
INF421, Lecture 5
Balanced Trees

Leo Liberti

LIX, École Polytechnique, France

INF421, Lecture 4 – p. 1/56

Course

Objective: teach notions AND develop intelligence

Evaluation: TP noté en salle info, Contrôle à la fin. Note:

max(CC, 3
4
CC + 1

4
TP)

Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10,

amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)

Books:

1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

3. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

4. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

Website: www.enseignement.polytechnique.fr/informatique/INF421

Blog: inf421.wordpress.com

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 4 – p. 2/56

www.enseignement.polytechnique.fr/informatique/INF421
inf421.wordpress.com
liberti@lix.polytechnique.fr

Lecture summary

Binary search trees

AVL trees

Heaps and priority queues

Tries

INF421, Lecture 4 – p. 3/56

Notation

Tree T node v root node r(T)

L(T): left subtree of r(T) R(T): right subtree of r(T) depth D(T)

L(v): left subnode of v R(v): right subnode of v

r(T)

L(T) R(T)

D(T)

L(T) = R(T) = ∅: leaf T = 〈L(T), r(T),R(T)〉 P (v): parent of v

p(v): unique path r(T) → v path length:
∑
v

|p(v)| D(T) = max
v

|p(v)|

INF421, Lecture 4 – p. 4/56

Binary search trees (BST)

INF421, Lecture 4 – p. 5/56

Sorted sequences

Store a set V as a sorted sequence

Answer the question v ∈ V efficiently

Invariant :

L(v) < v < R(v) (∗)

Example: V = {1, 3, 6, 7}

1

3

6

7∅

∅

∅ 3

6

7∅

1

6

73

∅1

7

∅6

∅3

∅1

INF421, Lecture 4 – p. 6/56

BST min/max

min(v):

1: if L(v) = ∅ then
2: return v;
3: else
4: return min(L(v));
5: end if

12

5

7

14

13 18

max(v):

1: if R(v) = ∅ then
2: return v;
3: else
4: return max(R(v));
5: end if

12

5

7

14

13 18

INF421, Lecture 4 – p. 7/56

Base cases for recursion

All other BST functions f(k, v):

f(k,∅) returns without doing anything

INF421, Lecture 4 – p. 8/56

BST find

find(k, v):

1: ret = not found;

2: if v = k (⇒"v stores k") then

3: ret = v;
4: else if k < v then
5: ret = find(k, L(v));
6: else
7: ret = find(k,R(v));
8: end if
9: return ret;

INF421, Lecture 4 – p. 9/56

Successful find

find(13, r(T))

12

5

7

14

13 18

13 > 12, take right branch

INF421, Lecture 4 – p. 10/56

Successful find

find(13, r(T))

12

5

7

14

13 18

13 < 14, take left branch

INF421, Lecture 4 – p. 10/56

Successful find

find(13, r(T))

12

5

7

14

13 18

found 13

INF421, Lecture 4 – p. 10/56

Unsuccessful find

find(1, r(T))

12

5

7

14

13 18

1 < 12, take left branch

INF421, Lecture 4 – p. 11/56

Unsuccessful find

find(1, r(T))

12

5

7

14

13 18

1 < 5, should take left branch but L(5) = ∅, not found

INF421, Lecture 4 – p. 11/56

BST insert

insert(k, v):

1: if k = v then
2: return already in set;
3: else if k < v then
4: if L(v) = ∅ then
5: L(v) = k; // store k in L(v)

6: else
7: insert(k, v);
8: end if
9: else

10: if R(v) = ∅ then
11: R(v) = k; // store k in R(v)

12: else
13: insert(k,R(v));
14: end if
15: end if

INF421, Lecture 4 – p. 12/56

Insert example

insert(1, r(T))

12

5

7

14

13 18

1 < 12, take left branch

INF421, Lecture 4 – p. 13/56

Insert example

insert(1, r(T))

12

5

7

14

13 18

1 < 5, should take left branch but L(5) = ∅

INF421, Lecture 4 – p. 13/56

Insert example

insert(1, r(T))

12

5

7

14

13 181

Add k = 1 as L(5)

INF421, Lecture 4 – p. 13/56

A global invariant

L(v) ≤ v ≤ R(v) only involves direct subnodes of v

⇒ it is local

Is this tree possible?

