
Noname manuscript No.
(will be inserted by the editor)

A recipe for finding good solutions to MINLPs

Leo Liberti · Nenad Mladenović ·
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Abstract Finding good (or even just feasible) solutions for Mixed-Integer
Nonlinear Programming problems independently of the specific problem struc-
ture is a very hard but practically important task, especially when the objec-
tive and/or the constraints are nonconvex. With this goal in mind, we present a
general-purpose heuristic based on Variable Neighborhood Search, Local Bran-
ching, a local Nonlinear Programming algorithm and Branch-and-Bound. We
test the proposed approach on MINLPLib, comparing with several existing
heuristic and exact methods. An implementation of the proposed heuristic
is freely available and can employ all NLP/MINLP solvers with an AMPL
interface as the main search tools.

1 Introduction

We address the mathematical programming formulation min{f(x) | g(x) ≤ 0}
where f, g involve nonlinear functions and the vector x includes some integer
variables. This kind of problem is called a Mixed-Integer Nonlinear Program
(MINLP), which is often also categorized according to the convexity of objec-
tive function and constraints. Solving nonconvex MINLPs involves difficulties
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arising from both nonconvexity and integrality, and it has proven to be a very
hard challenge from a practical standpoint. From the modelling point of view,
however, nonconvex MINLPs are the most expressive mathematical programs,
and therefore attract a lot of interest from the mathematical programming
community. Currently, optimal solutions of MINLPs in general form are ob-
tained by using the spatial Branch-and-Bound (BB) algorithm [2,35,48,49];
but guaranteed optima can only be obtained for relatively small-sized MINLPs.
MINLPs arising in real-world applications, with hundreds or thousands of vari-
ables and nonconvex constraints, represent a difficult challenge for spatial BB
algorithms, and even finding a feasible solution is hard. Some practically effi-
cient solvers targeting convex MINLPs exist in the literature [1,6,8,23,24,34];
they can all be used on nonconvex MINLPs as well, but they offer no guar-
antee of returning a good or even feasible solution. Some heuristic methods
have been proposed, but very few can be applied to nonconvex MINLPs: the
Feasibility Pump (FP) [21] idea was extended to convex [7] and very recently
nonconvex MINLPs [15]; heuristics based on Iterative Rounding are discussed
in [45]. An earlier version of the algorithm presented in this paper, described
in [41], was among the first general-purpose heuristic methods for nonconvex
MINLPs proposed in the literature.

In this paper, we propose a MINLP heuristic called the Relaxed-Exact
Continuous-Integer Problem Exploration (RECIPE) algorithm. The MINLPs
we address are cast in the following general form:

min
x∈Rn

f(x)

s.t. l ≤ g(x) ≤ u
xL ≤ x ≤ xU

xi ∈ Z ∀ i ∈ Z















(P )

In the above formulation, x are the decision variables (xi is integer for each
i ∈ Z and continuous for each i 6∈ Z, where Z ⊆ {1, . . . , n}). f : Rn → R is a
possibly nonlinear function, g : Rn → R

m is a vector of m possibly nonlinear
functions (assumed to be differentiable), l, u ∈ R

m are the constraint bounds,
and xL, xU ∈ R

n are the variable bounds (also called box constraints); the
bounds may be set to ±∞. Note that we do not assume convexity of f, g. We
define B = {i ∈ Z | xL

i = 0 ∧ xU
i = 1} as the set of binary variables.

RECIPE puts together a global search phase based on Variable Neighbor-
hood Search (VNS) [28] and a local search phase based on a MINLP heuris-
tic. The VNS global phase rests on neighborhoods defined as hyperrectangles
for the continuous and general integer variables [37] and by Local Branching
(LBR) constraints for the binary variables [22]. The local phase employs a
heuristic algorithm for finding feasible solutions, which in this paper is a BB
algorithm for convex MINLPs [24]; a NLP solver supplies an initial constraint-
feasible solution to be employed by the BB as starting point. RECIPE is an
effective and reliable general-purpose algorithm for finding good solutions to
complex MINLPs of small and medium scale. Its code is freely distributed,
and it can be used with any local NLP and (heuristic) MINLP solvers that
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provide an AMPL interface. In particular, it can be employed to increase the
effectiveness of local or heuristic MINLP solvers, by guiding the exploration
of the solution space.

The original contribution of this paper is the way a set of well-known and
well-tested tools are combined into making a global optimization method. This
paper does not contribute theoretical knowledge but rather the description of
a practically useful algorithm whose easy implementation rests on existing
off-the-shelf software tools complemented by relatively few lines of code.

The rest of this paper is organized as follows. Section 2 presents the overall
approach, describing all the basic components on which RECIPE is based as
well. In Section 3 we report extensive computational results obtained over
MINLPLib, comparing our heuristic to several existing solvers, and analyzing
the strengths and weaknesses of the proposed method. Section 4 concludes the
paper.

2 The RECIPE algorithm

Our main algorithm is a heuristic exploration of the solution space by means
of an alternating search between the relaxed NLP and the exact MINLP. This
is a two-phase global optimization method. The global phase of the algorithm
is given by the Variable Neighborhood Search metaheuristic [28,30] using two
separate neighborhoods for continuous and general integer variables, and for
binary variables. The former neighborhoods have hyper-rectangular shape; the
latter are based on a single LBR [22] constraint involving all binary variables.
The local phase needs two components: the first one is a local NLP solver,
which is used to identify promising regions of the solution space (using a
solution to the continuous relaxation to guide the search for an integer so-
lution has also been used in the RINS heuristic for MILPs [17]); the second
one is a MINLP heuristic, which is used to find a MINLP feasible solution
(i.e. both integral and constraint feasible). In principle, any kind of algorithm
that (heuristically) finds MINLP feasible solutions can be employed for the
local phase. Our method of choice is a Branch-and-Bound search using an
algorithm designed for convex MINLPs; therefore, no guarantee of optimal-
ity is provided. The reason for the effectiveness of RECIPE is that the each
local search is performed on a problem which is easier than the original one,
because of the way neighborhoods are defined: the LBR constraint reduces
the number of feasible realizations of the vector of binary variables, and the
hyper-rectangular neighborhood enforces a smaller search interval for general
integer variables. Thus, the solution space that has to be searched by the local
phase is smaller than that of the original problem, and we quickly discover
new local optima, coordinated by VNS. RECIPE can be employed to enhance
the performance of existing local/heuristic MINLP solution algorithms, by co-
ordinating the local and global search phases, in order to efficiently explore
the feasible region.
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2.1 The basic ingredients

Before describing RECIPE, we need to introduce VNS and the neighborhood
structure (i.e. hyper-rectangles and LBR).

2.1.1 Variable neighborhood search

VNS relies on iteratively exploring neighborhoods of growing size to identify
better local optima [9,28–30]. Suppose that a local minimum x∗ is found. VNS
escapes from the current local minimum x∗ by initiating local searches from
starting points sampled from a neighborhood of x∗ which increases its size
iteratively, until a local minimum better than x∗ is found. These steps are re-
peated until a given termination condition is met. This can be based on CPU
time, number of non-improving steps and other configurable parameters. Typ-
ically, a maximum neighborhood size kmax is given; thus, each neighborhood
is associated with its size k = 1, . . . , kmax, and the algorithm terminates if the
neighborhood of size kmax has been explored without yielding an improved
solution.

VNS has been applied to a wide variety of problems both from combinato-
rial and continuous optimization [3,10,19,33,38,39,46]. Its early applications
to continuous problems were based on a particular problem structure [10,28].
The first VNS algorithm targeted at problems with fewer structural require-
ments, namely, box-constrained nonconvex NLPs, was given in [43] (the paper
focuses on a particular class of box-constrained NLPs, but the proposed ap-
proach is general). Its implementation is described in [18]. Since the problem
is assumed to be box-constrained, the neighborhoods arise naturally as hy-
perrectangles of growing size centered at the current local minimum x∗. The
same neighborhoods were used in [37,42], an extension of VNS to constrained
NLPs.

2.1.2 Local branching

Local Branching is an effective heuristic for finding good solutions to difficult
Mixed-Integer Linear Programs (MILPs) [22]. Given an integer s > 0, LBR
explores s-neighborhoods of the incumbent x∗ with a BB algorithm by allow-
ing at most s of the binary variables to change their value; this condition is
enforced by means of the LBR constraint:

∑

i∈B:x∗

i
=1

(1− xi) +
∑

i∈B:x∗

i
=0

xi ≤ s, (1)

where B is the set of binary variables. (1) defines a 1-norm neighborhood of
radius s with respect to the binary variables of P , centered at the current
solution x∗. LBR updates the incumbent as it finds better solutions. When
this happens, the LBR procedure is called iteratively with the new x∗. We
remark that LBR was successfully used in conjunction with VNS in [31].
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For general MINLPs, it is difficult to define a maximum neighborhood
size to be employed by VNS without any knowledge of the specific problem.
We opted for the following approach: for any problem, the neighborhood of
maximum size (i.e. the neighborhood of size kmax) coincides with the full initial
search space of problem P . Smaller, concentric neighborhoods are defined for
each k = 1, . . . , kmax, so that kmax actually defines the number of concentric
neighborhood which are defined, as opposed to defining the size of the largest
neighborhood.

Therefore, a neighborhood of size k ≤ kmax on the binary variables is
defined as follows:

∑

i∈B

(x∗
i (1− xi) + (1− x∗

i )xi) ≤

⌈

k
|B|

kmax

⌉

.

Observe that for k = kmax, the constraint is redundant.

