Course

INF421, Lecture 1 Lists and Complexity

Leo Liberti

LIX, École Polytechnique, France

Lecture summary

- Objective: to teach you some data structures and associated algorithms
- Evaluation: TP noté en salle info le 16 septembre, Contrôle à la fin. Note: $\max \left(C C, \frac{3}{4} C C+\frac{1}{4} T P\right)$
- Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10, amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)
- Books:

1. Ph. Baptiste \& L. Maranget, Programmation et Algorithmique, Ecole Polytechnique (Polycopié), 2006
2. G. Dowek, Les principes des langages de programmation, Editions de l'X, 2008
3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997
4. K. Mehlhorn \& P. Sanders, Algorithms and Data Structures, Springer, 2008

- Website: www.enseignement.polytechnique.fr/informatique/INF421
- Contact: [liberti@lix.polytechnique.fr (e-mail subject: INF421)

Assumptions

Two operations

address

Memory cell

- has an address
- stores a datum d
- Move datum from cell to CPU (read)

- Move datum from CPU to cell (write)
 Representation of memory: a sequence of cells

d_{0}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}		
0×0	0×1	0×2	0×3	0×4	0×5	\quad	A function $D: \mathbb{A} \rightarrow \mathbb{D}$
:---							
$\mathbb{A}:$ set of addresses							
\mathbb{D} : set of data elements							

Naming memory

A program variable is just a name for a chunk of memory

X denotes:

- We simply associate a name to the starting address
- The size of the chunk is given by the name's type
- Basic types: int, long, char, float, double
- Composite types: Cartesian products of basic types if $\mathrm{y} . \mathrm{a} \in$ int and $\mathrm{y} . \mathrm{b} \in$ float then $\mathrm{y} \in$ int \times float
- For theoretical purposes, assume memory is infinite
\rightarrow In practice it is finite
- Each datum can be stored in a single cell
\rightarrow Different data elements might have different sizes

Basic operations

- Assignment: write value in memory cell(s) named by variable (i.e. "variable=value")
- Arithmetic:,,$+- \times, \div$ for integer and floating point numbers
- Test: evaluate a logical condition: if true, change address of next instruction to be executed
- Loop: instead of performing next instruction in memory, jump to an instruction at a given address (more like a "go to")

WARNING! In these slides, I use "=" to mean two different things:

1. in assignments, "variable $=$ value" means "put value in the cell whose address is named by variable"
2. in tests, "variable $=\underline{\text { value" }}$ is TRUE if the cell whose address is named by variable contains value, and FALSE otherwise
in C/C++/Java "=" is used for assignments, and "==" for tests

.
 Composite operations: programs

Programs are built recursively from basic operations

- If A, B are ops, then concatenation " A; B " is an op

Semantics: execute A, then execute B

Complexity

- If A, B are ops and T is a test, "if (T) A else B" is an op
Semantics: if T is true execute A, else B
- If A is an op and T is a test, "while (T) A" is an op Semantics: 1: (if (T) A else (go to 2)) (go to 1) 2:

Complexity

- Several different programs can yield the same result: which is best?
- Evaluate their time (and/or space) complexity
- time complexity: how many "basic operations"
- space complexity: how much memory
used by the program during execution
- Worst case: max values during execution
- Best case: min values during execution
- Average case: average values during execution

```
P: a program
tP}\mathrm{ : number of basic operations performed by P
```


Time complexity (worst case)

- $\forall P \in\{$ assignment, arithmetic, test $\}$:

$$
t_{P}=1
$$

- Concatenation: for P, Q programs:

$$
t_{P ; Q}=t_{P}+t_{Q}
$$

- Test: for P, Q programs and R a test:

$$
t_{\text {if }(T) P \text { else } Q}=t_{T}+\max \left(t_{P}, t_{Q}\right)
$$

max: worst-case policy

- Loop: it's complicated
(depends on how and when loop terminates)

Loop complexity example

The complete loop

Let P be the following program:
1: $i=0$;
while $(i<n)$ do
A;
$i=i+1 ;$
end while

- Assume A does not change the value of i
- Body of loop executed n times
- $t_{P}(n)=1+n\left(t_{A}+3\right)$
- Why the ' 3 '? Well, $t_{(i<n)}=1, t_{(i+1)}=1, t_{(i=.)}=1$

Some examples

Functions	Order
$a n+b$ with a, b constants	$O(n)$
polynomial of degree d^{\prime} in n	$O\left(n^{d}\right)$ with $d \geq d^{\prime}$
$n+\log n$	$O(n)$
$n+\sqrt{n}$	$O(n)$
$\log n+\sqrt{n}$	$O(\sqrt{n})$
$n \log n^{3}$	$O(n \log n)$
$\frac{a n+b}{c n+d}, a, b, c, d$ constants	$O(1)$

- Make an effort to find the best (most slowly increasing) function $g(n)$ when saying " $f(n)$ is $O(g(n))$ "
- E.g. no one would say that $2 n+1$ is $O\left(n^{4}\right)$ (although it's technically true) - rather say $2 n+1$ is $O(n)$

