

INF421, Lecture 5 Balanced Trees

Leo Liberti

LIX, École Polytechnique, France

Course

- **Objective:** teach notions AND develop intelligence
- **Evaluation:** TP noté en salle info, Contrôle à la fin. Note: $\max(CC, \frac{3}{4}CC + \frac{1}{4}TP)$
- Organization: fri 31/8, 7/9, 14/9, 21/9, 28/9, 5/10, 12/10, 19/10, 26/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI:30-34)

Books:

- 1. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
- 2. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
- 3. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
- 4. Ph. Baptiste & L. Maranget, *Programmation et Algorithmique*, Ecole Polytechnique (Polycopié), 2006
- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Blog: inf421.wordpress.com
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

Lecture summary

- Binary search trees
- AVL trees
- Heaps and priority queues
- Tries

Notation

Tree T	node v	root node $r(T)$
L(T): left subtree of $r(T)$	R(T): right subtree of $r(T)$	depth $D(T)$
L(v): left subnode of v	R(v): right subnode of v	$\mathbf{P}(T)$
$L(T) = R(T) = \varnothing$: leaf	$T = \langle L(T), r(T), R(T) \rangle$	P(v): parent of v
$p(v)$: unique path $r(T) \rightarrow v$	path length: $\sum_{v} p(v) $	$D(T) = \max_{v} p(v) $

Binary search trees (BST)

Sorted sequences

- Store a set V as a sorted sequence
- Answer the question $v \in V$ efficiently
- Invariant :

$$\mathsf{L}(v) < v < \mathsf{R}(v) \tag{\ast}$$

• Example:
$$V = \{1, 3, 6, 7\}$$

1
 \swarrow 3
 \bigotimes 3
6

6

Ø

7

Ø

6

7

Ø

3

Ø

7

7

 \varnothing

 \varnothing

6

3

 \varnothing

BST min/max

Base cases for recursion

All other BST functions f(k, v):

BST find

• find(k, v):

- 1: ret = not_found;
- 2: if v = k (\Rightarrow "v stores k") then
- 3: ret = v;
- 4: else if k < v then
- 5: ret = find(k, L(v));
- 6: **else**
- 7: ret = find $(k, \mathbf{R}(v))$;
- 8: **end if**
- 9: return ret;

Successful find

find(13, r(T))

Successful find

find(13, r(T))

Successful find

find(13, r(T))

Unsuccessful find

find(1, r(T))

Unsuccessful find

find(1, r(T))

1 < 5, should take left branch but $L(5) = \emptyset$, not found

BST insert

- insert(k,v):
 - 1: if k = v then
 - 2: return already_in_set;
 - 3: else if k < v then
 - 4: if $L(v) = \emptyset$ then
 - 5: L(v) = k; // store k in L(v)
 - 6: **else**
 - 7: insert(k, v);
 - 8: **end if**
 - 9: **else**
 - 10: if $R(v) = \emptyset$ then
 - 11: R(v) = k; // store k in R(v)
 - 12: **else**
 - 13: $insert(k, \mathbf{R}(v));$
 - 14: end if
 - 15: end if

insert(1, r(T))

insert(1, r(T))

1<5, should take left branch but $\mathsf{L}(5)=\varnothing$

insert(1, r(T))

A global invariant

- $L(v) \le v \le R(v)$ only involves direct subnodes of v
- \Rightarrow it is <u>local</u>
- Is this tree possible?

- It satisfies invariant
- By insert, 3 would be stored in R(1)
- \Rightarrow Invariant is global:

 $\forall u \in \operatorname{tree}(\mathsf{L}(v)), w \in \operatorname{tree}(\mathsf{R}(v)) \quad u < v < w$

INF421, Lecture 4 - p. 15/56

Deleting $v : L(v) \neq \emptyset \land R(v) \neq \emptyset$

Idea: swap v with $u = \min R(v)$ then delete it

Thm.

