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Abstract. Symmetry is mainly exploited in mathematical programming in order
to reduce the computation times of enumerative algorithms. The most widespread ap-
proach rests on: (a) finding symmetries in the problem instance; (b) reformulating the
problem so that it does not allow some of the symmetric optima; (c) solving the modi-
fied problem. Sometimes (b) and (c) are performed concurrently: the solution algorithm
generates a sequence of subproblems, some of which are recognized to be symmetrically
equivalent and either discarded or treated differently. We review symmetry-based anal-
yses and methods for Linear Programming, Integer Linear Programming, Mixed-Integer
Linear Programming and Semidefinite Programming. We then discuss a method (intro-
duced in [35]) for automatically detecting symmetries of general (nonconvex) Nonlinear
and Mixed-Integer Nonlinear Programming problems and a reformulation based on ad-
joining symmetry breaking constraints to the original formulation. We finally present a
new theoretical and computational study of the formulation symmetries of the Kissing
Number Problem.
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1. Introduction. Mathematical Programming (MP) is a language
for formally describing classes of optimization problems. A MP consists of:
parameters, encoding the problem input; decision variables, encoding the
problem output; one objective function to be minimized; and a set of con-
straints describing the feasible set (some of these constraints may be bounds
or integrality requirements on the decision variables). The objective func-
tion and constraints are described by mathematical expressions whose ar-
guments are the parameters and the decision variables. Let N = {1, . . . , n}
and M = {1, . . . ,m} for some nonnegative integers m,n, and Z ⊆ N . In
general, a MP formulation is as follows:

min f(x)
s.t. g(x) ≤ 0

∀i ∈ Z xi ∈ Z,







(1.1)

where x ∈ Rn is a vector of decision variables, and f : Rn → R and g : Rn →
Rm are functions that can be written as mathematical expressions involving
of a finite number of operators (e.g. {+,−,×,÷, ↑, log, exp, sin, cos, tan})
and x as arguments. If f, g are affine forms and Z = ∅, (1.1) is a Linear
Program (LP). If f, g contain some nonlinear term and Z = ∅, (1.1) is a
Nonlinear Program (NLP), and if f is a convex function and the feasible set
{x | g(x) ≤ 0} is convex, (1.1) is a convex NLP (cNLP). If f, g are affine and
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Z 6= ∅, (1.1) is a Mixed-Integer Linear Program (MILP) , and if Z = N it is
an Integer Linear Program (ILP). If f, g contain some nonlinear term and
Z 6= ∅, (1.1) is a Mixed-Integer Nonlinear Program (MINLP), and if f and
the feasible set are convex, it is a convex MINLP (cMINLP). A somewhat
special case of MP, called Semidefinite Programming (SDP) is when f, g
are affine forms, Z = ∅, x is a square matrix, and there is an additional
constraint stating that x must be symmetric positive semidefinite (x � 0).
Although the semidefinite constraint cannot be written as a mathematical
expression of the operators listed above, SDP is important because it can
be solved in polynomial time by a special-purpose interior point method [1],
and because many tight relaxations of polynomial programming problems
can be cast as SDPs.

Symmetries have been used in MP for analysis purposes or in order
to speed up solution methods. The general approach is as follows. First,
symmetries are detected, either algorithmically or because of some known
mathematical property of the given optimization problem. Once (some)
problem symmetries are known, either the MP is reformulated so that some
symmetric optima become infeasible and then solved via standard solution
methods (static symmetry breaking [42]), or a known solution method is
modified so that it recognizes and exploits symmetry dynamically as it goes
along. Symmetries in MP can be broadly classified in two types: solution
symmetries, i.e. those variable symmetries that fix the set of solutions set-
wise; and formulation symmetries, i.e. those variable symmetries that fix
the formulation (encoded in some data structure). If the formulation group
structure for a given MP varies considerably from instance to instance, then
automatic symmetry detection methods may be required.

In general, when one reads the existing literature on the subject, one
realizes that the main effort is that of removing symmetries from a problem
in order to find a global optimum more quickly. After extensive compu-
tational experimentations with all the symmetric instances of most public
instance libraries (MIPLib, GlobalLib and MINLPLib) solved by means of
Couenne [6] and BARON [56] (both implementing a spatial Branch-and-
Bound (sBB) algorithm) and also RECIPE [37] (based on the Variable
Neighbourhood Search (VNS) metaheuristic [22]), my own very personal
opinion is that removing symmetries is good when solving with sBB and
bad when solving with VNS. The sBB algorithm is a tree search based on
bisecting the variable bounds at each tree node along the spatial direction
generating the largest error between the solutions of the upper bounding
and lower bounding subproblems. The leaf nodes of the search tree contain
globally optimal solutions or infeasible portions of space. If the problem has
many symmetric optima, a correspondingly large number of leaves contain
these optima. When some of the symmetric optima are eliminated from
the feasible region, the bound relative to parent nodes is likely to increase,
which accelerates sBB convergence. VNS, on the other hand, works by
jumping from optimum to optimum via paths defined by local searches
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started from random points in increasingly large neighbourhoods of the
incumbent, attempting to improve the objective function value. Since in
general it is important to explore as much as possible of the feasible region,
one usually tends to move to a new optimum even though the objective
function value stays the same. This provides an intuitive explanation as
regards the generally poor performance of the RECIPE algorithm on refor-
mulated problems with fewer symmetric optima compared to the original
symmetric instances.

In this paper, we provide a study of symmetry for NLPs and MINLPs
in general form (no convexity assumption is made on f, g). Our literature
review (Sect. 2) first presents a general overview of mathematical program-
ming techniques drawing from group theory, particularly in regard to LP,
ILP, MILP, SDP, and then focuses on those items that are relevant to auto-
matic symmetry detection (one of the main topics discussed in this paper).
An automatic symmetry detection method (originally introduced in [35]) is
recounted in Sections 3-4: we construct a digraph that encodes the struc-
ture of the mathematical expression representation of f, g, and then apply
known graph-based symmetry detection algorithms to derive the group of
permutations of the decision variable indices that fix the symbolic structure
of f, g. In Sect. 5 we introduce some linear inequalities that are valid for at
least one optimum of (1.1) but which are likely to make at least some sym-
metric optima infeasible. We then present an original application of the
proposed techniques to the Kissing Number Problem [29] in Sect. 6: we
use our automatic symmetry detection method to formulate a conjecture
on the KNP group structure, which we then prove to be true; we derive
some symmetry breaking inequalities, and discuss computational results
which show the positive impact of the proposed approach.

