INF421, Lecture 3 Stacks and recursion

Leo Liberti
LIX, École Polytechnique, France

Course

- Objective: to teach you some data structures and associated algorithms
- Evaluation: TP noté en salle info le 16 septembre, Contrôle à la fin. Note: $\max \left(C C, \frac{3}{4} C C+\frac{1}{4} T P\right)$
- Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)
- Books:

1. Ph. Baptiste \& L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2006
2. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
4. K. Mehlhorn \& P. Sanders, Algorithms and Data Structures, Springer, 2008

- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

Lecture summary

- Function calls
- Stacks and applications
- Recursion

Function calls

What is a function call?

A recipe is a program, you are the CPU, your kitchen is the memory
Salad and walnuts recipe

1. add the salad
2. add the walnuts
3. add vinaigrette
4. toss and serve

- Seems simple enough, but when you get to Step 3 you realize that in order to add the vinaigrette you need to prepare it first!
- So you leave everything as is, mix oil and vinegar, add salt, then resume the recipe from where you'd left it
- You just called a function

Functions essentials

- A function call is a diversion from the sequential instructions order
- you need to know where to go next
- you need to store the current instruction address so you can resume execution once the function terminates

- Assume f calls g and g calls h, and h is currently executing
- In order for f to resume control, g must have terminated first

h cannot pass control to f directly

Saving the state

- Every function defines a "naming scope" (denote an entity x defined within a function f by $f:: x$)
- If f calls g, both may define a local variable x, but $f: x$ and $g: x$ refer to different memory cells
- Before calling g, f must therefore save its current state:
- the name and address of each local variable in f
- the address of the instruction just after "call g "
- When g ends, the current state of f is retrieved, and f resumes
- Need a data structure for saving current states
- As function calls are very common, it must be as simple and efficient as possible

Argument passing

x a variable in f, and g needs to access it:
f calls $g(x)$

- Let variable x name a cell with address A_{x} and value V_{x}

Argument passing

x a variable in f, and g needs to access it:
f calls $g(x)$

- Let variable x name a cell with address A_{x} and value V_{x}
- Passing by reference: $g\left(A_{x}\right)$
if g changes V_{x} then the change is visible in f

Argument passing

x a variable in f, and g needs to access it:
f calls $g(x)$

- Let variable x name a cell with address A_{x} and value V_{x}
- Passing by reference: $g\left(A_{x}\right)$
if g changes V_{x} then the change is visible in f
- Passing by value: $g\left(V_{x}\right)$
if g changes V_{x} then the change is not visible in f

Argument passing

x a variable in f, and g needs to access it:
f calls $g(x)$

- Let variable x name a cell with address A_{x} and value V_{x}
- Passing by reference: $g\left(A_{x}\right)$
if g changes V_{x} then the change is visible in f
- Passing by value: $g\left(V_{x}\right)$ if g changes V_{x} then the change is not visible in f
- This is a model, not the actual implementation used by languages

Argument passing

x a variable in f, and g needs to access it:
f calls $g(x)$

- Let variable x name a cell with address A_{x} and value V_{x}
- Passing by reference: $g\left(A_{x}\right)$
if g changes V_{x} then the change is visible in f
- Passing by value: $g\left(V_{x}\right)$
if g changes V_{x} then the change is not visible in f
- This is a model, not the actual implementation used by languages
- In practice, Java behaves as if basic types (char, int, long, float, double) were passed by value, and composite types by reference

Passing by reference

Passing by reference

Passing by reference

Passing by reference

When g terminates, the new value of x is available to f

Passing by value

Passing by value

Passing by value

Passing by value

When g terminates, the new value of x is lost

m Current states are saved to a stack

f calls g calls h

Memory

m Current states are saved to a stack

f calls g calls h

m Current states are saved to a stack

f calls g calls h

m Current states are saved to a stack

f calls g calls h

Memory

m Current states are saved to a stack

f calls g calls h

Memory

m Current states are saved to a stack

f calls g calls h

Memory

Stacks and applications

Stack

- Linear data structure
- Accessible from only one end (top)
- Operations:
- add a data node on the top (push data)
- remove a data node from the top (pop data)
- test whether stack is empty
- Every operation must be $O(1)$
- Don't need insertion/removal from the middle: can implement using arrays