Invariant $L(v) \le v < R(v)$ holds after swap

- Min of a BST: leftmost node without left subtree
- ⇒ Can delete u (case $L(\cdot) = \emptyset$ above)
- After swap (u, v), $v = \min(R(v))$; hence v < R(v)
- Before swap $u \in tree(R(v)) \Rightarrow after swap <math>v > L(v)$
- \Rightarrow Thm. holds

BST delete

- ${\ {\rm \emph{o}}\ }$ delete(k,v):
 - 1: if k < v then
 - 2: delete(k, L(v));
 - 3: else if k > v then
 - 4: delete $(k, \mathbf{R}(v))$;

5: **else**

- 6: if $L(v) = \emptyset \lor R(v) = \emptyset$ then
- 7: delete v; // one of the easy cases

8: **else**

- 9: $u = \min(\mathbf{R}(v));$
- 10: $swap_values(u, v);$
- 11: **delete** u; // easy case: L(u)=Ø
- 12: end if

13: end if

Tree balance

- Balance: B(T) = D(L(T)) D(R(T))
- Tree is balanced: $B(T) \in \{-1, 0, 1\}$
- In a balanced tree, D(T) is $O(\log n)$
- Intuition : if a BST has $n = 2^k$ nodes at level k, then $k = \log n$
- Intuitively, balance pprox all leaves have same depth
- Not actually true, but close enough
- If T is balanced, $D(T) < \log_{\phi}(n+2) 1$ with ϕ golden ratio

Complexity

- Every call involves at most one recursion
- \blacksquare \Rightarrow Recurse along one path only, no backtracking
- Worst-case complexity proportional to depth D(T)
- Tree balanced: D(T) is $O(\log n)$
- Otherwise: D(T) is O(n)

Adelson-Velskii & Landis (AVL) trees

AVL Trees

Try inserting 1, 3, 6, 7 in this order: get unbalanced tree

- Worst case find (i.e., find the key 7) is O(n)
- Need to rebalance the tree to be more efficient
- AVL trees invariant: $B(T) \in \{-1, 0, 1\}$

Examples

Nodes indicate B(tree(v))

insert 1 $v_1 = 1;$ $r(T) = v_1;$

$$v_4 = 4;$$

 $R(v_3) = v_4;$
 $P(v_4) = v_3;$

ÉCOLE POLYTECHNIQUE

ECOLE POLYTECHNIQUE

In general

- Decompose balanced trees operations into:
 - the operation itself
 - some rebalancing operations called rotations
- _ min/max, find: as in BSTs
- Unbalancing can occur on insertion and deletion
- Insert/delete one node at a time \Rightarrow unbalance offset \leq 1
- I.e., $B(T) \in \{-2, -1, 0, 1, 2\}$
- Insert, delete: as in BST with rotations

Left and right rotation

Algebraic interpretation

- Let α, β, γ be trees, u, v be nodes not in α, β, γ
- Define:
 - rotateLeft($\langle \alpha, u, \langle \beta, v, \gamma \rangle \rangle$) = $\langle \langle \alpha, u, \beta \rangle, v, \gamma \rangle$
 - $\texttt{ sotateRight}(\langle \langle \alpha, u, \beta \rangle, v, \gamma \rangle) = \langle \alpha, u, \langle \beta, v, \gamma \rangle \rangle$
- A sort of "associativity of trees"
- **Remark:** rotateLeft, rotateRight are inverses

Thm.

```
rotateRight(rotateLeft(T)) =
rotateLeft(rotateRight(T)) = T
```

Proof

Directly from the definition

Rotating and rebalancing

Properties of rotation

<u>Thm.</u>

$\forall T$, rotateLeft(T), rotateRight(T') are BSTs

Proof

(Sketch): The tree order only changes locally for u,v. In T, $\mathrm{tree}(v)=\mathsf{R}(u)\Rightarrow u < v.$ In

rotateLeft(T), tree(u) = L(v), which is consistent with u < v. Similarly for T'.

• Suppose
$$D(\alpha) = D(\beta) = h$$
 and $D(\gamma) = h + 1$

• Let
$$T = \langle \alpha, u, \langle \beta, v, \gamma \rangle \rangle$$
: then $B(T) = -2$

• Let
$$T' = \langle \langle \gamma, u, \beta \rangle, v, \alpha \rangle$$
: then $B(T') = 2$

Thm.

$$T, T'$$
 as above $\Rightarrow B(\text{rotateLeft}(T)) = 0, B(\text{rotateRight}(T')) = 0$

Proof

(Sketch): since subtrees α, γ are swapped, tree depth is D = h for all subtrees

Is this enough?