1.1. Notation. We follow the notation style common in classical al-
gebra, see e.g. [10, 2], with some modifications drawn from computational
group theory [59]. Most of the groups considered in this paper act on
vectors in Rn by permuting the components. Permutations act on sets of
vectors by acting on each vector in the set. We denote the identity per-
mutation by e. We employ standard group nomenclature: Sn, Cn are the
symmetric and cyclic groups of order n. For any function f : S → T (where
S, T are sets) we denote S (the domain of f) by dom(f).

For a group G ≤ Sn and a set X of row vectors, XG = {xg | x ∈ X ∧
g ∈ G}; if Y is a set of column vectors, GY = {gy | y ∈ Y ∧g ∈ G}. If X =
{x}, we denote XG by xG (and similarly GY by Gy if Y = {y}); xG is also
known as the orbit of x in G (and similarly for Gy); in computational group
theory literature the notation orb(x,G) is sometimes employed instead of
the more algebraic xG. The (setwise) stabilizer stab(X,G) of a set X with
respect to a group G is the largest subgroup H of G such that XH = X.
For any permutation π ∈ Sn, let Γ(π) be the set of its disjoint cycles, so
that π =

∏

τ∈Γ(π)

τ . For a group G and π ∈ G let 〈π〉 be the subgroup
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of G generated by π, and for a subset S ⊆ G let 〈S〉 be the subgroup of
G generated by all elements of S. Given B ⊆ {1, . . . , n}, Sym(B) is the
symmetric group of all the permutations of elements in B. A permutation
π ∈ Sn is limited to B if it fixes every element outside B; π acts on
B ⊆ {1, . . . , n} as a permutation ρ ∈ Sym(B) if π fixes B setwise and
ρ = π[B] is the permutation of B induced by π. Because disjoint cycles
commute, it follows from the definition that for all k ∈ N, πk[B] = (π[B])k.
A group G ≤ Sn with generators {g1, . . . , gs} acts on B ⊆ {1, . . . , n} as H
if 〈gi[B] | i ≤ s〉 = H; in this case we denote H by G[B]. If B is an orbit
of the natural action of G on the integers (i.e. the natural action of G on
⋃

π∈G

dom(π), which fixes every other integer), then it is easy to show that

G[B] is a transitive constituent of G [21]. In general, G[B] may not be a
subgroup of G: take G = 〈(1, 2)(3, 4), (1, 3), (4, 2)〉 and B = {1, 2}, then
G[B] = 〈(1, 2)〉 6≤ G. Let B,D ⊆ {1, . . . , n} with B∩D = ∅; if π ∈ Sn fixes
both B,D setwise, it is easy to show that π[B ∪D] = π[B]π[D].

2. Literature review. This literature review does not only cover the
material strictly inherent to later sections, but attempts to be as informa-
tive as possible as concerns the use of symmetry in MP, in such a way as to
provide an overview which is complementary to [42]. More specifically, the
first part (Sect. 2.1-2.3) of this review will cover a representative subset of
the most important works about symmetry in optimization, notably in LP,
MILP and (briefly) SDP. We survey those topics which are most relevant
to later sections (i.e. symmetry detection methods) in Sect. 2.4.

2.1. Symmetry in Linear Programming. The geometrical objects
of LP are polyhedra, and there is a very rich literature on symmetric poly-
hedra [53]. Such results, however, are mostly about the classification of
symmetric polyhedra and are rarely used in algorithmics.

The inherent symmetry of the simplex algorithm is studied in [63, 64,
65]. Given two m × n matrices A,B, let SA = {x ∈ Rm+n | (I|A)x = 0}
(where (I|A) is the m × (m + n) matrix formed by the m × m identity
followed by the columns of A) and SB = {x ∈ Rm+n | (I|B)x = 0}; A,B
are combinatorially equivalent (written A :: B) if there exists π in the sym-
metric group Sm+n such that πSA = SB . The paper [63] gives different
necessary and sufficient conditions for A :: B (among which a formula for
constructing all combinatorially equivalent matrices from submatrices of
A). In [64] an application to solving matrix games via the simplex method
is presented. In [54], Tucker’s combinatorial equivalence is used to devise
a simplex algorithm variant capable of solving a pair of primal/dual LPs
directly without many of the necessary pre-processing steps.

2.2. Symmetry in Mixed-Integer Linear Programming. The
existing work on symmetry in MILP may be classified in three broad cate-
gories: (a) the abelian group approach proposed by Gomory to write integer
feasibility conditions for Integer Linear Programs (ILPs); (b) symmetry-
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breaking techniques for specific problems, whose symmetry group can be
computed in advance; (c) general-purpose symmetry group computations
and symmetry-breaking techniques to be used in BB-type solution algo-
rithms. We consider MILPs of the form min{cx | Ax ≤ b∧∀i ∈ Z xi ∈ Z}.

Category (a) was established by R. Gomory [20]: given a basis B of
the constraint matrix A, it exploits the (abelian) group G = Zn/〈col(B)〉,
where Zn is the additive group of integer n-sequences and 〈col(B)〉 is the
additive group generated by the columns of the (nonsingular) matrix B.
Consider the natural group homomorphism ϕ : Zn → G with kerϕ =
〈col(B)〉: letting (xB , xN ) be a basic/nonbasic partition of the decision
variables, apply ϕ to the standard form constraints BxB + NxN = b to
obtain ϕ(BxB)+ϕ(NxN ) = ϕ(b). Since ϕ(BxB) = 0 if and only if xB ∈ Zn,
setting ϕ(NxN ) = ϕ(b) is a necessary and sufficient condition for xB to
be integer feasible. Gomory’s seminal paper gave rise to further research,
among which [68, 5]. The book [24] is a good starting point.

Category (b) is possibly the richest in terms of number of published
papers. Many types of combinatorial problems exhibit a certain amount of
symmetry. Symmetries are usually broken by means of specific branching
techniques (e.g. [40]), appropriate global cuts (e.g. [60]) or special formu-
lations [30, 9] based on the problem structure. The main limitation of the
methods in this category is that they are difficult to generalize and/or to
be made automatic.

