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Preface

Although this looks like a book, it is not a book. Perhaps one day it will become
a book, but for the moment it is just a set of notes designed to help me think
about how to teach a fundamental computer science course for students at
Ecole Polytechnique. It may serve as a reference, and hopefully it will even
clarify things. But students using these notes should also rely on other books. I
would advise the “polycopié” for INF421 written by Philippe Baptiste and Luc
Maranget, as well as the recent book by Kurt Mehlhorn and Peter Sanders [?].

This material was written with teaching in mind, by someone who studied
mathematics (rather than computer science) in college. For a mathematician,
teaching computer science is devious. For purposes of clarity, mathematicians
never hesitate in giving different technical views of the same fundamental con-
cept. But “the computer” is actually a real object with a set of corresponding
physical properties. Bending facts — whilst keeping the functional properties
valid — for didactical purposes amounts to lie so that the readers can better
understand a concept. In this material I only refer to conceptual models of a
computer, not to the actual physical object. Thus, if I believe I can be clearer, I
will not refrain from distorting some physical fact whilst keeping the functional
description valid.

Let me dispel a myth about learning computer science. Students often be-
lieve that a computer science course will teach them how to use and program
computers. This is less than half true. By analogy, would you consider yourself
a pianist after attending a musical theory course? Of course not: you have to
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actually put your hands on the keyboard and and practice for ten years or so;
naturally, a good supporting musical theory course can speed things up whilst
you teach your brain and hands to adapt to the new expressive medium. Pro-
gramming computers is as much a practice as it is a science. A computer science
course can help you steer towards a good direction, but it is no substitute for
practice. Quite the reverse is true, in fact: there are some brilliant coders which
learned the trade all on their own, without ever following a course. Although
they are now becoming a minority, learning to program computers has always
been an affair between the coder and the machine (no teacher involved) until
relatively recently, when universities started opening computer science depart-
ments. Compare with mathematics: budding mathematicians have followed
mathematics courses ever since mathematics existed, and “learning mathemat-
ics”, “teaching mathematics” and “creating mathematics” were always consid-
ered to be necessary activities for any mathematician. Computer science is
different, and requires a lot of solitary work between coder and machine. So
you should not expect to succeed in this course without the proverbial blood,
sweat and tears. Get programming.



CHAPTER

1
Introduction

This introductory chapter is a collection of motivating examples treated infor-
mally. No formal definitions will be introduced here. The primary purpose of
the chapter is to invite the reader to further the study of data structures and
graphs. Another important purpose is to establish certain key ideas which will
be discussed in depth later on.

1.1 A motivation for data structures

A data structure is an organized arrangement of information in the computer
memory. The main message in this section is:

The way information is arranged in a computer memory may

impact algorithmic efficiency — it is therefore important to

employ the best structure.

A scientist gathers data samples a = (a1, . . . , an) ∈ Rn. The experimental pro- CPU time is measured in
terms of number of ele-
mentary operations (taking
a negligible time) performed
by a program.

tocol requires the application of the function f : Rn →R, given by:

f (x) =
n
∑

i=1

i xi

3



4 CHAPTER 1. INTRODUCTION

to the samples. The scientist writes the computer program given in Alg. 1, and

Algorithm 1 weightedSum

Input: an integer n, an array of floating point numbers a ∈Rn

Output: a floating point number s containing the result

1: s ← 0

2: for i ∈ {1, . . . ,n} do

3: s ← s + i ai

4: end for

then runs the program on a collection of 1000 samples of size n = 100. How
long will the program take to complete?

The answer to the above question mainly depends on how we store and
manipulate information within the computer memory. We can safely assume
that our model for the computer memory is a finite, linearly arranged array
of “boxes”, indexed from 0 to M , each of which can contain a piece of data.
We might then imagine that a sequence of 5 floating point numbers a1, . . . , a5 is
stored in memory as follows.

21 3 4 5 60 87 9

. . .a1 a2 a3 a4 a5

M −2 M −1 M

With this memory model, reading the value ai at the i -th iteration of the loop
at Line 2 would require a constant CPU time (say, for simplicity, one unit of CPU
time), as the index of the box containing ai is simply (i −1). Since there are n

iterations in the loop, Alg. 1 would take n CPU time units to complete.

This, however, is a very coarse model of what really happens. A more con-
vincing model would take into account the fact that most operating systems
nowadays are time-sharing, i.e. they share the CPU time among an unspecified
number of applications. This gives the user the appearance that each appli-
cation is run by a dedicated CPU. Specifically, we are going to pretend that
Alg. 1 program receives just enough CPU time to write at most two floating
point numbers in memory during its allocated slot. A more accurate memory
representation would then be:

21 3 4 5 60 87 9

. . .a1 a2 ∗ a3 a4 ∗ ∗ ∗ a5 ∗

M −2 M −1 M
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where ∗ denotes characters written to memory by other programs in execution.
The effect on the memory is that pieces of data which should logically be ar-
ranged in contiguous boxes end up being fragmented. As Alg. 1 has no way Data are fragmented when-

ever logically related data
elements are non-contiguous
in memory.

of knowing the index of the box holding each piece of data, this situation is
troublesome.

A more suitable memory structure for holding the data would employ two
boxes for each piece of data: how for holding the actual data, and another to
store the index of the next relevant box pair.

21 3 4 5 60 87 9 A CB D

a1 0x2 a2 0x5 ∗ a3 0x7 a4 0xC ∗ ∗ ∗ a5 -0x1

In the above representation, we used hexadecimal notation for denoting box Hexadecimal notation: inte-
gers are expressed in base
16. Digits: 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, A, B, C, D, E, F.
We prefix hex numbers with
0x. E.g. 0x1C is 28 in base
10.

indices, and we used the negative index −0x1, which would never be used to
index an actual box, to mark the end of the array. A clearer graphical repre-
sentation of the list just discussed is shown in Fig. 1.1 In this linked list, each

a1 a2 a3 a4 a5

Figure 1.1: A graphical representation of a linked list.

Linked lists are amongst
the most fundamental data
structures. They can also
be seen as a special type of
graph, namely paths (linked
sequences of elements).

piece of data takes two adjacent boxes: the left box stores the actual data, and
the right one stores the index of the following box. This wastes data but allows
a more flexible use of memory (there are other advantages associated to this
representation, which will be discussed later on).

