
INF421, Lecture 1
Lists and Complexity

Leo Liberti

LIX, École Polytechnique, France

INF421, Lecture 1 – p. 1

Course
Objective: to teach you some data structures and associated
algorithms

Evaluation: TP noté en salle info le 16 septembre, Contrôle à la fin.
Note: max(CC, 3

4CC + 1
4TP)

Organization: fri 26/8, 2/9, 9/9, 16/9, 23/9, 30/9, 7/10, 14/10, 21/10,
amphi 1030-12 (Arago), TD 1330-1530, 1545-1745 (SI31,32,33,34)

Books:
1. Ph. Baptiste & L. Maranget, Programmation et Algorithmique, Ecole Polytechnique

(Polycopié), 2006

2. G. Dowek, Les principes des langages de programmation, Editions de l’X, 2008

3. D. Knuth, The Art of Computer Programming, Addison-Wesley, 1997

4. K. Mehlhorn & P. Sanders, Algorithms and Data Structures, Springer, 2008

Website: www.enseignement.polytechnique.fr/informatique/INF421

Contact: liberti@lix.polytechnique.fr (e-mail subject: INF421)

INF421, Lecture 1 – p. 2

Lecture summary

Reminders

Complexity

Lists

INF421, Lecture 1 – p. 3

Reminders

INF421, Lecture 1 – p. 4

www.enseignement.polytechnique.fr/informatique/INF421
liberti@lix.polytechnique.fr

Memory

address

Memory cell

has an address

stores a datum d

Two operations

Move datum from cell to CPU
(read)

0x1FFF241 C
PUd

d

Move datum from CPU to cell
(write)

0x1FFF241 C
PUd

Representation of memory: a sequence of cells

0x0

d0

0x1

d1

0x2

d2

0x3

d3

0x4

d4

0x5

d5
A function D : A → D

A: set of addresses

D: set of data elements

INF421, Lecture 1 – p. 5

Assumptions

For theoretical purposes, assume memory is infinite

→ In practice it is finite

Each datum can be stored in a single cell

→ Different data elements might have different sizes

INF421, Lecture 1 – p. 6

Naming memory

A program variable is just a name
for a chunk of memory

x denotes:
0x4 0x5 0x6 0x7

We simply associate a name to the starting address

The size of the chunk is given by the name’s type

Basic types: int, long, char, float, double

Composite types: Cartesian products of basic types
if y.a ∈ int and y.b ∈ float then y ∈ int × float

INF421, Lecture 1 – p. 7

Basic operations
Assignment: write value in memory cell(s) named by
variable (i.e. “variable=value”)

Arithmetic: +,−,×,÷ for integer and floating point
numbers

Test: evaluate a logical condition: if true, change
address of next instruction to be executed

Loop: instead of performing next instruction in memory,
jump to an instruction at a given address (more like a “go to”)

WARNING! In these slides, I use “=” to mean two different things:

1. in assignments, “variable = value” means “put value in the cell whose address is
named by variable”

2. in tests, “variable = value” is TRUE if the cell whose address is named by variable
contains value, and FALSE otherwise

in C/C++/Java “=” is used for assignments, and “==” for tests

INF421, Lecture 1 – p. 8

Composite operations: programs

Programs are built recursively from basic operations

If A, B are ops, then concatenation “A;B” is an op
Semantics: execute A, then execute B

If A, B are ops and T is a test, “if (T) A else B” is
an op
Semantics: if T is true execute A, else B

If A is an op and T is a test, “while (T) A” is an op
Semantics: 1:(if (T) A else (go to 2)) (go to 1) 2:

INF421, Lecture 1 – p. 9

Complexity

INF421, Lecture 1 – p. 10

Complexity

Several different programs can yield the same result:
which is best?

Evaluate their time (and/or space) complexity

time complexity: how many “basic operations”

space complexity: how much memory

used by the program during execution

Worst case: max values during execution

Best case: min values during execution

Average case: average values during execution

P : a program
tP : number of basic operations performed by P

INF421, Lecture 1 – p. 11

Time complexity (worst case)

∀P ∈ {assignment,arithmetic,test}:
tP = 1

Concatenation: for P,Q programs:
tP ;Q = tP + tQ

Test: for P,Q programs and R a test:
tif (T) P else Q = tT +max(tP , tQ)

max: worst-case policy

Loop: it’s complicated
(depends on how and when loop terminates)

INF421, Lecture 1 – p. 12

Loop complexity example

The complete loop
Let P be the following program:
1: i = 0 ;
2: while (i < n) do
3: A;
4: i = i+ 1;
5: end while

Assume A does not change the value of i

Body of loop executed n times

tP (n) = 1 + n(tA + 3)

Why the ‘3’? Well, t(i<n) = 1, t(i+1) = 1, t(i=·) = 1

INF421, Lecture 1 – p. 13

Orders of complexity
In the above program, suppose tA = 1

2n

Then tP = 1
2n

2 + 3n+ 1

No one really cares about the constants 2, 3, 1: all that
matters is that tP “behaves no worse than” the fn. n2

1
2n

2 + 3n + 1 is
O(n2)