2.1.3 Hyperrectangular neighborhood structure

For a given k ≤ kmax and point x∗, we define hyperrectangles Hk(x
∗), centered

at x∗ ∈ R
n, and proportional to the hyperrectangle xL ≤ x ≤ xU given by the

original variable bounds, so that Hk−1(x) ⊂ Hk(x) for each k ≤ kmax. More
formally, let Hk(x

∗) be the hyperrectangle yL ≤ x ≤ yU , where for all i 6∈ Z:

yLi = x∗
i −

k

kmax
(x∗

i − xL
i )

yUi = x∗
i +

k

kmax
(xU

i − x∗
i ),

for all i ∈ Z \B:

yLi = ⌊x∗
i −

k

kmax
(x∗

i − xL
i ) + 0.5⌋

yUi = ⌊x∗
i +

k

kmax
(xU

i − x∗
i ) + 0.5⌋,

and for all i ∈ B:
yL = 0, yU = 1.

We define the neighborhood of size 1 ≤ k ≤ kmax with respect to x∗

as Nk(x
∗) = Hk(x

∗)\Hk−1(x
∗). This neighborhood structure defines a set of

hyperrectangular nested shells with respect to continuous and general integer
variables. We define N0(x

∗) = x∗.
Note that, if one component of the original variable bounds xL, xU is ±∞,

then the corresponding hyperrectangle bound is ±∞ regardless of x∗ or k.
Thus, the neighborhood remains the same at each iteration, and we would
always sample in the same interval. To avoid this problem, we artificially sub-
stitute a finite but relatively large value ∞̄ for ∞ when computing Hk(x

∗);
this ensures that the sampling region depends on x∗ and k. The value ∞̄
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is a parameter of our algorithm, and can affect the practical performance of
RECIPE. However, in our computational tests we observed no difference in
the results as long as ∞̄ is set to a “reasonable” large value.

The VNS metaheuristic (and therefore RECIPE) requires a way of sam-
pling random points in the neighborhoods. We now describe our method for
this task. Let τ be the affine map sending the hyperrectangle Hk(x

∗) into the
unit L∞ ball (i.e., hypercube) B centered at 0, i.e., B = {x : |xi| ≤ 1∀i}. In
order to sample a random vector x̃ in Nk(x

∗) we proceed as in Alg. 1 [37].

Algorithm 1 Sampling in the shell neighborhoods.
Input: k, kmax.
Output: A point x̃ sampled in Nk(x

∗).
Sample a random direction vector d ∈ R

n in the unit L∞ ball
Normalize d: set d← d

||d||∞

Sample a random radius r ∈ [ k−1

k
, k] yielding a point in the outer part of the L∞ ball

Let x̃ = τ−1(rd)

Furthermore, we round x̃j to the nearest integer for j ∈ Z, i.e. we set
x̃j ← ⌊x̃j + 0.5⌋. This is rather ineffective with the binary variables xj , which
would keep the same value x̃j = x∗

j for each k ≤ kmax
2 . Binary variables are

best dealt with via a LBR constraint.

2.2 Algorithm description

The input of RECIPE is the following: the maximum number of neighbor-
hoods to explore kmax, the maximum number of local searches in the same
neighrbouhood L, a local NLP solution algorithm N , and a MINLP solution
algorithm M. Here, M can be any method that is capable of producing as
output a feasible solution to a MINLP (i.e. a solution that satisfies both the in-
tegrality requirements and the nonlinear constraints), meaning thatM could
be a heuristic. The output of RECIPE, if the algorithm is successful, is a
feasible solution x∗ for P .

Before describing the algorithm, we need some definitions. Consider a non-
convex MINLP given by formulation P , with its continuous relaxation P̄ . Let
x∗ be a feasible solution to P . For 1 ≤ k ≤ kmax, we define the problem:

min
x∈Rn

f(x)

s.t. l ≤ g(x) ≤ u
∑

i∈B

(x∗
i (1− xi) + (1− x∗

i )xi) ≤
⌈

k |B|
kmax

⌉

xL ≤ x ≤ xU

xi ∈ Hk(x
∗) ∀ i ∈ Z \B

xi ∈ Z ∀ i ∈ Z











































Qk(x
∗)
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By comparing Qk(x
∗) to P , we see that the differences are the introduction of

a LBR constraint (1) centered on x∗, and tighter box constraints for general
integer variables (xi ∈ Hk(x

∗)). In particular, general integer variables are
forced to take values within the (outer bounds of the) hyperrectangular neigh-
borhood of size k, which is smaller than the box defined by xL, xU for each
k < kmax. We denote by Q̄k(x

∗) the continuous relaxation of Qk(x
∗). Finally,

we use the convention that f(x) = +∞ is x is not feasible for P . We can now
describe RECIPE. The algorithm has two steps: an Initialization step, where
a first feasible solution is sought, and a Main step.

In the Initialization step, RECIPE sets k ← 0, and each component of x∗

is set to the midpoint of its lower/upper bounds if they are finite, or to zero
if at least one of the bounds is infinite and zero is within the bounds. In the
remaining case, it is set to the only finite bound. Formally:

x∗
i =















(xL
i + xU

i )/2 if xL
i > −∞∧ xU

i <∞,
xL
i if xL

i > 0,
xU
i if xL

i < 0,
0 otherwise.

(2)

At each iteration, with a certain associated parameter k, we sample a point
x̃ in Nk(x

∗), which is the outer region of a hyperrectangular neighborhood of
radius k (at the first iteration, k = 0 which implies x̃ = x∗), rounding where
necessary for i ∈ Z: see Section 2.1.3 for details. Then, we apply N on P
from the point x̃; this hopefully provides a constraint-feasible point x̄. One of
the reasons for performing this step is to find a good starting point for M.
Depending on the MINLP solution algorithm, this is sometimes necessary: for
instance, if the MINLP solver is a BB algorithm for convex MINLPs (as is the
case for the computational experiments in this paper), then the root node can
be pruned by infeasibility if no point satisfying g is available. An additional
reason is to make sure that we are exploring the solution space using our
point sampling strategy, instead of relying on the MINLP solver to find an
initial point. If N successfully returns x̄, the MINLP solution algorithm M
is initiated from x̄; if M finds a feasible solution x′, we set x∗ ← x′, k ← 1
and proceed to the Main step of the algorithm. Otherwise (i.e. one of the two
solver fails), we return to the random point sampling step, and increase k if too
many local searches have already been performed in the current neighborhood
(more details on this are provided below).

The Main step of the algorithm is entered as soon as a feasible solution x∗

is known. As before, we sample a random point x̃ in Nk(x
∗). We then solve the

continuous relaxation Q̄k(x
∗) with N using x̃ as a starting point, and obtain

x̄. Finally, if N returns with success (i.e. l ≤ g(x̄) ≤ u),M is used for solving
Qk(x

∗), taking x̄ as input, hopefully obtaining a feasible solution x′ to the
original problem P . If x′ improves on the incumbent x∗, then x∗ is replaced
by x′ and k is reset to 1. Otherwise, i.e. if x′ is worse than x∗ or one of the
solvers fails, we try another local search in the same neighborhood, or increase
k in a VNS-like fashion. The algorithm is stopped after the last neighborhood
k = kmax is explored, or if a time-based termination condition is met.
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The number of local searches ℓ performed within a given neighborhood be-
fore k is increased depends on the input parameter L. We set ℓ = min(k, L) at
each iteration. This way, for small neighborhood sizes only a few local searches
are carried out, whereas up to L are performed in larger neighborhoods. This
is because we assume that in small neighborhoods, very few local searches are
needed to discover a good solution, if any exists. In this paper, we set L = 5
in all the tests. Our computational experience for the conference version of
this paper [41] confirmed that performing too many local searches in the same
neighborhood does not bring advantages.

We can now describe the RECIPE algorithm formally in Alg. 2.

Algorithm 2 The RECIPE algorithm.
Input: number of neighborhoods kmax;

maximum number of local searches L;
NLP solution algorithm N ;
MINLP solution algorithmM.

Output: Best solution found x∗.
Set x∗ as in (2)
Set k ← 0
Set Step ← Init

while (¬(time-based termination condition) ∧ (k ≤ kmax)) do

for (i = 1, . . . ,min(k, L)) do

Sample a random point x̃ in Nk(x
∗).

if (Step = Init) then

Solve P̄ using N from initial point x̃ obtaining x̄

if (l ≤ g(x̄) ≤ u) then

Solve P usingM from initial point x̄ obtaining x′

end if

if (f(x′) < +∞) then

Set Step ← Main

end if

else {in this case Step = Main}
Solve Q̄k(x

∗) using N from initial point x̃ obtaining x̄

if (l ≤ g(x̄) ≤ u) then

Solve Qk(x
∗) usingM from initial point x̄ obtaining x′

end if

end if

if (f(x′) < f(x∗)) then

Set x∗ ← x′

Set k ← 0
Exit the FOR loop

end if

end for

Set k ← k + 1.
end while

From Alg. 2 and the definition of Qk(x
∗), it can be seen that kmax balances

the tradeoff between solving a short sequence of large problems, or a long
sequence of small problems. Indeed, for small values of kmax each neighborhood
is relatively large, but we explore a smaller number of them; on the other hand,
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for large values of kmax we perform more local searches, but each of them is
executed on a smaller (hopefully easier) problem.

2.3 Local search phase

The local search phase of RECIPE requires both NLP and MINLP, possibly
heuristic, solution algorithms. In this section we describe the methods em-
ployed in this paper, namely:

– The constraint feasibility enforcing local solution algorithm, that is used to
quickly identify promising areas of the feasible region: Sequential Quadratic
Programming (SQP) or Interior Point (IP) method;

– The constraint and integral feasibility enforcing local solution algorithm:
Branch-and-Bound for convex MINLPs.

