
1
__

Production Models:
Maximizing Profits

As we stated in the Introduction, mathematical programming is a technique for solv-
ing certain kinds of problems — notably maximizing profits and minimizing costs —
subject to constraints on resources, capacities, supplies, demands, and the like.AMPL is a
language for specifying such optimization problems. It provides an algebraic notation
that is very close to the way that you would describe a problem mathematically, so that it
is easy to convert from a familiar mathematical description toAMPL.

We will concentrate initially on linear programming, which is the best known and eas-
iest case; other kinds of mathematical programming are taken up later in the book. This
chapter addresses one of the most common applications of linear programming: maxi-
mizing the profit of some operation, subject to constraints that limit what can be pro-
duced. Chapters 2 and 3 are devoted to two other equally common kinds of linear pro-
grams, and Chapter 4 shows how linear programming models can be replicated and com-
bined to produce truly large-scale problems. These chapters are written with the beginner
in mind, but experienced practitioners of mathematical programming should find them
useful as a quick introduction toAMPL.

We begin with a linear program (or LP for short) in only two decision variables, moti-
vated by a mythical steelmaking operation. This will provide a quick review of linear
programming to refresh your memory if you already have some experience, or to help
you get started if you’re just learning. We’ll show how the same LP can be represented
as a general algebraic model of production, together with specific data. Then we’ll show
how to express several linear programming problems inAMPL and how to runAMPL and
a solver to produce a solution.

The separation of model and data is the key to describing more complex linear pro-
grams in a concise and understandable fashion. The final example of the chapter illus-
trates this by presenting several enhancements to the model.

1

2 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

1.1 A two-variable linear program

An (extremely simplified) steel company must decide how to allocate next week’s
time on a rolling mill. The mill takes unfinished slabs of steel as input, and can produce
either of two semi-finished products, which we will call bands and coils. (The terminol-
ogy is not entirely standard; see the bibliography at the end of the chapter for some
accounts of realistic LP applications in steelmaking.) The mill’s two products come off
the rolling line at different rates:

Tons per hour: Bands 200
Coils 140

and they also have different profitabilities:

Profit per ton: Bands $25
Coils $30

To further complicate matters, the following weekly production amounts are the most that
can be justified in light of the currently booked orders:

Maximum tons: Bands 6,000
Coils 4,000

The question facing the company is as follows: If 40 hours of production time are avail-
able this week, how many tons of bands and how many tons of coils should be produced
to bring in the greatest total profit?

While we are given numeric values for production rates and per-unit profits, the tons
of bands and of coils to be produced are as yet unknown. These quantities are the deci-
sion variables whose values we must determine so as to maximize profits. The purpose
of the linear program is to specify the profits and production limitations as explicit for-
mulas involving the variables, so that the desired values of the variables can be deter-
mined systematically.

In an algebraic statement of a linear program, it is customary to use a mathematical
shorthand for the variables. Thus we will writeX B for the number of tons of bands to be
produced, andX C for tons of coils. The total hours to produce all these tons is then given
by

(hours to make a ton of bands)× X B + (hours to make a ton of coils)× X C

This number cannot exceed the 40 hours available. Since hours per ton is the reciprocal
of the tons per hour given above, we have aconstraint on the variables:

(1/200)X B + (1/140)X C ≤ 40.

There are also production limits:

0 ≤ X B ≤ 6000
0 ≤ X C ≤ 4000

SECTION 1.1 A TWO-VARIABLE LINEAR PROGRAM 3

In the statement of the problem above, the upper limits were specified, but the lower lim-
its were assumed — it was obvious that a negative production of bands or coils would be
meaningless. Dealing with a computer, however, it is necessary to be quite explicit.

By analogy with the formula for total hours, the total profit must be

(profit per ton of bands)× X B + (profit per ton of coils)× X C

That is, our objective is to maximize 25X B + 30 X C. Putting this all together, we have
the following linear program:

Maximize 25X B + 30X C

Subject to (1/200)X B + (1/140)X C ≤ 40

0 ≤ X B ≤ 6000

0 ≤ X C ≤ 4000

This is a very simple linear program, so we’ll solve it by hand in a couple of ways, and
then check the answer withAMPL.

First, by multiplying profit per ton times tons per hour, we can determine the profit
per hour of mill time for each product:

Profit per hour: Bands $5,000
Coils $4,200

Bands are clearly a more profitable use of mill time, so to maximize profit we should pro-
duce as many bands as the production limit will allow — 6,000 tons, which takes 30
hours. Then we should use the remaining 10 hours to make coils — 1,400 tons in all.
The profit is $25 times 6,000 tons plus $30 times 1,400 tons, for a total of $192,000.

Alternatively, since there are only two variables, we can show the possibilities graphi-
cally. If X B values are plotted along the horizontal axis, andX C values along the vertical
axis, each point represents a choice of values, or solution, for the decision variables:

0 2000 4000 6000 8000

0

2000

4000

6000

Coils

Bands

Constraints

← Hours
feasible region

4 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

The horizontal line represents the production limit on coils, the vertical on bands. The
diagonal line is the constraint on hours; each point on that line represents a combination
of bands and coils that requires exactly 40 hours of production time, and any point down-
ward and to the left requires less than 40 hours.

The shaded region bounded by the axes and these three lines corresponds exactly to
the feasible solutions — those that satisfy all three constraints. Among all the feasible
solutions represented in this region, we seek the one that maximizes the profit.

For this problem, a line of slope –25/30 represents combinations that produce the
same profit; for example, in the figure below, the line from (0, 4500) to (5400, 0) repre-
sents combinations that yield $135,000 profit. Different profits give different but parallel
lines in the figure, with higher profits giving lines that are higher and further to the right.

