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Abstract10

The use of random projections in mathematical programming allows standard solution algorithms11

to solve instances of much larger sizes, at least approximately. Approximation results have been12

derived in the relevant literature for many specific problems, as well as for several mathematical13

programming subclasses. Despite the theoretical developments, it is not always clear that random14

projections are actually useful in solving mathematical programs in practice. In this paper we15

provide a computational assessment of the application of random projections to linear programming.16
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1 Introduction23

This paper is about applying Random Projections (RP) to Linear Programming (LP)24

formulations. RPs are dimensional reduction operators that usually apply to data. The25

point of applying RPs to LPs is to obtain an approximate solution of the high-dimensional26

formulation by solving a related lower-dimensional one. The main goal of this paper is to27

discuss the pros and cons of this technique from a computational (practical) point of view.28

1.1 Random Projections29

In general, RPs are functions, sampled randomly from certain distributions, that map a30

vector in Rm to one in Rk, where k � m. In this paper we restrict our attention to linear31

RPs, which are k × m random matrices T . The most famous result about RPs is the32

Johnson-Lindenstrauss Lemma [12], which we recall here in its probabilistic form. Given a33

finite set X = {x1, . . . , xn} ⊂ Rm and an ε ∈ (0, 1), there exists a δ = O(e−Cφ(k)) (with φ34

usually linear and C a universal constant not depending on input data) and an RP T with35

k = O(ε−2 lnn) such that36

Prob
(
∀i < j ≤ n (1− ε)‖xi − xj‖2 ≤ ‖Txi − Txj‖2 ≤ (1 + ε)‖xi − xj‖2

)
≥ 1− δ. (1)37

If T is sampled componentwise from the normal distribution N(0, 1/
√
k), Eq. (1) holds (note38

that other distributions also work). The JLL is not the only result worth mentioning in RP39

[20, 10, 17], but it is the object of interest in this paper.40
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21:2 Practical random projections for LP

The JLL directly applies to all problems involving the Euclidean distance between points41

in a Euclidean space of high dimension, e.g. the design of an efficient nearest-neighbor data42

structure (i.e. given X ⊂ Rm and q ∈ Rm quickly return x ∈ X closest to q) [11].43

More in general, the JLL shows that RPs can transform the point set X to a lower44

dimensional set TX such that X and TX are “approximately congruent”: the pairwise45

distances in X are approximately the same (multiplicatively) as the corresponding pairwise46

distances in TX, even if X has m dimensions and TX only k (proportional to ε−2 ln |X|).47

Since “approximately congruence” means “almost the same, aside from translations, rotations,48

and reflections”, it is reasonable to hope that RPs might apply to other constructs than just49

sets of points, and still deliver a theoretically quantifiable approximation. In this paper we50

consider LP.51

1.2 Applying RPs to Linear Programming52

In this paper we are interested in the application of the JLL to LP in standard form:53

min
x

c>x

Ax = b

x ≥ 0,

 (LP)54

where x = (x1, . . . , xn), A is an m× n matrix, and b ∈ Rm.55

There are several issues in applying RPs to Mathematical Programs (MP) in general.56

The three foremost are:57

1. RPs project vectors rather than decision variables and constraint functions;58

2. RPs ensure approximate congruence of the input vectors in the lower-dimensional output:59

but approximation arguments in LP must instead be based on optimality and feasibility60

(unrelated to the `2 norm);61

3. RPs only apply to finite point sets, whereas LP decision variables represent infinite point62

sets.63

These issues pose nontrivial theoretical challenges, and the proof techniques vary consid-64

erably depending on the MP subclass being considered. The first issue mentioned above is65

addressed by applying RPs to the problem parameters (the input data); in the LP case, we66

project the linear system Ax = b. We speak of the original formulation P and the projected67

formulation TP . This yields a fourth issue: the solution of TP may be infeasible in P : in68

such cases, a solution retrieval phase is necessary in order to construct a feasible solution of69

P from that of TP .70

The second and third issues are addressed in [23], leading to statements similar to the71

JLL, but concerning approximate LP feasibility and optimality. If E(P, T ) is a statement72

about the feasibility or optimality error between the LP formulations P and TP , the general73

structure of these results is similar to the probabilistic version of the JLL:74

Prob
(
E(P, T )

