

INF421, Lecture 1 Lists and Complexity

Leo Liberti

LIX, École Polytechnique, France

ÉCOLE POLYTECHNIQUE

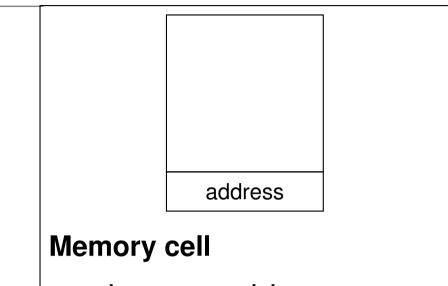
Course

- Objective: to teach you some data structures and associated algorithms
- **Evaluation**: TP noté en salle info le 16 septembre, Contrôle à la fin. Note: $\max(CC, \frac{3}{4}CC + \frac{1}{4}TP)$
- Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)
- Books:
 - 1. Ph. Baptiste & L. Maranget, *Programmation et Algorithmique*, Ecole Polytechnique (Polycopié), 2006
 - 2. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
 - 3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
 - 4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008
- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

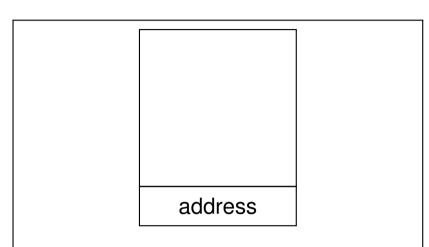
Lecture summary

- Reminders
- Complexity
- Lists

Reminders



- has an address
- stores a datum d

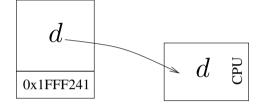


Memory cell

- has an address
- stores a datum d

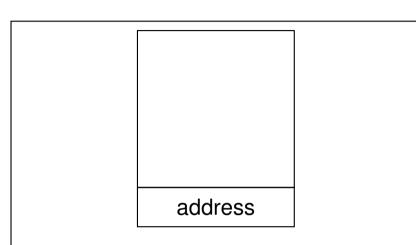
Two operations

Move datum from cell to CPU (read)



Move datum from CPU to cell (write)



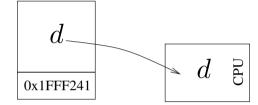


Memory cell

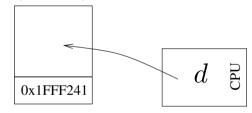
- has an address
- stores a datum d

Two operations

Move datum from cell to CPU (read)

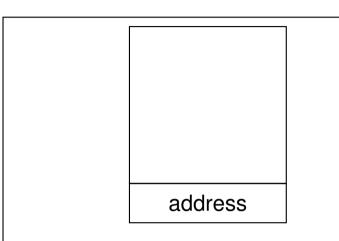


Move datum from CPU to cell (write)



Representation of memory: a sequence of cells

d_0	d_1		d_3	d_4	d_5
0x0	0x1	0x2	0x3	0x4	0x5

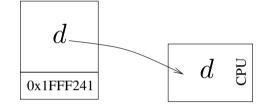


Memory cell

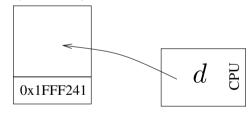
- has an address
- stores a datum d

Two operations

Move datum from cell to CPU (read)



Move datum from CPU to cell (write)



Representation of memory: a sequence of cells

d_0	d_1	d_2	d_3	d_4	d_5
0x0	0x1	0x2	0x3	0x4	0x5

A function $D: \mathbb{A} \to \mathbb{D}$

A: set of addresses

D: set of data elements

Assumptions

- For theoretical purposes, assume memory is infinite
- → In practice it is finite
- Each datum can be stored in a single cell
- → Different data elements might have different sizes

Naming memory

A program variable is just a name for a chunk of memory

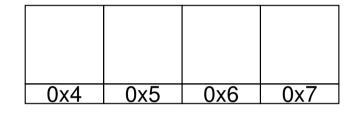
x denotes:

0x4	0x5	0x6	0x7

Naming memory

A program variable is just a name for a chunk of memory

x denotes:

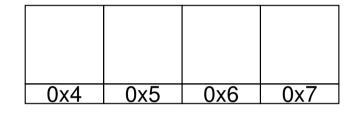


- We simply associate a name to the starting address
- The size of the chunk is given by the name's type

Naming memory

A program variable is just a name for a chunk of memory

x denotes:



- We simply associate a name to the starting address
- The size of the chunk is given by the name's type
- Basic types: int, long, char, float, double
- Composite types: Cartesian products of basic types
 if y.a ∈ int and y.b ∈ float then y ∈ int × float

Basic operations

- Assignment: write value in memory cell(s) named by variable (i.e. "variable=value")
- **Arithmetic:** $+, -, \times, \div$ for integer and floating point numbers
- Test: evaluate a logical condition: if true, change address of next instruction to be executed
- **Loop**: instead of performing next instruction in memory, jump to an instruction at a given address (more like a "go to")

INF421, Lecture 1 - p. 8

Basic operations

- Assignment: write value in memory cell(s) named by variable (i.e. "variable=value")
- **Arithmetic:** $+, -, \times, \div$ for integer and floating point numbers
- Test: evaluate a logical condition: if true, change address of next instruction to be executed
- ▶ Loop: instead of performing next instruction in memory, jump to an instruction at a given address (more like a "go to")

WARNING! In these slides, I use "=" to mean two different things:

- 1. in assignments, "<u>variable</u> = <u>value</u>" means "put <u>value</u> in the cell whose address is named by variable"
- 2. in tests, "<u>variable</u> = <u>value</u>" is TRUE if the cell whose address is named by <u>variable</u> contains value, and FALSE otherwise

in C/C++/Java "=" is used for assignments, and "==" for tests

Composite operations: programs

Programs are built recursively from basic operations

■ If A, B are ops, then concatenation "A; B" is an op

Semantics: execute A, then execute B

Composite operations: programs

Programs are built recursively from basic operations

■ If A, B are ops, then concatenation "A; B" is an op

Semantics: execute A, then execute B

If A, B are ops and T is a test, "if (T) A else B" is an op

Semantics: if T is true execute A, else B

Composite operations: programs

Programs are built recursively from basic operations

- If A, B are ops, then concatenation "A; B" is an op

 Semantics: execute A, then execute B
- If A, B are ops and T is a test, "if (T) A else B" is an op

Semantics: if T is true execute A, else B

● If A is an op and T is a test, "while (T) A" is an op

Semantics: 1: (if (T) A else (go to 2)) (go to 1) 2:


```
1: input n;
```

2: int
$$s = 0$$
;

3: int
$$i = 1$$
;

4: while
$$(i \leq n)$$
 do

5:
$$s = s + i$$
;

6:
$$i = i + 1$$
;

7: end while

8: output
$$s$$
;

n

?

s

?

i

?


```
1: \frac{1}{1} input \frac{1}{1};
```

- 2: int s = 0;
- 3: int i = 1;
- 4: while $(i \leq n)$ do
- 5: s = s + i;
- 6: i = i + 1;
- 7: end while
- 8: output s;

n

2

S

?

i

?

- 1: input *n*;
- 2: int s = 0;
- 3: int i = 1;
- 4: while $(i \leq n)$ do
- 5: s = s + i;
- 6: i = i + 1;
- 7: end while
- 8: output *s*;

n

2

?

- 1: input *n*;
- 2: int s = 0;
- 3: int i = 1;
- 4: while $(i \leq n)$ do
- 5: s = s + i;
- 6: i = i + 1;
- 7: end while
- 8: output *s*;

n

2

(

j

1

- 1: input *n*;
- **2**: int s = 0;
- 3: int i = 1;
- 4: while $(i \le n)$ do
- 5: s = s + i;
- 6: i = i + 1;
- 7: end while
- 8: output *s*;

 $i \leq n \equiv 1 \leq 2$: true

2

n


```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
n 2 s 1 i 1
```



```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
n 2 s 1 i 2
```


- 1: input *n*;
- **2**: int s = 0;
- 3: int i = 1;
- 4: while $(i \le n)$ do
- 5: s = s + i;
- 6: i = i + 1;
- 7: end while
- 8: output *s*;

$$i < n \equiv 2 < 2$$
: true

2

n

S

INF421, Lecture 1 – p. 10


```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
n 2 s 3 i 2
```



```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while

8: output s;
```

```
n 2 s 3 i 3
```



```
1: input n;
```