Category (c) contains two main research streams. The first was estab-
lished by Margot in the early 2000s [38, 39], and is applicable to Binary
Linear Programs (BLPs) in the form:

min cx
Ax ≤ b
x ∈ {0, 1}n.







Margot [38, 42] defines the relaxation group GLP(P ) of a BLP P as:

GLP(P ) = {π ∈ Sn | cπ = c ∧ ∃σ ∈ Sn (σb = b ∧ σAπ = A)}, (2.1)

or, in other words, all relabellings of problem variables for which the ob-
jective function and constraints are the same. The relaxation group (2.1)
is used to derive effective BB pruning strategies by means of isomorphism
pruning and isomorphism cuts local to some selected BB tree nodes (Margot
extended his work to general integer variables in [41]). Further results along
the same lines (named orbital branching) are obtained for covering and
packing problems in [49, 50]: if O is an orbit of some subgroup of the relax-
ation group, at each BB node the disjunction

(
∨

i∈O xi = 1
)

∨
∑

i∈O xi = 0
induces a feasible division of the search space; orbital branching restricts
this disjunction to xh = 1 ∨

∑

i∈O xi where h is an arbitrary index in O.
The second was established by Kaibel et al. in 2007 [25, 15], with the

introduction of the packing and partitioning orbitopes, i.e. convex hulls
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of certain 0-1 matrices that represent possible solutions to sets of packing
and partitioning constraints. These are used in problems defined in terms
of matrices of binary decision variables xij (for i ≤ m, j ≤ n). Since a
typical packing constraint is

∑

j∈Ji
xij ≤ 1 for some i ≤ m,Ji ⊆ {1, . . . , n}

(partitioning constraints simply replace inequalities with equations), sets
of such constraint may exhibit column symmetries in

∏

i≤m Sym(Ji), and
row symmetries in Sm. Orbitopes are convex hulls of binary m× n matri-
ces that have lexicographically ordered columns: their vertices represent a
subset of feasible solutions of the corresponding packing/partitioning prob-
lem from which several symmetries have been removed. Given a partition
C1, . . . , Cq of the variable indices, a permutation π ∈ GLP(P ) is an or-
bitopal symmetry if there are p, r ≤ q such that π is a bijection Cp → Cr

that keeps all other Cs elementwise fixed, for s 6∈ {p, r} [7]. In [25], a
complete description of packing/partitioning orbitopes in terms of linear
inequalities is provided ([15] gives a much shorter, more enlightening and
less technical presentation than that given in [25]). Inspired by the work
on orbitopes, E. Friedman proposed a similar but more general approach
leading to fundamental domains [17]: given a feasible polytope X ⊆ [0, 1]n

with integral extreme points and a group G acting as an affine transforma-
tion on X (i.e. for all π ∈ G there is a matrix A ∈ GL(n) and an n-vector
d such that πx = Ax+ d for all x ∈ X), a fundamental domain is a subset
F ⊂ X such that GF = X.

2.3. Symmetry in Semidefinite Programming. There are several
works describing the exploitation of symmetry in semidefinite programming
(see e.g. [26, 19, 27]). Much of the material in this section is taken from
the commendable tutorial [67]. Consider the following SDP:

minX C •X
∀k ≤ m Ak •X ≤ bi

X � 0,







(2.2)

where X is an n×n symmetric matrix abd M1•M1 = trace(M1
⊤M2) is the

trace product between matrices M1,M2. Let GSDP be the largest subgroup
of Sn such that if X∗ is an optimum then πX∗ is also an optimum for all
π ∈ GSDP, where the action of π on an n× n matrix M is to permute the
columns and the rows of M according to π. If X∗ is an optimum, taking

1
|GSDP|

∑

π∈G

πX∗ shows that there is always an optimal solution of (2.2) in

B, the space of GSDP-invariant matrices. Let R1, . . . , Rk be the orbits of
{(i, j) | i, j ≤ n} under GSDP, and for all r ≤ k let Br = (brij) the 0-1
incidence matrix of (i, j) ∈ Rr (i.e. brij = 1 of (i, j) ∈ Rr and 0 otherwise).

Then B1, . . . , Bk is a basis of B and (2.2) can be re-cast as a search over
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the coefficients of a linear form in B1, . . . , Bk:

miny

∑

j≤k

(C •Bj)yj

∀i ≤ m
∑

j≤k

(Ai •B
j)yj = bi

∑

j≤k

yjB
j � 0.























(2.3)

By rewriting (2.2) and (2.3) over C, B becomes a semisimple algebra over
C. This implies that it is possible to find an algebra isomorphism

φ : B →
⊕

t≤d

Cmt×mt

for some integers d and mt (t ≤ d). This allows a size reduction of the SDP
being solved, as the search only needs to be conducted on the smaller-
dimensional space spanned by φ(B).

A different line of research is pursued in [26]: motivated by an appli-
cation (truss optimization), it is shown that the barrier subproblem of a
typical interior point method for SDP “inherits” the same symmetries as
the original SDP.

2.4. Automatic symmetry detection. Automatic symmetry de-
tection does not appear prominently in the mathematical programming
literature. A method for finding the MILP relaxation group (2.1), based
on solving an auxiliary MILP encoding the condition σAπ = A, was pro-
posed and tested in [32] (to the best of our knowledge, the only approach for
symmetry detection that does not reduce the problem to a graph). A more
practically efficient method consists in finding the automorphism group of
vertex-colored bipartite graph encoding the incidence of variables in con-
straints. If the symmetry π is orbitopal and the system Ax ≤ b contains at
least a leading constraint, i.e. a π-invariant constraint that has exactly one
nonzero column in each Cp (for p ≤ q) then a set of generators for GLP(P )
can be found in linear time in the number of nonzeroes of A [7].