Rotating leaves γ at its place, doesn't work

Break γ up into subtrees

Now we can rotate tree(v) = R(u)

Rotate a subtree right

Rotate R(u) right

Finally, rotate left

Rotate T left

Symmetric cases II

Rebalance: rotateLeft(L(u)), rotateRight(T)

Rotations vs. optimism

- Get rid of rotations, and trust chance: probability that random BST is balanced?
- $\textbf{ Given a sequence } \sigma \in \{1, \ldots, n\}^n \textbf{, we insert it in a BST } T$
- Assume |L(T)| = K and |R(T)| = n 1 K

■ Assume uniform distribution on K i.e. $\forall k \leq n \ P(K = k) = \frac{1}{n}$

σ	(1,2,3)	(1,3,2)	(2,1,3)	(2,3,1)	(3,1,2)	(3,2,1)
T	1 2 3	$\begin{array}{c}1\\ & 3\\ & \swarrow\\2\end{array}$	2 1 3	2 1 3		2
type	А	В	С	С	D	E

Type C (balanced) twice as likely as any other type!

The average BST balance

- Average depth for BSTs: $O(\log n)$ [Devroye, 1986]
- Average path length for BSTs: $O(n \log n)$ [Vitter & Flajolet, 1990]
- BSTs are well balanced even without rotations!

Heaps and priority queues

Queues reminder

- Queue operations:
 - pushBack(v): insert v at the end
 - popFront(): return and remove element at the
 beginning
- Used in BFS (compute paths with fewest arcs, see Lecture 2)
- If arcs are prioritized (e.g. travelling times for route segments): want queue to return <u>element with highest priority</u>

This may not be at the beginning of the queue

Priority queues

- V: a set; (S, <): a totally ordered set
- Priority queue on V, S: set Q of pairs (v, p_v) s.t. $v \in V$ and $p_v \in S$
- Usually, p_v is a number
- E.g., if p_v is the rank of entrance of v in Q, then Q is a standard queue
- Supports three main operations:
 - insert (v, p_v) : inserts v in Q with priority p_v
 - max(): returns the element of Q with maximum
 priority
 - popMax(): returns and removes max()
- Implemented as heaps

- A (binary) heap is an abstract, tree-like data structure which offers:
 - $O(\log |Q|)$ insert
 - $O(1) \max$
 - $O(\log |Q|)$ popMax
- max in O(1): store max. priority element at BST root
- Invariants:
 - shape property : all levels except perhaps the last are fully filled; the last level is filled left-to-right
 - heap property : every node stores an element of higher priority than its subnodes

Let
$$V = \mathbb{N}$$
, and for all $v \in V$ we let $p_v = v$

A balanced tree

Thm.

If Q is a binary heap, $B(Q) \in \{0, 1\}$

Proof

Follows trivially from the shape property. Since all levels are filled completely apart perhaps from the last, $B(Q) \in \{-1, 0, 1\}$. Since the last is filled left-to-right, $B(Q) \neq -1$

Cor.

A binary heap is a balanced binary tree

Warning: NOT a BST/AVL: heap property not compatible with BST invariant $L(v) \leq VR(v)$

Keep the heap balanced: need $O(\log |Q|)$ work to insert/remove

- Add new element (v, p_v) at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent (u, p_u) ; if $p_u < p_v$, swap u and v's positions in the heap
- Repeat comparison/swap until heap property is attained

Example: insert (1, 4, 2, 3, 5)

- Add new element (v, p_v) at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent (u, p_u) ; if $p_u < p_v$, swap u and v's positions in the heap
- Repeat comparison/swap until heap property is attained

```
Example: insert (1, 4, 2, 3, 5)
insert 1 1
```


- Add new element (v, p_v) at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent (u, p_u) ; if $p_u < p_v$, swap u and v's positions in the heap
- Repeat comparison/swap until heap property is attained

- Add new element (v, p_v) at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent (u, p_u) ; if $p_u < p_v$, swap u and v's positions in the heap
- Repeat comparison/swap until heap property is attained

- Add new element (v, p_v) at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent (u, p_u) ; if $p_u < p_v$, swap u and v's positions in the heap
- Repeat comparison/swap until heap property is attained

- Add new element (v, p_v) at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent (u, p_u) ; if $p_u < p_v$, swap u and v's positions in the heap
- Repeat comparison/swap until heap property is attained

- Add new element (v, p_v) at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent (u, p_u) ; if $p_u < p_v$, swap u and v's positions in the heap
- Repeat comparison/swap until heap property is attained

- Add new element (v, p_v) at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent (u, p_u) ; if $p_u < p_v$, swap u and v's positions in the heap
- Repeat comparison/swap until heap property is attained