)
≥ 1− δ, (2)75

where δ usually depends on ε, k and possibly even the solution of P . We shall recall the76

statements of these results more precisely in Sect. 2.77

1.3 Relevant literature78

The main reference for RPs and LP in standard form is [23], which presents the theory79

addressing the above issues, and a computational study focussing on dense random LP80
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instances. RPs were also applied to some specific LP problems: PAC learning [18] and81

quantile regression [24], with dimensional reduction techniques tailored to the corresponding82

LP structure. Other works in applying RPs to different types of MP subclasses are [22]83

(quadratic programs with a ball constraint), [3] (general quadratic programs), [16] (conic84

programs including second-order cone and semidefinite programs).85

1.4 Contributions of this paper86

Although some of the relevant literature carries computational results, we think that, compu-87

tationally, the application of RPs to LPs is still experimental: in practice the output on a88

given instance can range from accurate all the way to catastrophic.89

One of the difficulties is that, in writing k = O(ε−2 lnn), we are neglecting a constant90

multiplicative coefficient C related to the “big oh”, the appropriate value of which is usually91

the fruit of guesswork. Another difficulty is that the the theoretical results in this area apply92

to “high dimensions”, without specifying a minimum dimension above which they hold. In93

catastrophic cases, the theory ensures that results would improve for larger instance sizes,94

but just how large is unknown. At this time, in our opinion, no-one is able to justifiably95

foresee whether RPs will be useful or not on a given LP instance. The only existing work96

about practical RP usage is [21], which only focusses on computational testing of different97

RP matrices.98

This paper will provide a computational analysis of LP cases where RPs work reasonably99

well, and others where they do not, and attempt to derive some guidelines for choosing100

appropriate values for the most critical unknown parameters. On the theoretical side, we101

tighten two results of [16] when applied to the LP case.102

The rest of this paper is organized as follows. In Sect. 2 we recall the main theoretical103

results relative to the application of RPs to LP, and state the two new tightened results. In104

Sect. 3 we illustrate the benchmark goal, the LP structures we test, and the methodology. In105

Sect. 4 we discuss the benchmark results.106

2 Summary of theoretical results107

We apply RPs to the original formulation (LP) by reducing the number m of constraints.108

Let T be a k ×m RP matrix. The projected formulation is:109

min{c>x | TAx = Tb ∧ x ≥ 0} (TLP).110

We first discuss feasibility. We note that the geometric interpretation of the feasible111

set F = {x | Ax = b ∧ x ≥ 0} of (LP) is that F is the set of conic combinations of the112

columns Aj of A, i.e. F = cone(A). We also let conv(A) the convex hull of the columns of113

A, and ‖x‖A = min{
∑
j λj | x =

∑
j λjA

j} be the A-norm of x ∈ cone(A). Is F is invariant114

w.r.t. the application of T to (LP)? If x ∈ F then TAx = Tb by linearity of T . On the115

other hand, it is generally false that if x ≥ 0 but x 6∈ F , then TAx 6= Tb. The following116

approximate feasibility statement117

b 6∈ cone(A)⇒ Prob
(
Tb 6∈ coneTA

)
≥ 1− 2(n+ 1)(n+ 2)e−C(ε2−ε3)k (3)118

is proved in [23, Thm. 3] for all ε ∈ (0,∆2/(µA + 2µA
√

1−∆2 + 1)), where C is the universal119

constant of the JLL, µA = max{‖x‖A | x ∈ cone(A) ∧ ‖x‖2 ≤ 1}, and ∆ is a lower bound to120

minx∈conv(A) ‖b− x‖2.121

Let val(·) indicate the optimal objective function value of a MP formulation. The122

approximate optimality statement for (LP) derived in [23, Thm. 4] is conditional to the LP123
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21:4 Practical random projections for LP

formulation being feasible and bounded, so that, if x∗ is an optimal solution, there is θ124

(assumed w.l.o.g. ≥ 1) such that
∑
j x
∗
j < θ. Given γ ∈ (0, val(LP)),125

Prob
(

val(LP)− γ ≤ val(TLP) ≤ val(LP)
)
≥ 1− δ, (4)126

where δ = 4ne−C(ε2−ε3)k, ε = O(γ/(θ2‖y∗‖2)), and y∗ is an optimal dual solution of (LP).127