2.3.1 Sequential quadratic programming

SQP methods find local solutions to nonconvex NLPs. They solve a sequence
of quadratic approximations of the original problem. The quadratic approxi-
mation is obtained by a convex model of the objective function Hessian at a
current solution point, subject to a linearization of the (nonlinear) constraints
around the current point. The SQP solver used in this paper [25] implements
a trust region algorithm with a filter [26] to promote global convergence. In a
trust region method, the quadratic approximation of the original problem is
solved within a trust region, defined as a L∞ norm ball of radius ρ around the
current point. Whenever the step for the current iterate is rejected, the radius
of the trust region is set to a smaller value; on the other hand, if the step is
accepted, ρ increases.

2.3.2 Interior point algorithms

IP algorithms aim to solve NLPs in the form:

min
x∈Rn

f(x)

s.t. g(x) = 0
x ≥ 0.











(3)

It is not difficult to show that every P with Z = ∅ (i.e. NLP) can be reformu-
lated exactly to (3) via the introduction of slack variables and, if necessary,
some translations. A typical IP algorithm generates a sequence of points xi

satisfying g(xi) = 0 and xi > 0 for all i ∈ N, such that the limit x of the
sequence minimizes f and satisfies x ≥ 0. Each point xi is obtained as the
solution of the barrier subproblem (parametrized by a real µ > 0):

min
x∈Rn

f(x) − µ
∑

j≤n

ln(xj)

s.t. g(x) = 0.

}

(4)
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As µ→ 0, xi converges to the sought solution. IP implementations vary con-
siderably in the way they solve the barrier subproblem (4). If (3) is an LP, IP
methods converge to an optimal solution in polynomial time [32]; for general
NLPs, only convergence to a local optimum is guaranteed.

2.3.3 Branch-and-Bound for convex MINLPs

Solving convex MINLPs (i.e. MINLPs where the objective function and con-
straints are convex — the terminology is confusing as all MINLPs are actually
nonconvex problems because of the integrality constraints) is conceptually not
much more difficult than solving MILPs: as the continuous relaxation of the
problem is convex, obtaining lower bounds is easy. The existing tools, however,
are still far from the quality attained by modern MILP solvers. The problem is
usually solved by BB, where only the integer variables are selected for branch-
ing. A restricted (continuous) convex NLP is formed and solved at each node,
where the variable ranges have been restricted according to the node’s defini-
tion. Depending on the algorithm, the lower bounding problem at each node
may either be the original problem with relaxed integrality constraints [13,
24] (in which case the BB becomes a recursive search for a solution that is
both integer feasible and a local optimum in continuous space), or its linear
relaxation by outer approximation [1,6,20,23].

These approaches guarantee an optimal solution if the objective and con-
straints are convex, but may be used as a heuristic even in presence of non-
convexity. Within this paper, we employ these methods in order to find local
optima of nonconvex MINLPs. The problem of finding an initial feasible start-
ing point (so that the continuous relaxation of the root node is not asserted
to be infeasible) is addressed by supplying the method with a constraint-
feasible (although not integer-feasible) starting point found by a continuous
NLP solver.

3 Computational Experiments

In this section we describe our implementation of RECIPE, and discuss com-
putational results. RECIPE can be freely downloaded at the following address:
http://www.lix.polytechnique.fr/~liberti/recipe.tar.gz.

All computational results were obtained on an Intel Xeon X3353 2.66 GHz
with 24 GB RAM running Linux. We compare RECIPE to some of the most
reliable existing solvers for MINLPs available, namely: AlphaECP [51] version
1.65, Baron [47,49] version 8.1.5, Couenne [4,5] revision 422 and sBB [13] re-
vision 009. Note that among these solvers, only Couenne provides an AMPL
interface; the rest is available through GAMS [11]. AlphaECP and sBB find
provably optimal solutions to convex MINLPs only, but can be heuristically
employed on nonconvex MINLPs as well. They are included in the compar-
ison because, according to the web page of the MINLPLib collection of test
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instances (see Section 3.2), they discovered several best known feasible solu-
tions, therefore proving to be effective on both convex and nonconvex MINLPs.
Baron and Couenne are exact solvers for nonconvex MINLPs. In order to com-
pensate for the loss of an optimality guarantee, an heuristic method such
as RECIPE should find better solutions than exact solution methods, or it
should be faster (if the solutions found are of similar quality). Additionally,
we compare RECIPE with the Feasibility Pump for nonconvex MINLPs [15]
on a limited number of instances (the ones for which we have detailed results
obtained with FP).

3.1 Implementation

Alg. 2 presents many implementation difficulties: the problem must be refor-
mulated iteratively with the addition of a different LBR constraint at each
iteration; different solvers acting on different problem formulations must be
used. All this must be coordinated by the outermost VNS at the global level.
We chose to implement RECIPE as an AMPL [27] script because it makes it
very easy to interface to many external solvers. Since AMPL cannot generate
the reformulation Qk(x

∗) of P iteratively independently of the problem struc-
ture, we employed a C++ program that reads an AMPL output .nl file in
flat form [35,36] and outputs the required reformulation as an AMPL-readable
.mod file.

The greatest advantage of coding RECIPE as an AMPL script is that we
can plug into the algorithm all solvers that provide an AMLP interface – which
represents the majority of them. RECIPE employs a NLP solver and a MINLP
solver as local search black-box tools. In this paper, we report computational
experiments obtained using filterSQP [25] version 20010807, which is an SQP
trust region method, and Ipopt [50] revision 1694, which is an IP method, as
NLP solvers, and minlp bb [34] version 0.3.2 20100607 as the MINLP solver.
Note that minlp bb is a NLP-based BB solver for convex MINLP, therefore
it offers no guarantee of optimality or even of finding a feasible solution when
applied to nonconvex problems, as is the case. We found minlp bb to be ex-
tremely fast in practice, significantly more than some of its competitors (in
particular, the NLP-based BB algorithm included in BonMin [8] — AlphaECP

and sBB were not tested as subsolvers because we are not aware of an AMPL
interface). For our heuristic scheme, where several (typically small) problems
have to be iteratively solved, speed is one of the key factors.

RECIPE has many customizable options and parameters: a small number
of algorithmic parameters (the few that are necessary to configure VNS), and
several parameters that affect the underlying subsolvers, such as tolerances.
Our implementation within AMPL fully supports the use of customized op-
tions for each of the subsolvers employed, so that each one can be parameter-
ized by the user as desired. The user can specify a template options file for each
solver, and RECIPE takes care of setting the parameters to their correct value
based on the template provided. Since there is no standardized way of setting



12

solver parameters (e.g. time limit) in AMPL, and we want to have maximum
flexibility in the choice of solvers, having template option files is a necessary
step to ensure the coordination between RECIPE and each subsolver.

In its current implementation, RECIPE supports the following parameters
(in brackets, we report the name of the option in the software and the value
used in this paper):

– kmax. (kmax = 20)
– Time limit. (timelimit = 7200)
– Integrality tolerance. (int-precision = 10−5)
– Constraint feasibility tolerance. (epsilon = 10−6)
– Maximum absolute value for variable bounds, i.e. ∞̄ as introduced in Sec-

tion 2.1.3. (max-bound = 1010)
– Maximum number η of solutions with the same objective value that are

accepted before an improvement is required. (equal-max = 3)
– Required objective function improvement between consecutive solutions.

(obj-improvement = 10−5)
– Maximum number L of local searches performed in the same neighborhood.

(max-searches = 5)

In our current implementation, if a solution is discovered which has the same
objective value than the current incumbent, it is accepted up to a maximum
of η times. However, since the MINLP solver is given a cutoff value which aims
for a minimum improvement of 10−5 with respect to the current incumbent,
this is a rare occurence, which only happens when the NLP solver returns a
solution which is both constraint- and integer-feasible. Additionally, the user
can set the following algorithmic options (default value in brackets):

– Require a constraint (not integral) feasible solution for running the MINLP
solver? (need-constr-feas = yes)

– At iteration k, use hyperrectangle Hk(x
∗) instead of the original variable

bounds as box constraints for the continuous variables? (bound-cont =
no)

– At iteration k, use hyperrectangle Hk(x
∗) instead of the original vari-

able bounds as box constraints for the integer (not binary) variables?
(bound-int = yes)

The default values for these options yield RECIPE as described in Section 2.2,
but the user can change them to modify the behaviour of the algorithm. In
particular, the first option can be used to start the MINLP solver even when
the NLP solver fails and no point that satisfied the nonlinear constraints is
available; depending on the particular MINLP solver, this could be desirable
(note that in this case, the point provided as input to the MINLP is x̃, since
x̄ is not defined). The remaining two options decide whether the hyperrectan-
gles are enforced as variable bounds at each iteration when solving problem
Qk(x

∗) (the default version of RECIPE only restricts the bounds of the integer
variables).

Instead of relying solely on the subsolvers to verify the constraint and
integrality feasibility of the solutions, we run additional checks to ensure that



13

feasibility is attained with the required tolerances. We employ the AMPL
tool evalchk, freely available through http://www.netlib.org, to avoid the
errors (and program crashes) that would occur whenever the argument of an
operator is outside its domain (e.g. logarithm of a negative number).

