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Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrôle à la fin. Note:

max(CC, 3
4
CC + 1

4
TP )

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)

Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

Website: www.enseignement.polytechnique.fr/informatique/INF421

Blog: inf421.wordpress.com

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)
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Lecture summary

Binary search trees

AVL trees

Heaps and priority queues

Tries
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Notation

Tree T node v root node r(T )

L(T ): left subtree of r(T ) R(T ): right subtree of r(T ) depth D(T )

L(v): left subnode of v R(v): right subnode of v

r(T )

L(T ) R(T )

D(T )

L(T ) = R(T ) = ∅: leaf T = 〈L(T ), r(T ),R(T )〉 P (v): parent of v

p(v): unique path r(T ) → v path length:
∑
v

|p(v)| D(T ) = max
v

|p(v)|
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Binary search trees (BST)
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Sorted sequences

Store a set V as a sorted sequence

Answer the question v ∈ V efficiently

Invariant :

L(v) < v < R(v) (∗)

Example: V = {1, 3, 6, 7}

1

3

6

7∅

∅

∅ 3

6

7∅

1

6

73

∅1

7

∅6

∅3

∅1

INF421, Lecture 4 – p. 6/56



BST min/max

min(v):

1: if L(v) = ∅ then
2: return v;
3: else
4: return min(L(v));
5: end if

12

5

7

14

13 18

max(v):

1: if R(v) = ∅ then
2: return v;
3: else
4: return max(R(v));
5: end if

12

5

7

14

13 18
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Base cases for recursion

All other BST functions f(k, v):

f(k,∅) returns without doing anything
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BST find

find(k, v):

1: ret = not found;

2: if v = k (⇒"v stores k") then

3: ret = v;
4: else if k < v then
5: ret = find(k, L(v));
6: else
7: ret = find(k,R(v));
8: end if
9: return ret;
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Successful find

find(13, r(T ))

12

5

7

14

13 18

13 > 12, take right branch
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Successful find

find(13, r(T ))

12

5

7

14

13 18

13 < 14, take left branch
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Successful find

find(13, r(T ))

12

5

7

14

13 18

found 13
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Unsuccessful find

find(1, r(T ))

12

5

7

14

13 18

1 < 12, take left branch
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Unsuccessful find

find(1, r(T ))

12

5

7

14

13 18

1 < 5, should take left branch but L(5) = ∅, not found
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BST insert

insert(k, v):

1: if k = v then
2: return already in set;
3: else if k < v then
4: if L(v) = ∅ then
5: L(v) = k; // store k in L(v)

6: else
7: insert(k, v);
8: end if
9: else

10: if R(v) = ∅ then
11: R(v) = k; // store k in R(v)

12: else
13: insert(k,R(v));
14: end if
15: end if
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Insert example

insert(1, r(T ))

12

5

7

14

13 18

1 < 12, take left branch
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Insert example

insert(1, r(T ))

12

5

7

14

13 18

1 < 5, should take left branch but L(5) = ∅
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Insert example

insert(1, r(T ))

12

5

7

14

13 181

Add k = 1 as L(5)
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A global invariant

L(v) ≤ v ≤ R(v) only involves direct subnodes of v

⇒ it is local

Is this tree possible?

6

7

∅3

1

It satisfies invariant

By insert, 3 would be stored in R(1)

⇒ Invariant is global:

∀u ∈ tree(L(v)), w ∈ tree(R(v)) u < v < w

INF421, Lecture 4 – p. 14/56



Deletion

If node v to delete is a leaf, easy: “cut” it (unlink)

If R(v) = ∅ and L(v) 6= ∅, replace with L(v)

If L(v) = ∅ and R(v) 6= ∅, replace with R(v)

If v has both subtrees, nontrivial
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Replacing a node

w

v

u

−→

w

v

u

Replace link {P (v), v} with {P (v), u}, then unlink v

replace(v, u) // replace v with u

1: if R(P (v)) = v (i.e. u is a right subnode) then

2: R(P (v))← u;

3: else

4: L(P (v))← u;

5: end if

6: if u 6= ∅ then

7: P (u)← P (v);

8: end if

9: unlink v;

unlink: set L(v) = R(v) = P (v) = ∅
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Deleting v : L(v) 6= ∅ ∧ R(v) 6= ∅

Idea: swap v with u = minR(v) then delete it

Thm.