A B

A=parent/head
B=child/subnode/tail

A B

A=root B=leaf

If we look at Alg. 1 in more detail, however, we also discover a disadvantage:
Line 3 requires reading from memory the value of ai given the value for i . In
the very simplest analysis, accessing the i -th element of data ai requires starting
from the beginning and following the links in the list i times, thereby yielding
a CPU time proportional to i . Line 3 makes it clear that Alg. 1 takes a CPU time
proportional to i to update s at the i -th iteration, since ai needs to be read.
Summing up, the CPU time required by Alg. 1 is proportional to

1+2+ . . .+n =
n(n +1)

2
,

which is one order of magnitude larger than we would have obtained by using
a linear array whose boxes contain data elements with contiguous indices.
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We now propose a third memory structure which improves on this situa-A tree is also a special type
of graph, notably a con-
nected graph without cycles
(closed paths).

tion, whilst still allowing for fragmented data storage: the binary tree shown
in Fig. 1.2. Each tree element v is called a node. In the present case, each

2
a2

1
a1

4
a4

3
a3

5
a5

Figure 1.2: A tree structure.

node consists of three contiguous memory boxes: the middle box stores a data
element, the left box stores the index of the middle box of the left subnode v−

and the right box stores the index of the middle box of the right subnode v+. AA procedure is recursive
when one of the steps is a
call to the procedure itself,
with different arguments.

procedure for finding the element ai in the tree is given in Alg. 2. This proce-
dure is recursive (this feature will be discussed in much more detail later). If
we denote the root node of the tree by r , then treeFind(r, i ) will correctly return
ai . For example, if r = 2 and we call treeFind(2,3), Alg. 2 establishes that v < i

Algorithm 2 treeFind(v, i )

Input: a box index v , an integer i with i ≤ n

Output: the data element ai

1: if v = i then

2: return av

3: else if v > i then

4: return treeFind(v−, i )

5: else if v < i then

6: return treeFind(v+, i )

7: end if

and hence calls itself at Line 6 as treeFind(4,3), then it establishes that v > i and
hence calls itself at Line 4 as treeFind(3,3) and finally verifies that v = i and
returns a3. This all works because i ∈ {1, . . . ,n} and because the tree contains allA subtree is a tree which is

also part of another tree. n values of the sequence a arranged in a special way. Namely, for each node v

the left subtree contains data values ai with v > i and the right subtree contains
data values ai with v < i , with node v containing the data value av .
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The crucial observation for this memory structure is that in order to retrieve
ai , for any given i ∈ {1, . . . ,n}, we always start from the root node and, at worst,
we only need to access as many nodes as the path from the root to the node
containing ai : in the worst case, this may be a leaf node. The length of the path
from the root to the deepest leaf node in a tree is known as the height of the
tree. If the binary tree is balanced then the height of the tree is approximately In a balanced tree, for each

node v of the tree the subtree
rooted on v− contains ap-
proximately as many nodes
as the subtree rooted on v+.

log2 n. Thus, the CPU time taken by Alg. 1 is proportional to n log2 n, which is
less than n(n + 1)/2, as was the case for the linked list structure. This shows
that a balanced binary tree is a good compromise between fragmentation and
efficiency.

In the following, we shall refer to the model consisting of a finite linearly
arranged array of boxes as memory, and to box indices as memory addresses.

1.2 Motivations for graphs

Graphs are used in mathematics, science and engineering to represent relations
on elements of a set. The main message in this section is:

Data elements are not the only essential piece of information

in data; the relations between the elements are also vitally

important.

1.2.1 Data and graphs

Different pieces of information relating to similar occurrences are often struc-
tured. Think of a spreadsheet: different rows refer to different items with
a common set of attributes, organized by columns. The same holds in most
databases, where each table (equivalent to a sheet of a spreadsheet) holds a
set of records (equivalent to rows) with a common set of properties (equiv-
alent to columns). Searching, sorting and querying data organized this way
yields a relation on the data. For example, a sorting operation on the sequence A relation on a set is a set of

pairs of elements of the set.(a4, a3, a5, a1, a2) according to the indices results in the ranking (a1, . . . , a5). This
can be modelled by the relation consisting of the following set of ordered pairs:
(a1, a2), (a2, a3), (a3, a4), (a4, a5). We can represent this as the graph shown in
Fig. 1.3. The similarity with the linked list representation of Fig. 1.1 is striking.
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a1 a2 a3 a4 a5

Figure 1.3: Graph of the order relation (a1, . . . , a5).

Different relations on the same records yield different graphs: for example,
(a2, a1), (a2, a4), (a4, a3), (a4, a5) corresponds to the tree of Fig. 1.2. Thus, data
structures can be modelled by graphs.

The usefulness of representing data structures by means of the “graph” ab-
straction is that the whole body of theoretical and algorithmic results on graphs
can be applied to the data structure in question.

1.2.2 The web graph

Information need not be as structured as spreadsheets or databases. Each web
page, for example, corresponds to a file, usually written in Hyper-Text Markup
Language (HTML), which is a sequence of words of a formal language (theA language over the alpha-

bet A is a subset of A∗, the
set of all finite sequences of
characters in A.

In a formal language each
sentence has a precisely de-
fined meaning. This is not
the case for natural lan-
guages.

HTML tags) interspersed with words of a natural language (English, French
and so on). A specific HTML tag, <a href="url">name</a>, permits the cre-
ation of the hyperlink name pointing to the information stored in the Uniform
Resource Locator (URL) url. This yields a relation consisting of ordered pairs
of web pages whenever the first contains a hyperlink to the second. The graph
corresponding to this relation is huge and constantly evolving. A 2009 version

Graphs that change over
time are called dynamic.

of the web graph1 counts 4,780,950,903 URLs and 7,944,351,835 hyperlinks.

Fig. 1.4 and 1.5 show small web subgraphs around two organizational web-
sites: the Institute for Electrical and Electronics Engineers (IEEE) and the French
car manufacturer PSA corporate website. As the web graph is a dynamic, the
two subgraphs in the figures correspond to snapshots taken in 2008. The PSAA subgraph is a graph which

is also part of another graph. web subgraph shows a more tree-like structure than the IEEE subgraph. This is
likely to be an effect of the PSA corporate structure, organized more hierarchi-
cally than an academic society.

1 http://boston.lti.
s.
mu.edu/
lueweb09/wiki/tiki-index.php?page=Web+Graph



1.2. MOTIVATIONS FOR GRAPHS 9

www.ieee.com

ieeexplore.ieee.org?WT.mc_id=tu_xplore

spectrum.ieee.org

www.spectrum.ieee.org

www.ieee.org

www.scitopia.org

careers.ieee.org

ieeexplore.ieee.orgwww.adicio.com

Thu Jan 10 18:18:18 2008

Figure 1.4: A web subgraph around www.ieee.org.

www.psa-peugeot-citroen.com

www.peugeot.com www.sustainability.psa-peugeot-citroen.com b2b.psa-peugeot-citroen.com www.psa.net.cn www.slovakia.psa-peugeot-citroen.com

www.developpement-durable.psa.fr’ www.peugeot.sk www.citroen.sk

www.peugeot-avenue.com www.citroen-bazar.sk www.nascortech.com

Thu Jan 10 18:43:51 2008

Figure 1.5: A web subgraph around www.psa-peugeot-
itroen.
om.