0 2000 4000 6000 8000

0

2000

4000

6000

Coils

Bands

← $220K

$192K→

$135K→

Profit

If we combine these two plots, we can see the profit-maximizing, oroptimal , feasible
solution:

0 2000 4000 6000 8000

0

2000

4000

6000

Coils

Bands

Optimal Solution

SECTION 1.2 THE TWO-VARIABLE LINEAR PROGRAM IN AMPL 5

The line segment for profit equal to $135,000 is partly within the feasible region; any
point on this line and within the region corresponds to a solution that achieves a profit of
$135,000. On the other hand, the line for $220,000 does not intersect the feasible region
at all; this tells us that there is no way to achieve a profit as high as $220,000. Viewed in
this way, solving the linear program reduces to answering the following question:
Among all profit lines that intersect the feasible region, which is highest and furthest to
the right? The answer is the middle line, which just touches the region at one of the cor-
ners. This point corresponds to 6,000 tons of bands and 1,400 tons of coils, and a profit
of $192,000 — the same as we found before.

1.2 The two-variable linear program in AMPL

Solving this linear program withAMPL can be as simple as typingAMPL’s descrip-
tion of the linear program,

var XB;
var XC;
maximize Profit: 25 * XB + 30 * XC;
subject to Time: (1/200) * XB + (1/140) * XC <= 40;
subject to B_limit: 0 <= XB <= 6000;
subject to C_limit: 0 <= XC <= 4000;

into a file — call itprod0.mod — and then typing a fewAMPL commands:

ampl: model prod0.mod;

ampl: solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 192000

ampl: display XB, XC;
XB = 6000
XC = 1400

ampl: quit;

The invocation and appearance of anAMPL session will depend on your operating envi-
ronment and interface, but you will always have the option of typingAMPL statements in
response to theampl: prompt, until you leaveAMPL by typingquit. (Throughout the
book, material you type is shown inthis slanted font.)

The AMPL linear program that you type into the file parallels the algebraic form in
every respect. It specifies the decision variables, defines the objective, and lists the con-
straints. It differs mainly in being somewhat more formal and regular, to facilitate com-
puter processing. Each variable is named in avar statement, and each constraint by a
statement that begins withsubject to and a name likeTime or B_limit for the con-
straint. Multiplication requires an explicit* operator, and the≤ relation is written<=.

The first command of yourAMPL session,model prod0.mod, reads the file into
AMPL, just as if you had typed it line-by-line atampl: prompts. You then need only

6 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

type solve to haveAMPL translate your linear program, send it to a linear program
solver, and return the answer. A final command,display, is used to show the optimal
values of the variables.

The messageMINOS 5.5 directly following thesolve command indicates that
AMPL used version 5.5 of a solver calledMINOS. We have usedMINOS and several
other solvers for the examples in this book. You may have a different collection of
solvers available on your computer, but any solver should give you the same optimal
objective value for a linear program. Often there is more than one solution that achieves
the optimal objective, however, in which case different solvers may report different opti-
mal values for the variables. (Commands for choosing and controlling solvers will be
explained in Section 11.2.)

Procedures for runningAMPL can vary from one computer and operating system to
another. Details are provided in supplementary instructions that come with your version
of the AMPL software, rather than in this book. For subsequent examples, we will
assume thatAMPL has been started up, and that you have received the firstampl:
prompt. If you are using a graphical interface forAMPL, like one of those mentioned
briefly in Section 1.7, many of theAMPL commands may have equivalent menu or dialog
entries. You will still have the option of typing the commands as shown in this book, but
you may have to open a ‘‘command window’’ of some kind to see the prompts.

1.3 A linear programming model

The simple approach employed so far in this chapter is helpful for understanding the
fundamentals of linear programming, but you can see that if our problem were only
slightly more realistic — a few more products, a few more constraints — it would be a
nuisance to write down and impossible to illustrate with pictures. And if the problem
were subject to frequent change, either in form or merely in the data values, it would be
hard to update as well.

If we are to progress beyond the very tiniest linear programs, we must adopt a more
general and concise way of expressing them. This is where mathematical notation comes
to the rescue. We can write a compact description of the general form of the problem,
which we call amodel, using algebraic notation for the objective and the constraints.
Figure 1-1 shows the production problem in algebraic notation.

Figure 1-1 is a symbolic linear programming model. Its components are fundamental
to all models:

� sets, like the products
� parameters, like the production and profit rates
� variables, whose values the solver is to determine
� anobjective, to be maximized or minimized
� constraints that the solution must satisfy.

SECTION 1.4 THE LINEAR PROGRAMMING MODEL IN AMPL 7

__
__

Given: P, a set of products
a j = tons per hour of productj, for eachj∈P
b = hours available at the mill
c j = profit per ton of productj, for eachj∈P
u j = maximum tons of productj, for eachj∈P

Define variables:X j = tons of productj to be made, for eachj∈P

Maximize:
j∈P
Σ c j X j

Subject to:
j∈P
Σ (1/ a j) X j ≤ b

0 ≤ X j ≤ u j , for eachj∈P

Figure 1-1: Basic production model in algebraic form.
__

The model describes an infinite number of related optimization problems. If we provide
specific values for data, however, the model becomes a specific problem, orinstance of
the model, that can be solved. Each different collection of data values defines a different
instance; the example in the previous section was one such instance.

It might seem that we have made things less rather than more concise, since our
model is longer than the original statement of the linear program in Section 1.1. Consider
what would happen, however, if the setP had 42 products rather than 2. The linear pro-
gram would have 120 more data values (40 each fora j , c j , andu j); there would be 40
more variables, with new lower and upper limits for each; and there would be 40 more
terms in the objective and the hours constraint. Yet the abstract model, as shown above,
would be no different. Without this ability of a short model to describe a long linear pro-
gram, larger and more complex instances of linear programming would become impossi-
ble to deal with.

A mathematical model like this is thus usually the best compromise between brevity
and comprehension; and fortunately, it is easy to convert into a language that a computer
can process. From now on, we’ll assume models are given in the algebraic form. As
always, reality is rarely so simple, so most models will have more sets, parameters and
variables, and more complicated objectives and constraints. In fact, in any real situation,
formulating a correct model and providing accurate data are by far the hardest tasks; solv-
ing a specific problem requires only a solver and enough computing power.