3.2 MINLPLib

The MINLPLib [12] is a collection of Mixed Integer Nonlinear Programming
models which can be searched and downloaded freely. Statistics for the in-
stances in the MINLPLib are available from http://www.gamsworld.org/

minlp/minlplib/minlpstat.htm. The instance library is available at http:
//www.gamsworld.org/minlp/minlplib.htm. The MINLPLib is distributed
in GAMS [11] format, so we employed an automatic translator to cast the files
in AMPL format.

At the time of downloading (Feb. 2010), the MINLPLib consisted of 270
MINLP instances contributed by the scientific and industrial OR community.
However, 19 of these problems cannot be successfully read by AMPL due to
the presence of unimplemented functions, and had to be excluded from our
test set. These instances are:

blendgap, dosemin2d, dosemin3d, hda, meanvarxsc, pb302035, pb302055,
pb302075, pb302095, pb351535, pb351555, pb351575, pb351595, water3,
waterful2, watersbp, waters, watersym1, watersym2.

The performance of RECIPE was evaluated on the remaining 251 instances.

3.3 Subsolver comparison

In this section we compare the results obtained by RECIPE using either Ipopt
or filterSQP as NLP subsolvers; the MINLP solver of choice is minlp bb in
both cases. Additionally, we include in the comparison the results obtained by
using minlp bb to directly solve the test instances; that is, minlp bb used as
a stand-alone solver outside RECIPE. We want to assess whether RECIPE is
more powerful than just its basic components.

In these experiments, we set the kmax parameter of RECIPE to 20. This
choice was based on computational experiments and on our previous experi-
ence [41]. We additionally tested the values kmax = 10 and kmax = 30; for
space reasons, we do not report full computational results obtained with these
values. We summarize them briefly: with kmax = 10, RECIPE is on average
33% faster (we compared the geometric mean of the average CPU time), and
finds one less feasible solution; solution quality is only slightly affected, with
an advantage for kmax = 20. With kmax = 30, RECIPE is approximately 20%
slower on average, but we did not observe any improvement in the quality of
the solutions. kmax = 20 turned out to be a good compromise between speed
and quality. The value of kmax can be reduced to favour speed.
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Results are reported in Table 1; for each solver, we report the objective
function value of the best solution found (∞ if no feasible solution was dis-
covered), and the CPU time required, in seconds. In each row, if one of the
solutions is strictly better than the remaining two, then it is highlighted in
boldface. Whenever two solutions have an objective function value within a
relative difference, they are considered equal; this relative difference is set to
0.1% of the smallest objective function (absolute) value if it is inside the inter-
val [10−5, 103], or to the closest bound of the interval whenever it is outside.
All solvers were given a time limit of 2 hours, and Ipopt is parameterized
with the option bound relax factor = 0, to ensure that the point it returns
satisfies the box constraints. A summary of the results is given in Table 2.

