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Discrete and continuous nonconvex programming problems arise in a host of practical applications
in the context of production planning and control, location-allocation, distribution, economics and game
theory, quantum chemistry, and process and engineering design situations. Several recent advances have
been made in the development of branch-and-cut type algorithms for mixed-integer linear and nonlinear
programming problems, as well as polyhedral outer-approximation methods for continuous nonconvex
programming problems. At the heart of these approaches is a sequence of linear (or convex) programming
relaxations that drive the solution process, and the success of such algorithms is strongly tied in with the
strength or tightness of these relaxations.

The Reformulation-Linearization-Technique (RLT) is a method that generates such tight linear pro-
gramming relaxations for not only constructing exact solution algorithms, but also to design powerful
heuristic procedures for large classes of discrete combinatorial and continuous nonconvex programming
problems. Its development originated in [4, 5, 6], initially focusing on 0-1 and mixed 0-1 linear and
polynomial programs [21, 22], and later branching into the more general family of continuous, nonconvex
polynomial programming problems [18, 45, 49]. For the family of mixed 0-1 linear (and polynomial)
programs in n 0-1 variables, the RLT generates an n-level hierarchy, with the n-th level providing an
explicit algebraic characterization of the convex hull of feasible solutions [21, 22]. The RLT essentially
consists of two steps — a reformulation step in which certain additional nonlinear valid inequalities are
automatically generated, and a linearization step in which each product term is replaced by a single con-
tinuous variable. The level of the hierarchy directly corresponds to the degree of the polynomial terms
produced during the reformulation stage. Hence, in the reformulation phase, given a value of the level
d ∈ {1, . . . , n}, the RLT constructs various polynomial factors of degree d comprised of the product of
some d binary variables xj or their complements (1−xj). These factors are then used to multiply each of
the defining constraints in the problem (including the variable bounding restrictions), to create a (non-
linear) polynomial mixed-integer zero-one programming problem. Suitable additional constraint-factor
products can be used to further enhance the procedure. In general, for a variable restricted to lie in the
interval [lj , uj ], the nonnegative expressions (xj−lj) and (uj−xj) are referred to as bound-factors, and for
a structural inequality αx ≥ β, for example, the expression (αx− β) is referred to as a constraint-factor;
implied product constraints can be generated using either bound-factors or constraint-factors. After us-
ing the relationship x2

j = xj for each binary variable xj , j ∈ {1, . . . , n}, which in effect accounts for the
tightening of the relaxation, the linearization phase substitutes a single variable wJ (respectively, vJk),
in place of each nonlinear term of the type

∏
j∈J xj (respectively, yk

∏
j∈J xj), where y represents the

set of continuous variables. Hence, relaxing integrality, the nonlinear polynomial problem is linearized
into a higher dimensional polyhedral set Xd defined in terms of the original variables (x, y) and the new
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variables (w, v). Denoting the projection of Xd onto the space of the original (x, y)-variables as XPd
, it

is shown that as d varies from 1 to n, we get,

XP0
⊇ XP1

⊇ XP2
⊇ . . . ⊇ XPn

= conv(X),

where XP0
is the ordinary linear programming relaxation, and conv(X) represents the convex hull of

the original feasible region X. An extension of this development to the case of general integer/discrete
variables is presented in [25, 7], where the bound-factors are replaced by suitable Lagrange interpolating
polynomials, and a further extension to 0-1 mixed-integer as well as general mixed-discrete semi-infinite
and bounded convex programming problems is presented in [26] (see also [50]). Lovasz and Shrijver [16]
and Boros et al. [9] have also independently developed various concepts related to the RLT process.
This RLT process has also been extended and enhanced in [27] through the use of more generalized
constraint-factors that imply the bounding restrictions 0 ≤ xj ≤ 1 for j ∈ {1, . . . , n}. A similar hierarchy
of relaxations leading to the convex hull representation is obtained based on the use of these generalized
factors in the reformulation phase, in lieu of simply the bound-factors xj and (1−xj), for j ∈ {1, . . . , n}.
In addition, this hierarchy embeds within its construction stronger logical implications than only x2

j = xj ,
∀j ∈ {1, . . . , n}. For example, consider an RLT constraint that has been generated by taking the product
of some nonnegative polynomial factor F with a defining constraint γ⊤x ≥ δ to yield [F (γ⊤x− δ)]L ≥ 0,
where [·]L denotes the linearization of the polynomial expression [·] under the RLT substitution process.

Then, this constraint can be tightened by deriving a stronger valid inequality of the type γ̂⊤x ≥ δ̂ under
the condition that F > 0, and then imposing the RLT constraint [F (γ̂⊤x − δ̂)]L ≥ 0, which is valid
whenever F = 0 or F > 0. The resulting overall RLT process is shown in [27] to not only subsume the
previous development, but also provide the opportunity to exploit frequently-arising special structures
such as generalized/variable upper bounds, covering, partitioning, and packing constraints, as well as
sparsity.