1.4 The linear programming model in AMPL

Now we can talk aboutAMPL. The AMPL language is intentionally as close to the
mathematical form as it can get while still being easy to type on an ordinary keyboard and

8 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

__
__

set P;

param a {j in P};
param b;
param c {j in P};
param u {j in P};

var X {j in P};

maximize Total_Profit: sum {j in P} c[j] * X[j];

subject to Time: sum {j in P} (1/a[j]) * X[j] <= b;

subject to Limit {j in P}: 0 <= X[j] <= u[j];

Figure 1-2: Basic production model inAMPL (file prod.mod).
__

to process by a program. There areAMPL constructions for each of the basic components
listed above — sets, parameters, variables, objectives, and constraints — and ways to
write arithmetic expressions, sums over sets, and so on.

We first give anAMPL model that resembles our algebraic model as much as possible,
and then present an improved version that takes better advantage of the language.

The basic model

For the basic production model of Figure 1-1, a direct transcription intoAMPL would
look like Figure 1-2.

The keywordset declares a set name, as in

set P;

The members of setP will be provided in separate data statements, which we’ll show in a
moment.

The keywordparam declares a parameter, which may be a single scalar value, as in

param b;

or a collection of values indexed by a set. Where algebraic notation says that ‘‘there is an
a j for eachj in P’’, one writes inAMPL

param a {j in P};

which means thata is a collection of parameter values, one for each member of the setP.
Subscripts in algebraic notation are written with square brackets inAMPL, so an individ-
ual value likea j is writtena[j].

Thevar declaration

var X {j in P};

names a collection of variables, one for each member ofP, whose values the solver is to
determine.

SECTION 1.4 THE LINEAR PROGRAMMING MODEL IN AMPL 9

The objective is given by the declaration

maximize Total_Profit: sum {j in P} c[j] * X[j];

The nameTotal_Profit is arbitrary; a name is required by the syntax, but any name
will do. The precedence of thesum operator is lower than that of*, so the expression is
indeed a sum of products, as intended.

Finally, the constraints are given by

subject to Time: sum {j in P} (1/a[j]) * X[j] <= b;

subject to Limit {j in P}: 0 <= X[j] <= u[j];

TheTime constraint says that a certain sum over the setP may not exceed the value of
parameterb. The Limit constraint is actually a family of constraints, one for each
memberj of P: eachX[j] is bounded by zero and the correspondingu[j].

The construct{j in P} is called anindexing expression. As you can see from our
example, indexing expressions are used not only in declaring parameters and variables,
but in any context where the algebraic model does something ‘‘for eachj in P’’. Thus the
Limit constraints are declared

subject to Limit {j in P}

because we want to impose a different restriction0 <= X[j] <= u[j] for each different
productj in the setP. In the same way, the summation in the objective is written

sum {j in P} c[j] * X[j]

to indicate that the different termsc[j] * X[j], for eachj in the setP, are to be added
together in computing the profit.

The layout of anAMPL model is quite free. Sets, parameters, and variables must be
declared before they are used but can otherwise appear in any order. Statements end with
semicolons and can be spaced and split across lines to enhance readability. Upper and
lower case letters are different, sotime, Time, andTIME are three different names.

You have undoubtedly noticed several places where traditional mathematical notation
has been adapted inAMPL to the limitations of normal keyboards and character sets.
AMPL uses the wordsum instead ofΣ to express a summation, andin rather than∈ for
set membership. Set specifications are enclosed in braces, as in{j in P}. Where math-
ematical notation uses adjacency to signify multiplication inc j X j , AMPL uses the* oper-
ator of most programming languages, and subscripts are denoted by brackets, soc j X j

becomesc[j]*X[j].
You will find that the rest ofAMPL is similar — a few more arithmetic operators, a

few more key words likesum andin, and many more ways to specify indexing expres-
sions. Like any other computer language,AMPL has a precise grammar, but we won’t
stress the rules too much here; most will become clear as we go along, and full details are
given in the reference manual, Appendix A.

Our original two-variable linear program is one of the many LPs that are instances of
the Figure 1-2 model. To specify it or any other such instance, we need to supply the

10 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

__
__

set P := bands coils;

param: a c u :=
bands 200 25 6000
coils 140 30 4000 ;

param b := 40;

Figure 1-3: Production model data (fileprod.dat).
__

membership ofP and the values of the various parameters. There is no standard way to
describe these data values in algebraic notation; usually some kind of informal tables are
used, such as the ones we showed earlier. InAMPL, there is a specific syntax for data
tables, which is sufficiently regular and unambiguous to be translated by a computer.
Figure 1-3 gives data for the basic production model in that form. Aset statement sup-
plies the members (bands andcoils) of setP, and aparam table gives the corre-
sponding values fora, c, andu. A simpleparam statement gives the value forb. These
data statements, which are described in detail in Chapter 9, have a variety of options that
let you list or tabulate parameters in convenient ways.

An improved model

We could go on immediately to solve the linear program defined by Figures 1-2 and
1-3. Once we have written the model inAMPL, however, we need not feel constrained by
all the conventions of algebra, and we can instead consider changes that might make the
model easier to work with. Figures 1-4a and 1-4b show a possible ‘‘improved’’ version.
The short ‘‘mathematical’’ names for the sets, parameters and variables have been
replaced by longer, more meaningful ones. The indexing expressions have become{p
in PROD}, or just {PROD} in those declarations that do not use the indexp. The
bounds on variables have been placed within theirvar declaration, rather than in a sepa-
rate constraint; analogous bounds have been placed on the parameters, to indicate the
ones that must be positive or nonnegative in any meaningful linear program derived from
the model.

Finally, comments have been added to help explain the model to a reader. Comments
begin with# and end at the end of the line. As in any programming language, judicious
use of meaningful names, comments and formatting helps to makeAMPL models more
readable and understandable.