The Constraint Programming (CP) literature contains many papers on
symmetries. Whereas most of them discuss symmetry breaking techniques,
a few of them deal with automatic symmetry detection and are relevant to
the material presented in the rest of the paper; all of them rely on reducing
the problem to a graph and solving the associated Graph Isomorphism
(GI) problem. In CP, symmetries are called local if they hold at a specific
search tree node, and global otherwise. Solution symmetries are also called
semantic symmetries, and formulation symmetries are also called syntactic
or constraint symmetries. A Constraint Satisfaction Problem (CSP) can be
represented by its microstructure complement, i.e. a graph whose vertices
are assignments x = a (where x ranges over all CSP variables and a over all
values in the domain of x), and whose edges (xi = a, xj = b) indicate that
the two assignments xi = a and xj = b are incompatible either because of a



8 LEO LIBERTI

constraint in the CSP or because i = j and a 6= b. Constraint symmetries
are defined in [11] as the automorphisms of the microstructure comple-
ment. A k-ary nogood is a k-partial solution (i.e. an assignment of values
to k variables) which cannot be extended to a full solution of the given
CSP instance. The k-nogood hypergraph of the CSP has assignments x = a
as vertices and all m-ary nogoods as hyperedges, for m ≤ k. For a k-ary
CSP (one whose constraints have maximum arity k), the group of solution
symmetries is equal to the automorphism group of its k-nogood hypergraph
[11]. In [13] (possibly the first work in which a reduction from formulation-
type symmetries to GI was proposed), SAT symmetries are automatically
detected by reducing the problem to a bipartite graph, and identified by
solving the corresponding GI instance, similarly to the approach taken in
[49]. In [52], constraints involving the arithmetic operations +,−,× are
reduced to Directed Acyclic Graphs (DAG) whose leaf vertices represent
variables and intermediate vertices represent operators; vertex colors iden-
tify same operator types and constraints having the same right hand sides.
Thm. 3.1 in [52] shows that the automorphism group of this DAG is iso-
morphic to the constraint group of the corresponding CSP instance, and
might be considered the CP equivalent of Thm. 4.1 and Thm. 4.2 appearing
below (although the proof techniques are completely different). In [51], a
systematic reduction of many types of constraints to an equivalent graph
form is proposed; an improved representation and extensive computational
results are given in [45]. The problem of determining the constraint group
of a model (instead of an instance) is discussed in [46] — we pursue a similar
line of reasoning when inferring the structure of the KNP group (indepen-
dently of the instance) from a sequence of automatically computed KNP
instance groups.

3. Groups of a mathematical program. Let P be a MP with
formulation as in (1.1), and F(P ) (resp. G(P )) be the set of its feasi-
ble (resp. globally optimal) points. Two important groups are connected
with P . The solution group is the group of all permutations of the vari-
able indices which map G(P ) into itself; it is defined formally as G∗(P ) =
stab(G(P ), Sn) and contains as a subgroup the “symmetry group” of P ,
defined limited to MILPs in [42] as the group of permutations mapping
feasible solutions into feasible solutions having the same objective func-
tion value. Computing solution groups directly from their definition would
imply knowing G(P ) aprioristically, which is evidently irrealistic.

The other important group related to P (denoted by ḠP ) fixes the
formulation of P . For two functions f1, f2 : Rn → R we write f1 = f2 to
mean dom(f1) = dom(f2) ∧ ∀x ∈ dom(f1) (f1(x) = f2(x)). Then

ḠP = {π ∈ Sn | Zπ = Z ∧ f(xπ) = f(x) ∧ ∃ σ ∈ Sm (σg(xπ) = g(x))}.

It is easy to show that ḠP ≤ G∗(P ): let π ∈ ḠP and x∗ ∈ G(P ); x∗π ∈
F(P ) because Zπ = Z, g(x∗π) = σ−1g(x∗); and it has the same function
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value because f(x∗π) = f(x∗) by definition. Thus G(P )π = G(P ) and
π ∈ G∗(P ).

The definition of ḠP implies the existence of a method for testing
whether f(xπ) = f(x) and whether there is a permutation σ ∈ Sm such
that σg(xπ) = g(x). Since Nonlinear Equations (determining if a set
of general nonlinear equations has a solution) is an undecidable problem in
general [69], such tests are algorithmically intractable. Instead, we assume
the existence of a YES/NO oracle ≡ that answers YES if it can establish
that f1 = f2 (i.e. f1, f2 have the same domain and are pointwise equal
on their domain). Such an oracle defines an equivalence relation ≡ on
the set of all functions appearing in (1.1): if a pair of functions (f1, f2)
belongs to the relation then the functions are equal, but not all pairs of
equal functions might belong to ≡ (i.e. ≡ might answer NO even though
f1 = f2). This weakening of the equality relationship will allow us to
give an algorithmically feasible definition of the symmetry group of the
formulation.

We define the ≡ oracle by only considering functions that can be writ-
ten syntactically using infix notation in terms of a finite set of operators
(e.g. arithmetic, logarithm, exponential and so on), a finite set of constants
in Q and the set of problem variables x1, . . . , xn. Such functions can be
naturally represented by means of expression trees (Fig. 1 left) which, by
contracting leaf vertices with equal labels, can be transformed into DAGs
as shown in Fig. 1 (right). The ≡ oracle is then implemented as a recur-

××

+

x1 x2

x3

x32

××

+

x1 x2

x3

2

Fig. 1. Expression tree for 2x1 + x2x3 + x3 (left). Equal variable vertices can be
contracted to obtain a DAG (right).

sive graph exploration. The function DAG representation is well known
and should perhaps be attributed to folklore (it is mentioned e.g. in [28],
Sect. 2.3). DAG representable functions are routinely used in Global Op-
timization (GO) to automatically build relaxations of MINLPs [61, 31, 6]
or tighten the variable bounds [57]. In the context of symmetry in MP,
precise definitions for DAG representable functions and the ≡ oracle im-
plementation are given in [35, 12]. The formulation group of P can now be
defined as:

GP = {π ∈ Sn|Zπ = Z ∧ f(xπ) ≡ f(x)∧∃σ ∈ Sm(σg(xπ) ≡ g(x))}. (3.1)
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Because for any function h, h(xπ) ≡ h(x) implies h(xπ) = h(x) for all
x ∈ dom(h), it is clear that GP ≤ ḠP . Thus, it also follows that GP ≤
G∗(P ). Although ḠP is defined for any MINLP (1.1), if P is a BLP, then
ḠP = GLP(P ) [35]. We remark that if f1, f2 are linear forms, then f1 = f2
implies f1 ≡ f2. In other words, for linear forms, ≡ and = are the same
relation [35]. As a corollary, if P is a BLP, then GP = GLP(P ).