Like other approximate optimality results in this field, some quantities in the probabilistic128

statement depend on the norm of a dual optimal solution. This adds a further difficulty to129

computational evaluations, since they cannot be computed prior to solving the problem.130

Let x̄ be a projected solution, i.e. an optimal solution of the projected formulation. In [23,131

Prop. 3], it is proved that x̄ is feasible in the original formulation with zero probability. We132

therefore need to provide a solution retrieval method. A couple were proposed in [23], but133

the one found in [16, Eq. (6)] comes with an approximation guarantee and a good practical134

performance. The retrieved solution x̃ is defined as the projection of x̄ on the affine subspace135

Ax = b, and computed using the pseudoinverse:136

x̃ = x̄+A>(AA>)−1(b−Ax̄). (5)137

The fact that we only project on Ax = b without enforcing x ≥ 0 is necessary, since otherwise138

we would need to solve the whole high-dimensional LP. On the other hand, it causes potential139

infeasibility errors w.r.t. x ≥ 0. A probabilistic bound on this error is cast in general terms140

for conic programs in [23]. Let κ(A) be the condition number of A; applying [23, Thm. 4.4] to141

LP, we obtain the following result, which bound the (negativity of) the smallest component142

of x̃ in terms of that of x̄.143

I Proposition 1. There is a universal constant C2 such that, for any u ≥ 0, we have:144

Prob
(

min
j≤n

x̃j ≥ min
j≤n

x̄j − εθκ(A)(C2 + u
√

2/ ln(n))
)
≥ 1− 2e−u

2
.145

The proof is based on an improvement of [16, Eq. (7)] based on computing the Gaussian146

width and diameter of {x ≥ 0 | 〈1, x〉 ≤ 1}. As a corollary, we also have the following147

result about the difference between objective function values of the retrieved and projected148

solutions.149

I Corollary 2. Let f̃ be the objective function value of the retrieved solution x̃, and f̄ be the150

optimal objective function value of the projected formulation. There is a universal constant151

C2 such that, for any u ≥ 0, we have:152

Prob
(
|f̃ − f̄ | ≤ εθκ(A)‖c‖2(C2 + u

√
2/ ln(n))

)
≥ 1− 2e−u

2
.153

3 What we establish and how154

Upon receving an LP instance to be solved using RPs, one has to at least know how to decide155

k (the projected dimension) so that the solution of the projected formulation is reasonably156

close to that of the original one.157

Ideally, one would like to estimate all unknown parameters: k, ε, C, C in function of γ158

and δ. This is theoretically hopeless because the theoretical bounds derived for “all LPs”159

are far from tight. We shall see below that it is also computationally hopeless. In practice,160

moreover, one might be much more interested in finding a good retrieved solution (i.e. almost161

feasible in the original problem), rather than finding a good approximation to the optimal162
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objective function value, since a feasible solution can be improved by local methods, while163

an approximate optimal value may at best be useful as an objective cut.164

Our approach will accordingly be based on solving sets of uniformly sampled LP instances165

(from different applications) using a standard solver, and analyse the output in terms of how166

the feasibility and optimality errors of the retrieved solution vary with problem size and ε.167

3.1 The RP matrix168

All componentwise sampled sub-Gaussian distributions [6] can be used to ensure the results169

cited in this paper. Some sparse variants also exist, along the lines of [1, 14]. We use the170

sparse RPs described in [3, §5.1]. For a given density σ ∈ (0, 1) and standard deviation171 √
1/(kσ), with probability σ we sample a component of the k×m RP T from the distribution172

N(0,
√

1/(kσ)), and set it to zero with probability 1− σ. In our computational study, we set173

σ = dA/2, where dA is the density of the constraint matrix A.174

3.2 LP structures175

We consider randomly generated LPs of the following four classes: Max Flow problems [7],176

Diet problems [5], Quantile Regression problems [15], and Basis Pursuit problems from177

sparse coding [2]. This choice yields a set of LP problems going from extremely sparse (Max178

Flow) to completely dense (Basis Pursuit), with the Diet and Quantile Regression179

providing cases of various intermediate densities. These four test cases arise from a diverse180

range of application settings: combinatorial optimization, continuous optimization, statistics,181

data science.182

3.2.1 Maximum flow183

The Max Flow formulation is defined on a weighted digraph G = (N,A, u) with a source184

node s ∈ N , a target node t ∈ N (with s 6= t) and u : A → R+, as follows:185

max
x∈R|A|+

∑
i∈Nr{s}
(s,i)∈A

xsi −
∑

i∈Nr{s}
(i,s)∈A

xis

∀i ∈ N r {s, t}
∑
j∈N

(i,j)∈A

xij =
∑
j∈N

(j,i)∈A

xji

∀(i, j) ∈ A 0 ≤ xij ≤ uij .