Invariant L(v) ≤ v < R(v) holds after swap

Min of a BST: leftmost node without left subtree

⇒ Can delete u (case L(·) = ∅ above)

After swap (u, v), v = min(R(v)); hence v < R(v)

Before swap u ∈ tree(R(v)) ⇒ after swap v > L(v)

⇒ Thm. holds
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BST delete

delete(k, v):

1: if k < v then
2: delete(k, L(v));
3: else if k > v then
4: delete(k,R(v));
5: else
6: if L(v) = ∅ ∨ R(v) = ∅ then
7: delete v; // one of the easy cases

8: else
9: u = min(R(v));

10: swap values(u, v);
11: delete u; // easy case: L(u)=∅

12: end if
13: end if
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Delete example

delete(10, r(T ))

10

5

7

14

12 18

v = 10
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Delete example

delete(10, r(T ))

10

5

7

14

12 18

u = min T(14) = 12
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Delete example

delete(10, r(T ))

12

5

7

14

10 18

swap values of 10 and 12
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Delete example

delete(10, r(T ))

12

5

7

14

18

delete 10

INF421, Lecture 4 – p. 19/56



Tree balance

Balance: B(T ) = D(L(T ))−D(R(T ))

Tree is balanced: B(T ) ∈ {−1, 0, 1}

In a balanced tree, D(T ) is O(log n)

Intuition : if a BST has n = 2k nodes at level k, then
k = log n

Intuitively, balance ≈ all leaves have same depth

Not actually true , but close enough

If T is balanced, D(T ) < logφ(n+ 2)− 1 with φ golden

ratio
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Complexity

Every call involves at most one recursion

⇒ Recurse along one path only, no backtracking

Worst-case complexity proportional to depth D(T )

Tree balanced: D(T ) is O(log n)

Otherwise: D(T ) is O(n)

•

•

•

•∅

∅

∅
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Adelson-Velskii & Landis (AVL)
trees
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AVL Trees

Try inserting 1, 3, 6, 7 in this order: get unbalanced tree

1

3

6

7∅

∅

∅

Worst case find (i.e., find the key 7) is O(n)

Need to rebalance the tree to be more efficient

AVL trees invariant: B(T ) ∈ {−1, 0, 1}
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Examples

AVL tree:
−1

0

0

0

00

−1

0∅

−1

1

∅0

0

1

00

00

Non-AVL tree:
−2

−1

−1

0∅

0

0

Nodes indicate B(tree(v))
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Insertion example

insert 1
1

v1 = 1;
r(T ) = v1;
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Insertion example

insert 2
1

2

v2 = 2;
R(v1) = v2;
P (v2) = v1;
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Insertion example

insert 3
1

2

3

v3 = 3;
R(v2) = v3;
P (v3) = v2;

D(L(v1)) = 0,

D(R(v1)) = 2:

B(T ) = −2: out of bal-

ance
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Insertion example

rotate

1

2

3

r(T ) = v2;
L(v2) = v1;
P (v1) = v2;
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Insertion example

insert 4

1

2

3

4

v4 = 4;
R(v3) = v4;
P (v4) = v3;
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Insertion example

insert 5

1

2

3

4

5

v5 = 5;
R(v4) = v5;
P (v5) = v4;

H(L(v3)) = 0,

H(R(v3)) = 2:

B(T ) = −2: out of bal-

ance

INF421, Lecture 4 – p. 25/56



Insertion example

rotate 1/2

1

2

3

4

5

L(v4) = v3;
P (v3) = v4;
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Insertion example

rotate 2/2

1

2

4

3 5

R(v2) = v4;
P (v4) = v2;
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Insertion example

insert 6

1

2

4

3 5

6

v6 = 6;
R(v5) = v6;
P (v6) = v5;

H(L(v2)) = 1,

H(R(v2)) = 3:

B(T ) = −2: out of bal-

ance
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Insertion example

rotate

1

2

4

3 5

6
R(v2) = L(v4);
P (L(v4)) = v2;
L(v4) = v2;
P (v2) = v4;
r(T ) = v4;
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Insertion example

result

1

2

4

3

5

6
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In general

Decompose balanced trees operations into:

the operation itself

some rebalancing operations called rotations

min/max, find: as in BSTs

Unbalancing can occur on insertion and deletion

Insert/delete one node at a time ⇒ unbalance offset ≤ 1

I.e., B(T ) ∈ {−2,−1, 0, 1, 2}

insert, delete: as in BST with rotations
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Left and right rotation

u

uv

v

α

α
β β

γ
γ

rotateLeft

rotateRight
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Algebraic interpretation

Let α, β, γ be trees, u, v be nodes not in α, β, γ

Define:

rotateLeft(〈α, u, 〈β, v, γ〉〉) = 〈〈α, u, β〉, v, γ〉

rotateRight(〈〈α, u, β〉, v, γ〉) = 〈α, u, 〈β, v, γ〉〉

A sort of “associativity of trees”

Remark: rotateLeft,rotateRight are inverses

Thm.
rotateRight(rotateLeft(T )) =

rotateLeft(rotateRight(T )) = T

Proof
Directly from the definition
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Rotating and rebalancing
u

uv

v

D
=

hD
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

−2

−1

0

0

α

α
β βγ

γ

rotateLeft

u

u v

v

D
=

h

D
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

2

1

0

0

α

α

ββ
γ

γ

rotateRight
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Properties of rotation

Thm.