minlp bb RECIPE with Ipopt RECIPE with filterSQP
Instance f∗ time f∗ time f∗ time
4stufen ∞ 0.01 ∞ 0.79 ∞ 0.61
alan 2.9250 0.00 2.9250 1.95 2.9250 0.41
batchdes 167427.6571 0.01 167427.6697 2.74 167427.6697 1.49
batch 285506.5082 0.06 285506.3123 10.69 285506.3123 5.81
beuster ∞ 0.01 ∞ 0.79 ∞ 0.62
cecil 13 -114379.0758 7200.15 -114379.0669 7200.15 -114379.0669 7200.30
chp partload ∞ 11.22 26.9316 7212.52 25.2226 7254.09
contvar 809149.8272 115.62 809149.5423 7201.72 ∞ 99.69
csched1a ∞ 0.00 -30430.1780 4.33 ∞ 0.68
csched1 -30639.2578 0.64 -30639.2607 156.50 -30639.2607 1.73
csched2a ∞ 0.01 -165398.7013 3286.04 ∞ 72.76
csched2 ∞ 0.07 -166101.9928 7315.06 ∞ 18.06
deb10 ∞ 0.10 ∞ 674.73 ∞ 4.97
deb6 201.7393 12.98 ∞ 1217.27 ∞ 3.41
deb7 ∞ 121.30 ∞ 4544.21 ∞ 10.89
deb8 ∞ 91.30 ∞ 4482.77 ∞ 17.06
deb9 ∞ 119.40 ∞ 4920.32 ∞ 11.05
detf1 ∞ 67.11 ∞ 0.00 ∞ 7233.56
du-opt5 8.0737 0.03 8.0740 4.58 8.0740 3.78
du-opt 3.5563 0.03 3.5566 4.41 3.5566 3.52
eg all s 7.6578 2.64 7.6578 326.04 7.6578 201.42
eg disc2 s 5.9333 1.19 5.6421 554.37 5.6421 293.71
eg disc s 6.8390 1.37 5.7606 635.73 5.7606 168.19
eg int s 6.4531 1.19 6.4533 196.52 6.4533 142.98
elf 0.4347 0.21 0.1917 165.27 0.1917 5.01
eniplac -131863.6349 25.27 -132117.0254 7200.05 -132117.0254 477.89
enpro48 187277.2594 4.00 187277.1571 40.08 187277.1571 6.65
enpro48pb 187277.2594 2.57 187277.1571 560.52 187277.1571 14.08
enpro56 263428.3010 37.77 263428.3589 62.54 263428.3589 43.36
enpro56pb 263428.3010 20.36 263428.3589 2515.05 263428.3589 49.50
ex1221 7.6672 0.00 7.6672 2.41 7.6672 0.51
ex1222 1.0765 0.00 1.0765 1.37 1.0765 0.64
ex1223a 4.5796 0.00 4.5796 1.43 4.5796 0.71
ex1223b 4.5796 0.00 4.5796 1.59 4.5796 0.85
ex1223 4.5796 0.00 4.5796 1.85 4.5796 0.94
ex1224 -0.9316 0.00 -0.9435 2.59 -0.9435 1.20
ex1225 31.0000 0.00 31.0000 1.51 31.0000 0.79
ex1226 ∞ 0.00 -17.0000 2.41 -17.0000 0.81
ex1233 155522.4622 0.08 155010.6713 0.47 155010.6713 0.71
ex1243 83402.5064 0.10 83402.5069 10.58 83402.5069 0.83
ex1244 82042.9052 0.07 82042.9052 102.00 82042.9052 1.22
ex1252a 128893.7410 0.18 128894.0029 7.82 128894.0029 5.72
ex1252 128893.7410 0.11 128894.0029 23.70 128894.0029 18.01
ex1263a 19.6000 0.16 19.6000 7.37 19.6000 2.94
ex1263 19.6000 3.27 19.6000 233.24 19.6000 147.61
ex1264a 8.6000 0.33 8.6000 5.88 8.6000 3.55
ex1264 8.6000 10.66 8.6000 35.66 8.6000 128.84
ex1265a 15.1000 0.01 11.5000 10.65 10.3000 4.70
ex1265 15.1000 0.04 15.1000 8.92 10.3000 6.40
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minlp bb RECIPE with Ipopt RECIPE with filterSQP
Instance f∗ time f∗ time f∗ time
ex1266a 16.3000 0.03 16.3000 5.25 16.3000 3.32
ex1266 16.3000 0.16 16.3000 19.24 16.3000 7.52
ex3 68.0097 0.02 68.0097 0.76 68.0097 0.49
ex3pb 68.0097 0.03 68.0097 5.09 68.0097 2.62
ex4 -8.0641 0.33 -8.0641 21.40 -8.0641 19.44
fac1 160912612.3502 0.01 160912612.3502 2.78 160912612.3502 1.10
fac2 331837498.1768 0.07 331837498.1768 7.85 331837498.1768 3.23
fac3 31982309.8480 0.06 31982309.8480 9.78 31982309.8480 4.85
feedtray2 0.0000 2.53 0.0000 378.54 0.0000 66.26
feedtray -13.4060 0.05 -13.4114 46.74 -13.4114 58.72
fo7 2 17.7493 937.56 17.7493 4169.08 17.7493 7200.09
fo7 ar2 1 24.8398 4019.28 24.8398 7200.05 24.8398 7200.12
fo7 ar25 1 23.0936 1276.11 23.0936 7200.04 23.0936 7200.05
fo7 ar3 1 22.5175 1762.36 22.5175 7200.04 22.5175 7200.25
fo7 ar4 1 20.7298 3490.48 20.7298 7200.05 20.7298 6424.18
fo7 ar5 1 17.7493 436.03 17.7493 7200.05 17.7493 1866.79
fo7 20.7298 7200.09 20.7298 7200.16 20.7298 3696.15
fo8 ar2 1 34.2990 7200.03 30.3406 7200.05 30.3406 7200.06
fo8 ar25 1 37.8614 7200.62 33.3122 7200.05 32.4477 7200.06
fo8 ar3 1 33.5290 7200.03 30.5745 7200.05 23.9101 7200.14
fo8 ar4 1 22.3819 7200.02 37.0390 7200.30 22.3819 7200.70
fo8 ar5 1 22.3819 6446.94 23.9101 7200.06 22.3819 7200.66
fo8 23.9101 7200.06 22.3819 7200.05 22.3819 7200.05
fo9 ar2 1 39.3141 4297.48 36.6681 7200.07 32.6250 7200.60
fo9 ar25 1 53.5665 2836.67 54.0811 7200.05 43.7722 7200.06
fo9 ar3 1 60.4636 2571.03 37.0128 7200.10 24.8155 7201.24
fo9 ar4 1 44.5500 7200.24 45.4231 7200.31 43.6116 7202.36
fo9 ar5 1 63.9902 3536.50 ∞ 7200.08 28.6727 7200.10
fo9 39.6169 7200.04 ∞ 7200.06 30.7500 7200.11
fuel 8566.1190 0.00 8566.1190 16.10 8566.1190 1.13
fuzzy -0.5015 3579.59 ∞ 0.00 ∞ 0.00
gasnet 7004607.8064 6.60 6999391.6436 117.70 7045336.9264 153.55
gastrans ∞ 0.15 89.0858 19.55 89.0858 1.22
gbd 2.2000 0.00 2.2000 2.09 2.2000 0.71
gear2 0.0000 0.01 0.0000 1.51 0.0000 1.49
gear3 0.0000 0.01 0.0000 1.21 0.0000 0.58
gear4 1.6434 0.56 1.9682 15.68 1.9682 14.59
gear 0.0000 0.00 0.0000 1.18 0.0000 0.67
gkocis -1.9231 0.00 -1.9231 3.13 -1.9231 0.94
hmittelman ∞ 0.01 13.0000 4.57 13.0000 1.12
johnall -224.7302 3.40 -224.7302 69.25 -224.7302 7.00
lop97ic 4153.7109 7200.45 4232.6891 7212.59 4138.3292 7200.79
lop97icx 4099.0600 4029.98 4099.0600 5381.36 0.0000 5517.73
m3 37.8000 0.05 37.8000 5.42 37.8000 3.58
m6 82.2569 37.64 82.2569 1414.40 82.2569 2094.19
m7 ar2 1 190.2350 538.72 190.2350 7200.04 190.2350 7200.44
m7 ar25 1 143.5850 254.73 143.5850 2919.44 143.5850 2769.84
m7 ar3 1 143.5850 1430.29 143.5850 7200.04 143.5850 6889.18
m7 ar4 1 106.7569 1370.36 106.7569 7200.05 106.7569 5771.79
m7 ar5 1 106.4600 1138.74 106.4600 7200.04 106.4600 4112.68
m7 106.7569 397.35 106.7569 2251.72 106.7569 7200.03
mbtd 4.6667 4014.52 5.5833 7203.37 4.6667 7203.56
meanvarx 14.3692 0.00 14.3692 3.06 14.3692 0.71
minlphix ∞ 0.00 316.6928 54.76 316.6928 3.38
netmod dol1 ∞ 9698.77 ∞ 9720.59 ∞ 9716.51
netmod dol2 -0.5600 2470.45 -0.5535 8930.19 -0.5600 9008.98
netmod kar1 -0.4198 97.09 -0.4198 7214.51 -0.4198 257.50
netmod kar2 -0.4198 97.36 -0.4198 7213.04 -0.4198 257.50
no7 ar2 1 107.8153 1524.09 107.8153 7200.05 107.8153 7204.43
no7 ar25 1 107.8153 3592.06 107.8153 7200.11 107.8153 7200.09
no7 ar3 1 107.8695 7200.01 107.8153 7204.28 107.8153 7200.05
no7 ar4 1 98.5184 7200.29 98.5184 7200.04 98.5184 7203.95
no7 ar5 1 90.6227 4836.94 90.6227 7200.04 90.6227 7203.33
nous1 1.6521 0.06 ∞ 21.96 ∞ 1.15
nous2 0.6260 0.01 ∞ 21.99 ∞ 1.09
nuclear104 ∞ 0.00 ∞ 7267.51 ∞ 10509.10
nuclear10a ∞ 0.00 ∞ 0.00 ∞ 0.00
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minlp bb RECIPE with Ipopt RECIPE with filterSQP
Instance f∗ time f∗ time f∗ time
nuclear10b ∞ 0.00 ∞ 7223.50 ∞ 750.72
nuclear14a -1.1280 160.73 -1.1296 2732.95 -1.1280 1270.87
nuclear14b -1.0896 7221.04 -1.1093 7200.37 -1.0936 7200.60
nuclear14 ∞ 41.10 -1.1257 6062.20 ∞ 1378.68
nuclear24a -1.1280 160.40 -1.1296 2769.73 -1.1280 1272.52
nuclear24b -1.0896 7212.66 -1.1093 7201.06 -1.0936 7205.14