2: int
$$s = 0$$
;

3: int
$$i = 1$$
;

4: while
$$(i \le n)$$
 do

5:
$$s = s + i$$
;

6:
$$i = i + 1$$
;

7: end while

8: output *s*;

$$i < n \equiv 3 < 2$$
: false

2

n

3

INF421, Lecture 1 – p. 10


```
1: input n;

2: int s = 0;

3: int i = 1;

4: while (i \le n) do

5: s = s + i;

6: i = i + 1;

7: end while
```

8: **output** *s* ;

```
n \begin{bmatrix} 2 \end{bmatrix} s \begin{bmatrix} 3 \end{bmatrix} i \begin{bmatrix} 3 \end{bmatrix}
```

output s=3

Complexity

Complexity

- Several different programs can yield the same result: which is best?
- Evaluate their time (and/or space) complexity
 - time complexity: how many "basic operations"
 - space complexity: how much memory
 - used by the program during execution
- Worst case: max values during execution
- Best case: min values during execution
- Average case: average values during execution

P: a program

 t_P : number of basic operations performed by P

 $■ ∀P ∈ {assignment, arithmetic, test}:$

$$t_P = 1$$

 $■ ∀P ∈ {assignment, arithmetic, test}:$

$$t_P = 1$$

© Concatenation: for P, Q programs:

$$t_{P;Q} = t_P + t_Q$$

$$t_P = 1$$

Concatenation: for P, Q programs:

$$t_{P;Q} = t_P + t_Q$$

Desi: for P, Q programs and R a test:

$$t_{\text{if }(T) \ P \ \text{else} \ Q} = t_T + \max(t_P, t_Q)$$

max: worst-case policy

$$t_P = 1$$

Concatenation: for P, Q programs:

$$t_{P;Q} = t_P + t_Q$$

Desi: for P, Q programs and R a test:

$$t_{\text{if }(T)\ P \ \text{else}\ Q} = t_T + \max(t_P, t_Q)$$

max: worst-case policy

Loop: it's complicated (depends on how and when loop terminates)

Loop complexity example

The complete loop

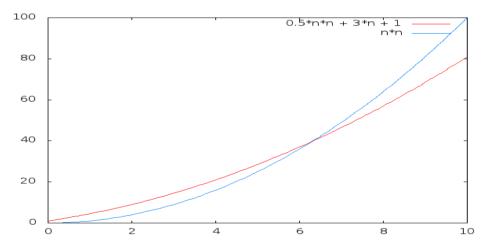
Let *P* be the following program:

- 1: i = 0;
- 2: while (i < n) do
- 3: A;
- 4: i = i + 1;
- 5: end while
- \blacksquare Assume A does not change the value of i
- Body of loop executed n times
- $t_P(n) = 1 + n(t_A + 3)$
- Why the '3'? Well, $t_{(i < n)} = 1$, $t_{(i+1)} = 1$, $t_{(i=\cdot)} = 1$

In the above program, suppose $t_A = \frac{1}{2}n$

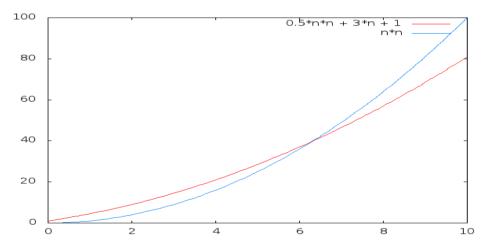
- In the above program, suppose $t_A = \frac{1}{2}n$
- Then $t_P = \frac{1}{2}n^2 + 3n + 1$