∀T , rotateLeft(T ), rotateRight(T ′) are BSTs

Proof
(Sketch): The tree order only changes locally for u, v. In T , tree(v) = R(u)⇒ u < v. In

rotateLeft(T ), tree(u) = L(v), which is consistent with u < v. Similarly for T ′.

Suppose D(α) = D(β) = h and D(γ) = h+ 1

Let T = 〈α, u, 〈β, v, γ〉〉: then B(T ) = −2

Let T ′ = 〈〈γ, u, β〉, v, α〉: then B(T ′) = 2

Thm.
T, T ′ as above ⇒ B(rotateLeft(T )) = 0, B(rotateRight(T ′)) = 0

Proof
(Sketch): since subtrees α, γ are swapped, tree depth is D = h for all subtrees
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Is this enough?

u

v

D
=

h

D
=

h

D
=

h
+

1

−2

1

α

βγ

Rotating leaves γ at its place, doesn’t work
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Break γ up into subtrees

u

v

D
=

h

D
=

h

h

h
−

1

−2

1

α

β

γ

Now we can rotate tree(v) = R(u)
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Rotate a subtree right

uu

v

v

D
=

h

D
=

h

D
=

h

h

h

h

h
−

1

h
−

1

−2

−2

1
−1

−1αα

β

β

γ

r(γ)
rotateRight(R(u))

Rotate R(u) right
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Finally, rotate left

u

u

v
v

D
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

hh

h

h

h
−

1

h
−

1

−2

−1

−1
0

0−1

α

α

β
β

r(γ)

r(γ)

rotateLeft(T )

Rotate T left
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Symmetric cases I
u u

v

v

D
=

h

D
=

h

D
=

h

h h

h

h
−

1

h
−

1

−2

−2

1
−2

0α α

β

β

γ

r(γ)
rotateRight(R(u))

ւu

u
v

v

D
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

h

h h

hh
−

1

h
−

1

−2

−2

0

0

10α

αβ
β

r(γ)

r(γ)

rotateLeft(T )
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Symmetric cases II

u

v

D
=

h

D
=

h

D
=

h
+

1

2

−1

α

β γ

Rebalance: rotateLeft(L(u)), rotateRight(T )
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Rotations vs. optimism

Get rid of rotations, and trust chance: probability that random BST is

balanced?

Given a sequence σ ∈ {1, . . . , n}n, we insert it in a BST T

Assume |L(T )| = K and |R(T )| = n− 1−K

Assume uniform distribution on K i.e. ∀k ≤ n P (K = k) = 1

n

σ (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

T

1

2

3

1

3

2

2

1 3

2

1 3

3

1

2

2

1

3

type A B C C D E

Type C (balanced) twice as likely as any other type!
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The average BST balance

Average depth for BSTs: O(log n) [Devroye, 1986]

Average path length for BSTs: O(n log n) [Vitter &
Flajolet, 1990]

BSTs are well balanced even without rotations!
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Heaps and priority queues
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Queues reminder

Queue operations:

pushBack(v): insert v at the end

popFront(): return and remove element at the
beginning

Used in BFS (compute paths with fewest arcs, see
Lecture 2)

If arcs are prioritized (e.g. travelling times for route
segments): want queue to return
element with highest priority

This may not be at the beginning of the queue
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Priority queues

V : a set; (S,<): a totally ordered set

Priority queue on V, S: set Q of pairs (v, pv) s.t. v ∈ V and
pv ∈ S

Usually, pv is a number

E.g., if pv is the rank of entrance of v in Q, then Q is a
standard queue

Supports three main operations:

insert(v, pv): inserts v in Q with priority pv

max(): returns the element of Q with maximum
priority

popMax(): returns and removes max()

Implemented as heaps
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Heap

A (binary) heap is an abstract, tree-like data structure
which offers:

O(log |Q|) insert

O(1) max

O(log |Q|) popMax

max in O(1): store max. priority element at BST root

Invariants:

shape property : all levels except perhaps the last are

fully filled; the last level is filled left-to-right

heap property : every node stores an element of

higher priority than its subnodes
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Example

Let V = N, and for all v ∈ V we let pv = v

100

36

125

19

317

72
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A balanced tree

Thm.

If Q is a binary heap, B(Q) ∈ {0, 1}

Proof
Follows trivially from the shape property. Since all levels are filled com-

pletely apart perhaps from the last, B(Q) ∈ {−1, 0, 1}. Since the last is

filled left-to-right, B(Q) 6= −1

Cor.