nuclear24 ∞ 41.04 -1.1257 6006.97 ∞ 1383.67
nuclear25a -1.1193 622.00 ∞ 0.00 -1.1000 7217.52
nuclear25b -1.0851 7200.35 -1.0977 7201.25 ∞ 7202.16
nuclear25 ∞ 64.80 -1.1171 7225.31 ∞ 1840.91
nuclear49a -1.1513 4185.18 ∞ 8293.68 ∞ 8188.66
nuclear49b ∞ 0.00 ∞ 0.00 ∞ 0.00
nuclear49 ∞ 865.66 ∞ 7200.83 ∞ 7298.06
nuclearva ∞ 7.74 -1.0109 1323.10 ∞ 183.79
nuclearvb ∞ 7.09 -1.0289 1408.14 ∞ 189.93
nuclearvc ∞ 1.97 -0.9972 1370.61 ∞ 188.91
nuclearvd ∞ 13.74 -1.0315 1806.26 ∞ 183.95
nuclearve ∞ 4.38 -1.0317 2013.02 ∞ 187.36
nuclearvf ∞ 2.52 -1.0225 1911.18 ∞ 212.76
nvs01 12.4697 0.00 12.4697 1.28 12.4697 0.57
nvs02 6.1587 0.00 5.9642 3.49 5.9642 1.99
nvs03 16.0000 0.00 16.0000 1.11 16.0000 0.55
nvs04 2.1200 0.00 0.7200 2.09 0.7200 0.75
nvs05 ∞ 0.00 5.4709 42.91 ∞ 0.08
nvs06 1.7703 0.00 1.7703 1.15 1.7703 0.59
nvs07 4.0000 0.00 4.0000 1.40 4.0000 0.68
nvs08 23.4497 0.00 23.4497 1.55 23.4497 0.59
nvs09 -43.1343 0.00 -43.1343 0.95 -43.1343 0.46
nvs10 -310.8000 0.00 -310.8000 1.28 -310.8000 0.55
nvs11 -431.0000 0.00 -431.0000 1.20 -431.0000 0.58
nvs12 -481.2000 0.00 -481.2000 1.43 -481.2000 0.65
nvs13 -585.2000 0.00 -585.2000 1.53 -585.2000 0.74
nvs14 -38413.2312 0.00 -40358.1142 3.32 -40358.1142 1.97
nvs15 1.0000 0.00 1.0000 1.30 1.0000 0.64
nvs16 0.7031 0.00 0.7031 1.63 0.7031 0.58
nvs17 -1100.4000 0.01 -1100.4000 2.27 -1100.4000 1.34
nvs18 -778.4000 0.01 -778.4000 1.90 -778.4000 0.99
nvs19 -1098.4000 0.03 -1098.4000 2.95 -1098.4000 1.99
nvs20 230.9222 0.01 230.9222 1.83 230.9222 1.19
nvs21 0.0000 0.00 -5.6848 1.56 -5.6848 0.96
nvs22 ∞ 0.00 6.0582 57.65 6.0582 0.58
nvs23 -1125.2000 0.04 -1125.2000 4.63 -1125.2000 3.32
nvs24 -1033.2000 0.05 -1033.2000 4.65 -1033.2000 3.24
o7 2 118.8593 7200.01 116.9459 7200.04 116.9459 7200.07
o7 ar2 1 140.4120 6695.43 140.4120 7200.04 140.4120 7204.95
o7 ar25 1 140.4120 7200.03 141.6231 7202.21 140.4120 7200.07
o7 ar3 1 142.0855 4467.70 138.8649 7200.04 137.9318 7200.06
o7 ar4 1 131.6531 7200.03 131.6531 7200.04 131.6531 7200.07
o7 ar5 1 116.9458 7200.03 116.9458 7200.55 116.9458 7200.41
o7 137.9318 5644.42 131.6531 7203.14 131.6531 7200.35
o8 ar4 1 253.8707 2196.35 254.9776 7200.06 273.5999 7201.03
o9 ar4 1 327.8660 3530.38 316.0128 7200.08 297.0642 7200.06
oaer -1.9231 0.00 -1.9231 2.72 -1.9231 0.36
oil2 -0.7333 5.33 ∞ 0.00 -0.7333 282.63
oil -0.9325 7200.27 -0.9325 7202.21 ∞ 130.58
ortez -9532.0391 0.07 -9532.0398 68.70 -9532.0398 0.77
parallel 924.2956 0.59 924.2986 1.14 924.2986 3.31
prob02 112235.0000 0.00 112235.0000 1.45 112235.0000 0.79
prob03 10.0000 0.00 10.0000 1.07 10.0000 0.62
prob10 3.4455 0.00 3.4455 1.60 3.4455 0.79
procsel -1.7210 0.00 -1.7210 0.66 -1.7210 0.40
product2 ∞ 1.21 -2096.7699 7201.63 ∞ 1067.69
product -2142.9286 3016.50 -2142.9275 7200.50 -2140.8409 7201.34
pump 128893.7410 0.18 128894.0029 7.75 128894.0029 5.61
qap 396024.0000 25.65 388870.0000 1541.90 388214.0000 644.64
qapw 394908.0000 122.94 388988.0000 4410.31 388214.0000 5187.32
ravem 269590.2193 0.36 269590.2650 2.93 269590.2650 1.48
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minlp bb RECIPE with Ipopt RECIPE with filterSQP
Instance f∗ time f∗ time f∗ time
ravempb 269590.2193 0.43 269590.2650 57.39 269590.2650 19.68
risk2b ∞ 0.02 -56.8208 305.67 ∞ 4.20
risk2bpb -55.8761 3.36 -56.8208 1631.20 -56.8208 25.52
saa 2 ∞ 67.32 ∞ 0.00 ∞ 7230.22
sep1 -470.1301 0.01 -470.1301 15.26 -470.1301 1.07
space25a 484.3286 23.57 484.3278 302.06 484.3278 32.22
space25 484.3286 72.29 484.3278 1146.59 484.3278 223.88
space960 ∞ 241.62 ∞ 7200.65 ∞ 0.00
spectra2 13.9783 0.12 13.9783 228.87 13.9783 5.90
spring 0.8462 0.01 0.8462 28.17 0.8462 0.48
st e13 2.0000 0.00 2.0000 2.85 2.0000 0.47
st e14 4.5796 0.00 4.5796 1.84 4.5796 0.88
st e15 7.6672 0.00 7.6672 2.43 7.6672 0.49
st e27 2.0000 0.00 2.0000 1.22 2.0000 0.60
st e29 -0.9316 0.00 -0.9435 2.57 -0.9435 1.20
st e31 -2.0000 0.19 -2.0000 24.51 -2.0000 13.46
st e32 -1.4304 0.05 -1.4304 0.19 -1.4304 0.15
st e35 ∞ 0.26 ∞ 0.21 ∞ 0.32
st e36 -166.4440 0.00 -246.0000 2.40 -246.0000 3.17
st e38 7197.7271 0.00 7197.7216 1.14 7197.7216 0.50
st e40 42.1421 0.00 30.4142 4.58 31.0710 0.69
st miqp1 281.0000 0.00 281.0000 1.33 281.0000 0.67
st miqp2 2.0000 0.00 2.0000 7.37 2.0000 0.68
st miqp3 -6.0000 0.00 -6.0000 1.19 -6.0000 0.47
st miqp4 -4574.0000 0.00 -4574.0000 1.32 -4574.0000 0.68
st miqp5 -333.8889 0.00 -333.8900 2.49 -333.8900 0.49
stockcycle 119948.6883 31.34 119948.7606 5124.47 119948.7606 3515.12
st test1 0.0000 0.00 -0.0000 1.27 0.0000 0.70
st test2 -9.2500 0.00 -9.2500 1.66 -9.2500 0.64
st test3 -7.0000 0.00 -7.0000 1.59 -7.0000 0.57
st test4 -7.0000 0.00 -7.0000 1.61 -7.0000 0.67
st test5 -110.0000 0.00 -110.0000 1.45 -110.0000 0.68
st test6 471.0000 0.00 471.0000 1.28 471.0000 0.69
st test8 -29605.0000 0.00 -29605.0000 2.46 -29605.0000 0.73
st testgr1 -12.8116 0.01 -12.8116 1.47 -12.8116 0.79
st testgr3 -20.5900 0.01 -20.5900 2.54 -20.5900 1.44
st testph4 -80.5000 0.00 -80.5000 1.33 -80.5000 0.59
super1 ∞ 51.04 9.6438 7224.29 9.8913 7207.42
super2 ∞ 33.80 5.2468 7221.22 5.2907 7210.68
super3 ∞ 45.77 12.9385 7205.99 13.4772 7210.18
super3t -0.6744 7206.93 -0.6684 7206.03 -0.6673 7201.32
synheat 154997.8251 0.09 154997.3349 11.13 154997.3349 1.56
synthes1 6.0098 0.00 6.0098 1.37 6.0098 0.65
synthes2 73.0353 0.00 73.0353 3.90 73.0353 0.93
synthes3 68.0097 0.01 68.0097 2.48 68.0097 1.38
tln12 137.1000 732.36 106.8000 7200.04 102.3000 7200.04
tln2 5.3000 0.01 5.3000 7.15 5.3000 0.95
tln4 8.3000 14.42 8.3000 541.30 8.3000 578.15
tln5 10.3000 50.01 10.3000 442.67 10.3000 480.93
tln6 15.3000 44.29 15.4000 7200.03 15.3000 7200.03
tln7 23.6000 56.55 15.6000 7200.03 15.9000 7200.03
tloss 16.3000 0.04 16.3000 5.30 16.3000 2.92
tls12 ∞ 7200.11 ∞ 7200.23 ∞ 7200.65
tls2 5.3000 0.21 5.3000 7.56 5.3000 4.11
tls4 11.7000 835.46 8.8000 7200.04 9.0000 7200.04
tls5 14.0000 5937.37 14.2000 7200.67 11.0000 7200.04
tls6 15.9000 2683.52 16.4000 7200.10 18.1000 7200.08
tls7 ∞ 7200.01 ∞ 7200.16 ∞ 7200.14
tltr ∞ 0.01 ∞ 2.67 ∞ 1.76
uselinear ∞ 311.43 ∞ 816.29 ∞ 20046.10
util 999.5788 2.00 999.5790 313.65 999.5790 4.31
var con10 ∞ 0.54 444.1032 2550.53 ∞ 240.81
var con5 ∞ 0.73 278.0384 2293.98 ∞ 238.78
waste 732.2534 7200.18 679.0943 7208.15 903.8701 7200.66
water4 907.0170 66.48 907.0174 298.20 907.0174 63.23
waterx 926.5789 3.27 914.1837 142.69 919.0510 9.07
waterz 913.1571 2767.08 910.8823 7200.08 907.0174 3005.99
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minlp bb RECIPE with Ipopt RECIPE with filterSQP
Instance f∗ time f∗ time f∗ time
windfac ∞ 0.00 ∞ 4.87 0.2545 3.43