6

7

∅3

1

It satisfies invariant

By insert, 3 would be stored in R(1)

⇒ Invariant is global:

∀u ∈ tree(L(v)), w ∈ tree(R(v)) u < v < w

INF421, Lecture 4 – p. 14/56

Deletion

If node v to delete is a leaf, easy: “cut” it (unlink)

If R(v) = ∅ and L(v) 6= ∅, replace with L(v)

If L(v) = ∅ and R(v) 6= ∅, replace with R(v)

If v has both subtrees, nontrivial

INF421, Lecture 4 – p. 15/56

Replacing a node

w

v

u

−→

w

v

u

Replace link {P (v), v} with {P (v), u}, then unlink v

replace(v, u) // replace v with u

1: if R(P (v)) = v (i.e. u is a right subnode) then

2: R(P (v))← u;

3: else

4: L(P (v))← u;

5: end if

6: if u 6= ∅ then

7: P (u)← P (v);

8: end if

9: unlink v;

unlink: set L(v) = R(v) = P (v) = ∅

INF421, Lecture 4 – p. 16/56

Deleting v : L(v) 6= ∅ ∧ R(v) 6= ∅

Idea: swap v with u = minR(v) then delete it

Thm.

Invariant L(v) ≤ v < R(v) holds after swap

Min of a BST: leftmost node without left subtree

⇒ Can delete u (case L(·) = ∅ above)

After swap (u, v), v = min(R(v)); hence v < R(v)

Before swap u ∈ tree(R(v)) ⇒ after swap v > L(v)

⇒ Thm. holds

INF421, Lecture 4 – p. 17/56

BST delete

delete(k, v):

1: if k < v then
2: delete(k, L(v));
3: else if k > v then
4: delete(k,R(v));
5: else
6: if L(v) = ∅ ∨ R(v) = ∅ then
7: delete v; // one of the easy cases

8: else
9: u = min(R(v));

10: swap values(u, v);
11: delete u; // easy case: L(u)=∅

12: end if
13: end if

INF421, Lecture 4 – p. 18/56

Delete example

delete(10, r(T))

10

5

7

14

12 18

v = 10

INF421, Lecture 4 – p. 19/56

Delete example

delete(10, r(T))

10

5

7

14

12 18

u = min T(14) = 12

INF421, Lecture 4 – p. 19/56

Delete example

delete(10, r(T))

12

5

7

14

10 18

swap values of 10 and 12

INF421, Lecture 4 – p. 19/56

Delete example

delete(10, r(T))

12

5

7

14

18

delete 10

INF421, Lecture 4 – p. 19/56

Tree balance

Balance: B(T) = D(L(T))−D(R(T))

Tree is balanced: B(T) ∈ {−1, 0, 1}

In a balanced tree, D(T) is O(log n)

Intuition : if a BST has n = 2k nodes at level k, then
k = log n

Intuitively, balance ≈ all leaves have same depth

Not actually true , but close enough

If T is balanced, D(T) < logφ(n+ 2)− 1 with φ golden

ratio

INF421, Lecture 4 – p. 20/56

Complexity

Every call involves at most one recursion

⇒ Recurse along one path only, no backtracking

Worst-case complexity proportional to depth D(T)

Tree balanced: D(T) is O(log n)

Otherwise: D(T) is O(n)

•

•

•

•∅

∅

∅

INF421, Lecture 4 – p. 21/56

Adelson-Velskii & Landis (AVL)
trees

INF421, Lecture 4 – p. 22/56

AVL Trees

Try inserting 1, 3, 6, 7 in this order: get unbalanced tree

1

3

6

7∅

∅

∅

Worst case find (i.e., find the key 7) is O(n)

Need to rebalance the tree to be more efficient

AVL trees invariant: B(T) ∈ {−1, 0, 1}

INF421, Lecture 4 – p. 23/56

Examples

AVL tree:
−1

0

0

0

00

−1

0∅

−1

1

∅0

0

1

00

00

Non-AVL tree:
−2

−1

−1

0∅

0

0

Nodes indicate B(tree(v))