 (MF)186

We generate random weighted digraphs G = (N,A, u) with the property that a single187

(randomly chosen) node s is connected (through paths) to all of the other nodes: we first188

generate a random tree on N r {t}, orient it so that s is the root, add a node t with the same189

indegree as the outdegree of s, and then proceed to enrich this digraph with arcs generated at190

random using the Erdős-Renyi model with probability 0.05. We then generate the capacities191

u uniformly from [0, 1]. Finally, we compute the digraph’s incidence matrix A, which has192

m = |N | − 2 rows and |A| columns. Instances are feasible because the graph always has a193

path from s to t by construction, and the zero flow is always feasible.194

Although (MF) is an LP, it is not in standard form, because of the upper bounding195

constraints x ≤ u. But, by [23, §4.2], we can devise a block-structured RP matrix that only196

projects the equations Ax = b, leaving the inequalities x ≤ u alone. In this case, A is a flow197

matrix with two nonzeros per column, one set to 1 the other to −1, aside from columns198

referring to source and target nodes s, t that only have one nonzero; and b = 0. The density199

of A is dA = 2|A|−2
(m−2)|A| ≈ 2/m.200
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21:6 Practical random projections for LP

For our random (MF) instances, θ = |A| is a valid upper bound to
∑

(i,j)∈A x
∗
ij , since201

0 ≤ xij ≤ uij ≤ 1 for all (i, j) ∈ A.202

3.2.2 Diet problem203

The Diet formulation is defined on an m × n nutrient-food matrix D, a food cost vector204

c ∈ Rn+, and a nutrient requirement vector b ∈ Rm, as follows:205

min
q∈Rmn+

c>q

Dq ≥ b.

}
(DP)206

We sample c,D, b uniformly componentwise in [0, 1], and set the density of D to dD = 0.5.207

Instances are feasible because one can always buy enough food to satisfy all nutrient208

requirements. If ‖Di‖0 = |nonzeros of row Di|, then q̂ =
(

max
i≤m

(bi/(‖Di‖0Dij)) | j ≤ n
)
is a209

feasible solution.210

Again, (DP) is not in standard form, but the transformation is immediate using slack211

variables ri ≥ 0 for i ≤ m. We let A = (D | −I), where I is m×m. The decision variable212

vector is x = (q, r). The density of A is dA = (dDmn+m)/(m(n+m)) = (dDn+ 1)/(n+m).213

For (DP), the upper bounding solution q̂ yields slack values r̂i = Diq̂ − bi for all i ≤ m,214

where Di is the i-th row of D. So we let θ =
∑
j q̂j +

∑
i r̂i be an upper bound for

∑
j x
∗
j .215

3.2.3 Quantile regression216

The Quantile Regression formulation, for a quantile τ ∈ (0, 1), is defined over a database217

table D having density dD with m records and p fields, and a further column field b. We218

make a statistical hypothesis b =
∑
j βjD

j , and aim at estimating β = (βj | j ≤ p) from the219

data b,D so that errors from the τ -quantile are minimized. Instances may only have nonzero220

optimal value if m > p, as is clear from the constraints of the formulation below:221

min
β∈Rp

u+,u−∈Rm+

τ1>u+ + (1− τ)1>u−

Dβ + Iu+ − Iu− = b,

 (QR)222

where the constraint system Ax = b has A = (D|I| −I), x = (β, u+, u−), and τ (the quantile223

level) is given, and fixed at 0.2 in our experiments. The data matrix (D, b) is sampled224

uniformly componentwise from [−1, 1], with dD = 0.8. Instances are all feasible because225

the problem reduces to solving the overconstrained linear system Dβ = b with a “skewed”226

version of an `1 error function.227

We note that (QR) is not in standard form, since the components of β are unconstrained;228

but this is not an issue, insofar as the problem is bounded (since it is feasible and it minimizes229

a weighted sum of non-negative variables), and this is enough to have the results in [23] hold.230