There are always many ways to describe a particular model inAMPL. It is left to the
modeler to pick the way that seems clearest or most convenient. Our earlier, mathemati-
cal approach is often preferred for working quickly with a familiar model. On the other
hand, the second version is more attractive for a model that will be maintained and modi-
fied by several people over months or years.

SECTION 1.4 THE LINEAR PROGRAMMING MODEL IN AMPL 11

__
__

set PROD; # products

param rate {PROD} > 0; # tons produced per hour
param avail >= 0; # hours available in week

param profit {PROD}; # profit per ton
param market {PROD} >= 0; # limit on tons sold in week

var Make {p in PROD} >= 0, <= market[p]; # tons produced

maximize Total_Profit: sum {p in PROD} profit[p] * Make[p];

Objective: total profits from all products

subject to Time: sum {p in PROD} (1/rate[p]) * Make[p] <= avail;

Constraint: total of hours used by all
products may not exceed hours available

Figure 1-4a: Steel production model (steel.mod).

set PROD := bands coils;

param: rate profit market :=
bands 200 25 6000
coils 140 30 4000 ;

param avail := 40;

Figure 1-4b: Data for steel production model (steel.dat).
__

If we put all of the model declarations into a file calledsteel.mod, and the data
specification into a filesteel.dat, then as before a solution can be found and dis-
played by typing just a few statements:

ampl: model steel.mod;
ampl: data steel.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 192000

ampl: display Make;
Make [*] :=
bands 6000
coils 1400
;

Themodel anddata commands each specify a file to be read, in this case the model
from steel.mod, and the data fromsteel.dat. The use of two file-reading com-
mands encourages a clean separation of model from data.

Filenames can have any form recognized by your computer’s operating system;AMPL
doesn’t check them for correctness. The filenames here and in the rest of the book refer
to example files that are available from theAMPL web site and otherAMPL distributions.

12 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

Once the model has been solved, we can show the optimal values of all of the vari-
ablesMake[p], by typingdisplay Make. The output fromdisplay uses the same
formats asAMPL data input, so that there is only one set of formats to learn. (The[*]
indicates a variable or parameter with a single subscript. It is not strictly necessary for
input, sinceMake is one-dimensional, butdisplay prints it as a reminder.)

Catching errors

You will inevitably make some mistakes as you develop a model.AMPL detects vari-
ous kinds of incorrect statements, which are reported in error messages following the
model, data or solve commands.

AMPL catches many errors as soon as the model is read. For example, if you use the
wrong syntax for the bounds in the declaration of the variableMake, you will receive an
error message like this, right after you enter themodel command:

steel.mod, line 8 (offset 250):
syntax error

context: var Make {p in PROD} >>> 0 <<< <= Make[p] <= market[p];

If you inadvertently usemake instead ofMake in an expression likeprofit[p] *
make[p], you will receive this message:

steel.mod, line 11 (offset 339):
make is not defined

context: maximize Total_Profit:
sum {p in PROD} profit[p] * >>> make[p] <<< ;

In each case, the offending line is printed, with the approximate location of the error sur-
rounded by>>> and<<<.

Other common sources of error messages include a model component used before it is
declared, a missing semicolon at the end of a command, or a reserved word likesum or
in used in the wrong context. (Section A.1 contains a list of reserved words.) Syntax
errors in data statements are similarly reported right after you enter adata command.

Errors in the data values are caught after you typesolve. If the number of hours
were given as –40, for instance, you would see:

ampl: model steel.mod;
ampl: data steel.dat;
ampl: solve;
Error executing "solve" command:
error processing param avail:

failed check: param avail = -40
is not >= 0;

It is good practice to include as many validity checks as possible in the model, so that
errors are caught at an early stage.

Despite your best efforts to formulate the model correctly and to include validity
checks on the data, sometimes a model that generates no error messages and that elicits

SECTION 1.5 ADDING LOWER BOUNDS TO THE MODEL 13

an ‘‘optimal solution’’ report from the solver will nonetheless produce a clearly wrong or
meaningless solution. All of the production levels might be zero, for example, or the
product with a lower profit per hour may be produced at a higher volume. In cases like
these, you may have to spend some time reviewing your formulation before you discover
what is wrong.

Theexpand command can be helpful in your search for errors, by showing you how
AMPL instantiated your symbolic model. To see whatAMPL generated for the objective
Total_Profit, for example, you could type:

ampl: expand Total_Profit;
maximize Total_Profit:

25*Make[’bands’] + 30*Make[’coils’];

This corresponds directly to our explicit formulation back in Section 1.1. Expanding the
constraint works similarly:

ampl: expand Time;
subject to Time:

0.005*Make[’bands’] + 0.00714286*Make[’coils’] <= 40;

Expressions in the symbolic model, such as the coefficients1/rate[p] in this exam-
ple, are evaluated before the expansion is displayed. You can expand the objective and
all of the constraints at once by typingexpand by itself.

The expressions above show that the symbolic model’sMake[j] expands to the
explicit variablesMake[’bands’] andMake[’coils’]. You can use expressions
like these inAMPL commands, for example to expand a particular variable to see what
coefficients it has in the objective and constraints:

ampl: expand Make[’coils’];
Coefficients of Make[’coils’]:

Time 0.00714286
Total_Profit 30

Either single quotes (’) or double quotes (") may surround the subscript.

1.5 Adding lower bounds to the model

Once the model and data have been set up, it is a simple matter to change them and
then re-solve. Indeed, we would not expect to find an LP application in which the model
and data are prepared and solved just once, or even a few times. Most commonly, numer-
ous refinements are introduced as the model is developed, and changes to the data con-
tinue for as long as the model is used.

Let’s conclude this chapter with a few examples of changes and refinements. These
examples also highlight some additional features ofAMPL.