Hack the stack

. 00 Phrack 49 Oo.
Volume Seven, Issue Forty-Nine
File 14 of 16
BugTraq, root, and Underground. Org
bring you

XX
Smashing The Stack For Fun And Profit $X ~$
by Aleph One
alephl@underground.org
"smash the stack" [C programming] n. On many C implementations it is possible to corrupt the execution stack by writing past the end of an array declared auto in a routine. Code that does this is said to smash the stack, and can cause return from the routine to jump to a random address. This can produce some of the most insidious data-dependent bugs known to mankind. Variants include trash the stack, scribble the stack, mangle the stack; the term mung the stack is not used, as this is never done intentionally. See spam; see also alias bug, fandango on core, memory leak, precedence lossage, overrun screw.

Back in 1996, hackers would get into systems by writing disguised code in the execution stack

How does it work?

top	10			"url"		A_{g}
$h:: x=1$	x			t		
$g:: x=10$	r	1	1	A	6	
address A_{g} in f to pass control to at end of g	t			address where A_{g} is stored		
$f:: y=6.2$						
$f:: t=\text { "config" }$ address A_{f} in main to pass control to at end of f						

How does it work?

How does it work?

The Tower of Hanoi

Move stack of discs to different pole, one at a time, no larger over smaller

Checking brackets

Given a mathematical sentence with two types of brackets " ()" and " []", write a program that checks whether they have been embedded correctly

Checking brackets

Given a mathematical sentence with two types of brackets " ()" and " []", write a program that checks whether they have been embedded correctly

1. s : the input string
2. for each i from 1 to $|s|$:
(a) if s_{i} is an open bracket, push the corresponding closing bracket on the stack
(b) if s_{i} is a closing bracket, pop a char t from the stack:

- if the stack is empty, error: too many closing brackets
- if $t \neq s_{i}$, error: closing bracket has wrong type

3. if stack is not empty, error: not enough closing brackets

Code for checking brackets

```
input string \(s\); stack \(T\); int \(i=0\);
while ( \(i \leq s\).length) do
    if \(\left(s_{i}={ }^{\prime}\left({ }^{\prime}\right)\right.\) then
        T.push(')');
    else if \(\left(s_{i}={ }^{\prime}\left[{ }^{\prime}\right)\right.\) then
        T.push(' \(\left.{ }^{\prime}{ }^{\prime}\right)\);
    else if \(\left(s_{i} \in\left\{\prime^{\prime}\right)^{\prime}, \prime^{\prime}\right\}\) ) then
        if (T.isEmpty () ) then
        error: too many closing brackets;
        else
            \(t=T . \mathrm{pop}() ;\)
            if \(\left(t \neq s_{i}\right)\) then
                error: wrong closing bracket type at \(i\);
                end if
        end if
    end if
    \(i=i+1\);
end while
if \((\neg T\).isEmpty ()\()\) then
    error: not enough closing brackets;
end if
```


Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program
- You're writing an interpreter or a compiler

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program
- You're writing an interpreter or a compiler
- You're writing an operating system

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program
- You're writing an interpreter or a compiler
- You're writing an operating system
- You're writing some graphics code which must execute blighteningly fast and existing libraries are too slow

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program
- You're writing an interpreter or a compiler
- You're writing an operating system
- You're writing some graphics code which must execute blighteningly fast and existing libraries are too slow
- You're a security expert wishing to write an unsmashable stack

Usefulness

Today, stacks are provided by Java/C++ libraries, they are implemented as a subset of operations of lists or vectors. Here are some reasons why you might want to rewrite a stack code

- You're a student and learning to program
- You're writing an interpreter or a compiler
- You're writing an operating system
- You're writing some graphics code which must execute blighteningly fast and existing libraries are too slow
- You're a security expert wishing to write an unsmashable stack
- You're me trying to teach you stacks

Recursion

Compare iteration and recursion

```
```

function f() {

```
```

function f() {
print "hello";
print "hello";
f();

```
    f();
```

```
}
```

}
f();

```
f();
```

```
end while
while (true) do
    print "hello";
```

both programs yield the same infinite loop
What are the differences?
Why should we bother?