- In the above program, suppose $t_A = \frac{1}{2}n$
- Then $t_P = \frac{1}{2}n^2 + 3n + 1$
- No one really cares about the constants 2,3: all that matters is that t_P "behaves no worse than" the fn. n^2



$$\frac{1}{2}n^2 + 3$$
 is $O(n^2)$

- In the above program, suppose $t_A = \frac{1}{2}n$
- Then $t_P = \frac{1}{2}n^2 + 3n + 1$
- No one really cares about the constants 2,3: all that matters is that t_P "behaves no worse than" the fn. n^2



$$\frac{1}{2}n^2 + 3$$
 is $O(n^2)$

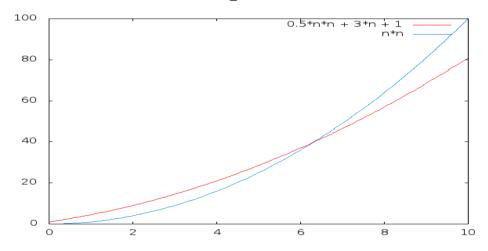
• A function f(n) is order of g(n) (notation: O(g(n))) if:

$$\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ (f(n) \le cg(n)) \tag{4}$$

ÉCOLE POLYTECHNIQUE

Orders of complexity

- In the above program, suppose $t_A = \frac{1}{2}n$
- Then $t_P = \frac{1}{2}n^2 + 3n + 1$
- No one really cares about the constants 2,3: all that matters is that t_P "behaves no worse than" the fn. n^2



$$\frac{1}{2}n^2 + 3$$
 is $O(n^2)$

• A function f(n) is order of g(n) (notation: O(g(n))) if:

$$\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n > n_0 \ (f(n) \le cg(n)) \tag{5}$$

• For $\frac{1}{2}n^2 + 3$, c = 1 and $n_0 = 2$

Some examples

Functions	Order
an + b with a, b constants	O(n)
polynomial of degree d' in n	$O(n^d)$ with $d \ge d'$
$n + \log n$	O(n)
$n+\sqrt{n}$	O(n)
$\log n + \sqrt{n}$	$O(\sqrt{n})$
$n \log n^3$	$O(n \log n)$
$\frac{an+b}{cn+d}$, a,b,c,d constants	O(1)

- Make an effort to find the best (most slowly increasing) function g(n) when saying "f(n) is O(g(n))"
- E.g. no one would say that 2n + 1 is $O(n^4)$ (although it's technically true) rather say 2n + 1 is O(n)

Remark

- The complexity order is an asymptotic description of $t_P(n)$
- If $t_P(n)$ does not depend on n, its order of complexity is O(1) (i.e. constant)
- **Example:** looping 10^{1000} times over an O(1) code still yields an O(1) program
- In other words, n must appear as a parameter of the program for the complexity order to be anything other than constant

Complexity of easy loops

- 1: input n;
- **2**: int s = 0;
- 3: int i = 1;
- 4: while $(i \leq n)$ do
- 5: s = s + i;
- 6: i = i + 1;
- 7: end while
- **8**: output *s*;

- t(n) = 3 + 5n + 1 = 4n + 4
- ightharpoonup t(n) is O(n)

Complexity of easy loops

- 1: input *n*;
- **2**: int s = 0;
- **3**: int i = 1;
- 4: while $(i \le n)$ do
- 5: s = s + i;
- 6: i = i + 1;
- 7: end while
- **8**: output *s*;

- t(n) = 3 + 5n + 1 = 4n + 4
- ightharpoonup t(n) is O(n)

- 1: for i = 0; i < n 1; i = i + 1 do
- 2: for j = i + 1; j < n; j = j + 1 do
- 3: print i, j;
- 4: end for
- 5: end for

$$t(n) = 1 + \underbrace{(5(n-1)+6) + \dots + (5+6)}_{n-1}$$

$$= 1 + 5((n-1)+\dots + 1) + \underbrace{6(n-1) = \frac{5}{2}n(n-1) + 6n - 5}_{=\frac{5}{2}n^2 + \frac{7}{2}n - 5}$$

lacksquare t(n) is $O(n^2)$

Arrays

Like a vector in maths

- ▶ A vector $x \in \mathbb{Q}^n$ is an n-tuple (x_1, \ldots, x_n) for some $n \in \mathbb{N}$
- In computers: x is the name for a memory address with n successive cells
- Indexing starts from 0 (last cell is called x_{n-1})

Like a vector in maths

- A vector $x \in \mathbb{Q}^n$ is an n-tuple (x_1, \ldots, x_n) for some $n \in \mathbb{N}$
- In computers: x is the name for a memory address with n successive cells
- Indexing starts from 0 (last cell is called x_{n-1})