14 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

Suppose first that we add another product, steel plate. The model stays the same, but
in the data we have to addplate to the list of members for the setPROD, and we have
to add a line of parameter values forplate:

set PROD := bands coils plate;

param: rate profit market :=
bands 200 25 6000
coils 140 30 4000
plate 160 29 3500 ;

param avail := 40;

We put this version of the data in a file calledsteel2.dat, and useAMPL as before to
get the solution:

ampl: model steel.mod; data steel2.dat; solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 196400

ampl: display Make;
Make [*] :=
bands 6000
coils 0
plate 1600
;

Profits have increased compared to the two-variable version, but now it is best to produce
no coils at all! On closer examination, this result is not so surprising. Plate yields a pro-
fit of $4640 per hour, which is less than for bands but more than for coils. Thus plate is
produced to absorb the capacity not taken by bands; coils would be produced only if both
bands and plate reached their market limits before the available hours were exhausted.

In reality, a whole product line cannot be shut down solely to increase weekly profits.
The simplest way to reflect this in the model is to add lower bounds on the production
amounts, as shown in Figures 1-5a and 1-5b. We have declared a new collection of
parameters namedcommit, to represent the lower bounds on production that are
imposed by sales commitments, and we have changed>= 0 to >= commit[p] in the
declaration of the variablesMake[p].

After these changes are made, we can runAMPL again to get a more realistic solution:

ampl: model steel3.mod; data steel3.dat; solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 194828.5714

ampl: display commit, Make, market;
: commit Make market :=
bands 1000 6000 6000
coils 500 500 4000
plate 750 1028.57 3500
;

For comparison, we have displayedcommit andmarket on either side of the actual
production,Make. As expected, after the commitments are met, it is most profitable to

SECTION 1.6 ADDING RESOURCE CONSTRAINTS TO THE MODEL 15

__
__

set PROD; # products

param rate {PROD} > 0; # produced tons per hour
param avail >= 0; # hours available in week
param profit {PROD}; # profit per ton

param commit {PROD} >= 0; # lower limit on tons sold in week
param market {PROD} >= 0; # upper limit on tons sold in week

var Make {p in PROD} >= commit[p], <= market[p]; # tons produced

maximize Total_Profit: sum {p in PROD} profit[p] * Make[p];

Objective: total profits from all products

subject to Time: sum {p in PROD} (1/rate[p]) * Make[p] <= avail;

Constraint: total of hours used by all
products may not exceed hours available

Figure 1-5a: Lower bounds on production (steel3.mod).

set PROD := bands coils plate;

param: rate profit commit market :=
bands 200 25 1000 6000
coils 140 30 500 4000
plate 160 29 750 3500 ;

param avail := 40;

Figure 1-5b: Data for lower bounds on production (steel3.dat).
__

produce bands up to the market limit, and then to produce plate with the remaining avail-
able time.

1.6 Adding resource constraints to the model

Processing of steel slabs is not a single operation, but a series of steps that may pro-
ceed at different rates. To motivate a more general model, imagine that we divide pro-
duction into a reheat stage that can process the incoming slabs at 200 tons per hour, and a
rolling stage that makes bands, coils or plate at the rates previously given. Further imag-
ine that there are only 35 hours of reheat time, even though there are 40 hours of rolling
time.

To cover this kind of situation, we can add a setSTAGE of production stages to our
model. The parameter and constraint declarations are modified accordingly, as shown in
Figure 1-6a. Since there is a potentially different number of hours available in each
stage, the parameteravail is now indexed overSTAGE. Since there is a potentially dif-
ferent production rate for each product in each stage, the parameterrate is indexed over
both PROD andSTAGE. In theTime constraint, the production rate for productp in

16 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

__
__

set PROD; # products
set STAGE; # stages

param rate {PROD,STAGE} > 0; # tons per hour in each stage
param avail {STAGE} >= 0; # hours available/week in each stage
param profit {PROD}; # profit per ton

param commit {PROD} >= 0; # lower limit on tons sold in week
param market {PROD} >= 0; # upper limit on tons sold in week

var Make {p in PROD} >= commit[p], <= market[p]; # tons produced

maximize Total_Profit: sum {p in PROD} profit[p] * Make[p];

Objective: total profits from all products

subject to Time {s in STAGE}:
sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];

In each stage: total of hours used by all
products may not exceed hours available

Figure 1-6a: Additional resource constraints (steel4.mod).
__

stages is referred to asrate[p,s]; this is AMPL’s version of a doubly subscripted
entity likea ps in algebraic notation.

The only other change is to the constraint declaration, where we no longer have a sin-
gle constraint, but a constraint for each stage, imposed by limited time available at that
stage. In algebraic notation, this might have been written

Subject to
p∈P
Σ (1/ a ps) X p ≤ b s, for eachs∈S.

Compare theAMPL version:

subject to Time {s in STAGE}:
sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];

As in the other examples, this is a straightforward analogue, adapted to the requirements
of a computer language. In almost all models, most of the constraints are indexed collec-
tions like this one.

Sincerate is now indexed over combinations of two indices, it requires a data table
all to itself, as in Figure 1-6b. The data file must also include the membership for the
new setSTAGE, and values ofavail for bothreheat androll.