The hierarchy of higher-dimensional representations produced in this manner markedly strengthens
the usual continuous relaxation, as is evidenced not only by the fact that the convex hull representation
is obtained at the highest level, but that in computational studies on many classes of problems, even the
first level representation helps design algorithms that significantly dominate existing procedures in the
literature [4, 6, 20, 27, 30, 41]. Based on a special case of the RLT process that employs the bound-factors
for only a single variable at a time, Balas et al. [8] describe a lift-and-project cutting plane algorithm that
is shown to produce encouraging results. The theoretical implications of this hierarchy are noteworthy;
the resulting representations subsume and unify many published linearization methods for nonlinear 0-1
programs, and the algebraic representation available at level n promotes new methods for identifying and
characterizing facets and valid linear inequalities in the original variable space, as well as for providing
information that directly bridges the gap between discrete and continuous sets [3, 38, 40]. Indeed,
since the level-n formulation characterizes the convex hull, all valid inequalities in the original variable
space must be obtainable via a suitable projection; thus such a projection operation serves as an all-
encompassing tool for generating valid inequalities. References [38, 40] provide discussions on generating
facets and tight valid inequalities for several classes of problems. Reference [3] discusses persistency issues
for certain constrained and unconstrained pseudo-Boolean programming problems whereby variables that
take on 0-1 values at an optimum to an RLT relaxation would persist to take on these same values at
an optimum to the original problem. References [39, 2, 1, 34, 42, 13], respectively discuss the use of
RLT to generate improved model representations for the set partitioning, quadratic assignment, traveling
salesman problems, and to 0-1 mixed-integer programs subject to various assignment constraints.

Although the Reformulation-Linearization Technique was originally designed to employ factors in-
volving 0-1 variables in order to generate 0-1 (mixed-integer) polynomial programming problems that
are subsequently re-linearized, the approach has also been extended to solve continuous, bounded vari-
able polynomial programming problems. Problems of this type involve the optimization of a polynomial
objective function subject to polynomial constraints in a set of continuous, bounded variables, and arise
in numerous applications in engineering design, production, location, and distribution problems. Refer-
ence [45] prescribes an RLT process that employs suitable polynomial-factors (bound-factors based on
bounding restrictions lj ≤ xj ≤ uj , j ∈ {1, . . . , n}, as well as constraint factors) to generate additional
polynomial constraints through a multiplication process, which upon linearization through variable redef-
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initions as above, produces a linear programming relaxation. The resulting relaxation is used in concert
with a suitable designed partitioning technique that attempts to reduce the error between the original
nonlinear and their resulting linearized terms, in order to develop an algorithm that is proven to converge
to a global optimum for this problem. Special classes of polynomial constraints based on grid factors, La-
grange interpolating polynomials, and mean value theorem constraints can be generated to further tighten
these RLT relaxations [48]. In some cases (e.g., see [47]), it is beneficial to retain certain simple convex
constraints in the relaxation, resulting in a more general Reformulation-Linearization/Convexification
Technique. Additionally, Sherali and Fraticelli [35] have proposed a class of semidefinite cuts based
on semidefinite relaxation enhancements that can be used to significantly tighten RLT representations.
While RLT essentially operates on polynomial functions having integral exponents, many engineering
design applications lead to polynomial programs having general rational exponents. For such problems, a
global optimization technique has been designed [18] by introducing a new level of approximation at the
reformulation step, and accordingly, redesigning the partitioning scheme in order to induce the overall
sequence of relaxations generated to become exact in the limit. Further extensions for solving nonlin-
ear factorable programs for which the objective and constraint functions involve sums of products of
univariate functions have also been developed [49]. Here, suitable under/over-approximating nonconvex
polynomial functions are derived for the defining univariate functions in the problem, and then an appro-
priate partitioning scheme is devised that drives the errors from these approximations and those for the
RLT process applied to the resulting polynomial program simultaneously to zero in the limit, in order
to obtain a global optimum for the given factorable program. For nonconvex programs that are defined
in terms of black-box functions, a new concept of a pseudo-global RLT approach has been developed by
Sherali and Ganesan [36], which has been successfully applied to the design of containerships.

A special application of the RLT to mixed-integer quadratic problems subject to linear equality con-
straints that yields exact reformulations having fewer quadratic terms and some additional supporting
RLT constraints has been developed to produce tighter convex relaxations [10, 11, 12, 15, 14]. More
precisely, we multiply a subset of equality constraints Ax = b by an appropriate subset of problem vari-
ables {xk | k ∈ K}, to obtain a reduced RLT system ∀k ∈ K(Awk = bxk), where wk ≡ (xkx1, . . . , xkxn)
for all k ∈ K. This is equivalent to the homogeneous linear system ∀k ∈ K(Azk = 0) where zk =
(wk1 − xkx1, . . . , wkn − xkxn), which may be written in a more compact way as A′z = 0. If we parti-
tion A′ into basic and nonbasic submatrices B,N , and accordingly partition z into zB and zN , we have
(B|N)z = 0, whence NzN = 0 implies that BzB = 0. We therefore conclude that enforcing the reduced
RLT system and the subset of quadratic relations wki = xkxi for (k, i) corresponding to nonbasic columns
of N is enough to infer wki = xkxi for all (k, i). In other words, by letting the RLT process ensure that
zN = 0, we automatically obtain as an implication of the RLT linearized constraints that the quadratic
relation zB = 0 will hold true as well.

For the continuous case, there exist special instances where RLT can produce convex hull or convex
envelope representations [17, 28]. Various classes of applications have been studied for which specialized
RLT designs have been used to develop enhanced effective algorithms. This list, which is ever expand-
ing, includes bilinear programming problems [28, 15], general indefinite quadratic programming problems
[47, 13, 12], location-allocation problems employing different distance metrics [20, 41, 46, 29], water dis-
tribution network design problems [43, 44], the solution of Hartree-Fock equations in quantum chemistry
[14], the linear complementarity problem [37], and hard and fuzzy clustering problems [31, 32]. References
[23, 24, 25, 11, 19, 33] provide expository discussions and a survey of RLT theory and applications.
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