On the contrary, the lack of non-negative bounds on β is an advantage, since we need not231

worry about negativity errors in the β components of the retrieved solution (Prop. 1). The232

density of A is dA = (dDmp+ 2m)/(mp+ 2m2) = (dDp+ 2)/(p+ 2m).233

For (QR), given that all data is sampled uniformly from [−1, 1], no optimum can ever234

have |βj | > 1. As for u+, u−, we note that any feasible β yields an upper bound to the235

optimal objective function value, which only depends on u+, u−: we can therefore choose236

β = 0, and obtain u+
i − u

−
i = bi for all i ≤ m; we then let u+

i = bi ∧ u−i = 0 if bi > 0, and237

u+
i = 0∧ u−i = −bi otherwise. This yields an upper bound estimate θ = p+

∑
i |bi| to

∑
j x
∗
j .238
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3.2.4 Basis pursuit239

The Basis Pursuit formulation aims at finding the sparsest vector x satisfying the underde-240

termined linear system Ax = b by resorting to a well-known approximation of the zero-norm241

by the `1 norm [2]:242

min
x,s∈Rn

1>s

Ax = b

∀j ≤ n −sj ≤ xj ≤ sj .

 (BP)243

According to sparse coding theory [4], we work with a fully dense m×n matrix A sampled244

componentwise from N(0, 1) (with density dA = 1), a random message obtained as z/Z from245

a sparse z ∈ (Z∩ [−Z,Z])n (with density 0.2) and Z = 10, and compute the encoded message246

b = Az. We then solve (BP) in order to recover the sparsest solution of the underconstrained247

system Ax = b, which should provide an approximation of z.248

Similarly to (MF), in (BP) we can partition the constraints into equations Ax = b and249

inequalities −s ≤ x ≤ s. Again by [23, §4.2], we devise a block-structured RP matrix which250

only projects the equations.251

As in Sect. 3.2.3, (BP) is not in standard form, since none of the variables are non-252

negative. In this case, moreover, it is not easy to establish a bound θ on
∑
j(x∗j + s∗j ), since253

A is sampled from a normal distribution. On the other hand, for Aij ∼ N(0, 1) we have254

Prob
(
Aij ∈ [−3, 3]

)
= 0.997. By construction, we have b ∈ [−3n, 3n]m, which implies255

a defining interval [−n, n] on the components of optimal solutions, yielding θ = 2n2 with256

probability 0.997.257

3.3 Methodology258

The goal of this paper is to provide a computational assessment of RPs applied to LP.259

As discussed at the beginning of Sect. 3, the actual determination of all relevant parameters260

is theoretically hopeless. We can certainly simplify the task a little by noting that the261

coefficient C can be removed since it suffices to decide a value for ε in order to decide k.262

Ideally we would like to decide γ first (see Eq. (4)), then compute ε as O(γ/(θ2‖y∗‖2)),263

and sample an appropriate RP. Unfortunately, estimating θ and ‖y∗‖2 prior to solving the264

original LP leads to tiny values for ε (e.g. 10−i for i ∈ {2, . . . , 11} in some preliminary tests),265

which would require the rows of A to be at least O(10i2) in order to yield a useful projection.266

Since we are interested in applying RPs to LPs with O(102) and O(103) rows, this “ideal”267

approach is inapplicable.268

Instead, we repeatedly solve sets of instances of each LP structure. Each projected269

instance is solved with different values of ε ∈ E = {0.15, 0.2, 0.25, 0.3, 0.35, 0.4} (these values270

have been found to be the most relevant in preliminary computational experiments performed271

over several years). Moreover, to mitigate the effect of randomness, we solve each instance272

with each ε multiple times. For each instance and ε we collect performance measures on273

objective function values, infeasibility errors, and CPU time. This allows us to illustrate the274

co-variability of ε and instance size with the performance measures.275

4 The benchmark276

The solution pipeline is based on Python 3 [19] and the libraries scipy [13] and amplpy [8]277

(besides other standard python libraries). For each problem type, we loop over instances278

(based on row size of the equality constraint system, varying in S, see below), over ε ∈ E ,279

SEA 2022



21:8 Practical random projections for LP

and over 5 different runs for each instance and ε in order to amortize the result randomness280

depending on the choice of T . We solve all of the original and projected instances using281