INF421, Lecture 4 – p. 24/56

Insertion example

insert 1
1

v1 = 1;
r(T) = v1;

INF421, Lecture 4 – p. 25/56

Insertion example

insert 2
1

2

v2 = 2;
R(v1) = v2;
P (v2) = v1;

INF421, Lecture 4 – p. 25/56

Insertion example

insert 3
1

2

3

v3 = 3;
R(v2) = v3;
P (v3) = v2;

D(L(v1)) = 0,

D(R(v1)) = 2:

B(T) = −2: out of bal-

ance

INF421, Lecture 4 – p. 25/56

Insertion example

rotate

1

2

3

r(T) = v2;
L(v2) = v1;
P (v1) = v2;

INF421, Lecture 4 – p. 25/56

Insertion example

insert 4

1

2

3

4

v4 = 4;
R(v3) = v4;
P (v4) = v3;

INF421, Lecture 4 – p. 25/56

Insertion example

insert 5

1

2

3

4

5

v5 = 5;
R(v4) = v5;
P (v5) = v4;

H(L(v3)) = 0,

H(R(v3)) = 2:

B(T) = −2: out of bal-

ance

INF421, Lecture 4 – p. 25/56

Insertion example

rotate 1/2

1

2

3

4

5

L(v4) = v3;
P (v3) = v4;

INF421, Lecture 4 – p. 25/56

Insertion example

rotate 2/2

1

2

4

3 5

R(v2) = v4;
P (v4) = v2;

INF421, Lecture 4 – p. 25/56

Insertion example

insert 6

1

2

4

3 5

6

v6 = 6;
R(v5) = v6;
P (v6) = v5;

H(L(v2)) = 1,

H(R(v2)) = 3:

B(T) = −2: out of bal-

ance

INF421, Lecture 4 – p. 25/56

Insertion example

rotate

1

2

4

3 5

6
R(v2) = L(v4);
P (L(v4)) = v2;
L(v4) = v2;
P (v2) = v4;
r(T) = v4;

INF421, Lecture 4 – p. 25/56

Insertion example

result

1

2

4

3

5

6

INF421, Lecture 4 – p. 25/56

In general

Decompose balanced trees operations into:

the operation itself

some rebalancing operations called rotations

min/max, find: as in BSTs

Unbalancing can occur on insertion and deletion

Insert/delete one node at a time ⇒ unbalance offset ≤ 1

I.e., B(T) ∈ {−2,−1, 0, 1, 2}

insert, delete: as in BST with rotations

INF421, Lecture 4 – p. 26/56

Left and right rotation

u

uv

v

α

α
β β

γ
γ

rotateLeft

rotateRight

INF421, Lecture 4 – p. 27/56

Algebraic interpretation

Let α, β, γ be trees, u, v be nodes not in α, β, γ

Define:

rotateLeft(〈α, u, 〈β, v, γ〉〉) = 〈〈α, u, β〉, v, γ〉

rotateRight(〈〈α, u, β〉, v, γ〉) = 〈α, u, 〈β, v, γ〉〉

A sort of “associativity of trees”

Remark: rotateLeft,rotateRight are inverses

Thm.
rotateRight(rotateLeft(T)) =

rotateLeft(rotateRight(T)) = T

Proof
Directly from the definition

INF421, Lecture 4 – p. 28/56

Rotating and rebalancing
u

uv

v

D
=

hD
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

−2

−1

0

0

α

α
β βγ

γ

rotateLeft

u

u v

v

D
=

h

D
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

2

1

0

0

α

α

ββ
γ

γ

rotateRight

INF421, Lecture 4 – p. 29/56

Properties of rotation

Thm.

∀T , rotateLeft(T), rotateRight(T ′) are BSTs

Proof
(Sketch): The tree order only changes locally for u, v. In T , tree(v) = R(u)⇒ u < v. In

rotateLeft(T), tree(u) = L(v), which is consistent with u < v. Similarly for T ′.