A binary heap is a balanced binary tree

Warning: NOT a BST/AVL: heap property not compatible with BST invariant L(v) ≤ V R(v)

Keep the heap balanced: need O(log |Q|) work to
insert/remove
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Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

∅
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Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

insert 1 1
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Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

insert 4

1

∅4
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Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

1 < 4, swap

4

∅1
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Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

insert 2
4

21
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Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

insert 3

4

21

∅3
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Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

1 < 3, swap

4

23

∅1
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Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

insert 5

4

23

51
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Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

3 < 5, swap

4

25

31
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Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

4 < 5, swap

5

24

31
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Insertion maintains the heap

Worst case: insert takes time proportional to tree
depth: O(log n)

The shape property is maintained:

when adding a new element at last level in leftmost
free slot

when swapping node values along a path to the root

The heap property is not maintained after adding a new
element

However, it is restored after the sequence of swaps

Thm.
The insertion operation maintains the heap
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Max

Easy: return the root of the heap tree

Evidently O(1)
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Removal of max

Let last(Q) be the rightmost non-empty element of the
last heap level

Move node last(Q) to the root r(Q)

Compare v with its children u, w: if pv ≥ pu, pv ≥ pw,
heap is in correct order

Otherwise, swap v with maxp(u, v) (use minp if min-heap) and

repeat comparison/swap until termination

original tree

5

24

31
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Removal of max

Let last(Q) be the rightmost non-empty element of the
last heap level

Move node last(Q) to the root r(Q)

Compare v with its children u, w: if pv ≥ pu, pv ≥ pw,
heap is in correct order

Otherwise, swap v with maxp(u, v) (use minp if min-heap) and

repeat comparison/swap until termination

last(Q) = 3

5

24

31
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Removal of max

Let last(Q) be the rightmost non-empty element of the
last heap level

Move node last(Q) to the root r(Q)

Compare v with its children u, w: if pv ≥ pu, pv ≥ pw,
heap is in correct order

Otherwise, swap v with maxp(u, v) (use minp if min-heap) and

repeat comparison/swap until termination

move to root

3

24

∅1
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Removal of max

Let last(Q) be the rightmost non-empty element of the
last heap level

Move node last(Q) to the root r(Q)

Compare v with its children u, w: if pv ≥ pu, pv ≥ pw,
heap is in correct order

Otherwise, swap v with maxp(u, v) (use minp if min-heap) and

repeat comparison/swap until termination

3 < 4, swap

4
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Efficient construction

Insert n elements of V in an empty heap

Trivially: each insert takes O(log n), get O(n logn) to construct the

whole heap

Instead:

1. arbitrarily put the element in a binary tree with the shape

property (can do this in O(n))

2. lower level first, move nodes down using the same swapping

procedure as for popMax

At level ℓ, moving a node down costs O(ℓ) (worst-case)

There’s ≤ ⌈ n

2ℓ+1 ⌉ nodes at level ℓ and O(log n) possible levels

⌈logn⌉∑

ℓ=0

n

2ℓ+1
O(ℓ) = O(n

⌈logn⌉∑

ℓ=0

1

2ℓ
) ≤ O(n

∞∑

ℓ=0

1

2ℓ
) = O(2n) = O(n)
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Implementation

A priority queue is implemented as a heap

A heap can be implemented as a tree

But it needn’t be!
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Binary trees in arrays
5

24

31

Node 5 4 2 1 3

Index 0 1 2 3 4

i 2i+ 1 2i+ 2

Heap Q of n elements stored in an array q of length n

q0 = r(Q)

Subnodes

If qi = v, then q2i+1 = L(v)) and q2i+2 = R(v) (whenever
2i+ 1, 2i+ 2 < n)

Parent

If v 6= q0, P (v) = qj, where j = ⌊ i−1

2
⌋

We now have all the elements: start implementing!
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k-ary Search Trees
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Tries

search hashing

look for a key use key to find its position

use a total order
each key defines a path to
a leaf
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Trie example

V = {a,at,to,tea,ted,ten,in,inn}

∅

i

n

innin

a

ata

t

e

tentedtea

to

Each key is stored at a leaf node ℓ

Each non-leaf node v contains a prefix of all keys stored
in the tree rooted at v

The trie root node is ∅, the empty string
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Trie properties

Path on trie corresponding to key k: given by key itself

Compare with hash functions: hash value specified by key

If max length key is m, path length O(m)

find, insert and delete take worst-case O(m)

If m constant w.r.t. n = |V |, then methods are O(1)

Comparison to hash functions:

With respect to hashing, tries support “ordered iteration”

Hash tables need re-hashing (expensive) as they become full;

tries adjust to size gracefully

No need to construct good hash functions

Warning: there are several trie variants
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End of Lecture 7
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