If a set of mathematical functions share the same arguments, as for the
objective function f and constraints g of (1.1), the corresponding DAGs for
f, g1, . . . , gm can share the same variable leaf vertices. This yields a DAG
DP = (VP , AP ) (formed by the union of all the DAGs of functions in P
followed by the contraction of leaf vertices with same variable index label)
which represents the mathematical structure P [48, 57].

4. Automatic computation of the formulation group. The me-
thod proposed in this section also appears (with more details) in [35]. As
mentioned in the literature review, similar techniques are available in CP
[52].

We first define an equivalence relation on VP which determines the
interchangeability of two vertices of DP . Let SF be the singleton set con-
taining the root vertex of the objective function, SC of all constraint root
vertices, SO of all vertices representing operators, SK of all constant ver-
tices and SV of all variable vertices. For v ∈ SF , we denote optimization
direction of the corresponding objective function by d(v); for v ∈ SC , we
denote the constraint sense by s(v). For v ∈ SO, we let ℓ(v) be the level
of v in DP , i.e. the length of the path from the root to v (ℓ is well defined
as the only vertices with more than one incoming arc are the leaf vertices),
λ(v) be its operator label and o(v) be the order of v as an argument of
its parent vertex if the latter represents a noncommutative operator, or 1
otherwise. For v ∈ SK , we let µ(v) be the value of v. For v ∈ SV we let
r(v) be the 2-vector of lower and upper variable bounds for v and ζ(v) be
1 if v represents an integral variable or 0 otherwise. We now define the
relation ∼ on VP as follows.

∀u, v ∈ VP u ∼ v ⇔ (u, v ∈ SF ∧ d(u) = d(v))

∨ (u, v ∈ SC ∧ s(u) = s(v))

∨ (u, v ∈ SO ∧ ℓ(u) = ℓ(v) ∧ λ(u) = λ(v) ∧ o(u) = o(v))

∨ (u, v ∈ SK ∧ µ(u) = µ(v))

∨ (u, v ∈ SV ∧ r(u) = r(v) ∧ ζ(u) = ζ(v)).

It is easy to show that ∼ is an equivalence relation on VP , and therefore
partitions VP into K disjoint subsets V1, . . . , VK .

For a digraphD = (V,A), its automorphism group Aut(D) is the group
of vertex permutations γ such that (γ(u), γ(v)) ∈ A for all (u, v) ∈ A [55].
Let GDAG(P ) be the largest subgroup of Aut(DP ) fixing Vk setwise for all
k ≤ K. We assume without loss of generality that the vertices of DP are
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uniquely numbered so that for all j ≤ n, the j-th vertex corresponds to
the leaf vertex for variable xj (the rest of the numbering is not important),
i.e. SV = {1, . . . , n}.

Let G ≤ Sn and ω be a subset of {1, . . . , n}. Let H = Sym(ω) and
define the mapping ψ : G → H by ψ(π) = π[ω] for all π ∈ G. Then the
following holds.

Theorem 4.1 ([35], Thm. 4). ψ is a group homomorphism if and
only if G stabilizes ω setwise.
Next, we note that GDAG(P ) fixes SV setwise [35]. As a corollary to
Thm. 4.1, the map ϕ : GDAG(P ) → Sym(SV ) given by ϕ(γ) = γ[SV ] is
a group homomorphism.

Theorem 4.2 ([35], Thm. 7). Imϕ = GP groupwise.
By Thm. 4.2, we can automatically generate GP by looking for the largest
subgroup of Aut(DP ) fixing all Vk’s. Thus, the problem of computing
GP has been reduced to computing the (generators of the) automorphism
group of a certain vertex-coloured DAG. This is in turn equivalent to the
GI problem [3]. GI is in NP, but it is not known whether it is in P or NP-
complete. A notion of GI-completeness has therefore been introduced for
those graph classes for which solving the GI problem is as hard as solving
it on general graphs [66]. Rooted DAGs are GI-complete [8] but there is an
algorithm for solving the GI problem on trees which is linear in the number
of vertices in the tree ([55], Ch. 8.5.2). This should give an insight as to
the type of difficulty inherent to computing Aut(DP ).

Corollary 4.1. If C ′ is a set of group generators of GDAG(P ), then
C = {π[SV ] | π ∈ C ′} is a set of generators for GP .
Cor. 4.1 allows the practical computation of a formulation group: one first
forms the graph DP , then computes generators C ′ of GDAG(P ), and finally
considers their action on SV to explicitly construct C. Based on the re-
sults of this section, we implemented a software system (called symmgroup)
that automatically detects the formulation group of a problem (1.1). Our
system first calls AMPL [16] to parse the instance; the ROSE Reformula-
tion/Optimization Software Engine [36] AMPL-hooked solver is then called
(with ROSE’s Rsymmgroup reformulator) to produce a file representation
of the problem expression DAG. This is then fed into nauty’s [44, 43]
dreadnaut shell to efficiently compute the generators of Aut(DP ). A sys-
tem of shell scripts and Unix tools parses the nauty output to form a valid
GAP [18] input, used to print the actual group description via the com-
mand StructureDescription.

5. Symmetry Breaking Constraints. Once the formulation group
is detected, we can adjoin constraints to (1.1) in order to make some of the
symmetric optima infeasible. According to the classification in [34], this is
a reformulation of the narrowing type.

Definition 5.1. Given a problem P , a narrowing Q of P is a formu-
lation (1.1) such that (a) there is a function η : F(Q) → F(P ) for which
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η(G(Q)) (the image of G(Q) under η) is a subset of G(P ), and (b) Q is
infeasible only if P is.

Our narrowing rests on adjoining some static symmetry breaking in-
equalities (SSBIs) [42] to the original formulation, i.e. inequalities that are
designed to cut some of the symmetric solutions while keeping at least one
optimal one. The reformulated problem can then be solved by standard
software packages such as CPLEX [23] (for MILPs) and Couenne [6] or
BARON [56] for MINLPs.

We first give a formal definition of SSBIs that makes them depend on
a group rather than just a set of solutions.

Definition 5.2. Given a permutation π ∈ Sn acting on the compo-
nent indices of the vectors in a given set X ⊆ Rn, the constraints g(x) ≤ 0
(that is, {g1(x) ≤ 0, . . . , gq(x) ≤ 0}) are symmetry breaking constraints
(SBCs) with respect to π and X if there is y ∈ X such that g(yπ) ≤ 0.
Given a group G, g(x) ≤ 0 are SBCs w.r.t G and X is there is y ∈ XG
such that g(y) ≤ 0.