1.2.3 The internet graph

The set of all internet routers also yields a graph whose relations consists of
pairs of connected routers. Unlike previous examples, this relation is symmet-
ric: if router A is connected to router B , then router B is connected to router
A. Fig. 1.6 shows2 a picture of autonomous systems of Internet Protocol (IPv4) In a symmetric relation ∼, if

a ∼ b then b ∼ a.numbers dated 2005 — each autonomous system corresponds more or less to
an Internet Service Provider (ISP).

2 http://www.
aida.org/resear
h/topology/as_
ore_network/2005/
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Figure 1.6: The ISP graph in 2005.

1.2.4 Maps and graphs

Geographical maps are usually modelled as graphs exploiting two separate fea-

1

2

3

4
5

A
region map graph.

tures: borders between regions and roads between places. In the first instance,
the map is seen as a set of disjoint regions delimited by borders. The relation
between regions is given by adjacency: two regions are adjacent if they share
part of their borders. In the second instance, the map is seen as a set of differ-
ent places, which are pairwise related if there is a road connecting them. In the
first case the relation is symmetric, whereas in the second place it may not be
so (think of one-way roads).

1.2.4.1 Region maps

Graphs associated to region maps are famous in mathematics mostly because of
the the four-colour theorem, which states that for any such graph, four colours
are sufficient to colour the regions in such a way that no two adjacent regions
are coloured the same way. The four-colour theorem was first stated by Francis
Guthrie, the brother of Frederick, a student of Augustus De Morgan, professor
of mathematics at University College, Dublin. Professor De Morgan could not
find a proof of this seemingly simple statement, and wrote to Sir William Rowan
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Hamilton on 23rd Oct. 1852:

A student of mine asked me today to give him a reason for a fact which
I did not know was a fact — and do not yet. He says that if a figure be
anyhow divided and the compartments differently coloured so that figures
with any portion of common boundary line are differently coloured — four
colours may be wanted, but not more [. . . ] The more I think of it, the more
evident it seems. If you retort with some very simple case which makes me
out a stupid animal, I think I must do as the Sphynx did [. . . ].

Sir Hamilton answered on 26th Oct. that he was not likely to attempt to solve
the problem soon. Several mathematicians got interested in this problem, until
a solution involving the use of computers was announced in 1976 [1]. Because
large parts of this proof involved computer software, which is bug-prone, it was
mistrusted by mathematicians for a while. In 2005, B. Werner and G. Gonthier
encoded this proof inside the COQ proof assistant [6], reducing the need for
trusting software simply to the COQ kernel.

Graphs were first conceived in order to represent a region map. Leonhard Walks traversing all rela-
tions of a graph exactly once
and ending up at the starting
element are called Eulerian.

Euler asked himself whether it was possible to walk over the seven bridges
of the city of Königsberg (see Fig. 1.7) exactly once and end up at the start-
ing place. The Königsberg graph is a region map graph where the regions are

Figure 1.7: The map of the city of Koenigsberg and the seven bridges.

The Königsberg graph.

delimited by the shores of the river and the relation is given by the bridges con-
necting the shores (see side picture); this relation is symmetric. By observing
that in Eulerian graphs all elements appear in an even number of relation pairs,
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Euler was able to show in [5] that no walk in the Königsberg graph traversed
all bridges exactly once whilst ending at the starting point.

We remark that the Königsberg graph has a distinguishing feature: some
relation pairs appear twice (e.g. {A,C } is an unordered pair appearing twice
in the relation because of two bridges connecting shore A with shore C); such
graphs are called multigraphs. The need for a multigraph arises in this caseA graph with an irreflexive

relation (i.e. a 6∼ a for all el-
ements a) and such that no
relation pair appears multi-
ple times is called simple.

because the problem requires determining whether it is possible to walk over all
bridges: in other words, the application requires information about the relation
(i.e. the bridges) rather than the elements (i.e. the shores). This is not usually
the case: in most of the graph applications shown above3 the information was
associated to the elements rather than the relation itself.

1.2.4.2 Road maps

Global Positioning Systems (GPS) exploit the graph representation of a road

A road map graph.

map in order to compute shortest or fastest paths from any starting place to any
destination (see Fig. 1.8). This is a very active research field with applications

Figure 1.8: Three paths within the road map graph of Paris.

to transportation and logistics [13, 12].

3 With the notable ex
eption of the web subgraphs in Fig. 1.4-1.5, where a web page 
an 
ontain several

hyperlinks to another page, thus yielding a multigraph.
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1.2.5 Molecules and graphs

The word “graph” really comes from the interplay between mathematics and
chemistry: it was first introduced in [16], at a time when chemical formulæ
were being associated to chemical diagrams expressing the valence of atoms The valence of an atom is

the number of bonds the
atom is involved in.

in a molecule. In chemical graphs, the relation between atoms is given by the
atomic bonds: this is a symmetric relation.

Water (H2O) is usually shown as the graph in Fig. 1.9, left. Methane, CH4,
is shown in Fig. 1.9, right. It appears clear that hydrogen has valence 1, oxygen
has valence 2, and carbon has valence 4. Although the chemical graphs shown

O HH C HH

H

H

Figure 1.9: Chemical graphs for water and methane.

in Fig. 1.9 are trees, there also exist chemical graphs involving cycles, such as
benzene (C6H6), shown in Fig. 1.10 (left). More complex molecules based on

C

H

C

H

C H

C

H

C

H

CH

Figure 1.10: Chemical graphs for benzene and a picture of the hexa-peri-

hexabenzocoronene molecule.

the hexagonal shape shown in Fig. 1.10 also exist (see4 Fig. 1.10, right). The The set of cycles of a graph
forms a vector space over
the field {0,1}.
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classification of such molecules requires an analysis of the cycle space of the
associated graph.

1.2.5.1 Proteins

Proteins are special types of molecules consisting of a backbone to which sev-An Angstrom (Å) is a unit
of measure corresponding to
10−10 meters.

eral side chains are attached. The functionality of each protein strongly de-
pends on the shape the protein takes in the three-dimensional space [14]. Let
V be the set of atoms of the protein. Finding this shape involves finding a func-When each pair in a graph

relation has an associated
numerical value, we say the
graph is weighted.

tion x : V →R3 satisfying a certain number of constraints on the available data.
For example, Nuclear Magnetic Resonance (NMR) allows the determination of
certain inter-atomic distances within around 5Å. Supposing these data consist
in a set of real values duv for some (unordered) pairs of atoms {u, v} in a set E ,
we can form the protein graph consisting of the (symmetric) relation E on the
set V . A possible protein shape will then be given by an embedding x satisfying
the distance constraints

∀{u, v} ∈ E ‖xu −xv‖ = duv . (1.1)

Naturally, since experimental data can never be precisely measured, and be-
cause of certain inherent limitations of the NMR apparatus, Eq. 1.1 have to be
replaced by inequalities. Several approaches to solving this problem exist in the
literature [11].