Suppose D(α) = D(β) = h and D(γ) = h+ 1

Let T = 〈α, u, 〈β, v, γ〉〉: then B(T) = −2

Let T ′ = 〈〈γ, u, β〉, v, α〉: then B(T ′) = 2

Thm.
T, T ′ as above ⇒ B(rotateLeft(T)) = 0, B(rotateRight(T ′)) = 0

Proof
(Sketch): since subtrees α, γ are swapped, tree depth is D = h for all subtrees

INF421, Lecture 4 – p. 30/56

Is this enough?

u

v

D
=

h

D
=

h

D
=

h
+

1

−2

1

α

βγ

Rotating leaves γ at its place, doesn’t work

INF421, Lecture 4 – p. 31/56

Break γ up into subtrees

u

v

D
=

h

D
=

h

h

h
−

1

−2

1

α

β

γ

Now we can rotate tree(v) = R(u)

INF421, Lecture 4 – p. 32/56

Rotate a subtree right

uu

v

v

D
=

h

D
=

h

D
=

h

h

h

h

h
−

1

h
−

1

−2

−2

1
−1

−1αα

β

β

γ

r(γ)
rotateRight(R(u))

Rotate R(u) right

INF421, Lecture 4 – p. 33/56

Finally, rotate left

u

u

v
v

D
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

hh

h

h

h
−

1

h
−

1

−2

−1

−1
0

0−1

α

α

β
β

r(γ)

r(γ)

rotateLeft(T)

Rotate T left

INF421, Lecture 4 – p. 34/56

Symmetric cases I
u u

v

v

D
=

h

D
=

h

D
=

h

h h

h

h
−

1

h
−

1

−2

−2

1
−2

0α α

β

β

γ

r(γ)
rotateRight(R(u))

ւu

u
v

v

D
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

h

h h

hh
−

1

h
−

1

−2

−2

0

0

10α

αβ
β

r(γ)

r(γ)

rotateLeft(T)

INF421, Lecture 4 – p. 35/56

Symmetric cases II

u

v

D
=

h

D
=

h

D
=

h
+

1

2

−1

α

β γ

Rebalance: rotateLeft(L(u)), rotateRight(T)

INF421, Lecture 4 – p. 36/56

Rotations vs. optimism

Get rid of rotations, and trust chance: probability that random BST is

balanced?

Given a sequence σ ∈ {1, . . . , n}n, we insert it in a BST T

Assume |L(T)| = K and |R(T)| = n− 1−K

Assume uniform distribution on K i.e. ∀k ≤ n P (K = k) = 1

n

σ (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

T

1

2

3

1

3

2

2

1 3

2

1 3

3

1

2

2

1

3

type A B C C D E

Type C (balanced) twice as likely as any other type!

INF421, Lecture 4 – p. 37/56

The average BST balance

Average depth for BSTs: O(log n) [Devroye, 1986]

Average path length for BSTs: O(n log n) [Vitter &
Flajolet, 1990]

BSTs are well balanced even without rotations!

INF421, Lecture 4 – p. 38/56

Heaps and priority queues

INF421, Lecture 4 – p. 39/56

Queues reminder

Queue operations:

pushBack(v): insert v at the end

popFront(): return and remove element at the
beginning

Used in BFS (compute paths with fewest arcs, see
Lecture 2)

If arcs are prioritized (e.g. travelling times for route
segments): want queue to return
element with highest priority

This may not be at the beginning of the queue

INF421, Lecture 4 – p. 40/56

Priority queues

V : a set; (S,<): a totally ordered set

Priority queue on V, S: set Q of pairs (v, pv) s.t. v ∈ V and
pv ∈ S

Usually, pv is a number

E.g., if pv is the rank of entrance of v in Q, then Q is a
standard queue

Supports three main operations:

insert(v, pv): inserts v in Q with priority pv

max(): returns the element of Q with maximum
priority

popMax(): returns and removes max()

Implemented as heaps

INF421, Lecture 4 – p. 41/56

Heap

A (binary) heap is an abstract, tree-like data structure
which offers:

O(log |Q|) insert

O(1) max

O(log |Q|) popMax

max in O(1): store max. priority element at BST root

Invariants:

shape property : all levels except perhaps the last are

fully filled; the last level is filled left-to-right

heap property : every node stores an element of

higher priority than its subnodes

INF421, Lecture 4 – p. 42/56

Example

Let V = N, and for all v ∈ V we let pv = v

100

36

125

19

317

72

INF421, Lecture 4 – p. 43/56

A balanced tree

Thm.

