap until termination
original tree

Removal of max

- Let last (Q) be the rightmost non-empty element of the last heap level
- Move node last (Q) to the root $r(Q)$
- Compare v with its children u, w : if $p_{v} \geq p_{u}, p_{v} \geq p_{w}$, heap is in correct order
- Otherwise, swap v with $\max _{p}(u, v)$ (use minip if minh-hees) and repeat comparison/swap until termination

$$
\operatorname{last}(Q)=3
$$

Removal of max

- Let last (Q) be the rightmost non-empty element of the last heap level
- Move node last (Q) to the root $r(Q)$
- Compare v with its children u, w : if $p_{v} \geq p_{u}, p_{v} \geq p_{w}$, heap is in correct order
- Otherwise, swap v with $\max _{p}(u, v)$ (use minip if minh-hees) and repeat comparison/swap until termination

Removal of max

- Let last (Q) be the rightmost non-empty element of the last heap level
- Move node last (Q) to the root $r(Q)$
- Compare v with its children u, w : if $p_{v} \geq p_{u}, p_{v} \geq p_{w}$, heap is in correct order
- Otherwise, swap v with $\max _{p}(u, v)$ (use minip if minh-hees) and repeat comparison/swap until termination

Efficient construction

- Insert n elements of V in an empty heap
- Trivially: each insert takes $O(\log n)$, get $O(n \log n)$ to construct the whole heap
- Instead:

1. arbitrarily put the element in a binary tree with the shape property (can do this in $O(n)$)
2. lower level first, move nodes down using the same swapping procedure as for popMax

- At level ℓ, moving a node down costs $O(\ell)$ (worst-case)
- There's $\leq\left\lceil\frac{n}{2^{\ell+1}}\right\rceil$ nodes at level ℓ and $O(\log n)$ possible levels

$$
\sum_{\ell=0}^{\lceil\log n\rceil} \frac{n}{2^{\ell+1}} O(\ell)=O\left(n \sum_{\ell=0}^{\lceil\log n\rceil} \frac{1}{2^{\ell}}\right) \leq O\left(n \sum_{\ell=0}^{\infty} \frac{1}{2^{\ell}}\right)=O(2 n)=O(n)
$$

Implementation

- A priority queue is implemented as a heap
- A heap can be implemented as a tree
- But it needn't be!

Binary trees in arrays

Node	5	4	2	1	3
Index	0	1	2	3	4
		i		$2 i+1$	$2 i+2$

- Heap Q of n elements stored in an array q of length n
- $q_{0}=r(Q)$
- Subnodes

If $q_{i}=v$, then $q_{2 i+1}=\mathrm{L}(v)$) and $q_{2 i+2}=\mathrm{R}(v)$ (whenever $2 i+1,2 i+2<n$)

- Parent

If $v \neq q_{0}, P(v)=q_{j}$, where $j=\left\lfloor\frac{i-1}{2}\right\rfloor$
We now have all the elements: start implementing!
k-ary Search Trees

Tries

search

look for a key
use a total order

hashing

use key to find its position
each key defines a path to a leaf

Trie example

- Each key is stored at a leaf node ℓ
- Each non-leaf node v contains a prefix of all keys stored in the tree rooted at v
- The trie root node is \varnothing, the empty string

Trie properties

- Path on trie corresponding to key k : given by key itself

Compare with hash functions: hash value specified by key

- If max length key is m, path length $O(m)$
- find, insert and delete take worst-case $O(m)$
- If m constant w.r.t. $n=|V|$, then methods are $O(1)$
- Comparison to hash functions:
- With respect to hashing, tries support "ordered iteration"
- Hash tables need re-hashing (expensive) as they become full; tries adjust to size gracefully
- No need to construct good hash functions

> Warning: there are several trie variants

End of Lecture 7