- Add new element (v, p_v) at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent (u, p_u) ; if $p_u < p_v$, swap u and v's positions in the heap
- Repeat comparison/swap until heap property is attained

- Add new element (v, p_v) at the bottom of the heap (last level, leftmost free "slot")
- Compare with its (unique) parent (u, p_u) ; if $p_u < p_v$, swap u and v's positions in the heap
- Repeat comparison/swap until heap property is attained

Insertion maintains the heap

- Worst case: insert takes time proportional to tree depth: O(log n)
- The shape property is maintained:
 - when adding a new element at last level in leftmost free slot
 - when swapping node values along a path to the root
- The heap property is not maintained after adding a new element
- However, it is restored after the sequence of swaps

Thm.

The insertion operation maintains the heap

- *Easy*: return the root of the heap tree
- Evidently O(1)

- Let last(Q) be the rightmost non-empty element of the last heap level
- Move node last(Q) to the root r(Q)
- Compare v with its children u, w: if $p_v \ge p_u, p_v \ge p_w$, heap is in correct order
- Otherwise, swap v with $\max_p(u, v)$ (use \min_p if min-heap) and repeat comparison/swap until termination

- Let last(Q) be the rightmost non-empty element of the last heap level
- Move node last(Q) to the root r(Q)
- Compare v with its children u, w: if $p_v \ge p_u, p_v \ge p_w$, heap is in correct order
- Otherwise, swap v with $\max_p(u, v)$ (use \min_p if min-heap) and repeat comparison/swap until termination

- Let last(Q) be the rightmost non-empty element of the last heap level
- Move node last(Q) to the root r(Q)
- Compare v with its children u, w: if $p_v \ge p_u, p_v \ge p_w$, heap is in correct order
- Otherwise, swap v with $\max_p(u, v)$ (use \min_p if min-heap) and repeat comparison/swap until termination

- Let last(Q) be the rightmost non-empty element of the last heap level
- Move node last(Q) to the root r(Q)
- Compare v with its children u, w: if $p_v \ge p_u, p_v \ge p_w$, heap is in correct order
- Otherwise, swap v with $\max_p(u, v)$ (use \min_p if min-heap) and repeat comparison/swap until termination

Efficient construction

- Insert n elements of V in an empty heap
- Trivially: each insert takes $O(\log n)$, get $O(n \log n)$ to construct the whole heap
- Instead:
 - 1. arbitrarily put the element in a binary tree with the shape property (can do this in O(n))
 - 2. lower level first, move nodes down using the same swapping procedure as for popMax
- At level ℓ , moving a node down costs $O(\ell)$ (worst-case)
- There's $\leq \lceil \frac{n}{2^{\ell+1}} \rceil$ nodes at level ℓ and $O(\log n)$ possible levels

$$\sum_{\ell=0}^{\log n} \frac{n}{2^{\ell+1}} O(\ell) = O(n \sum_{\ell=0}^{\lceil \log n \rceil} \frac{1}{2^{\ell}}) \le O(n \sum_{\ell=0}^{\infty} \frac{1}{2^{\ell}}) = O(2n) = O(n)$$

Implementation

- A priority queue is implemented as a heap
- A heap can be implemented as a tree
- But it needn't be!

Binary trees in arrays

- If the end of p of n elements stored in an array q of length n
- $q_0 = r(Q)$

Subnodes

If $q_i = v$, then $q_{2i+1} = L(v)$ and $q_{2i+2} = R(v)$ (whenever 2i + 1, 2i + 2 < n)

Parent

If
$$v \neq q_0$$
, $P(v) = q_j$, where $j = \lfloor \frac{i-1}{2} \rfloor$

We now have all the elements: start implementing!

k-ary Search Trees

search

look for a key

use a total order

hashing

use key to find its position

each key defines a path to a leaf

Trie example

- Each key is stored at a leaf node ℓ
- Each non-leaf node v contains a prefix of all keys stored in the tree rooted at v
- The trie root node is \varnothing , the empty string

Trie properties

Path on trie corresponding to key k: given by key itself

Compare with hash functions: hash value specified by key

- If max length key is m, path length O(m)
- find, insert and delete take worst-case O(m)
- If m constant w.r.t. n = |V|, then methods are O(1)
- Comparison to hash functions:
 - With respect to hashing, tries support "ordered iteration"
 - Hash tables need re-hashing (expensive) as they become full; tries adjust to size gracefully
 - No need to construct good hash functions

Warning: there are several trie variants

End of Lecture 7