After these changes are made, we useAMPL to get another revised solution:

ampl: reset;
ampl: model steel4.mod; data steel4.dat; solve;
MINOS 5.5: optimal solution found.
4 iterations, objective 190071.4286

SECTION 1.6 ADDING RESOURCE CONSTRAINTS TO THE MODEL 17

__
__

set PROD := bands coils plate;
set STAGE := reheat roll;

param rate: reheat roll :=
bands 200 200
coils 200 140
plate 200 160 ;

param: profit commit market :=
bands 25 1000 6000
coils 30 500 4000
plate 29 750 3500 ;

param avail := reheat 35 roll 40 ;

Figure 1-6b: Data for additional resource constraints (steel4.dat).
__

ampl: display Make.lb, Make, Make.ub, Make.rc;
: Make.lb Make Make.ub Make.rc :=
bands 1000 3357.14 6000 5.32907e-15
coils 500 500 4000 -1.85714
plate 750 3142.86 3500 3.55271e-15
;

ampl: display Time;
Time [*] :=
reheat 1800

roll 3200
;

Thereset command erases the previous model so a new one can be read in.
At the end of the example above we have displayed the ‘‘marginal values’’ (also

called ‘‘dual values’’ or ‘‘shadow prices’’) associated with theTime constraints. The
marginal value of a constraint measures how much the value of the objective would
improve if the constraint were relaxed by a small amount. For example, here we would
expect that up to some point, additional reheat time would produce another $1800 of
extra profit per hour, and additional rolling time would produce $3200 per hour; decreas-
ing these times would decrease the profit correspondingly. In output commands like
display, AMPL interprets a constraint’s name alone as referring to the associated mar-
ginal values.

We also display several quantities associated with the variablesMake. First there are
lower boundsMake.lb and upper boundsMake.ub, which in this case are the same as
commit and market. We also show the ‘‘reduced cost’’Make.rc, which has the
same meaning with respect to the bounds that the marginal values have with respect to
the constraints. Thus we see that, again up to some point, each increase of a ton in the
lower bound (or commitment) for coil production should reduce profits by about $1.86;
each one-ton decrease in the lower bound should improve profits by about $1.86. The
production levels for bands and plates are between their bounds, so their reduced costs are
essentially zero (recall thate-15 means×10−15), and changing their levels will have no

18 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

__
__

Figure 1-7a: A Java-basedAMPL graphical user interface (Macintosh).
__

effect. Bounds, marginal (or dual) values, reduced costs and other quantities associated
with variables and constraints are explored further in Section 12.5.

Comparing this session with our previous one, we see that the additional reheat time
restriction reduces profits by about $4750, and forces a substantial change in the optimal
solution: much higher production of plate and lower production of bands. Moreover, the
logic underlying the optimum is no longer so obvious. It is the difficulty of solving LPs
by logical reasoning alone that necessitates computer-based systems such asAMPL.

1.7 AMPL interfaces

The examples that we have presented so far all useAMPL’s command interface: the
user types textual commands and the system responds with textual results. This is what
we will use throughout the book to illustrateAMPL’s capabilities. It permits access to all
of AMPL’s rich collection of features, and it will be the same in all environments. A
text-based interface is most natural for creating scripts of frequently used commands and
for writing programs that useAMPL’s programming constructs (the topics of Chapter 13).
And text commands are used in applications whereAMPL is a hidden or behind-the-
scenes part of some larger process.

SECTION 1.7 AMPL INTERFACES 19

__
__

Figure 1-7b: A Tcl/Tk-basedAMPL graphical user interface (Unix).
__

All that said, however, there are plenty of times where a graphical user interface can
make a program easier to use, helping novices to get started and casual or infrequent
users to recall details.AMPL is no exception. Thus there are a variety of graphical inter-
faces forAMPL, loosely analogous to the ‘‘integrated development environments’’ for
conventional programming languages, thoughAMPL’s environments are much less elabo-
rate. AnAMPL graphical interface typically provides a way to easily execute standard
commands, set options, invoke solvers, and display the results, often by pushing buttons
and selecting menu items instead of by typing commands.

Interfaces exist for standard operating system platforms. For example, Figure 1-7a
shows a simple interface based on Java that runs on Unix and Linux, Windows, and Mac-
intosh, presenting much the same appearance on each. (The Mac interface is shown.)
Figure 1-7b shows a similar interface based on Tcl/Tk, shown running on Unix but also
portable to Windows and Macintosh. Figure 1-7c shows another interface, created with
Visual Basic and running on Windows.

There are also web-based interfaces that provide client-server access toAMPL or
solvers over network connections, and a number of application program interfaces
(API’s) for calling AMPL from other programs. TheAMPL web site,www.ampl.com,
provides up to date information on all types of available interfaces.

20 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

__
__

Figure 1-7c: A Visual BasicAMPL graphical user interface (Windows).
__

Bibliography

Julius S. Aronofsky, John M. Dutton and Michael T. Tayyabkhan,Managerial Planning with Lin-
ear Programming: In Process Industry Operations. John Wiley & Sons (New York, NY, 1978). A
detailed account of a variety of profit-maximizing applications, with emphasis on the petroleum
and petrochemical industries.

Vas ˇek Chva ´ tal, Linear Programming, W. H. Freeman (New York, NY, 1983). A concise and eco-
nomical introduction to theoretical and algorithmic topics in linear programming.

Tibor Fabian, ‘‘A Linear Programming Model of Integrated Iron and Steel Production.’’ Manage-
ment Science4 (1958) pp. 415–449. An application to all stages of steelmaking — from coal and
ore through finished products — from the early days of linear programming.

Robert Fourer and Goutam Dutta, ‘‘A Survey of Mathematical Programming Applications in Inte-
grated Steel Plants.’’ Manufacturing & Service Operations Management4 (2001) pp. 387–400.

David A. Kendrick, Alexander Meeraus and Jaime Alatorre,The Planning of Investment Programs
in the Steel Industry. The Johns Hopkins University Press (Baltimore, MD, 1984). Several detailed
mathematical programming models, using the Mexican steel industry as an example.

Robert J. Vanderbei,Linear Programming: Foundations and Extensions (2nd edition). Kluwer
Academic Publishers (Dordrecht, The Netherlands, 2001). An updated survey of linear program-
ming theory and methods.

SECTION 1.7 AMPL INTERFACES 21

Exercises

1-1. This exercise starts with a two-variable linear program similar in structure to the one of Sec-
tions 1.1 and 1.2, but with a quite different story behind it.