Finding the shape of a graph in a Euclidean space is a important task in wire-
less networks (the localization of wireless sensors can be estimated by means
of their mutual distances, obtained by means of the power each sensor uses
to communicate with other sensors) and in graph drawing5. As concerns the
latter, we remark that a graph and its graphical representation on the page are
two very different entities, which are unfortunately often confused.

1.3 Exercises

1. Propose a change to Alg. 1 so that it only takes CPU time proportional to
n to compute f (a).

4 http://en.wikipedia.org/wiki/File:Hexa-peri-hexabenzo
oronene_ChemEurJ_2000_1834_
ommons.jpg
5 http://www.graphdrawing.org
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2. Consider Alg. 2: what happens with the call treeFind(2,0)? What happens
with the call treeFind(2,5) if node 1 contains a5 and node 5 contains a1?

3. Among all types of trees for storing a1, . . . , a5, balanced trees yield the best
CPU time for reading the value stored in a node. What sort of trees yield
the worst CPU time?

4. Fig. 1.3 describes the relation on data elements yielded by a sorting oper-
ation. What relation best describes the effect of querying a set V of data
elements for a specific element v? What if v is not found in V ?

5. Do you think the web graph has root nodes? And leaf nodes? Can you
prove it does?

6. Prove that there exists at least a time instant when the web graph is not a
tree.

7. The four-colour theorem proves that four colours suffice to colour any
map in R2 in such a way that no two adjacent regions receive the same
colour. Prove that two colours suffice to do the same for maps in R1.

8. Draw the graph on the elements A,B ,C ,D with relation given by

{A,B}, {A,C }, {A,D}, {B ,D}, {C ,D}

with the weights dAB = dAC = dAD = dBD = dC D = 1 such that Eq. 1.1 is
satisfied.

9. Find a Eulerian walk starting and ending in A and traversing all relation
pairs in the graph below.

A

B

C

D1

45

6 7

2

3

10. With reference to Exercise 9, add a multiple relation pair {A,D} and a pair
{B ,C }; then find Eulerian walks starting and ending in A,B ,C ,D.

11. Consider the graph in Fig. 1.11. and list all cycles. You should find ten
of them (count the empty cycle, but keep in mind that all cycles must be
Eulerian subgraphs).
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AB

DC

E

Figure 1.11: Find the ten cycles.

12. Consider the “cycle sum” shown below:

1

2

3

4
⊕

3

4

5

6
=

1

2

3

44

5

6

Now consider the set of cycles of the graph in Fig. 1.11 and show that it
is a vector space over the field {0,1} under the ⊕ cycle operation. [Hint :
you will need a formal definition of “cycle” which suits your needs and is
consistent with the idea of cycle proposed in this chapter.]

13. Take a dozen seconds to look at the graph relations in Fig. 1.12, then
answer the following questions: (a) which one has the highest number of
relation pairs? (b) which one looks most symmetric? (c) which one looks
more complex? Now verify whether your answers were correct.
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1
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9

Figure 1.12: Compare these graphs.





CHAPTER

2
Mathematical structures

In this chapter we shall lay out the mathematical foundations for discussing
data structures. An important purpose of this chapter is also to establish a
formal language which will be used throughout the rest of the book. We re-
cap some well-known mathematical structures which we use repeatedly in this
book: sets, functions, sequences, relations, groups, fields, vector spaces. The
treatment of these concepts is not completely formalized down to the last detail:
the interest is to try and provide a sufficiently solid mathematical foundation to
concepts which should already be (at least) intuitively known. The interested
reader can consult books in logic [8], set theory [10, 3] and algebra [4].

2.1 The formal language

We write mathematical formulæ as sentences of a formal language over an
alphabet A consisting of the following elements. The mathematical structures

discussed in the book can
be described with smaller al-
phabets than A.

• Countably infinitely many variable symbols (e.g. x,V , v1, y4
3 , Z ,α,ω̄ and so

on. We never use words, such as var , to denote a mathematical variable,
because the word var is written the same as the product of the three
symbols v, a,r .

• The relation ∈.

19
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• Brackets, which are used to emphasize the correct reading order of the
sentences.

• The logical connectives ∧ (and), ∨ (or), → (implies) ¬ (not).

• The existential quantifier ∃ (there exists) and the universal quantifier ∀

(for all).

Valid sentences are all and only those that are constructed recursively as fol-
lows:

1. variable symbols are valid sentences;

2. if x, y are variable symbols, x ∈ y is a valid sentence;

3. if P is a valid sentence, (P ) is also a valid sentence;

4. if P,Q are valid sentences, P ∧Q, P ∨Q, P → Q and ¬P are also valid
sentences;

5. if P is a valid sentence and x is a variable symbol, ∀x(P ) and ∃x(P ) are
also valid sentences.

All other symbols we use are shorthand for valid sentences constructed re-
cursively as above. For example, P ↔ Q means P → Q ∧Q → P ; x = y means
∀z(z ∈ x ↔ z ∈ y). Other important shorthand symbols are ∩ (set intersection),
∪ (set union), à (set difference).

2.2 Sets

We take the formal approach to sets proposed by the Zermelo-Fraenkel list of
axioms with the Axiom of Choice: in short, the ZFC theory. In particular, in this
theory the “universe” of sets is given by the well-founded sets [10]. Limiting theThe class WF of well-

founded sets constructed
by starting with the empty
set ∅ and recursively
applying the “power set”
operation P : P (x) is the
set consisting of all subsets
of x.

attention to WF allows us disregard two “nasty” questions: (a) is there anything
which is not a set? (b) is there a set x containing itself as an element? Since
we only consider sets in WF, and since WF only contain sets by construction,
the answer to (a) is no: everything in our universe is a set. As for question
(b), since every set in WF is obtained recursively as a power set operation on
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some existing set, and since the recursion starts with the empty set, no set can
contain itself.

The set N of natural numbers is constructed in WF as follows:

∅ is called 0

{0} is called 1

{0,1} is called 2

{0,1,2} is called 3,

and so on. If written out explicitly, 3 means {∅, {∅}, {∅, {∅}}}. Although this no- The set ∅ is defined as the
only set in x ∈WF satisfying
∀y (y 6∈ x).

tation is very cumbersome, the definition above is consistent with the intuitive
interpretation of the natural numbers. The natural number b is a successor of
the natural number a if b = {0,1, . . . , a}. The class N is also a well-founded set, If b is the successor of a

then a is the predecessor of
b and a,b are consecutive.

namely N= {0,1,2, . . .}, which is also denoted by ω.

2.3 Functions

Given sets x, y ∈ WF, the pair set {x, y} is also in WF (by the Pairing Axiom of
ZFC [10]). The set {x, {x, y}} is called an ordered pair and denoted by (x, y). A
function f from a set X to a set Y , denoted f : X → Y , is a set of ordered pairs
(x, y) where x ∈ X and y ∈ Y , and such that for any x ∈ X there is at most one
y ∈ Y such that (x, y) ∈ f . Thus, we can denote a pair (x, y) ∈ f by

f (x) = y.