If Q is a binary heap, B(Q) ∈ {0, 1}

Proof
Follows trivially from the shape property. Since all levels are filled com-

pletely apart perhaps from the last, B(Q) ∈ {−1, 0, 1}. Since the last is

filled left-to-right, B(Q) 6= −1

Cor.

A binary heap is a balanced binary tree

Warning: NOT a BST/AVL: heap property not compatible with BST invariant L(v) ≤ V R(v)

Keep the heap balanced: need O(log |Q|) work to
insert/remove

INF421, Lecture 4 – p. 44/56

Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

∅

INF421, Lecture 4 – p. 45/56

Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

insert 1 1

INF421, Lecture 4 – p. 45/56

Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

insert 4

1

∅4

INF421, Lecture 4 – p. 45/56

Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

1 < 4, swap

4

∅1

INF421, Lecture 4 – p. 45/56

Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

insert 2
4

21

INF421, Lecture 4 – p. 45/56

Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

insert 3

4

21

∅3

INF421, Lecture 4 – p. 45/56

Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

1 < 3, swap

4

23

∅1

INF421, Lecture 4 – p. 45/56

Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

insert 5

4

23

51

INF421, Lecture 4 – p. 45/56

Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

3 < 5, swap

4

25

31

INF421, Lecture 4 – p. 45/56

Insert

Add new element (v, pv) at the bottom of the heap (last
level, leftmost free “slot”)

Compare with its (unique) parent (u, pu); if pu < pv, swap
u and v’s positions in the heap

Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

4 < 5, swap

5

24

31

INF421, Lecture 4 – p. 45/56

Insertion maintains the heap

Worst case: insert takes time proportional to tree
depth: O(log n)

The shape property is maintained:

when adding a new element at last level in leftmost
free slot

when swapping node values along a path to the root

The heap property is not maintained after adding a new
element

However, it is restored after the sequence of swaps

Thm.
The insertion operation maintains the heap

INF421, Lecture 4 – p. 46/56

Max

Easy: return the root of the heap tree

Evidently O(1)

INF421, Lecture 4 – p. 47/56

Removal of max

Let last(Q) be the rightmost non-empty element of the
last heap level

Move node last(Q) to the root r(Q)

Compare v with its children u, w: if pv ≥ pu, pv ≥ pw,
heap is in correct order

Otherwise, swap v with maxp(u, v) (use minp if min-heap) and

repeat comparison/swap until termination

original tree

5

24

31

INF421, Lecture 4 – p. 48/56

Removal of max

Let last(Q) be the rightmost non-empty element of the
last heap level

Move node last(Q) to the root r(Q)

Compare v with its children u, w: if pv ≥ pu, pv ≥ pw,
heap is in correct order

Otherwise, swap v with maxp(u, v) (use minp if min-heap) and

repeat comparison/swap until termination

last(Q) = 3

5

24

31

INF421, Lecture 4 – p. 48/56

Removal of max

Let last(Q) be the rightmost non-empty element of the
last heap level

Move node last(Q) to the root r(Q)

Compare v with its children u, w: if pv ≥ pu, pv ≥ pw,
heap is in correct order

Otherwise, swap v with maxp(u, v) (use minp if min-heap) and

repeat comparison/swap until termination

move to root

3

24

∅1

INF421, Lecture 4 – p. 48/56

Removal of max

Let last(Q) be the rightmost non-empty element of the
last heap level

Move node last(Q) to the root r(Q)

Compare v with its children u, w: if pv ≥ pu, pv ≥ pw,
heap is in correct order

Otherwise, swap v with maxp(u, v) (use minp if min-heap) and

repeat comparison/swap until termination

3 < 4, swap

4

23

∅1

INF421, Lecture 4 – p. 48/56

Efficient construction

Insert n elements of V in an empty heap

Trivially: each insert takes O(log n), get O(n logn) to construct the

whole heap

Instead:

1. arbitrarily put the element in a binary tree with the shape

property (can do this in O(n))