(a) You are in charge of an advertising campaign for a new product, with a budget of $1 million.
You can advertise on TV or in magazines. One minute of TV time costs $20,000 and reaches 1.8
million potential customers; a magazine page costs $10,000 and reaches 1 million. You must sign
up for at least 10 minutes of TV time. How should you spend your budget to maximize your audi-
ence? Formulate the problem inAMPL and solve it. Check the solution by hand using at least one
of the approaches described in Section 1.1.

(b) It takes creative talent to create effective advertising; in your organization, it takes three
person-weeks to create a magazine page, and one person-week to create a TV minute. You have
only 100 person-weeks available. Add this constraint to the model and determine how you should
now spend your budget.

(c) Radio advertising reaches a quarter million people per minute, costs $2,000 per minute, and
requires only 1 person-day of time. How does this medium affect your solutions?

(d) How does the solution change if you have to sign up for at least two magazine pages? A maxi-
mum of 120 minutes of radio?

1-2. The steel model of this chapter can be further modified to reflect various changes in produc-
tion requirements. For each part below, explain the modifications to Figures 1-6a and 1-6b that
would be required to achieve the desired changes. (Make each change separately, rather than accu-
mulating the changes from one part to the next.)

(a) How would you change the constraints so that total hours used by all products mustequal the
total hours available for each stage? Solve the linear program with this change, and verify that you
get the same results. Explain why, in this case, there is no difference in the solution.

(b) How would you add to the model to restrict the total weight of all products to be less than a
new parameter,max_weight? Solve the linear program for a weight limit of 6500 tons, and
explain how this extra restriction changes the results.

(c) The incentive system for mill managers may tend to encourage them to produce as many tons as
possible. How would you change the objective function to maximize total tons? For the data of
our example, does this make a difference to the optimal solution?

(d) Suppose that instead of the lower bounds represented bycommit[p] in our model, we want to
require that each product represent a certain share of the total tons produced. In the algebraic nota-
tion of Figure 1-1, this new constraint might be represented as

X j ≥ s j
k∈P
Σ X k, for eachj∈P

wheres j is the minimum share associated with projectj. How would you change theAMPL model
to use this constraint in place of the lower boundscommit[p]? If the minimum shares are 0.4 for
bands and plate, and 0.1 for coils, what is the solution?

Verify that if you change the minimum shares to 0.5 for bands and plate, and 0.1 for coils, the lin-
ear program gives an optimal solution that produces nothing, at zero profit. Explain why this
makes sense.

22 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

(e) Suppose there is an additional finishing stage for plates only, with a capacity of 20 hours and a
rate of 150 tons per hour. Explain how you could modify the data, without changing the model, to
incorporate this new stage.

1-3. This exercise deals with some issues of ‘‘sensitivity’’ in the steel models.

(a) For the linear program of Figures 1-5a and 1-5b, displayTime andMake.rc. What do these
values tell you about the solution? (You may wish to review the explanation of marginal values
and reduced costs in Section 1.6.)

(b) Explain why the reheat time constraints added in Figure 1-6a result in a higher production of
plate and a lower production of bands.

(c) UseAMPL to verify the following statements: If the available reheat time is increased from 35
to 36 in the data of Figure 1-6b, then the profit goes up by $1800 as predicted in Section 1.6. If the
reheat time is further increased to 37, the profit goes up by another $1800. However, if the reheat
time is increased to 38, there is a smaller increase in the profit, and further increases past 38 have
no effect on the optimal profit at all. To change the reheat time to, say, 26 without changing and
reading the data file over again, type the command

let avail["reheat"] := 36;

By trying some other values of the reheat time, confirm that the profit increases by $1800 per extra
hour for any number of hours between 35 and 379/14, but that any increase in the reheat time
beyond 379/14 hours doesn’t give any further profit.

Draw a plot of the profit versus the number of reheat hours available, for hours≥ 35.

(d) To find the slope of the plot from (c) — profit versus reheat time available — at any particular
reheat time value, you need only look at the marginal value ofTime["reheat"]. Using this
observation as an aid, extend your plot from (c) down to 25 hours of reheat time. Verify that the
slope of the plot remains at $6000 per hour from 25 hours down to less than 12 hours of reheat
time. Explain what happens when the available reheat time drops to 11 hours.

1-4. Here is a similar profit-maximizing model, but in a different context. An automobile manu-
facturer produces several kinds of cars. Each kind requires a certain amount of factory time per car
to produce, and yields a certain profit per car. A certain amount of factory time has been scheduled
for the next week, and it is desired to use all this time; but at least a certain number of each kind of
car must be manufactured to meet dealer requirements.

(a) What are the data values that define this problem? How would you declare the sets and param-
eter values for this problem inAMPL? What are the decision variables, and how would you declare
them inAMPL?

(b) Assuming that the objective is to maximize total profit, how would you declare an objective in
AMPL for this problem? How would you declare the constraints?

(c) For purposes of experiment, suppose that there are three kinds of cars, known at the factory as
T, C andL, that 120 hours are available, and that the time per car, profit per car and dealer orders
for each kind of car are as follows:

Car time profit orders

T 1 200 10
C 2 500 20
L 3 700 15

SECTION 1.7 AMPL INTERFACES 23

How much of each car should be produced, and what is the maximum profit? You should find that
your solution specifies a fractional amount of one of the cars. As a practical matter, how could you
make use of this solution?

(d) If you maximize the total number of cars produced instead of the total profit, how many more
cars do you make? How much less profit?

(e) Each kind of car achieves a certain fuel efficiency, and the manufacturer is required by law to
maintain a certain ‘‘fleet average’’ efficiency. The fleet average is computed by multiplying the
efficiency of each kind of car times the number of that kind produced, summing all of the resulting
products, and dividing by the total of all cars produced. Extend yourAMPL model to contain a
minimum fleet average efficiency constraint. Rearrange the constraint as necessary to make it lin-
ear — no variables divided into other variables.