We denote the subset X ′ ⊆ X such that for each x ′ ∈ X ′ there exists a y ∈ Y with
f (x ′) = y the domain of f , denoted by dom f . We denote the subset Y ′ ⊆ Y such
that for each y ′ ∈ Y ′ there exists a x ∈ X with f (x) = y ′ the range of f , denoted
by ran f .

A function f : X → Y is injective if Injective (resp. surjective)
functions are also called
one-to-one, or 1-to-1
(resp. onto).

∀u, v ∈ X (u 6= v → f (u) 6= f (v))

and surjective if
∀y ∈ Y ∃x ∈ X ( f (x) = y).

A function is a bijection if it is both injective and surjective.
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If X ,Y , Z are three sets, and f : X → Y and g : Y → Z are two functions, the
function g ◦ f : X → Z given by

∀x ∈ X (g ◦ f )(x) = g ( f (x))

is defined whenever dom(g ) ⊇ ran( f ), and is called the composition of g and
f . The identity function is a bijection 1 : X → X such that ∀x ∈ X 1(x) = x. If
f : X → Y and g : Y → X are bijections and g ◦ f = 1, then g is the inverse of
f . Every bijection f : X → Y has a unique inverse g (denoted by f −1), mappingIf f −1 = g−1 for any two bi-

jections f , g : X → Y , then
f = g .

Y → X and defined by setting g ( f (x)) = x.

Informally speaking, the cardinality of a set is the number of its elements.
The formal definition involves establishing a bijection between the set whose
cardinality must be established and a set whose cardinality is already known
[10]: the two sets are then defined to have the same cardinality. Since in this
book we mostly deal with finite sets, it suffices to find a bijection between a
given set S and sets n ∈ N: the cardinality of S is then defined to be n (this is
denoted by |S| = n).

2.4 Sequences

A sequence a on a set S is an injective function a : N→ S. A sequence a is finite
if ∃ℓ ∈N such that |dom a| = ℓ. As a rule, dom a is a set of consecutive natural
numbers, starting with either 0 or 1. The length of a sequence a is the cardinal-
ity of its domain, denoted by |a|. For any ordered pair (i , s) ∈ a (where i ∈ dom a

and s ∈ ran a), instead of using the function notation a(i ) = s we emphasize the
sequence definition by writing ai = s, and denote the sequence a, indexed from
1 on consecutive natural numbers and of length ℓ, as:

a = (a1, a2, . . . , aℓ).

Thus, ai denotes the i -th element of the sequence a, and i is the index of the
element ai .

As remarked in Sect. 1.1, the computer memory can be represented by a
finite sequence M = (a0, a1, . . . , aM ) of length M + 1, where A is an alphabet.An alphabet is a non-empty

finite set. The name comes
from the context: alphabet
elements are called charac-
ters; sequences of charac-
ters are called words , se-
quences of words are called
sentences .

As such, sequences are the most fundamental data structures. The index of a
character in memory is also called a pointer. Although pointers are absent in
Java, they are one of the main strengths of C, C++ and several other computer
languages, as they allow direct access to the content of the computer memory.
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2.4.1 Cartesian products

Consider a set S of sequences of length k ∈ N on S, all indexed on the set
K = {1, . . . ,k}. For all i ∈ K , we define πi (S ) = {ai | a ∈S }. We also denote S as:

π1(S )×·· ·×πk (S ),

and call it the Cartesian product of π1(S ), . . . ,πk (S ). For each i ∈ K , the set The Euclidean space R3 is
the Cartesian product R×R×

R.
πi (S ) is called the projection of S on the i -th coordinate.

Debuggers are computer programs that can monitor the execution of an- A byte stores a binary
number between 0 and
11111111, i.e. 0 and 255.

other computer program. This is useful to find bugs that arise at execution
time. A debugger can be instructed to watch the value of the memory at a cer-
tain address (say i) and stop the execution if the value stored at that address
belongs to a certain pre-specified range (e.g. stop if memory byte i contains an
ASCII character between a and z). This stopping condition can be written by ASCII stands for Ameri-

can Standard Code for Infor-
mation Interchange, and is
a function mapping the set
{0, . . . ,255} to an alphabet.

means of a projection as πi (M)∩ {a, . . . ,z} 6=∅.

2.5 Relations

A k-ary relation on a set S is a set R consisting of sequences of S having length k.
We shall mostly deal with binary relations, i.e. sets of ordered pairs of elements
of S. We denote relation pairs (a,b) ∈ R by aRb. A relation ∼ on S is reflexive if Warning: a binary relation

is not a function S → S. A
relation might contain two
pairs (s, t ) and (s,u) with t 6=

u, whereas in a function f ,
for each s there can be at
most one t with f (s) = t .
On the other hand, a func-
tion S → S is a binary rela-
tion on S.

a ∼ a for all a ∈ S, and irreflexive if a 6∼ a for all a ∈ S. A relation ∼ is symmetric
if a ∼ b implies b ∼ a, and antisymmetric if a ∼ b implies b 6∼ a. A relation ∼ is
transitive if a ∼ b and b ∼ c imply a ∼ c. A reflexive, symmetric and transitive
relation is an equivalence relation.

For example, the relation “a is a predecessor of b” for a,b ∈N contains the
pairs (0,1), (1,2), (2,3) . . ., is irreflexive, antisymmetric and not transitive. The
relation “b is a successor of a” contains the pairs (1,0), (2,1), (3,2) . . ., is irreflex-
ive, antisymmetric and not transitive. The union of these two relations is also
a relation which contains the pairs (0,1), (1,0), (1,2), (2,1), (2,3), (3,2) and so on.
These relation is irreflexive, symmetric and not transitive, and corresponds to
the concept that “a,b are consecutive”.

Consider the set S = {1,2,3,4,5} under the predecessor relation

P = {(1,2), (2,3), (3,4), (4,5)}
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(a graphical representation of this relation is given in Fig. 1.3). This relation
is not transitive: for example (1,2), (2,3) ∈ P but (1,3) 6∈ P . Since intransitivity
is due to missing pairs, we might consider enriching the relation with more
pairs until it becomes transitive. The resulting relation is called the transitive
closure and is transitive by definition. In this example, the missing pairs areTransitive closures can also

be defined for graphs; we
shall see that it amounts to
essentially the same things
as for relations.

P ′ = {(1,3), (1,4), (1,5), (2,4), (2,5), (3,5)}. The transitive closure of P , denoted by

1 2 3 4 5

Figure 2.1: A graph representing the < relation on {1,2,3,4,5}.

trcl(P ), is P ∪P ′, shown in Fig. 2.1. We remark that trcl(P ) is <, the ordinary
“less than” relation on natural numbers.