2. lower level first, move nodes down using the same swapping

procedure as for popMax

At level ℓ, moving a node down costs O(ℓ) (worst-case)

There’s ≤ ⌈ n

2ℓ+1 ⌉ nodes at level ℓ and O(log n) possible levels

⌈logn⌉∑

ℓ=0

n

2ℓ+1
O(ℓ) = O(n

⌈logn⌉∑

ℓ=0

1

2ℓ
) ≤ O(n

∞∑

ℓ=0

1

2ℓ
) = O(2n) = O(n)

INF421, Lecture 4 – p. 49/56

Implementation

A priority queue is implemented as a heap

A heap can be implemented as a tree

But it needn’t be!

INF421, Lecture 4 – p. 50/56

Binary trees in arrays
5

24

31

Node 5 4 2 1 3

Index 0 1 2 3 4

i 2i+ 1 2i+ 2

Heap Q of n elements stored in an array q of length n

q0 = r(Q)

Subnodes

If qi = v, then q2i+1 = L(v)) and q2i+2 = R(v) (whenever
2i+ 1, 2i+ 2 < n)

Parent

If v 6= q0, P (v) = qj, where j = ⌊ i−1

2
⌋

We now have all the elements: start implementing!

INF421, Lecture 4 – p. 51/56

k-ary Search Trees

INF421, Lecture 4 – p. 52/56

Tries

search hashing

look for a key use key to find its position

use a total order
each key defines a path to
a leaf

INF421, Lecture 4 – p. 53/56

Trie example

V = {a,at,to,tea,ted,ten,in,inn}

∅

i

n

innin

a

ata

t

e

tentedtea

to

Each key is stored at a leaf node ℓ

Each non-leaf node v contains a prefix of all keys stored
in the tree rooted at v

The trie root node is ∅, the empty string

INF421, Lecture 4 – p. 54/56

Trie properties

Path on trie corresponding to key k: given by key itself

Compare with hash functions: hash value specified by key

If max length key is m, path length O(m)

find, insert and delete take worst-case O(m)

If m constant w.r.t. n = |V |, then methods are O(1)

Comparison to hash functions:

With respect to hashing, tries support “ordered iteration”

Hash tables need re-hashing (expensive) as they become full;

tries adjust to size gracefully

No need to construct good hash functions

Warning: there are several trie variants

INF421, Lecture 4 – p. 55/56

End of Lecture 7

INF421, Lecture 4 – p. 56/56

	Course
	Lecture summary
	Notation
	Binary search trees (BST)
	Sorted sequences
	BST {	t min}/{	t max}
	Base cases for recursion
	BST {	t find}
	Successful find
	Successful find
	Successful find

	Unsuccessful find
	Unsuccessful find

	BST {	t insert}
	Insert example
	Insert example
	Insert example

	A global invariant
	Deletion
	Replacing a node
	Deleting $v:mbox {sf L}(v)
ot
=varnothing land mbox {sf R}(v)
ot =varnothing $
	BST {	t delete}
	Delete example
	Delete example
	Delete example
	Delete example

	Tree balance
	Complexity
	Adelson-Velskii & Landis (AVL)
trees
	AVL Trees
	Examples
	Insertion example
	Insertion example
	Insertion example
	Insertion example
	Insertion example
	Insertion example
	Insertion example
	Insertion example
	Insertion example
	Insertion example
	Insertion example

	In general
	Left and right rotation
	Algebraic interpretation
	Rotating and rebalancing
	Properties of rotation
	Is this enough?
	Break $gamma $ up into subtrees
	Rotate a subtree right
	Finally, rotate left
	Symmetric cases I
	Symmetric cases II
	Rotations vs.~optimism
	The average BST balance
	Heaps and priority queues
	Queues reminder
	Priority queues
	Heap
	Example
	A balanced tree
	Insert
	Insert
	Insert
	Insert
	Insert
	Insert
	Insert
	Insert
	Insert
	Insert

	Insertion maintains the heap
	Max
	Removal of max
	Removal of max
	Removal of max
	Removal of max

	Efficient construction
	Implementation
	Binary trees in arrays
	k-ary Search Trees
	Tries
	Trie example
	Trie properties
	End of Lecture 7