(f) Find the optimal solution for the case where carsT, C andL achieve fuel efficiencies of 50, 30
and 20 miles/gallon, and the fleet average efficiency must be at least 35 miles/gallon. Explain how
this changes the production amounts and the total profit. Dealing with the fractional amounts in
the solution is not so easy in this case. What might you do?

If you had 10 more hours of production time, you could make more profit. Does the addition of the
fleet average efficiency constraint make the extra 10 hours more or less valuable?

(g) Explain how you could further refine this model to account for different production stages that
have different numbers of hours available per stage, much as in the steel model of Section 1.6.

1-5. A group of young entrepreneurs earns a (temporarily) steady living by acquiring inadequately
supervised items from electronics stores and re-selling them. Each item has a street value, a
weight, and a volume; there are limits on the numbers of available items, and on the total weight
and volume that can be managed at one time.

(a) Formulate anAMPL model that will help to determine how much of each item to pick up, to
maximize one day’s profit.

(b) Find a solution for the case given by the following table,

Value Weight Volume Available

TV 50 35 8 20
radio 15 5 1 50
camera 85 4 2 20
CD player 40 3 1 30
VCR 50 15 5 30
camcorder 120 20 4 15

and by limits of 500 pounds and 300 cubic feet.

(c) Suppose that it is desirable to acquire some of each item, so as to always have stock available
for re-sale. Suppose in addition that there are upper bounds on how many of each item you can
reasonably expect to sell. How would you add these conditions to the model?

(d) How could the group use the dual variables on the maximum-weight and maximum-volume
constraints to evaluate potential new partners for their activities?

(e) Through adverse circumstances the group has been reduced to only one member, who can carry
a mere 75 pounds and five cubic feet. What is the optimum strategy now? Given that this requires
a non-integral number of acquisitions, what is the best all-integer solution? (The integrality con-
straint converts this from a standard linear programming problem into a much harder problem
called a Knapsack Problem. See Chapter 20.)

24 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

1-6. Profit-maximizing models of oil refining were one of the first applications of linear program-
ming. This exercise asks you to model a simplified version of the final stage of the refining pro-
cess.

A refinery breaks crude oil into some collection of intermediate materials, then blends these materi-
als back together into finished products. Given the volumes of intermediates that will be available,
we want to determine how to blend the intermediates so that the resulting products are most prof-
itable. The decision is made more complicated, however, by the existence of upper limits on cer-
tain attributes of the products, which must be respected in any feasible solution.

To formulate an algebraic linear programming model for this problem, we can start by defining sets
I of intermediates,J of final products, andK of attributes. The relevant technological data may be
represented by

a i barrels of intermediatei available, for eachi∈I
r ik units of attributek contributed per barrel of intermediatei, for eachi∈I andk∈K
u j k maximum allowed units of attributek per barrel of final productj,

for eachj∈J andk∈K
δ i j 1 if intermediatei is allowed in the blend for productj, or 0 otherwise,

for eachi∈I andj∈J

and the economic data can be given by

c j revenue per barrel of productj, for eachj∈J

There are two collections of decision variables:

X i j barrels of intermediatei used to make productj, for eachi∈I andj∈J
Y j barrels of productj made, for eachj∈J

The objective is to

maximize Σ j∈J
c j Y j,

which is the sum of the revenues from the various products.

It remains to specify the constraints. The amount of each intermediate used to make products must
equal the amount available:

Σ j∈J
X i j = a i, for eachi∈I.

The amount of a product made must equal the sum of amounts of the components blended into it:

Σ i∈I
X i j = Y j, for eachj∈J.

For each product, the total attributes contributed by all intermediates must not exceed the total
allowed:

Σ i∈I
r ik X i j ≤ u j k Y j, for eachj∈J andk∈K.

Finally, we bound the variables as follows:

0 ≤ X i j ≤ δ i j a i, for eachi∈I, j∈J,
0 ≤ Y j, for eachj∈J.

SECTION 1.7 AMPL INTERFACES 25

The upper bound onX i j assures that only the appropriate intermediates will be used in blending. If
intermediatei is not allowed in the blend for productj, as indicated byδ i j being zero, then the
upper bound onX i j is zero; this ensures thatX i j cannot be positive in any solution. Otherwise, the
upper bound onX i j is justa i, which has no effect since there are onlya i barrels of intermediatei
available for blending in any case.

(a) Transcribe this model toAMPL, using the same names as in the algebraic form for the sets,
parameters and variables as much as possible.

(b) Re-write theAMPL model using meaningful names and comments, in the style of Figure 1-4a.

(c) In a representative small-scale instance of this model, the intermediates areSRG (straight run
gasoline),N (naphtha),RF (reformate),CG (cracked gasoline),B (butane),DI (distillate intermedi-
ate),GO (gas oil), andRS (residuum). The final products arePG (premium gasoline),RG (regular
gasoline),D (distillate), andHF (heavy fuel oil). Finally, the attributes arevap (vapor pressure),
oct (research octane),den (density), andsul (sulfur).

The following amounts of the intermediates are scheduled to be available:

SRG N RF CG B DI GO RS

21170 500 16140 4610 370 250 11600 25210

The intermediates that can be blended into each product, and the amounts of the attributes that they
possess, are as follows (with blank entries representing zeros):

Premium & regular gasoline Distillate Heavy fuel oil
vap oct den sul den sul

SRG 18.4 –78.5
N 6.54 –65.0 272 .283
RF 2.57 –104.0
CG 6.90 –93.7
B 199.2 –91.8
DI 292 .526
GO 295 .353 295 .353
RS 343 4.70

The attribute limits and revenues/barrel for the products are:

vap oct den sul revenue

PG 12.2 –90 10.50
RG 12.7 –86 9.10
D 306 0.5 7.70
HF 352 3.5 6.65

Limits left blank, such as density for gasoline, are irrelevant and may be set to some relatively
large number.

Create a data file for yourAMPL model and determine the optimal blend and production amounts.

(d) It looks a little strange that the attribute amounts for research octane are negative. What is the
limit constraint for this attribute really saying?