2.5.1 Equivalence relations and set partitions

Given an equivalence relation ∼ on a finite set S and an element x ∈ S we denote
by eqcl∼(x) the equivalence class of x with respect to ∼. This is the set of allWe call S/∼ a quotient set

(quotient modulo n ∈N also
yields a set of equivalence
classes: {0,n,2n, . . .}, {1,n +

1,2n +1, . . .} and so on).

y ∈ S such that y ∼ x. We define:

S/∼= {eqcl∼(x) | x ∈ S}.

We prove that S/∼ forms a partition of S. Let x 6= y ∈ S and suppose the inter-
S = {A1, . . . , Ak } is a parti-
tion of S if:
(a) ∀i ≤ k (Ai ⊆ S); (b) S =
⋃K

i=1
Ai ; (c) Ai ∩ A j =∅ for

all i 6= j .

section eqcl∼(x)∩eqcl∼(y) is non-empty and contains the element z. Then z is
∼-equivalent to all the elements of the equivalence class of x and to all those
of the equivalence class of y . By transitivity, ∀t ∈ eqcl∼(y) (t ∈ eqcl∼(x)) and
∀t ∈ eqcl∼(x) (t ∈ eqcl∼(y)), thus establishing that eqcl∼(x) = eqcl∼(y). Therefore,
if two equivalence classes are distinct, they must have empty intersection.

Conversely, each partition S = {A1, . . . , Ak } of a set S induces a relation ∼,
defined so that:

∀i ∈ {1, . . . ,k} ∀a,b ∈ Ai (a ∼ b). (2.1)

We prove that ∼ is an equivalence relation: setting b = a in Eq. 2.1 yields reflex-
ivity and interchanging a,b yields symmetry. As for transitivity, suppose a ∼ b

and b ∼ c, and assume a ∈ Ai for some i ≤ k. Since a ∼ b we have b ∈ Ai and
since b ∼ c we have c ∈ Ai too, whence, setting b = c in Eq. 2.1, we have a ∼ c.
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2.6 Groups

A group is a well-founded set G together with a function ⊗ : G2 →G called prod-
uct. For g ,h ∈ G we denote ⊗(g ,h) simply by g h. The group product satisfies
the following conditions:

• ∀a,b,c ∈G (ab)c = a(bc) [ASSOCIATIVITY]

• there is a unique element e ∈G such that for all g ∈G we have eg = g e = g

[IDENTITY]

• for each g ∈G there is a unique element h ∈G (denoted by g−1) such that
g g−1 = g−1g = e [INVERSE].

In general, g h might be different from hg . If g h = hg for any g ,h ∈G, the group
is called abelian.

For example, the set R of vector rotations around the origin by the angles 0,

The group R fixes the
square centered in the
origin.

π/2, π, 3π/2 forms a group under composition, with identity 0, where (π/2)−1 =

3π/2 and π
−1 =π. The set Fn = {m (mod n) | m ∈Z} of integers modulo a positive

integer n is a group under addition (mod n) with identity 0, as for every m ∈Z,
m (mod n)+(−m) (mod n) = 0. The set F∗p = {m (mod p) | m ∈Z∧m (mod p) 6= 0}

of nonzero integers modulo a prime number p: this set is a group with identity 1

under multiplication (mod p). For p = 5 we obtain the following multiplication
table (both rows and columns indexed by group elements g ,h identifying a
table entry containing the product g h):

1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

All these groups are abelian.
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2.6.1 Permutations

We denote a permutation π on the set [n] = {1, . . . ,n} by listing the action of theA permutation is a bijection
from a set V to itself. We
shall limit our interest to fi-
nite permutations, i.e. such
that |V | is finite, and usually
V = {1, . . . ,n}.

permutation on each element on [n], for example:

π=

(

1 2 3 4

2 3 4 1

)

sends 1 → 2, 2 → 3, 3 → 4 and 4 → 1. The product of π by the permutation
σ =

(

1 2 3 4
4 3 2 1

)

, defined by applying σ first and π later, and denoted as πσ,
has the following effect:

1
σ
−→ 4

π
−→ 1

2
σ
−→ 3

π
−→ 4

3
σ
−→ 2

π
−→ 3

4
σ
−→ 1

π
−→ 2,

i.e. it is the permutation:

π=

(

1 2 3 4

1 4 3 2

)

.

We remark that the product of permutations is a composition of bijections.
Since the composition of two bijections on the same set is another bijection
on that set, the product of two permutations is still a permutation. Proving thatThe product of permutations

maps an ordered pair of
permutations to a permuta-
tion. Whenever an operation
mapping from a set product
V ×V to a set U is such that
U ⊆V , we say that the oper-
ation is closed.

the product of permutations is associative is easy but long tedious. The identity
is the permutation e =

(

1 2 3 4
1 2 3 4

)

, and the inverse of each permutation is ob-
tained by simply “reversing the arrows”: if a permutation π sends i to j , then
π
−1 sends j to i . In other words, this means that π−1 sends π(i ) to i , and there-

fore that π
−1(π(i )) = i for all i ∈ [n], which implies that (π−1

π)(i ) = i , i.e. that
π
−1
π= e. The group of all permutations on [n] is denoted Sn. The group of all

permutations on a finite set V is denoted by Sym(V ). We remark that

|Sym(V )| = |V | !.

2.6.2 Cycle permutations

A cycle permutation (or simply a cycle) is a permutation π ∈ Sym(V ) with a
sequence (v1, . . . , vℓ) of elements of V such that π(vi ) = vi+1 for all i < el l andThe integer ℓ is the length of

the cycle. π(vℓ) = v1, and π(v) = v for all other elements v ∈V à {v1, . . . , vℓ}. Informally, the
action of π on V is described graphically in Fig. 2.2 for a case where ℓ= 6.
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v1

v2v3

v4

v5 v6

Figure 2.2: The action of a cycle permutation.

Cycles allow a more compact way of writing permutations. The permutation

π=

(

1 2 3 4 5 6 7 8 9

2 1 3 4 5 6 7 8 9

)

,

for example, only swaps 1 and 2 but still takes 9 pairs of integers to write
down: this is wasteful. But we can easily recognize that π is the cycle of length
2 sending 1 → 2 and 2 → 1 and fixing all the other elements of [n]. We therefore
write π as (1,2). In general, a cycle permutation π ∈ Sym(V ) sending π(vi ) to
vi+1 for all i < ℓ and π(vℓ) to v1 is denoted by its defining sequence (v1, . . . , vℓ).

Let π = (v1, . . . , vh) and σ = (u1, . . . ,uk ) be two cycles in Sym(V ). If these two
cycles list no common elements, then πσ simply sends vi → vi+1 for i < h, ui →

ui+1 for i < k, vh → v1 and uk → u1. In other words, the actions of π and σ are
disjoint. As a consequence πσ=σπ. We write the product of two disjoint cycles
by simply juxtaposing the two cycles, namely: Disjoint cycles commute.