Difference? Forget assignments

$$
\text { function } f(n)\{
$$

input n;
$r=1$
for $(i=1$ to $n)$ do

$$
r=r \times i
$$

end for
output r
if $(n=0)$ then return 1
end if return $n \times f(n-1)$ \} $f(n)$;

- Both programs compute n !
- Iterative version has assignments, recursive version does not
- Every computable function can be computed by means of \{tests, assignments, iterations\} or \{tests, recursion\}
- For language expressivity: "recursion = assignment + iteration"

Don't forget that calling a function implies saving the current state on a stack
(in recursion there is an implicit assignment of variable values to the stack memory)

Should we bother? Explore this tree

Try instructing the computer to explore this tree structure in "depthfirst order" (i.e. so that it prints 1,2,3,4,5,6)

Encoding: use a jagged array A

$$
\begin{aligned}
& A_{1}: A_{11}=2, A_{12}=5 \\
& A_{2}: A_{21}=3, A_{22}=4 \\
& A_{3}: \varnothing \\
& A_{4}: \varnothing \\
& A_{5}: A_{51}=6 \\
& A_{6}: \varnothing
\end{aligned}
$$

$A_{i j}=$ label of j-th child of node i

The iterative failure

```
int }a=1\mathrm{ ;
print a;
for(int z=1 to |Aa|) do
    int b= Aaz}\mathrm{ ;
    print b;
    for (int }y=1\mathrm{ to }|\mp@subsup{A}{b}{}|)\mathrm{ do
        int c= Aby;
        print c;
```


end for
 end for

Must the code change according to the tree structure???
We want one code which works for all trees!

Rescued by recursion

function f (int $\ell)\{$
print ℓ;
for (int $i=1$ to $\left|A_{\ell}\right|$) do
$f\left(A_{\ell i}\right)$;
end for
\}
main() $\{f(1) ;\}$

Rescued by recursion

function f (int ℓ) $\{$

print ℓ;
for (int $i=1$ to $\left|A_{\ell}\right|$) do $f\left(A_{\ell i}\right)$;
end for
\}
$\operatorname{main}()\{f(1) ;\}$

1. $\ell=1$; print 1
2. $\left|A_{1}\right|=2 ; i=1$
3. call $f\left(A_{11}=2\right)$ [push $\ell=1$]
4. $\ell=2$; print 2
5. $\left|A_{2}\right|=2 ; i=1$
6. call $f\left(A_{21}=3\right)$ [push $\ell=2$]
7. $\ell=3$; print 3
8. $A_{3}=\varnothing$
9. return $\quad[\mathrm{pop} \ell=2]$
10. $\left|A_{2}\right|=2 ; i=2$
11. call $f\left(A_{22}=4\right)$ [push $\ell=2$]
12. $\ell=4$; print 4
13. $A_{4}=\varnothing$
14. return $\quad[p o p ~ \ell=2]$
15. return $\quad[\mathrm{pop} \ell=1]$
16. $\left|A_{1}\right|=2 ; i=2$
17. call $f\left(A_{12}=5\right)$ [push $\ell=1$]
18. $\ell=5$; print 5
19. $\left|A_{5}\right|=1 ; i=1$
20. call $f\left(A_{51}=6\right)$ [push $\ell=5$]
21. $\ell=6$; print 6
22. $A_{6}=\varnothing$
23. return
$[p o p \ell=5]$
24. return
25. return; end

Recursion power

- At first sight, recursion can express programs that iterations cannot!
- As mentioned above, the "expressive power" of recursion and that of iteration are the same you can write the programs either way
- However, certain programs are more easily written with iteration, and some other with recursion
- Warning: always make sure your recursion terminates!

There must be some "base cases" which do not recurse

Recursion power

- At first sight, recursion can express programs that iterations cannot!
- As mentioned above, the "expressive power" of recursion and that of iteration are the same you can write the programs either way
- However, certain programs are more easily written with iteration, and some other with recursion
- Warning: always make sure your recursion terminates!