If there are no ambiguities as regards X, we simply say “SBCs with
respect to π” (respectively, G). In most cases, X = G(P ). The following
facts are easy to prove.

1. For any π ∈ Sn, if g(x) ≤ 0 are SBCs with respect to π,X then
they are also SBCs with respect to 〈π〉,X.

2. For any H ≤ G, if g(x) ≤ 0 are SBCs with respect to H,X then
they are also SBCs with respect to G,X.

3. Let g(x) ≤ 0 be SBCs with respect to π ∈ Sn,X ⊆ Rn and let
B ⊆ {1, . . . , n}. If g(x) ≡ g(x[B]) (i.e. the constraints g only
involve variable indices in B) then g(x) ≤ 0 are also SBCs with
respect to π[B],X[B].

As regards Fact 3, if g(x) ≡ g(x[B]) we denote the SBCs g(x) ≤ 0 by
g[B](x) ≤ 0; if B is the domain of a permutation α ∈ Sym(B), we also use
the notation g[α](x) ≤ 0.

Example 1. Let y = (1, 1,−1), X = {y} and π = (1, 2, 3); then {x1 ≤
x2, x1 ≤ x3} are SBCs with respect to π and X because yπ satisfies the
constraints. {x1 ≤ x2, x2 ≤ x3} are SBCs with respect to S3 and X because
(−1, 1, 1) = y(1, 2, 3) ∈ XSn; however, they are not SBCs with respect to
〈(2, 3)〉 and X because X〈(2, 3)〉 = {y, y(2, 3)} = {(1, 1,−1), (1,−1, 1)} and
neither vector satisfies the constraints.

We use SBCs to yield narrowings of the original problem P .

Theorem 5.1 ([35], Thm. 11). If g(x) ≤ 0 are SBCs for any subgroup
G of GP and G(P ), then the problem Q obtained by adjoining g(x) ≤ 0 to
the constraints of P is a narrowing of P .

6. An application to the Kissing Number Problem. Given pos-
itive integers D,N , the decision version of the Kissing Number Problem
(KNP) [29] asks whether N unit spheres can be positioned adjacent to a
unit sphere centered in the origin in RD. The optimization version asks
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for the maximum possible N . The pedigree of this problem is illustrious,
having originated in a discussion between I. Newton and D. Gregory. The
name of the problem arose is linked to billiard game jargon: when two balls
touch each other, they are said to “kiss”. As both Newton and Gregory
were of British stock, one may almost picture the two chaps going down
the pub arm in arm for a game of pool and a pint of ale; and then, in
the fumes of alcohol, getting into a brawl about whether twelve or thirteen
spheres might kiss a central one if the billiard table was tridimensional.
This theory disregards the alleged scholarly note (mentioned in [62]) about
the problem arising from an astronomical question. When D = 2, the
maximum feasible N is of course 6 (hexagonal lattice). When D = 3, the
maximum feasible N was conjectured by Newton to be 12 and by Gregory
to be 13 (Newton was proven right 180 years later [58]). The problem for
D = 4 was settled recently with N = 24 [47]. The problem for D = 5
is still open: a lower bound taken from lattice theory is 40, and an up-
per bound derived with Bachoc and Vallentin’s extension [4] of Delsarte’s
Linear Programming (LP) bound [14] is 45.

We formulate the decision version of the KNP as a nonconvex NLP:

maxx,α α
∀i ≤ N ‖xi‖2 = 4

∀i < j ≤ N ‖xi − xj‖2 ≥ 4α
∀i ≤ N xi ∈ [−2, 2]D

α ∈ [0, 1].























(6.1)

For any given N,D > 1, if a global optimum (x∗, α∗) of (6.1) has α∗ = 1
then a kissing configuration of N balls in RD exists; otherwise, it does
not. In practice, (6.1) is usually solved by heuristics such as Variable
Neighbourhood Search (VNS) [29], because solving it by sBB takes too long
even on very small instances. One of the reasons for the slow convergence
of sBB is that (6.1) has many symmetries. In fact, Aut(G(KNP)) has
infinite (uncountable) cardinality: each optimum x∗ can be rotated by any
angle in RD, and hence for all orthogonal transformations µ ∈ SO(D,R)
(the special orthogonal group of RD), µ(x∗) ∈ G(KNP). Such symmetries
can be easily disposed of by deciding the placement of D spheres so that
they are mutually adjacent as well as adjacent to the central sphere in RD,
but computational experience suggests that this does little, by itself, to
decrease the size of the sBB tree.

We used the symmgroup system in order to detect the structure of
G(6.1) automatically for a few KNP instances, obtaining an indication that
G(6.1)

∼= SD. However, since D is small with respect to N , this is not likely
to help the solution process significantly. Let xi = (xi1, . . . , xiD) for all
i ≤ N . As in [29] we remark that, for all i < j ≤ N :

‖xi − xj‖2 =
∑

k≤D

(xik − xjk)2 = 8 − 2
∑

k≤D

xikxjk, (6.2)
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because
∑

k≤D x2
ik = ‖xi‖2 = 4 for all i ≤ N . Let Q be (6.1) reformulated

according to (6.2): automatic detection of GQ yields an indication that
GQ

∼= SD × SN , which is a considerably larger group. The difference lies
in the fact that the binary minus is in general not commutative; however,
it is commutative whenever it appears in terms like ‖xi − xj‖ (by defi-
nition of Euclidean norm). Since automatic symmetry detection is based
on expression trees, commutativity of an operator is decided at the vertex
representing the operator, rather than at the parent vertex. Thus, on (6.1),
our automatic system fails to detect the larger group. Reformulation (6.2)
prevents this from happening, thereby allowing the automatic detection of
the larger group.