- An array is allocated when the memory is reserved
- lacktriangle The size of the array, n, is decided at allocation time
- Usually, the size of the array does not change
- When the array is no longer useful, the reserved memory can be deallocated or freed

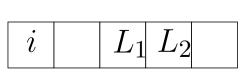
Array operations

For an array of size n:

Operations	Complexity
Read value of <i>i</i> -th component	O(1)
Write value in i -th component	O(1)
Size	O(1)
Remove element (cell)	forget it*
Insert element (cell)	forget it*
Move subsequence to position i	O(n)

Moving subsequence L to position i:

extract (contiguous) subsequence L from the array, and re-insert it after position i and before position i+1



i	L_1	L_2	

^{*:} can actually simulate these operations using pointers

Norm of a vector in \mathbb{R}^5

- 1: input $x \in \mathbb{Q}^5$; 2: int i = 0;
- **3**: float a = 0;
- 4: while (i < 5) do
- 5: $a = a + x_i \times x_i$;
- 6: end while
- 7: a = sqrt(a);
- Computes $\sqrt{\sum_{i=0}^4 x_i^2}$
- Complexity: O(1) (why?)

Incomplete loop

- 1: input $x \in \{0,1\}^n$;
- 2: int i = 0;
- 3: while $(i < n \land x_i = 1)$ do
- 4: $x_i = 0$;
- 5: i = i + 1;
- 6: end while
- 7: if (i < n) then
- 8: $x_i = 1$;
- 9: **end if**
- 10: output x;

	Components of	x can o	nly be 0 or 1
--	---------------	---------	---------------

- Loop continues over all components as long as their value is 1; at the first 0 component, it stops
- Complexity?

Input	Output
(0,0,0,0)	(1,0,0,0)
(1,1,0,0)	(0,0,1,0)
(0,1,1,0)	(1,1,1,0)
(1,1,1,1)	(0,0,0,0)

Worst case complexity of incomplete loop

- Among all inputs of the algorithm, find those yielding the worst complexity
- In the case above, $x=(1,1,\ldots,1)$ always makes the loop continue to the end, i.e. for n iterations Thm.

 $(1,1\ldots,1)$ is the input yielding worst complexity

Proof

Suppose false, then there is a vector $x \neq (1, \ldots, 1)$ yielding a complexity t(n) > n. Since $x \neq (1, \ldots, 1)$, x contains at least one 0 component. Let j < n be the smallest index such that $x_j = 0$: at iteration j the loop breaks, and the complexity is t(n) = j, which is smaller than n: contradiction.

• Since the other operations are O(1), get O(n)

ÉCOLE POLYTECHNIQUE

Worst case complexity of incomplete loop

- Among all inputs of the algorithm, find those yielding the worst complexity
- In the case above, $x=(1,1,\ldots,1)$ always makes the loop continue to the end, i.e. for n iterations $_{\text{Thm.}}$

 $(1,1\ldots,1)$ is the input yielding worst complexity

Proof

Suppose false, then there is a vector $x \neq (1, \ldots, 1)$ yielding a complexity t(n) > n. Since $x \neq (1, \ldots, 1)$, x contains at least one 0 component. Let j < n be the smallest index such that $x_j = 0$: at iteration j the loop breaks, and the complexity is t(n) = j, which is smaller than n: contradiction.

• Since the other operations are O(1), get O(n)

Potential difficulty of this approach: identifying the worst-case inputs and *proving* no other input is worse

Average case analysis needs a probability space:

- assume the event $x_i = b$ is independent of the events $x_j = b$ for all $i \neq j$
- assume each cell x_i of the array contains 0 or 1 with equal probability $\frac{1}{2}$

- Average case analysis needs a probability space:
 - assume the event $x_i = b$ is independent of the events $x_j = b$ for all $i \neq j$
 - assume each cell x_i of the array contains 0 or 1 with equal probability $\frac{1}{2}$
- For any vector having first k+1 components $(\underbrace{1,\ldots,1}_k,0)$, the loop is executed k times (for all $0 \le k < n$)

Event of a binary (k+1)-vector having given components has probability $\left(\frac{1}{2}\right)^{k+1}$