This is false for permuta-
tions in general.

(v1, . . . , vh)(u1 . . . ,uk ).

If π,σ have some common elements, this analysis no longer holds. For example,
if π = (1,2,3) and σ = (1,2), πσ has the following effect (we apply σ first and π

later): 1 → 2 → 3, 2 → 1 → 2, 3 → 3 → 1, which we can write as (1,3). What is true,
however, is that any product of non-disjoint cycles can be written as a product
of (possibly different) disjoint cycles, and moreover that any permutation can
be written as a product of disjoint permutations in a unique way apart from the
order of the factors (see [4], p. 59).
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2.7 Fields

A field is a set F together with two functions: one, ⊕ : F 2 → F , called sum, and
another, ⊗ : F 2 → F , called product. For a,b ∈ F we denote ⊕(a,b) by a +b and
⊗(a,b) by ab. The field operations satisfy the following conditions:

• (F,⊕) is an abelian group with identity symbol 0

• (F à {0},⊗) is a group with identity symbol 1

• the product distributes over the sum:

∀a,b,c ∈ F (a +b)c = ac +bc ∧a(b + c) = ab +ac.

Examples of infinite fields are the rational numbers Q, the real numbers R

and the complex numbers C. For every positive prime integer p, the set Fp =

{0,1, . . . , p−1} is a finite field with respect to addition and multiplication (mod p):
we already discussed the additive and multiplicative groups Fp ,F∗p in Sect. 2.6,
and it is easy to show distributivity.

The finite field F2 has a special importance in computer science, as it al-
lows operations over the two values of “true” and “false” (often interpreted as
“presence” or “absence”).

2.8 Vector spaces

A vector space over a field F is an additive group V together with a field F with
an operation ⊙ : F×V →V , called scalar multiplication, where a⊙v is commonly
denoted av for all a ∈ F, v ∈V , which satisfies the following conditions:

• ∀a,b ∈ F and x ∈V , a(bx) = (ab)x;

• ∀a,b ∈ F and x ∈V , (a +b)x = ax +bx;

• ∀a ∈ F and x, y ∈V , a(x + y) = ax +ay;

• ∀x ∈V , 1x = x.
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For any given field F , the set of all sequences of the same length n ∈N with A bit (which stands for BI-
nary digiT) is a memory box
that can store either a 0 or a
1. A byte is a sequence of
8 bits. Bytes form a vector
space over F2.

elements in F forms a vector space over F , under the vector addition (x1, . . . , xn)+

(y1, . . . , yn) = (x1 + y1, . . . , xn + yn) for all x = (x1, . . . , xn) and y = (y1, . . . , yn) in F n,
and the scalar multiplication a(x1, . . . , xn) = (ax1, . . . , axn) for all a ∈ F and x =

(x1, . . . , xn) ∈ F n. This vector space is simply denoted by F n (with the same name
as the underlying set) and its sequences are called vectors.

2.9 Exercises

1. Prove that if f , g are two bijections V → V , then f ◦ g is also a bijection
V →V .

2. Prove that if f −1 = g−1 for any two bijections f , g : X → Y , then f = g .

3. Prove that the product of permutations is associative.

4. Prove that for any permutation π of [n], eπ= πe = π, that π−1 is a permu-
tation, and that ππ−1 = e.

5. Prove that any permutation on V is a sequence of elements in V , and
show that not every sequence of elements in V is a permutation.

6. Show that not all permutations commute.





CHAPTER

3
Graphs

Graphs are a useful way to represent binary relations. They provide a visual way
to picture a relation; but this feature may somtimes be a limitation, as Exercise
13 in Sect. 1.3 shows. There are infinitely many different ways to draw the
same graph on paper; different drawings suggest different graph properties,
but this is simply false. If we consider two different drawings of the same graph See Sect. 1.2.5.1.

to be equivalent, then graphs might be interpreted as equivalence classes of all
their possible drawings.

In the framework of data structures in computer science, graphs are used to
represent several relations, the main of which being the pointer relation: if a
program variable v holds the memory address of the memory box storing the
value currently held by another program variable u, then v is a pointer for u. See Sect. 2.4.

Pointers define a relation on the set of all program variables; this relation is
generally irreflexive, unsymmetric and intransitive.

Graphs come with their own terminology. The main aim of this chapter is to
get the reader acquainted with that terminology. More complete treatments of
the topics below can be found in several textbooks, e.g. [2, 7, 9, 15].

31
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3.1 Graphs and digraphs

A graph is defined as a pair G = (V ,E) where V is any set, called the vertex set,
and E is a symmetric binary relation on V called the edge set. Examples ofSince a binary relation

is a set of ordered pairs
(see Sect. 2.5), we should
indicate an edge between
the vertices u, v ∈ V by
{(u, v), (v,u)}, but we
employ the more convenient
notation {u, v}.

graphs are given in Fig. 3.1. If the graph is simply given as G, then we denote
by V (G) its vertex set and by E(G) its edge set.

Figure 3.1: Examples of graphs.

A directed graph is formally defined as a pair G = (V , A) where V is any set,Directed graphs are also
called digraphs. called the node set, and A is a binary relation on V , called the arc set. Examples

We denote an arc on two
nodes u, v ∈V by (u, v).

of digraphs are given in Fig. 3.2.

1 2 1

2
3

4
5

1

2

3

4

5

6

1

2

3

Figure 3.2: Examples of digraphs.

The first digraph from the left exhibits loops on the nodes, i.e. arcs of the
type (v, v) (where v is a node). Graphs and digraphs without loops are called
loopless, and correspond to irreflexive relations. The second graph is a stable,Digraphs with all possible

arcs (u, v) aside from loops
are also called complete.

i.e. the arc set defined on the nodes is empty. The third is bipartite, i.e. the
node set can be partitioned in two sets A,B such that A∪B =V , A∩B =∅ and
both A and B are stables (i.e. no arc exists within nodes in A, nor within nodes
in B). The fourth digraph is complete, i.e. its arc set includes all possible arcs.

Given a digraph G = (V , A) and a node u ∈ V , the node set {v ∈ V | (u, v) ∈ A}The outgoing star is also
called the outstar, denoted
by N+(v); the incoming star
is also called the instar, de-
noted by N−(v).

is called the outgoing star of u. The node set {v ∈ V | (v,u) ∈ A} is called the
incoming star of u, and is denoted by N−(v). See Fig. 3.3. The outdegree of a
node v ∈ V is the cardinality of its outstar, and similarly, the indegree of v ∈ V

is the cardinality of its instar. In Fig 3.3, both the indegree and the outdegree
of node 7 are equal to 3. For u ∈ V , the arc set {(u, v) | (u, v) ∈ A} is denoted by
δ
+(u), and the arc set {(v,u) | (v,u) ∈ A} is denoted by δ

−(u). Given a digraph,
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4

5

6

1

2

3

7

N−(7) N+(7)

Figure 3.3: Instar and outstar of node 7: N−(7) = {1,2,3} and N+(7) = {4,5,6}.

its underlying graph replaces every arc (u, v) with the corresponding edge {u, v}

(see Fig. 3.4).