Table 1: Comparison of the results obtained by minlp bb used as a stand-alone solver,
by RECIPE with Ipopt as NLP subsolver, and by RECIPE with filterSQP as NLP
subsolver (the MINLP subsolver for RECIPE is minlp bb in both cases).

RECIPE RECIPE
minlp bb Ipopt filterSQP

# feasible solutions 204 221 206
# at least as good solutions 177 214 208
# strictly better solutions 10 31 20
Average CPU time 14.63 112.96 53.45
CPU time:
< 600 192 147 169
< 1800 11 11 7
< 7200 23 20 13
7200+ 25 73 62

Table 2 Summary of the results in Table 1. For each algorithm, we report: the number of
instances for which a feasible solution is found, the number of instances for which it finds a
solution with an objective value (∞ included) that is at least as good as the other methods,
the number of instances for which it finds a solution strictly better than the remaining
methods, the average CPU time in seconds (geometric mean), and the number of instances
that require a given CPU time.

From Table 2, we see that there is a clear winner in terms of solution qual-
ity: RECIPE with Ipopt as the NLP subsolver. Not only does it find more
feasible solutions (221 instances out of 251, 88%), but they are almost always
at least as good as the solutions found by the competitors. In particular, for
214 instances out of 251 (85%) it returns a solution which is equal to or better
than those found by minlp bb alone or RECIPE with filterSQP. On the other
hand, Ipopt is slower than filterSQP. This is consistently observed in our ex-
periments. Employing Ipopt instead of filterSQP slows down RECIPE also
as a side-effect of finding more feasible solutions: RECIPE with filterSQP

may fail to solve an instance and quickly report a failure, whereas RECIPE
with Ipopt may take a longer time but eventually find a feasible point. We
can also see that minlp bb used as a stand-alone solver seems to perform very
well on average; however, this was expected. The reason for this is that the
MINLPLib contains several instances which are convex or nonconvex but very
easy; for these instances, minlp bb typically finds the optimal (or a very good)
solution, and using RECIPE does not bring additional benefits. However, on
the more difficult nonconvex instances, RECIPE is able to improve consid-
erably over minlp bb, in particular when Ipopt is used as the NLP solver;
examples are the csched, the nuclear and the super instances. In a very lim-
ited number of cases (10), minlp bb stand-alone finds a better solution than
RECIPE; for most of these cases (6 out of 10), the NLP solver employed by
RECIPE always fails, therefore the MINLP solver is not run. In this case, set-
ting the option need-constr-feas to no might help in solving the issue. For
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the remaining cases, our intuition is that we were just unlucky in the sampling
of the points from which the local searches are initiated.

3.4 Comparison with existing solvers on the full test set

In this section we compare RECIPE to other, existing solvers, in order to eval-
uate the quality of the solutions it finds, its speed, and its reliability. RECIPE
is designed for finding good solutions, whereas the solvers that we compare to
are primarily designed for proving optimality of solutions (of convex or non-
convex MINLPs). Therefore, in terms of solution quality we want RECIPE to
be at least as effective as these solvers.

We ran RECIPE (with Ipopt as NLP solver and kmax = 20, as suggested by
the results in Section 3.3), AlphaECP, Baron, Couenne and sBB on all instances
of our test set with a time limit of 2 hours, with the same integrality/constraint
tolerances as RECIPE. For all solvers that we compare RECIPE to, we set the
absolute gap tolerance for optimality to 10−9, and the relative gap tolerance
to 10−6. Baron uses Cplex as LP solver. sBB requires an iteration limit, which
was set to 109, and a node limit, set to 107; none of these limits was hit
during our experiments. The branching strategy in Couenne was set to strong
branching. All other parameters are left to their default values. In Table 3
we report the solution reported by each of these methods, and the total CPU
time. As before, if an algorithm found a solution which is better than those
discovered by all other methods, the solution is highlighted in boldface.