Orders of complexity

- In the above program, suppose $t_{A}=\frac{1}{2} n$
- Then $t_{P}=\frac{1}{2} n^{2}+3 n+1$
- No one really cares about the constants $2,3,1$: all that matters is that t_{P} "behaves no worse than" the fn. n^{2}

- A function $f(n)$ is order of $g(n)$ (notation: $O(g(n)))$ if:

$$
\begin{equation*}
\exists c>0 \exists n_{0} \in \mathbb{N} \forall n>n_{0}(f(n) \leq c g(n)) \tag{1}
\end{equation*}
$$

- For $f(n)=\frac{1}{2} n^{2}+3 n+1$ and $g(n)=n^{2}, c=1$ and $n_{0}=6$ \qquad

Remark

- The complexity order is an asymptotic description of $t_{P}(n)$
- If $t_{P}(n)$ does not depend on n, its order of complexity is $O(1)$ (i.e. constant)
- Example: looping 10^{1000} times over an $O(1)$ code still yields an $O(1)$ program
- In other words, n must appear as a parameter of the program for the complexity order to be anything other than constant

Complexity of easy loops

```
input \(n\);
int \(s=0\)
int \(i=1\);
while \((i \leq n)\) do
\(s=s+i\);
    \(i=i+1 ;\)
end while
output \(s\);
```

```
for \(i=0 ; i<n-1 ; i=i+1\) do
```

for $i=0 ; i<n-1 ; i=i+1$ do
for $j=i+1 ; j<n ; j=j+1$ do
for $j=i+1 ; j<n ; j=j+1$ do
print i, j;
print i, j;
end for
end for
end for

```
end for
```

- $t(n)=3+5 n+1=5 n+4$
- $\Rightarrow t(n)$ is $O(n)$

Arrays

 n successive cellsAn array is allocated when the memory is reservedThe size of the array, n, is decided at allocation timeUsually, the size of the array does not change- When the array is no longer useful, the reserved memory can be deallocated or freed
- $t(n)=1+$
$\underbrace{(5(n-1)+6)+\ldots+(5+6)}_{n-1}$
$=1+5((n-1)+\ldots+1)+$
$6(n-1)=\frac{5}{2} n(n-1)+6 n-5$
$=\frac{5}{2} n^{2}+\frac{7}{2} n-5$
$t(n)$ is $O\left(n^{2}\right)$

Like a vector in maths

- A vector $x \in \mathbb{Q}^{n}$ is an n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ for some $n \in \mathbb{N}$
- In computers: x is the name for a memory address with
- Indexing starts from 0 (last cell is called x_{n-1})

$x:$| x_{0} | x_{1} | x_{2} | x_{3} | x_{4} |
| :--- | :--- | :--- | :--- | :--- |

Array operations

For an array of size n :

Operations	Complexity
Read value of i-th component	$O(1)$
Write value in i-th component	$O(1)$
Size	$O(1)$
Remove element (cell)	forget it *
Insert element (cell)	forget it
Move subsequence to position i	$O(n)$

Moving subsequence L to position i :
extract (contiguous) subsequence L from the array, and re-insert it after position i and before position $i+1$
\square
\square
\square
*: can simulate these operations using pointers, or de-realloc

Norm of a vector in \mathbb{R}^{5}

Incomplete loop

1: input $x \in \mathbb{Q}^{5}$;
2: int $i=0$;
3: float $a=0$;
4: while $(i<5)$ do
5: $\quad a=a+x_{i} \times x_{i}$;
end while
: $a=\operatorname{sqrt}(a)$;

- Computes $\sqrt{\sum_{i=0}^{4} x_{i}^{2}}$
- Complexity: $O(1)$ (why?)

Worst case complexity of incomplete loop

- Among all inputs of the algorithm, find those yielding the worst complexity
- In the case above, $x=(1,1, \ldots, 1)$ always makes the loop continue to the end, i.e. for n iterations
Thm.
Proof
Suppose false, then there is a vector $x \neq(1, \ldots, 1)$ yielding a complexity $t(n)>$ n. Since $x \neq(1, \ldots, 1), x$ contains at least one 0 component. Let $j<n$ be the smallest index such that $x_{j}=0$: at iteration j the loop breaks, and the complexity is $t(n)=j$, which is smaller than n : contradiction.
- Since the other operations are $O(1)$, get $O(n)$

Potential difficulty of this approach: identifying the worstcase inputs and proving no other input is worse
: input $x \in\{0,1\}^{n}$;
: int $i=0$;
while $\left(i<n \wedge x_{i}=1\right)$ do
$x_{i}=0$;
$i=i+1 ;$
end while
if $(i<n)$ then
$x_{i}=1$;
end if
0: output x;