- Average case analysis needs a probability space:
 - assume the event $x_i = b$ is independent of the events $x_j = b$ for all $i \neq j$
 - assume each cell x_i of the array contains 0 or 1 with equal probability $\frac{1}{2}$
- For any vector having first k+1 components $(\underbrace{1,\ldots,1}_k,0)$, the loop is executed k times (for all $0 \le k < n$)

Event of a binary (k+1)-vector having given components has probability $\left(\frac{1}{2}\right)^{k+1}$

• If the vector is $(\underbrace{1,\ldots,1}_n)$ the loop is executed n times

Event of a binary n-vector having given components has probability $\left(\frac{1}{2}\right)^n$

The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for k < n

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for k < n
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^n$

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for k < n
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^n$
- Average number of executions:

$$\sum_{k=0}^{n-1} k2^{-(k+1)} + n2^{-n} \le \sum_{k=0}^{n-1} k2^{-k} + n2^{-n} = \sum_{k=0}^{n} k2^{-k}$$

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for k < n
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^n$
- Average number of executions:

$$\sum_{k=0}^{n-1} k 2^{-(k+1)} + n 2^{-n} \le \sum_{k=0}^{n-1} k 2^{-k} + n 2^{-n} = \sum_{k=0}^{n} k 2^{-k}$$

Thm.

$$\lim_{n \to \infty} \sum_{k=0}^{n} k 2^{-k} = 2$$

Proof

Geometric series $\sum_{k\geq 0}q^k=\frac{1}{1-q}$ for $q\in[0,1)$. Differentiate w.r.t. q, get $\sum_{k\geq 0}kq^{k-1}=\frac{1}{(1-q)^2}$; multiply by q, get $\sum_{k\geq 0}kq^k=\frac{q}{(1-q)^2}$. For $q=\frac{1}{2}$, get $\sum_{k\geq 0}k2^{-k}=(1/2)/(1/4)=2$.

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for k < n
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^n$
- Average number of executions:

$$\sum_{k=0}^{n-1} k 2^{-(k+1)} + n 2^{-n} \le \sum_{k=0}^{n-1} k 2^{-k} + n 2^{-n} = \sum_{k=0}^{n} k 2^{-k}$$

Thm.

$$\lim_{n \to \infty} \sum_{k=0}^{n} k 2^{-k} = 2$$

Proof

Geometric series
$$\sum_{k\geq 0}q^k=\frac{1}{1-q}$$
 for $q\in[0,1)$. Differentiate w.r.t. q , get $\sum_{k\geq 0}kq^{k-1}=\frac{1}{(1-q)^2}$; multiply by q , get $\sum_{k\geq 0}kq^k=\frac{q}{(1-q)^2}$. For $q=\frac{1}{2}$, get $\sum_{k\geq 0}k2^{-k}=(1/2)/(1/4)=2$.

Hence, the average complexity is constant O(1)

Jagged arrays

- Jagged array: a vector whose components are vectors of possibly different sizes
- E.g. $x = ((x_{00}, x_{01}), (x_{10}, x_{11}, x_{12}))$

Jagged arrays

- Jagged array: a vector whose components are vectors of possibly different sizes
- E.g. $x = ((x_{00}, x_{01}), (x_{10}, x_{11}, x_{12}))$

Special case: when all subvector sizes are the same, get a matrix: int x[][] = new int [2][3];

$$x = \left(\begin{array}{ccc} x_{00} & x_{01} & x_{02} \\ x_{10} & x_{11} & x_{12} \end{array}\right)$$

Jagged arrays can be used to represent a relation on a finite set

- Jagged arrays can be used to represent a relation on a finite set
- Let $V = \{v_1 \dots, v_n\}$ and E a relation on V E is a set of ordered pairs (u, v)

- Jagged arrays can be used to represent a relation on a finite set
- Let $V = \{v_1 \dots, v_n\}$ and E a relation on V E is a set of ordered pairs (u, v)

Representation:

- array of n components
- the *i*-th component is the array of v_j related to v_i

INF421, Lecture 1 - p. 28

- Jagged arrays can be used to represent a relation on a finite set
- Let $V = \{v_1 \dots, v_n\}$ and E a relation on V E is a set of ordered pairs (u, v)

Representation:

- array of n components
- the *i*-th component is the array of v_j related to v_i

Example:
$$V = \{1, 2, 3\},$$
 $E = \{(1, 1), (1, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$

Application: Networks

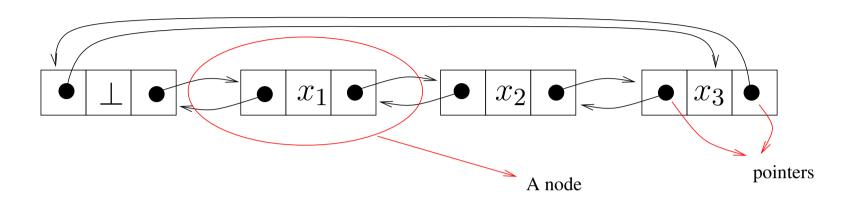
Array shortcomings

- Essentially fixed size
- Size must be known in advance
- Changing relative positions of elements is inefficient

INF421, Lecture 1 - p. 30

Lists

Doubly linked list



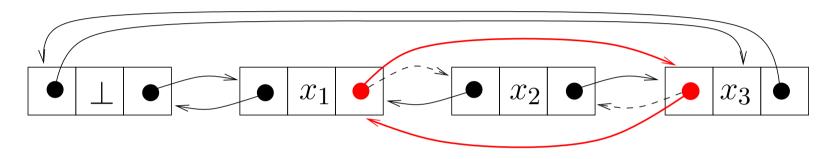
ullet Node N: a list element

```
N. {\tt prev} = {\tt address \ of \ previous \ node \ in \ list} \ N. {\tt next} = {\tt address \ of \ next \ node \ in \ list} \ N. {\tt datum} = {\tt the \ data \ element \ stored \ in \ the \ node}
```

- Placeholder node ⊥: before the first element, after the last element, no stored data
- Every node has two pointers, and is pointed to by two nodes

Remove a node

Remove current node (this)



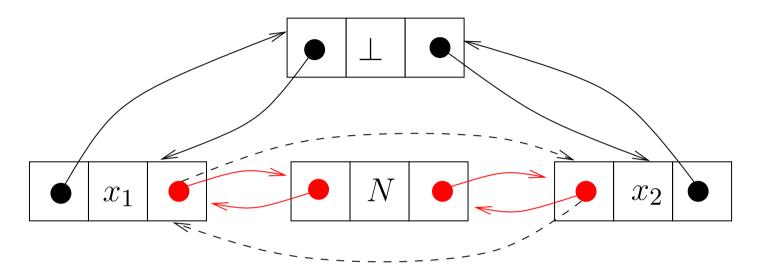
In the example, this = x_2

```
1: this.prev.next = this.next;
2: this.next.prev = this.prev;
```

Worst case complexity: O(1)

Insert a node

Insert current node (this) after node x_1



In the example, this = N

```
1: this.prev = x_1;
2: this.next = x_1.next;
3: x_1.next = this;
```

4: this.next.prev = this;

Worst case complexity: O(1)

Find next

- Given a list L and a node x, find next occurrence of element b
- If $b \in L$ return node where b is stored, else return \bot

```
1: while (x.datum \neq b \land x \neq \bot) do
```

2: x = x.next

3: end while

4: return x

Warning: every test costs 2 basic operations, inefficient

Find next

- Given a list L and a node x, find next occurrence of element b
- If $b \in L$ return node where b is stored, else return \bot

```
1: while (x.datum \neq b \land x \neq \bot) do
```

2: x = x.next

3: end while

4: return x

Warning: every test costs 2 basic operations, inefficient

```
1: \perp.datum = b
```

2: while $(x.datum \neq b)$ do

3: x = x.next

Now $t_{\text{test}} = 1$

4: end while

5: return x

List operations

For a doubly-linked list of size n:

Operations	Complexity
Read/write value of <i>i</i> -th node	O(n)
Find next	O(n)
Size ^a	O(n)
Is it empty?	O(1)
Read/write value of first/last node	O(1)
Remove element	O(1)
Insert element	O(1)
Move subsequence to position i	O(1)
Pop from front/back	O(1)
Push to front/back	O(1)
Concatenate	O(1)

End of Lecture 1