There must be some "base cases" which do not recurse

Write a program that lists all permutations of n elements

Listing permutations

- Given an integer $n>1$, list all permutations $\{1, \ldots, n\}$
- Example, $n=4$
- Suppose you already listed all permutations of $\{1,2,3\}$:

$$
(1,2,3),(1,3,2),(3,1,2),(3,2,1),(2,3,1),(2,1,3)
$$

- Write each 4 times, and write the number 4 in every position:

1	2	3	$\mathbf{4}$	3	2	1	$\mathbf{4}$
1	2	$\mathbf{4}$	3	3	2	$\mathbf{4}$	1
1	$\mathbf{4}$	2	3	3	$\mathbf{4}$	2	1
$\mathbf{4}$	1	2	3	$\mathbf{4}$	3	2	1
1	3	2	$\mathbf{4}$	2	3	1	$\mathbf{4}$
1	3	$\mathbf{4}$	2	2	3	$\mathbf{4}$	1
1	$\mathbf{4}$	3	2	2	$\mathbf{4}$	3	1
$\mathbf{4}$	1	3	2	$\mathbf{4}$	2	3	1
3	1	2	$\mathbf{4}$	2	1	3	$\mathbf{4}$
3	1	$\mathbf{4}$	2	2	1	$\mathbf{4}$	3
3	$\mathbf{4}$	1	2	2	$\mathbf{4}$	1	3
$\mathbf{4}$	3	1	2	$\mathbf{4}$	2	1	3

The algorithm

- If you can list permutations for $n-1$, you can do it for n
- Base case: $n=1$ yields the permutation (1) (no recursion)

```
function permutations( \(n\) ) \{
    1: if \((n=1)\) then
    2: \(L=\{(1)\}\);
    3: else
    4: \(\quad L^{\prime}=\) permutations \((n-1)\);
    5: \(\quad L=\varnothing\);
    6: for \(\left(\left(\pi_{1}, \ldots, \pi_{n-1}\right) \in L^{\prime}\right)\) do
    7: \(\quad\) for \((i \in\{1, \ldots, n\})\) do
    8: \(\quad L=L \cup\left\{\left(\pi_{1}, \ldots, \pi_{i-1}, n, \pi_{i}, \ldots, \pi_{n-1}\right)\right\}\);
    9: end for
10: end for
11: end if
12: return \(L\);
\}
```


Implementation details

- L, L^{\prime} are (mathematical) sets: how do we implement them?
- given list $\left(\pi_{1}, \ldots, \pi_{n-1}\right)$, need to produce list $\left(\pi_{1}, \ldots, \pi_{i-1}, i, n, \ldots, \pi_{n-1}\right)$: how do we implement these lists?
- Needed operations:
- Size of L known a priori: $|L|=n$!
- scan all elements of set L^{\prime} in some order (for at Step 6)
- insert a node at arbitrary position in list $\left(\pi_{1}, \ldots, \pi_{n-1}\right)$ at Step 8
- add an element to set L
- L^{\prime}, L must have the same type by Steps 4, 12
- L^{\prime}, L can be arrays
- $\left(\pi_{1}, \ldots, \pi_{n-1}\right)$ can be a singly-linked (or doubly-linked) list

Hanoi tower

Recursive approach

In order to move k discs from stack 1 to stack 3 :

1. move topmost $k-1$ discs on stack 1 to stack 2
2. move largest disc on stack 1 to stack 3
3. move $k-1$ discs on stack 2 to stack 3

Hanoi tower

Recursive approach

In order to move k discs from stack 1 to stack 3:

1. move topmost $k-1$ discs on stack 1 to stack 2
2. move largest disc on stack 1 to stack 3
3. move $k-1$ discs on stack 2 to stack 3

Reduce the problem to subproblem with $k-1$ discs

Assumption: subproblems for $k-1$ at Steps 1 and 3 are the same type of problem as for k

The assumption holds because the disc being moved at Step 2 is the largest: a Hanoi tower game "works the same way" if you add largest discs at the bottom of the stacks

Hanoi tower

Recursive approach

In order to move k discs from stack 1 to stack 3:

1. move topmost $k-1$ discs on stack 1 to stack 2
2. move largest disc on stack 1 to stack 3
3. move $k-1$ discs on stack 2 to stack 3

Reduce the problem to subproblem with $k-1$ discs

Assumption: subproblems for $k-1$ at Steps 1 and 3 are the same type of problem as for k

The assumption holds because the disc being moved at Step 2 is the largest: a Hanoi tower game "works the same way" if you add largest discs at the bottom of the stacks