- Components of x can only be 0 or 1
- Loop continues over all components as long as their value is 1 ; at the first 0 component, it stops
- Complexity?
- Average case analysis needs a probability space:
- assume the event $x_{i}=b$ is independent of the events

$$
x_{j}=b \text { for all } i \neq j
$$

- assume each cell x_{i} of the array contains 0 or 1 with equal probability $\frac{1}{2}$
- For any vector having first $k+1$ components $(\underbrace{1, \ldots, 1}, 0)$, the loop is executed k times (for all $0 \leq k<n$) Event of a binary $(k+1)$-vector having given components has probability $\left(\frac{1}{2}\right)^{k}$
- If the vector is $(\underbrace{1, \ldots, 1})$ the loop is executed n times n
Event of a binary n-vector having given components has probability $\left(\frac{1}{2}\right)^{n}$

Jagged arrays

- The loop is executed k times with probability $\left(\frac{1}{2}\right)^{k+1}$, for $k<n$
- The loop is executed n times with probability $\left(\frac{1}{2}\right)^{n}$
- Average number of executions:

$$
\sum_{k=0}^{n-1} k 2^{-(k+1)}+n 2^{-n} \leq \sum_{k=0}^{n-1} k 2^{-k}+n 2^{-n}=\sum_{k=0}^{n} k 2^{-k}
$$

Thm.
$\lim _{n \rightarrow \infty} \sum_{k=0}^{n} k 2^{-k}=2$
Proof
Geometric series $\sum_{k \geq 0} q^{k}=\frac{1}{1-q}$ for $q \in[0,1)$. Differentiate w.r.t. q, get
$\sum_{k \geq 0} k q^{k-1}=\frac{1}{(1-q)^{2}} ;$ multiply by q, get $\sum_{k \geq 0} k q^{k}=\frac{q}{(1-q)^{2}}$. For $q=\frac{1}{2}$,
get $\sum_{k \geq 0} k 2^{-k}=(1 / 2) /(1 / 4)=2$.

Hence, the average complexity is constant $O(1)$

- Jagged array: a vector whose components are vectors of possibly different sizes
- E.g. $x=\left(\left(x_{00}, x_{01}\right),\left(x_{10}, x_{11}, x_{12}\right)\right)$

$$
x: \begin{array}{|l|l|l|}
\hline x_{0}: \\
\cline { 1 - 2 } x_{1}: & \begin{array}{|l|l|l|}
\hline x_{00} & x_{01} & \\
\hline x_{10} & x_{11} & x_{12} \\
\hline
\end{array} \\
\hline
\end{array}
$$

- Special case: when all subvector sizes are the same, get a matrix: int $x[][]=$ new int [2][3];

$$
x=\left(\begin{array}{lll}
x_{00} & x_{01} & x_{02} \\
x_{10} & x_{11} & x_{12}
\end{array}\right)
$$

Representing relations

Jagged arrays can be used to represent a relation on a finite set

- Let $V=\left\{v_{1} \ldots, v_{n}\right\}$ and E a relation on V

$$
E \text { is a set of ordered pairs }(u, v)
$$

- Representation:
- array of n components
- the i-th component is the array of v_{j} related to v_{i}
- Example: $V=\{1,2,3\}$,
$E=\{(1,1),(1,2),(2,3),(3,1),(3,2),(3,3)\}$

Application: Networks

$$
E: \begin{array}{|l|lll}
\hline 1 & 1 & 2 & \\
\hline 2 & 3 & & \\
\hline 3 & 1 & 2 & 3 \\
\hline
\end{array}
$$

Array shortcomings

- Essentially fixed size
- Size must be known in advance
- Changing relative positions of elements is inefficient

Lists

Doubly linked list

- Node N : a list element

> | N. prev | $=$ address of previous node in list |
| :--- | :--- |
| N. next | $=$ address of next node in list |
| N. datum | $=$ the data element stored in the node |

- Placeholder node \perp : before the first element, after the last element, no stored data
- Every node has two pointers, and is pointed to by two nodes
․ Remove a node

Remove current node (this)

In the example, this $=x_{2}$
1: this.prev.next $=$ this.next ;
2: this.next.prev $=$ this.prev;
Worst case complexity: $O(1)$

Insert a node

Find next

Insert current node (this) after node x_{1}

In the example, this $=N$
1: this.prev $=x_{1}$;
2: this.next $=x_{1}$.next
3: x_{1}.next $=$ this ;
4: this.next. prev $=$ this ;
Worst case complexity: $O(1)$

List operations

For a doubly-linked list of size n :

Operations	Complexity
Read/write value of i-th node	$O(n)$
Find next	$O(n)$
Size	$O(n)$
Is it empty?	$O(1)$
Read/write value of first/last node	$O(1)$
Remove element	$O(1)$
Insert element	$O(1)$
Move subsequence to position i	$O(1)$
Pop from front/back	$O(1)$
Push to front/back	$O(1)$
Concatenate	$O(1)$

- Given a list L and a node x, find next occurrence of element b
- If $b \in L$ return node where b is stored, else return \perp

```
: while (x.datum }\not=b\wedgex\not=\perp)\mathrm{ do
x=x.next
end while
return
```

Warning: every test costs 2 basic operations, inefficient

```
L.datum = b
while (x.datum }=b)\mathrm{ do
x=x.next Now t test }=
end while
return
```

End of Lecture 1