Example 2. Consider the KNP instance defined by N = 6,D = 2,
whose variable mapping

„

x11 x12 x21 x22 x31 x32 x41 x42 x51 x52 x61 x62 α

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

«

yields the following flat [31] instance:

min(−y13)

y
2

1 + y
2

2 = 4

y
2

3 + y
2

4 = 4

y
2

5 + y
2

6 = 4

y
2

7 + y
2

8 = 4

y
2

9 + y
2

10 = 4

y
2

11 + y
2

12 = 4

2y13 + y1y3 + y2y4 ≤ 4

2y13 + y1y5 + y2y6 ≤ 4

2y13 + y1y7 + y2y8 ≤ 4

2y13 + y1y9 + y2y10 ≤ 4

2y13 + y1y11 + y2y12 ≤ 4

2y13 + y3y5 + y4y6 ≤ 4

2y13 + y3y7 + y4y8 ≤ 4

2y13 + y3y9 + y4y10 ≤ 4

2y13 + y3y11 + y4y12 ≤ 4

2y13 + y5y7 + y6y8 ≤ 4

2y13 + y5y9 + y6y10 ≤ 4

2y13 + y5y11 + y6y12 ≤ 4

2y13 + y7y9 + y8y10 ≤ 4

2y13 + y7y11 + y8y12 ≤ 4

2y13 + y9y11 + y10y12 ≤ 4.

On the above instance, the symmgroup system reports GP
∼= C2 × S6,

generated as:

〈(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12),

(1, 3)(2, 4), (3, 5)(4, 6), (5, 7)(6, 8),(7, 9)(8, 10), (9, 11)(10, 12)〉,

which, in original variable space, maps to:

〈(x11, x12)(x21, x22)(x31, x32)(x41, x42)(x51, x52)(x61x62),

(x11, x21)(x12, x22), (x21, x31)(x22, x32), (x31, x41)(x32, x42),

(x41, x51)(x42, x52), (x51, x61)(x52, x62)〉,

or, in other words, letting xi = (xi1, xi2) for all i ≤ 6,

〈τ, (x1, x2), (x2, x3), (x3, x4), (x4, x5), (x5, x6)〉

where τ =
∏6

i=1(xi1, xi2). Carried over to the spheres in R2, this is a
symmetric group action acting independently on the six spheres and on the
two spatial dimensions.
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For N = 12,D = 3 the formulation group is S3 × S12 and for N =
24,D = 4 it is S4 × S24. This suggests a formulation group SD × SN in
general, where the solutions can be permuted by symmetric actions on the
coordinate indices and, independently, the sphere indices. We now prove
this statement formally. For all i ≤ N call the constraints ‖xi‖

2 = 4 the
center constraints and for all i < j ≤ N call the constraints

∑

k≤D xikxjk ≤
4 − 2α the distance constraints.

Theorem 6.1. GQ
∼= SD × SN .

Proof. Let (x, α) ∈ G(Q); the following claims are easy to establish.
1. For any k ≤ D − 1, the permutation τk =

∏

i≤N (xik, xi,k+1) is in
GQ, as both center and distance constraints are invariant w.r.t. it;
notice that 〈τk | k ≤ D − 1〉 ∼= SD.

2. For any i ≤ N − 1, the permutation σi =
∏

k≤D(xik, xi+1,k) is in
GQ, as both center and distance constraints are invariant w.r.t. it;
notice that 〈σi | i ≤ N − 1〉 ∼= SN .

3. Any permutation moving α to one of the x variables is not in GQ.
This follows because the objective function only consists of the
variable α, so it is only invariant w.r.t. identity permutation.

4. For any k ≤ D − 1, if π ∈ GQ such that π(xik) = xi,k+1 for some
i ≤ N then π(xik) = xi,k+1 for all i ≤ N , as otherwise the term
∑

k≤D xikxjk (appearing in the distance constraints) would not be
invariant.

5. For any i ≤ N − 1, if π ∈ GQ such that π(xik) = xi+1,k for some
k ≤ D, then π(xik) = xi+1,k for all k ≤ D, as otherwise the term
∑

k≤D xikxi+1,k (appearing in some of the distance constraints)
would not be invariant.

Let HD = 〈τk | k ≤ D − 1〉 and HN = 〈σi | i ≤ N − 1〉. Claims 1-2
imply that HD,HN ≤ GQ. It is easy (but tedious) to check that HDHN =
HNHD; it follows that HDHN ≤ GQ [10] and hence HD,HN are normal
subgroups ofHDHN . SinceHD∩HN = {e}, we haveHDHN

∼= HD×HN
∼=

SD×SN ≤ GQ [2]. Now suppose π ∈ GQ with π 6= e. By Claim 3, π cannot
move α so it must map xih to xjk for some i < j ≤ N,h < k ≤ D; the
action h → k (resp. i → j) on the components (resp. spheres) indices can
be decomposed into a product of transpositions h → h+ 1, . . . , k − 1 → k
(resp. i → i + 1, . . . , j − 1 → j). Thus, by Claim 4 (resp. 5), π involves a
certain product γ of τk’s and σi’s; furthermore, since by definition γ maps
xih to xjk, any permutation in GQ (including π) can be obtained as a
product of these elements γ; hence π is an element of HDHN , which shows
GQ ≤ HDHN . Therefore, GQ

∼= SD × SN as claimed.
In problems involving Euclidean distances, it is often assumed that

symmetries are rotations and translations of Rn; we remark that GQ is
not necessarily isomorphic to a (finite) subgroup of SO(D,R). Permuting
two sphere indices out of N is an action in GQ but in general there is no
rotation that can act in the same way in RD. Hence enforcing SBCs for
GQ is not implied by simply fixing D adjacent spheres in order to break
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symmetries in the special orthogonal group.
By Thm. 6.1, GQ = 〈τk, σi | k ≤ D − 1, i ≤ N − 1〉. It is easy to show

that there is just one orbit in the natural action of GQ on the set A =
{1, . . . , N} × {1, . . . ,D}, and that the action of GQ on A is not symmetric
(otherwise GQ would be isomorphic to SND, contradicting Thm. 6.1).

Proposition 6.1. For any fixed h ≤ D,

∀i ≤ N r {1} xi−1,h ≤ xih (6.3)

are SBCs with respect to GQ, G(Q).
Proof. Let x̄ ∈ G(Q); since the σi generate the symmetric group

acting on the N spheres, there exists a permutation π ∈ GQ such that
(x̄π(i),h | i ≤ N) are ordered as in (6.3).