A function f(n) is order of g(n) (notation: O(g(n))) if:

∃c > 0 ∃n0 ∈ N ∀n > n0 (f(n) ≤ cg(n)) (1)

For f(n) = 1
2n

2 + 3n+ 1 and g(n) = n2, c = 1 and n0 = 6

INF421, Lecture 1 – p. 14

Some examples

Functions Order

an+ b with a, b constants O(n)

polynomial of degree d′ in n O(nd) with d ≥ d′

n+ log n O(n)

n+
√
n O(n)

log n+
√
n O(

√
n)

n log n3 O(n logn)
an+b
cn+d , a, b, c, d constants O(1)

Make an effort to find the best (most slowly increasing)
function g(n) when saying “f(n) is O(g(n))”

E.g. no one would say that 2n+ 1 is O(n4) (although it’s
technically true) — rather say 2n+ 1 is O(n)

INF421, Lecture 1 – p. 15

Remark

The complexity order is an asymptotic description of
tP (n)

If tP (n) does not depend on n, its order of complexity is
O(1) (i.e. constant)

Example: looping 101000 times over an O(1) code still
yields an O(1) program

In other words, n must appear as a parameter of the
program for the complexity order to be anything other
than constant

INF421, Lecture 1 – p. 16

Complexity of easy loops

1: input n;
2: int s = 0;
3: int i = 1;
4: while (i ≤ n) do
5: s = s+ i;
6: i = i+ 1;
7: end while
8: output s;

t(n) = 3 + 5n+ 1 = 5n+ 4

⇒ t(n) is O(n)

1: for i = 0; i < n− 1; i = i+ 1 do
2: for j = i+1; j < n; j = j +1 do
3: print i, j;
4: end for
5: end for

t(n) = 1 +

(5(n− 1) + 6) + . . .+ (5 + 6)
︸ ︷︷ ︸

n−1

= 1 + 5((n− 1) + . . .+ 1) +

6(n−1) = 5

2
n(n−1)+6n−5

= 5

2
n2 + 7

2
n− 5

t(n) is O(n2)

INF421, Lecture 1 – p. 17

Arrays

INF421, Lecture 1 – p. 18

Like a vector in maths

A vector x ∈ Qn is an n-tuple (x1, . . . , xn) for some n ∈ N

In computers: x is the name for a memory address with
n successive cells

Indexing starts from 0 (last cell is called xn−1)

x : x0 x1 x2 x3 x4

An array is allocated when the memory is reserved

The size of the array, n, is decided at allocation time

Usually, the size of the array does not change

When the array is no longer useful, the reserved memory can be
deallocated or freed

INF421, Lecture 1 – p. 19

Array operations
For an array of size n:

Operations Complexity

Read value of i-th component O(1)

Write value in i-th component O(1)

Size O(1)

Remove element (cell) forget it∗

Insert element (cell) forget it∗

Move subsequence to position i O(n)

Moving subsequence L to position i:
extract (contiguous) subsequence L from the array, and re-insert it
after position i and before position i+ 1

i i iL1 L1 L1 L2L2 L2

∗: can simulate these operations using pointers, or de-realloc
INF421, Lecture 1 – p. 20

Norm of a vector in R5

1: input x ∈ Q5;
2: int i = 0;
3: float a = 0;
4: while (i < 5) do
5: a = a+ xi × xi;
6: end while
7: a = sqrt(a);

Computes
√
∑4

i=0 x
2
i

Complexity: O(1) (why?)

INF421, Lecture 1 – p. 21

Incomplete loop
1: input x ∈ {0, 1}n;
2: int i = 0;
3: while (i < n ∧ xi = 1) do
4: xi = 0;
5: i = i+ 1;
6: end while
7: if (i < n) then
8: xi = 1;
9: end if

10: output x;

Input Output

(0,0,0,0) (1,0,0,0)

(1,1,0,0) (0,0,1,0)

(0,1,1,0) (1,1,1,0)

(1,1,1,1) (0,0,0,0)

Components of x can only be 0 or 1

Loop continues over all components as long as their value is 1; at
the first 0 component, it stops

Complexity?

INF421, Lecture 1 – p. 22

Worst case complexity of incomplete loop

Among all inputs of the algorithm, find those yielding
the worst complexity

In the case above, x = (1, 1, . . . , 1) always makes the
loop continue to the end, i.e. for n iterations
Thm.
(1, 1 . . . , 1) is the input yielding worst complexity

Proof
Suppose false, then there is a vector x 6= (1, . . . , 1) yielding a complexity t(n) >

n. Since x 6= (1, . . . , 1), x contains at least one 0 component. Let j < n be the
smallest index such that xj = 0: at iteration j the loop breaks, and the complexity
is t(n) = j, which is smaller than n: contradiction.