CPLEX 20.1 [9]. We use the barrier solver, because we found this to be more efficient with282

large dense LPs than the simplex-based solvers in CPLEX. Our code can be downloaded283

here.1 All tests have been carried out on a MacBook 2017 wih a 1.4GHz dual-core Intel Core284

i7 with 16GB RAM.285

4.1 Choice of instances286

In the case of Diet, Quantile Regression, and Basis Pursuit, we generated instances287

so that the number of rows of the equality constraint system Ax = b is in the set S =288

{500p | 1 ≤ p ≤ 5 ∧ p ∈ N}. For Max Flow we used S ′ = S r {2500} because the larger289

size triggered a RAM-related error in a part of the solution pipeline involving the AMPL [8]290

interpreter.291

4.1.1 The variable space292

The space of original, projected, and retrieved variable values is identical for Max Flow,293

Quantile Regression, and Basis Pursuit, since these three structures are originally cast294

in an equality constraint form Ax = b. This desirable property fails to hold for Diet, which295

deserves a separate discussion.296

The original formulation (DP) of Diet is in inequality form Dq ≥ b, but the projected297

formulation is derived from the constraints Ax = b in standard form, where A = (D| −I).298

The theoretical results in Sect. 2 justify a fair comparison only between original and299

projected solutions in standard form. Since this paper is about a practical comparison,300

however, and since no-one would convert (DP) to standard form before solving it (because the301

solver would do it as needed), we chose to compute objective function values and feasibility302

errors of the projected formulation on the space of the original formulation variables q. Thus,303

for a retrieved solution x̃ = (q̃, r̃) we only considered q̃ in order to compute the objective304

function value of x̃.305

Considering only the q variables is unproblematic if applied to the optimal solution x∗306

of the original formulation in standard form, because s∗ ≥ 0 and A = (D| −I) ensure that307

q∗ is a feasible solution in Dq ≥ b. When applied to the projected formulation, however,308

TA = (TD| −TI) yields a block matrix TI with both positive and negative entries (since T309

is sampled from a normal distribution). Thus, it often happens that the underdetermined310

k×m system TI = Tb has solutions. In this case, since the objective tends to minimize c>q,311

the projected solution x̄ = (q̄, s̄) will have q̄ = 0, yielding zero projected objective function312

value. This, in turn, may yield Dq̃ 6≥ b. The application of RPs to Diet is therefore less313

successful than for other structures.314

4.2 Performance measures315

At the end of each solver call we record: the optimal objective function f∗ of the original316

problem, the optimal objective function f̄ of the projected problem, the objective function317

value f̃ of the retrieved solution x̃, the feasibility error w.r.t. equation constraints Ax = b318

(eq) and inequalities x ≥ 0 (in), the CPU time t∗ taken to solve the original formulation,319

and the CPU time t̄ taken to solve the projected formulation.320

1 The URL is https://mega.nz/file/p8MQhbpT#0TJBUVgaBf4KPVk2fu_5k05cMy2VozJk-0fQ1PZdJ0U.

https://mega.nz/file/p8MQhbpT#0TJBUVgaBf4KPVk2fu_5k05cMy2VozJk-0fQ1PZdJ0U
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The CPU time t∗ takes into account: reading the instance, constructing the original321

formulation, and solving it. The CPU time t̄ takes into account: reading the instance,322

sampling the RP, projecting the instance data, constructing the projected formulation,323

solving it, and performing solution retrieval.324

The benchmark considers: the average objective function ratios f̄/f∗, f̃/f∗, the average325

errors avgeq, avgin for Ax = b and x ≥ 0, the ratio k/m, the average CPU ratio t̄/t∗: all326

averages are computed over 5 solution runs over a given instance size and ε value.327

4.3 RP performance on Max Flow328

The application of RPs to the Max Flow problem looks like a success story: the ratio329

of projected to original optimal objective function value is very close to 1.0 and constant330

w.r.t. ε (f̄/f∗ ≥ 1 is normal insofar as Max Flow is a maximization problem, and TLP is331

a relaxation of LP). The feasibility error of the retrieved solution related to the equality332

constraints Ax = b is very close to zero, and the error w.r.t. x ≥ 0 decreases as m increases333