6.1. Computational results on the KNP. Comparative solutions
yielded by running BARON [56] on KNP instances with and without SBC
reformulation have been obtained on one 2.4GHz Intel Xeon CPU of a
computer with 8 GB RAM (shared by 3 other similar CPUs) running Linux.
These results are shown in Table 1, which contains the following statistics
at termination (occurring after 10h of user CPU time):

1. the objective function value of the incumbent
2. the seconds of user CPU time taken (meaningful if < 10h)
3. the gap still open
4. the number of BB nodes closed and those still on the tree.

The first column contains the instance name in the form knp-N D. The
first subsequent set of three columns refer to the solution of the original
formulations (CPU time, best optimal objective function value f∗, open
gap at termination, number of nodes created and number of open nodes
in the tree at termination); the second subsequent set of three columns
(labelled NarrowingKNP) refer to the solution of the formulation obtained
by adjoining (6.3) to the original formulation. The last column (R.t.) con-
tains the time (in user CPU seconds) needed to automatically compute
the formulation group using the methods in Sect. 4. In both formulations
we fixed the first sphere at (−2, 0, . . . , 0) to break some of the orthogonal
symmetries. We remark that the objective function values are negative
because we are using a minimization direction (instead of maximization).

Judging from the 2-dimensional KNP instances, where BARON con-
verges to optimality, it is evident that the NarrowingKNP reformulation is
crucial to decrease the CPU time significantly: the total CPU time needed
to solve the five 2D instances in the original formulation is 74047s, whereas
the NarrowingKNP reformulations only take 173s, that is a gain of over 400
times. It also appears clear from the results relating to the larger instances
that adjoining SBCs to the formulation makes a definite (positive) differ-
ence in the exploration rate of the search tree. The beneficial effects of the
narrowing decrease with the instance size (to the extent of disappearing
completely for knp-25 4) because we are keeping the CPU time fixed at
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Original problem NarrowingKNP

Instance Slv CPU
f∗

gap
nodes
tree CPU

f∗

gap
nodes
tree R.t.

knp-6 2 B 8.66
-1
0%

1118
0 1.91

-1
0%

186

0 1.43

knp-7 2 B 147.21
-0.753
0%

13729
0 3.86

-0.753
0%

260

0 1.47

knp-8 2 B 1892
-0.586
0%

179994
0 12.17

-0.586
0%

650

0 2.94

knp-9 2 B 36000
-0.47

33.75%
1502116
176357 37.36

-0.47
0%

1554

0 1.96

knp-10 2 B 36000
-0.382
170%

936911
167182 117.79

-0.382
0%

3446

0 1.97

knp-12 3 B 36000
-1.105
8.55%

299241
12840 36000

-1.105
8.55%

273923

5356 3.39

knp-13 3 B 36000
-0.914
118%

102150
64499 36000

-0.914
118%

68248

33013 3.38

knp-24 4 B 36000
-0.966

107%
10156
7487 36000

-0.92
117%

4059
2985 5.62

knp-24 5 B 36000
-0.93

116%
7768

5655 36000
-0.89
124%

4251
3122 6.1

Table 1
Computational results for the Kissing Number Problem.

10h. We remark that the effectiveness of the NarrowingKNP reformulation
in low-dimensional spaces can be partly explained by the fact that it is de-
signed to break sphere-related symmetries rather than dimension-related
ones (naturally, the instance size also counts: the largest 2D instance,
knp-10 2, has 21 variables, whereas the smallest 3D one, knp-12 3, has 37
variables).

7. Conclusion. This paper introduces the study of symmetries in
nonlinear and mixed-integer nonlinear programming. We use a general-
ization of the definition of formulation group given by Margot, based on
transforming a mathematical programming formulation into a DAG. This
allows automatic symmetry detection using graph isomorphism tools. Sym-
metries are then broken by means of static symmetry-breaking inequalities.
We present an application of our findings to the Kissing Number Problem.
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D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and
L. Wolsey, editors, 50 Years of Integer Programming, pages 647–681. Springer,
Berlin, 2010.

[43] B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87,
1981.

[44] B. McKay. nauty User’s Guide (Version 2.4). Computer Science Dept. , Australian
National University, 2007.

[45] C. Mears, M. Garcia de la Banda, and M. Wallace. On implementing symmetry
detection. Constraints, 14(2009):443–477, 2009.

[46] C. Mears, M. Garcia de la Banda, M. Wallace, and B. Demoen. A novel approach
for detecting symmetries in CSP models. In L. Perron and M. Trick, editors,
Constraint Programming, Artificial Intelligence and Operations Research, vol-
ume 5015 of LNCS, pages 158–172, New York, 2008. Springer.

[47] O. Musin. The kissing number in four dimensions. arXiv:math.MG/0309430v2,
April 2005.

[48] A. Neumaier. Complete search in continuous global optimization and constraint
satisfaction. Acta Numerica, 13:271–369, 2004.



20 LEO LIBERTI

[49] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. In
M. Fischetti and D.P. Williamson, editors, IPCO, volume 4513 of LNCS, pages
104–118. Springer, 2007.

[50] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Constraint orbital branching.
In A. Lodi, A. Panconesi, and G. Rinaldi, editors, IPCO, volume 5035 of
LNCS, pages 225–239. Springer, 2008.

[51] J.-F. Puget. Automatic detection of variable and value symmetries. In P. van
Beek, editor, Constraint Programming, volume 3709 of LNCS, pages 475–489,
New York, 2005. Springer.

[52] A. Ramani and I. Markov. Automatically exploiting symmetries in constraint pro-
gramming. In B. Faltings, A. Petcu, F. Fages, and F. Rossi, editors, Constraint
Solving and Constraint Logic Programming, volume 3419 of LNAI, pages 98–
112, Berlin, 2005. Springer.

[53] S. Robertson. Polytopes and Symmetry. Cambridge University Press, Cambridge,
1984.

[54] R.T. Rockafellar. A combinatorial algorithm for linear programs in the general
mixed form. Journal of the Society for Industrial and Applied Mathematics,
12(1):215–225, 1964.

[55] K.H. Rosen, editor. Handbook of Discrete and Combinatorial Mathematics. CRC
Press, New York, 2000.

[56] N.V. Sahinidis and M. Tawarmalani. BARON 7.2.5: Global Optimization of
Mixed-Integer Nonlinear Programs, User’s Manual, 2005.

[57] H. Schichl and A. Neumaier. Interval analysis on directed acyclic graphs for global
optimization. Journal of Global Optimization, 33(4):541–562, 2005.
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