Since the other operations are O(1), get O(n)

Potential difficulty of this approach: identifying the worst-
case inputs and proving no other input is worse

INF421, Lecture 1 – p. 23

Average case complexity of incomplete loop (1/2)

Average case analysis needs a probability space:
assume the event xi = b is independent of the events
xj = b for all i 6= j

assume each cell xi of the array contains 0 or 1 with equal
probability 1

2

For any vector having first k+1 components (1, . . . , 1
︸ ︷︷ ︸

k

, 0),

the loop is executed k times (for all 0 ≤ k < n)
Event of a binary (k + 1)-vector having given components has probability

(
1

2

)k+1

If the vector is (1, . . . , 1
︸ ︷︷ ︸

n

) the loop is executed n times

Event of a binary n-vector having given components has probability
(
1

2

)n

INF421, Lecture 1 – p. 24

Average case complexity of incomplete loop (2/2)

The loop is executed k times with probability
(
1
2

)k+1
, for k < n

The loop is executed n times with probability
(
1
2

)n

Average number of executions:

n−1∑

k=0

k2−(k+1) + n2−n ≤
n−1∑

k=0

k2−k + n2−n =
n∑

k=0

k2−k

Thm.
lim
n→∞

∑n

k=0 k2
−k = 2

Proof
Geometric series

∑

k≥0 q
k = 1

1−q
for q ∈ [0, 1). Differentiate w.r.t. q, get

∑

k≥0 kq
k−1 = 1

(1−q)2 ; multiply by q, get
∑

k≥0 kq
k = q

(1−q)2 . For q = 1
2 ,

get
∑

k≥0 k2
−k = (1/2)/(1/4) = 2.

Hence, the average complexity is constant O(1)

INF421, Lecture 1 – p. 25

Jagged arrays

Jagged array: a vector whose components are vectors of
possibly different sizes

E.g. x = ((x00, x01), (x10, x11, x12))

x :
x0 : x00 x01

x1 : x10 x11 x12

Special case: when all subvector sizes are the same, get
a matrix: int x[][] = new int [2][3];

x =

(

x00 x01 x02

x10 x11 x12

)

INF421, Lecture 1 – p. 26

Representing relations
Jagged arrays can be used to represent a relation on a
finite set

Let V = {v1 . . . , vn} and E a relation on V

E is a set of ordered pairs (u, v)

Representation:
array of n components
the i-th component is the array of vj related to vi

Example: V = {1, 2, 3},
E = {(1, 1), (1, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

E :

1 1 2

2 3

3 1 2 3

INF421, Lecture 1 – p. 27

Application: Networks

INF421, Lecture 1 – p. 28

Array shortcomings

Essentially fixed size

Size must be known in advance

Changing relative positions of elements is inefficient

INF421, Lecture 1 – p. 29

Lists

INF421, Lecture 1 – p. 30

Doubly linked list

A node
pointers

⊥ x1 x2 x3

Node N : a list element

N.prev = address of previous node in list
N.next = address of next node in list
N.datum = the data element stored in the node

Placeholder node ⊥: before the first element, after the last
element, no stored data

Every node has two pointers, and is pointed to by two nodes

INF421, Lecture 1 – p. 31

Remove a node

Remove current node (this)

⊥ x1 x2 x3

In the example, this= x2

1: this.prev.next = this.next ;
2: this.next.prev = this.prev ;

Worst case complexity: O(1)

INF421, Lecture 1 – p. 32

Insert a node
Insert current node (this) after node x1

⊥

x1 x2N

In the example, this= N

1: this.prev = x1 ;
2: this.next = x1.next ;
3: x1.next = this ;
4: this.next.prev = this ;

Worst case complexity: O(1)

INF421, Lecture 1 – p. 33

Find next
Given a list L and a node x, find next occurrence of
element b

If b ∈ L return node where b is stored, else return ⊥

1: while (x.datum 6= b ∧ x 6= ⊥) do
2: x = x.next
3: end while
4: return x

Warning: every test costs 2 basic operations, inefficient

1: ⊥.datum = b

2: while (x.datum 6= b) do
3: x = x.next
4: end while
5: return x

Now ttest = 1

INF421, Lecture 1 – p. 34

List operations
For a doubly-linked list of size n:

Operations Complexity

Read/write value of i-th node O(n)

Find next O(n)

Sizea O(n)

Is it empty? O(1)

Read/write value of first/last node O(1)

Remove element O(1)

Insert element O(1)

Move subsequence to position i O(1)

Pop from front/back O(1)

Push to front/back O(1)

Concatenate O(1)

aSome implementations are O(1) by storing and updating size INF421, Lecture 1 – p. 35

End of Lecture 1

INF421, Lecture 1 – p. 36

	Course
	Lecture summary
	Reminders
	Memory
	Assumptions
	Naming memory
	Basic operations
	Composite operations: programs
	Complexity
	Complexity
	Time complexity (worst case)
	Loop complexity example
	Orders of complexity
	Some examples
	Remark
	Complexity of easy loops
	Arrays
	Like a vector in maths
	Array operations
	Norm of a vector in $mathbb {R}^5$
	Incomplete loop
	{small Worst case complexity of incomplete loop}
	{small Average case complexity of incomplete loop (1/2)}
	{small Average case complexity of incomplete loop (2/2)}
	Jagged arrays
	Representing relations
	Application: Networks
	Array shortcomings
	Lists
	Doubly linked list
	Remove a node
	Insert a node
	Find next
	List operations
	End of Lecture 1