1

2

3

4

1

2

3

4

Figure 3.4: A digraph and its underlying graph.

If (u, v) is an arc, then v is adjacent to u, and both u, v are incident to the arc
(u, v). Moreover, u is the head of the arc and v its tail. Both u, v are endpoints
of the arc. If {u, v} is an edge, then u, v are adjacent to each other and incident
to the edge; both are endpoints of the edge. Arcs/edges are incident to the
nodes/vertices that define their endpoints.

Informally, a multigraph is like a graph (or a digraph) which has several

1 2

A multigraph with two
parallel edges.

edges (or arcs) between the same pair of vertices (nodes). Such edges/arcs are
called parallel. Formally, we define an arc of a multigraph as a triplet (u, v,k)

where u, v are the nodes incident to the arc, and k ∈N. No two parallel arcs have
the same value of k. Graphs/digraphs without loops and parallel edges/arcs are
called simple.

In the following, definitions given for graphs often apply to digraphs and In problems arising from
practical applications, how-
ever, you may have to
deal with loops and parallel
edges.

multigraphs with trivial adaptations: we shall specify when this fails to be the
case. As a rule of thumb, in theoretical computer science and combinatorics
graphs are very common, digraphs slightly less, and multigraphs occur rarely.
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Most graphs/digraphs are simple.

3.2 Subgraphs

Very often, problems related to graphs involve finding a subgraph of a certain
type in a given graph. This is the case, for example, whenever finding a shortest
path or a spanning tree of a graph (see below). Given a graph G = (V ,E), a
subgraph H = (U ,F ) of G is a graph H such that U ⊆ V and F ⊆ E . Notice that
once the edge set F is given, the set U can be retrieved by simply taking the set
of all vertices appearing in edges of F . Thus, subgraphs are often taken to be
sets of edges of the original graph. Some examples of interesting subgraphs are
shown in Fig. 3.5.

1 2

34

5

The original graph.

1 2

34

5

A spanning tree.

1 2

34

A largest clique.

1 3 5

A shortest path from 1 to 5.

1 2 5

A largest stable.

Figure 3.5: Examples of subgraphs.

A subgraph H of G is spanning whenever V (H) = V (G) (see the spanning
tree example in Fig. 3.5).

3.3 Walks, paths and cycles

A directed walk in a digraph G = (V , A) is a sequence p = (v1, . . . , vk ) of nodes inA directed walk is also
called diwalk. V such that (vi , vi+1) ∈ A for all i ∈ [k −1].

Recall [k −1] = {1, . . . ,k −1}.
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3.4 Trees

3.5 Stables and cliques

3.6 Operations on graphs

3.6.1 Graph complement

3.6.2 Line graph

3.6.3 Induced subgraph

3.6.4 Subgraph contraction

3.7 Exercises

1. Can you imagine a useful situation for a reflexive pointer relation between
program variables? What about symmetric? What about transitive?

2. Give a formal definition of parallel edges (we only defined parallel arcs in
the text).





CHAPTER

4
Data structures

Data structures are abstract entities conceived to store, relate and manipulate
data. In this section we present a formal view of data structures. In short, a A memory unit or cell rep-

resent a single unit of stor-
age capacity in the com-
puter.

data structure is a set of memory cells, with a function mapping each cell to the
datum it stores, and with a pointer relation on the cells.

4.1 Types

In most programming languages, data are typed : for example, the data item Given a set D of data items
and a set T of type names,
a data type is a function τ :

D→T.

5 could be assigned an int type (which explicitly states that the symbol 5 is to
be considered an integer) or a 
har type (which states that the symbol 5 is to
be interpreted as the fifth character in the ASCII table in the present context),
see Fig. 4.1. Types provide the most basic kind of semantic information about
the data processed by the computer. Among other things, they are used by
the operating system in order to decide how much memory to allocate to data
storage, and how to carry out certain operations on these data.

Most imperative languages have the following elementary types: integer,
usually denoted by int or long depending on the size of the integer being stored;
floating point, usually denoted by �oat or double depending on the the size; and
character, denoted by 
har. Several modern languages also include elementary
types for boolean values, denoted by boolean, accented characters, and others.

37
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0 0 0 5

The integer 5 encoded as an int;

on most architectures, ints take

four bytes of storage.

5

The integer 5 encoded as a


har. A 
har is usually stored in

one byte.

Figure 4.1: Different types yield different encodings. The cases represent memory

units.

Several languages include a catch-all type used to specify an “unknown type”:In C/C++, the unknown data
type is denoted by void,
whereas in Java it is denoted
by Obje
t. Their precise se-
mantics is different.

when type decisions are taken at run-time, it might happen that the type of a
datum is unknown until further analysis has taken place.

4.2 The main definition

We assume the set of data items to be processed by the computer to be D, with
type set T and type function τ. We also assume D contains the basic data items
∅ (the empty set), and the elements of the boolean set B= {true, false}.

A data structure is a quintuplet (G ,D,OG ,OD ,OR ), where:

• G is a digraph G = (V , A): its nodes model the memory cells, and its arcs
the pointer relations between them;

• the function D : V →D, called the storage function, associates graph nodes
to data elements;

• the set OG of graph operations is a finite set of functions which map the
pair G to another digraph G ′;

• the set OD of data operations is a set of functions which map D to another
storage function D ′ on the same set V ;

• the set OR of read operations is a finite set of functions which map (G ,D)

to an element in V ∪ A∪ ranD.

For example, the array (1,3,5) can be stored by the data structure (P,D,OG ,OD ,OR )

such that:
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• P is the directed path P = (V , A) where V = {1,2,3} and A = {(1,2), (2,3)};

• D is the function 1 → 1∧2 → 3∧3 → 5;

• OG only contains the function mapping G to the empty graph ∅ (this
corresponds to deleting the data structure from memory);

• OD contains all mappings of D to any function D ′ : V →D, e.g. writing the
integer 2 in node 1 corresponds to mapping D to the function 1 → 2∧2 →

3∧3 → 5;

• OR contains functions getv : DV →D for each v ∈V given by getv (D) = D(v)

(this corresponds to reading the data element stored in v .

For our definition to make sense, we also need to remark that graph op-
erations changing V must necessarily be paired with a data operation which
changes D : V →D accordingly.

Although it is always useful to formalize concepts so as attempt to eliminate
all ambiguities, in the rest of the book we shall revert to using graphical rep-
resentations and descriptive names in order to describe graph, data and read
operations on data structures.

4.3 Arrays

4.4 Lists

4.5 Queues

4.6 Hash maps

4.7 Trees
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