(a healthy behaviour in RPs) and also as ε increases (implying that maximum negativity334

error increases more slowly than the number of variables). The CPU time ratio decreases335

proportionally to k/m, as expected. The only issue is that the objective function value at336

the retrieved solution is only around 0.5 of the optimum.337

4.4 RP performance on Diet338

As mentioned in Sect. 4.1.1, the practical application of RPs to the Diet problem is not339

successful, as shown by the plots in Fig. 2. The projected cost is almost always zero, because340

the constraint projection allowed the solver to satisfy (D|−I)(q, r)> = b using slack variables341

only. This causes sizable errors in the retrieved solutions. As expected, the CPU time342

taken to solve the projected formulation is a tiny fraction of the time to solve the original343

formulation.344

We tried to experiment with a modified projected objective (c |1) so that we would345

minimize the sum of the projected slack variables. This yielded quantitatively better results,346

as shown in Fig. 3; qualitatively, the results still look like a failure.347

4.5 RP performance on Quantile Regression348

The results quality on Quantile Regression is mixed. The ratio f̄/f∗ is rather low, but349

we note that it is higher (better) for low sizes and low ε values, which is a sign that ε should350

be further decreased for all (and specially large) sizes. Interestingly, the objective value of351

the retrieved solution x̃ has better quality. The feasibility errors of x̃ are zero for Ax = b,352

and not negligible (around 0.2, with one outlier) for x ≥ 0: the trend, unfortunately, is not353

decreasing, either with ε or m increasing. CPU time ratios are good.354

To see whether increasing sizes and decreasing ε improved performances, we solved an355

instance with m = 5000 and p = 100 with ε = 0.1, obtaining the following results.356

ε f̄/f∗ f̃/f∗ avgin avgeq k/m t̄/t∗

quantreg-5000
0.10 0.1460 0.3839 0.1784 0.0000 0.18 4.43

357

We can see that the objective function ratios of this instance provide a definite improvement358

with respect to the three largest instances in Fig. 4 (m ∈ {1500, 2000, 2500}). The negativity359

error is, however, of the same magnitude as before.360
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Figure 1 Max Flow plots (increasing ε on abscissae): instances of growing size on rows, objective
function ratios on the first column, feasibility errors on the second, k/m and CPU time ratio on the
third.

4.6 RP performance on Basis Pursuit361

In the Basis Pursuit problem we see an encouraging trend of the ratio f̄/f∗, which starts362

off at 0.8 for m = 500 and ε = 0.15, and indicates that ε should be decreased for larger sizes.363

The retrieved solution was not computed on the “sandwich” variables s (see Eq. (BP)), but364

as the `1 norm of x̃. Since there are fewer constraints in the encoding matrix A, it follows365

from compressed sensing theory that the sparsest solution is found less often, a fact that366

increases the objective value of the retrieved solution. The feasibility errors are always zero367

(for Ax = b and x ≥ 0), which happens because the variables x are unbounded. The CPU368

time ratio is not as regular as for the other structures, but still denotes a remarkable time369

saving when solving projected formulations.370

To see whether increasing sizes and decreasing ε improved performances, we solved an371

instance with m = 5000 and n = 6000 with ε = 0.1, obtaining the following results.372

ε f̄/f∗ f̃/f∗ avgin avgeq k/m t̄/t∗

basispursuit-5000
0.10 0.4925 1.5395 0.0000 0.0000 0.17 0.09

373
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Figure 2 Diet plots (increasing ε on abscissae): instances of growing size on rows, objective
function ratios on the first column, feasibility errors on the second, k/m and CPU time ratio on the
third.

An improvement with respect to the three largest instances in Fig. 5 (m ∈ {1500, 2000, 2500})374

is present, which points to the correct trend, albeit not substantial.375

5 Conclusion376

In this paper we have pursued a computational study of the application of random projections377

to linear program data, based on solving original and projected formulations linear program378

instances of various structures and sizes. We found that original formulations only involving379

inequalities are particularly challenging, but those that natively involve equations behave380
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Figure 3 Diet plots with modified objective attempting to drive the slack variables to zero.

better. The sparsity of the constraint matrix does not appear to pose issues, as long as381

sparse RPs are used. Lastly, the sizes we considered here are possibly at the lower end of the382

range allowed by RPs: better results should be obtained with larger sizes and smaller values383

of ε, which in turn imply larger CPU times.384
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