RECIPE AlphaECP Baron Couenne sBB
Instance f∗ time f∗ time f∗ time f∗ time f∗ time
4stufen ∞ 0.79 ∞ 48.26 116820.4719 7200.01 ∞ 7331.55 116329.6706 0.26
alan 2.9250 1.95 2.9250 0.00 2.9250 0.04 2.9250 0.15 2.9250 0.00
batchdes 167427.6697 2.74 167427.6571 0.01 167427.6571 0.05 ∞ 0.12 167427.6571 0.00
batch 285506.3123 10.69 285506.5082 1.76 285506.7753 1.37 ∞ 1.00 285506.5082 0.00
beuster ∞ 0.79 ∞ 0.66 ∞ 0.77 ∞ 0.00 116329.6706 12.85
cecil 13 -114379.0669 7200.15 -107458.2928 432.65 -110871.2829 7200.02 ∞ 196.29 -115592.7795 7200.00
chp partload 26.9316 7212.52 ∞ 7200.29 ∞ 7204.42 ∞ 0.00 23.5545 7199.99
contvar 809149.5423 7201.72 813386.9455 7200.60 811036.2023 7200.03 ∞ 7236.98 ∞ 0.60
csched1a -30430.1780 4.33 -30430.1768 0.11 -30430.1768 1.42 -30430.1757 0.81 -30430.1768 0.00
csched1 -30639.2607 156.50 ∞ 0.90 -30639.2578 42.94 ∞ 3.98 -30639.2578 0.00
csched2a -165398.7013 3286.04 -159250.1724 7200.69 -127191.6054 7200.01 -156477.8176 7259.72 -165398.7013 1.13
csched2 -166101.9928 7315.06 -158480.1624 7200.34 -155750.4335 7200.01 ∞ 7272.93 -166101.9964 13.59
deb10 ∞ 674.73 ∞ 268.32 ∞ 0.00 ∞ 0.00 209.4278 0.25
deb6 ∞ 1217.27 ∞ 4.08 ∞ 0.00 ∞ 7615.47 201.7393 3.51
deb7 ∞ 4544.21 ∞ 7200.02 ∞ 0.00 ∞ 7433.64 ∞ 0.94
deb8 ∞ 4482.77 ∞ 7200.30 ∞ 0.00 ∞ 0.00 ∞ 0.94
deb9 ∞ 4920.32 ∞ 4830.73 ∞ 0.00 ∞ 0.00 116.5846 11.33
detf1 ∞ 0.00 12.8818 7200.79 ∞ 7478.11 12.7651 8441.15 12.8818 7200.04
du-opt5 8.0740 4.58 8.0737 8.42 8.0737 144.37 8.0737 38.06 8.0737 8.40
du-opt 3.5566 4.41 3.5637 1.36 3.5563 7200.00 3.5563 75.02 3.5563 1.25
eg all s 7.6578 326.04 8.9427 0.17 7.9828 7200.21 7.8218 8704.59 7.9202 12.60
eg disc2 s 5.6421 554.37 7.8872 0.17 5.9370 7200.78 ∞ 9999.92 5.9364 6.55
eg disc s 5.7606 635.73 7.3802 0.11 5.7605 7200.40 6.9093 12113.11 5.7605 11.38
eg int s 6.4533 196.52 8.0262 0.21 6.4531 7200.19 6.4531 9116.95 6.4531 5.15
elf 0.1917 165.27 1.0570 0.93 0.1917 9.67 0.3000 5.56 0.4347 0.01
eniplac -132117.0254 7200.05 -132117.0830 1.51 -132117.0563 7200.01 ∞ 7573.27 -130450.7699 0.07
enpro48 187277.1571 40.08 187277.2594 1.27 187277.1867 9.28 ∞ 24.37 187277.2594 0.04
enpro48pb 187277.1571 560.52 187277.2594 1.24 187277.2306 14.73 ∞ 30.14 187277.2594 0.06
enpro56 263428.3589 62.54 263428.3010 25.09 263428.2818 30.89 ∞ 14.10 263428.3010 0.09
enpro56pb 263428.3589 2515.05 263428.3010 43.51 263428.2818 30.74 ∞ 20.50 263428.3010 0.14
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RECIPE AlphaECP Baron Couenne sBB
Instance f∗ time f∗ time f∗ time f∗ time f∗ time
ex1221 7.6672 2.41 ∞ 7200.02 7.6672 0.00 7.6672 0.04 ∞ 0.00
ex1222 1.0765 1.37 1.0765 0.00 1.0765 0.01 1.0765 0.04 1.0765 0.00
ex1223a 4.5796 1.43 4.5796 0.01 4.5796 0.01 4.5796 0.04 4.5796 0.00
ex1223b 4.5796 1.59 4.5796 0.01 4.5796 0.05 4.5796 0.07 4.5796 0.00
ex1223 4.5796 1.85 4.5796 0.00 4.5796 0.07 ∞ 0.17 4.5796 0.00
ex1224 -0.9435 2.59 -0.7191 0.01 -0.9435 0.04 -0.9435 0.25 -0.9435 0.00
ex1225 31.0000 1.51 34.0000 0.00 31.0000 0.02 31.0000 0.08 31.0000 0.00
ex1226 -17.0000 2.41 -17.0000 0.00 -17.0000 0.06 -17.0000 0.08 ∞ 0.00
ex1233 155010.6713 0.47 155010.6713 41.75 155010.6713 266.26 ∞ 23.63 155010.6713 0.00
ex1243 83402.5069 10.58 515069.7614 0.00 83402.5064 1.24 ∞ 2.65 83402.5064 0.00
ex1244 82042.9052 102.00 82042.9052 0.14 82042.9052 2931.47 82042.9052 38.21 82042.9052 0.00
ex1252a 128894.0029 7.82 ∞ 7200.02 ∞ 0.03 ∞ 4.25 128893.7410 0.00
ex1252 128894.0029 23.70 ∞ 7200.06 151115.7300 0.03 ∞ 12.51 128893.7410 0.00
ex1263a 19.6000 7.37 21.3000 0.02 19.6000 0.48 19.6000 1.84 19.6000 0.00
ex1263 19.6000 233.24 20.6000 0.40 19.6000 2.18 19.6000 5.01 19.6000 0.00
ex1264a 8.6000 5.88 8.6000 0.02 8.6000 0.70 8.6000 0.70 8.6000 0.00
ex1264 8.6000 35.66 9.3000 0.03 8.6000 3.86 8.6000 3.74 8.6000 0.00
ex1265a 11.5000 10.65 10.6000 0.08 10.3000 0.39 10.3000 1.93 15.1000 0.00
ex1265 15.1000 8.92 11.3000 0.08 10.3000 2.23 10.6000 6.92 10.3000 0.00
ex1266a 16.3000 5.25 16.3000 0.03 16.3000 0.33 16.3000 2.74 16.3000 0.00
ex1266 16.3000 19.24 16.3000 0.20 16.3000 1.67 16.3000 11.65 16.3000 0.00
ex3 68.0097 0.76 77.1043 0.14 68.0097 0.10 68.0097 0.17 68.0097 0.00
ex3pb 68.0097 5.09 68.0097 0.31 68.0097 0.09 68.0097 0.17 68.0097 0.00
ex4 -8.0641 21.40 -8.0641 0.38 -8.0641 3.82 -8.0641 11.54 -8.0641 0.08
fac1 160912612.3502 2.78 160912612.3502 0.00 160912612.3500 0.04 ∞ 0.08 160912612.3502 0.00
fac2 331837498.1768 7.85 331837498.1768 0.19 331837498.1770 0.40 331837498.1768 1.09 331837498.1768 0.02
fac3 31982309.8480 9.78 31982309.8480 0.03 31982309.8480 0.45 31982309.8482 0.48 31982309.8480 0.00
feedtray2 0.0000 378.54 0.0000 0.10 0.0000 0.43 0.0000 1.34 ∞ 0.01
feedtray -13.4114 46.74 ∞ 7200.82 -13.4060 0.77 ∞ 7271.11 ∞ 0.01
fo7 2 17.7493 4169.08 17.7493 23.20 17.7493 3871.55 ∞ 355.06 17.7493 7199.99
fo7 ar2 1 24.8398 7200.05 24.8398 91.81 24.9721 7200.01 24.8398 287.89 38.1605 7200.00
fo7 ar25 1 23.0936 7200.04 23.0936 68.41 23.1210 7200.01 ∞ 688.65 25.6784 7199.97
fo7 ar3 1 22.5175 7200.04 22.5175 85.81 22.5175 7200.01 ∞ 579.37 30.2619 1777.24
fo7 ar4 1 20.7298 7200.05 20.7298 130.62 20.7298 7200.01 20.7298 1272.72 28.4706 7200.00
fo7 ar5 1 17.7493 7200.05 17.7493 43.44 17.7493 1085.21 ∞ 244.97 17.7493 7200.00
fo7 20.7298 7200.16 20.7298 237.13 22.3925 7200.01 20.7298 1139.76 27.1480 7200.00
fo8 ar2 1 30.3406 7200.05 30.3406 493.52 42.1429 7200.00 ∞ 7631.57 53.3354 7199.99
fo8 ar25 1 33.3122 7200.05 28.0452 580.26 46.0481 7200.00 ∞ 7592.76 53.3663 7200.00
fo8 ar3 1 30.5745 7200.05 23.9101 190.92 23.9101 7200.00 ∞ 7688.21 41.9649 7200.00
fo8 ar4 1 37.0390 7200.30 22.3819 293.67 23.9976 7200.00 ∞ 2325.73 39.8196 7199.99
fo8 ar5 1 23.9101 7200.06 22.3819 497.73 30.8551 7200.00 23.4680 7611.87 38.0818 7200.00
fo8 22.3819 7200.05 22.3819 545.00 34.6407 7200.01 22.3819 7633.72 51.7311 7200.00
fo9 ar2 1 36.6681 7200.07 43.6474 1855.35 ∞ 7200.00 ∞ 7623.11 ∞ 715.44
fo9 ar25 1 54.0811 7200.05 32.1864 7200.30 ∞ 7200.00 32.2500 7658.16 53.1887 7101.40
fo9 ar3 1 37.0128 7200.10 24.8155 552.82 ∞ 7200.01 34.7500 7662.94 ∞ 7200.00
fo9 ar4 1 45.4231 7200.31 23.4643 2067.83 ∞ 7200.01 31.9533 7653.29 ∞ 0.07
fo9 ar5 1 ∞ 7200.08 23.4643 2789.53 48.9429 7200.00 ∞ 7643.03 60.0000 7131.38
fo9 ∞ 7200.06 23.4643 4147.19 51.9927 7200.01 31.2111 7658.19 42.1176 7199.99
fuel 8566.1190 16.10 8566.1190 0.04 8566.1190 0.04 8566.1190 0.16 8566.1190 0.00
fuzzy ∞ 0.00 -0.2961 88.97 ∞ 0.00 ∞ 0.00 ∞ 0.43
gasnet 6999391.6436 117.70 7096273.4570 7200.22 ∞ 1.34 ∞ 7674.49 7004607.8064 0.02
gastrans 89.0858 19.55 89.0858 8.13 89.0858 0.41 ∞ 3.04 89.0858 0.01
gbd 2.2000 2.09 2.2000 0.00 2.2000 0.01 2.2000 0.04 ∞ 0.00
gear2 0.0000 1.51 0.0000 0.01 0.0000 7200.01 0.0000 0.26 ∞ 0.00
gear3 0.0000 1.21 0.0000 0.00 0.0000 0.25 ∞ 0.08 ∞ 0.00
gear4 1.9682 15.68 945.9914 0.00 1.6434 0.45 1.6434 0.39 1.6434 0.00
gear 0.0000 1.18 0.0000 0.00 0.0000 0.03 0.0000 0.05 ∞ 0.00
gkocis -1.9231 3.13 -1.9231 0.01 -1.9231 0.02 -1.9231 0.06 -1.9231 0.00
hmittelman 13.0000 4.57 13.0000 7200.00 13.0000 0.07 13.0000 0.22 13.0000 0.00
johnall -224.7302 69.25 -224.7302 0.04 -224.7302 6.27 -224.7302 628.64 -224.7302 1.03
lop97ic 4232.6891 7212.59 ∞ 7200.08 8011.5855 7200.48 ∞ 7441.10 4130.3959 7200.00
lop97icx 4099.0600 5381.36 ∞ 7200.90 4377.0599 7200.01 ∞ 7437.87 4156.3775 6886.10
m3 37.8000 5.42 37.8000 0.04 37.8000 0.06 37.8000 0.75 37.8000 0.04
m6 82.2569 1414.40 82.2569 3.15 82.2569 155.04 82.2569 16.56 82.2569 749.99
m7 ar2 1 190.2350 7200.04 190.2350 8.75 190.2350 42.96 190.2350 73.25 ∞ 6785.00
m7 ar25 1 143.5850 2919.44 143.5850 0.92 143.5850 39.90 143.5850 31.73 143.5850 6832.63
m7 ar3 1 143.5850 7200.04 143.5850 17.00 143.5850 175.93 143.5850 66.95 156.0380 6840.07
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RECIPE AlphaECP Baron Couenne sBB
Instance f∗ time f∗ time f∗ time f∗ time f∗ time
m7 ar4 1 106.7569 7200.05 106.7569 4.79 106.7569 191.70 106.7569 34.68 124.9053 6819.66
m7 ar5 1 106.4600 7200.04 106.4600 18.47 106.4600 416.31 106.4600 154.76 207.7267 6803.37
m7 106.7569 2251.72 106.7569 13.31 106.7569 1082.99 106.7569 118.91 106.7569 6559.48
mbtd 5.5833 7203.37 8.0000 5639.64 ∞ 7200.90 7.6667 8924.79 5.4167 7200.59
meanvarx 14.3692 3.06 14.3692 0.00 14.3692 0.27 ∞ 1.91 14.3692 0.00
minlphix 316.6928 54.76 316.6927 0.04 424.4954 576.04 316.6927 0.67 641.8714 0.00
netmod dol1 ∞ 9720.59 -0.5561 7200.20 -0.1277 7200.23 -0.5600 7287.63 -0.5598 7199.99
netmod dol2 -0.5535 8930.19 -0.5600 475.40 -0.0000 7200.04 -0.5600 5450.07 -0.5600 279.49
netmod kar1 -0.4198 7214.51 -0.4198 149.82 -0.4198 895.53 -0.4198 258.70 -0.4198 14.16
netmod kar2 -0.4198 7213.04 -0.4198 149.86 -0.4198 897.10 -0.4198 258.69 -0.4198 14.43
no7 ar2 1 107.8153 7200.05 107.8153 94.53 107.8153 7200.01 ∞ 972.41 146.7258 7199.99
no7 ar25 1 107.8153 7200.11 107.8153 453.37 112.3227 7200.01 ∞ 4626.31 136.2852 7200.00
no7 ar3 1 107.8153 7204.28 107.8153 636.73 113.7244 7200.00 ∞ 5251.87 135.0166 7200.00
no7 ar4 1 98.5184 7200.04 98.5184 525.84 107.8715 7200.00 ∞ 7720.82 142.4666 7200.00
no7 ar5 1 90.6227 7200.04 90.6227 204.49 90.6227 7200.01 90.6227 1407.96 120.0595 7200.00
nous1 ∞ 21.96 1.5671 7200.03 1.5671 254.59 ∞ 7479.14 1.5671 0.00
nous2 ∞ 21.99 1.3843 7200.05 0.6260 1.01 0.6260 1.28 0.6260 0.00
nuclear104 ∞ 7267.51 ∞ 7200.20 ∞ 7283.30 ∞ 0.00 ∞ 1053.89
nuclear10a ∞ 0.00 ∞ 0.00 ∞ 7255.57 ∞ 13563.55 ∞ 7200.02
nuclear10b ∞ 7223.50 ∞ 0.00 ∞ 7232.08 ∞ 8407.36 -1.1333 7200.35
nuclear14a -1.1296 2732.95 ∞ 7200.51 ∞ 7200.32 -1.1144 7290.36 ∞ 0.46
nuclear14b -1.1093 7200.37 ∞ 9.04 -1.1096 7200.24 -1.1002 7363.34 -1.1128 7199.99
nuclear14 -1.1257 6062.20 ∞ 142.72 -1.1237 66.75 ∞ 7237.89 -1.1199 1.64
nuclear24a -1.1296 2769.73 ∞ 7200.23 ∞ 7200.42 -1.1144 7283.95 ∞ 0.46
nuclear24b -1.1093 7201.06 ∞ 8.72 -1.1096 7200.35 -1.1002 7358.12 -1.1128 7200.00
nuclear24 -1.1257 6006.97 ∞ 142.51 -1.1237 68.24 ∞ 7233.55 -1.1199 1.63
nuclear25a ∞ 0.00 ∞ 1.68 ∞ 7200.08 ∞ 7303.84 -1.1198 2.69
nuclear25b -1.0977 7201.25 ∞ 4.05 -1.0749 7200.14 -1.0975 7356.74 -1.0954 7200.00
nuclear25 -1.1171 7225.31 ∞ 7200.08 ∞ 7200.22 ∞ 7233.25 -1.1197 72.90
nuclear49a ∞ 8293.68 ∞ 11.97 -1.1509 7204.33 ∞ 4951.04 -1.1512 4.73
nuclear49b ∞ 0.00 ∞ 24.79 -1.1180 7200.87 ∞ 2427.45 -1.1217 7199.99
nuclear49 ∞ 7200.83 ∞ 7200.10 ∞ 7208.12 ∞ 7217.00 -1.1511 77.89
nuclearva -1.0109 1323.10 ∞ 5728.20 ∞ 1804.66 ∞ 7595.48 -1.0095 0.12
nuclearvb -1.0289 1408.14 ∞ 53.30 ∞ 2988.50 ∞ 7429.02 -1.0281 0.24
nuclearvc -0.9972 1370.61 ∞ 7200.82 -0.9968 3677.68 ∞ 7382.91 ∞ 0.06
nuclearvd -1.0315 1806.26 ∞ 290.33 -1.0330 3810.13 ∞ 7391.59 ∞ 0.07
nuclearve -1.0317 2013.02 ∞ 451.96 ∞ 2445.54 ∞ 7388.95 -1.0322 0.20
nuclearvf -1.0225 1911.18 ∞ 303.31 -1.0176 3960.56 ∞ 7313.94 -1.0209 0.13
nvs01 12.4697 1.28 ∞ 0.11 12.4697 0.05 12.4697 0.06 12.4697 0.00
nvs02 5.9642 3.49 ∞ 7200.03 5.9642 0.01 5.9642 0.04 5.9642 0.00
nvs03 16.0000 1.11 16.0000 0.00 16.0000 0.01 16.0000 0.05 16.0000 0.00
nvs04 0.7200 2.09 2.1200 0.00 0.7200 0.01 0.7200 0.06 ∞ 0.00
nvs05 5.4709 42.91 ∞ 7200.11 5.4709 5.79 ∞ 5.15 5.4709 0.00
nvs06 1.7703 1.15 1.7703 0.00 1.7703 0.01 1.7703 0.03 1.7703 0.00
nvs07 4.0000 1.40 4.0000 0.00 4.0000 0.02 4.0000 0.04 4.0000 0.00
nvs08 23.4497 1.55 23.4497 0.01 23.4497 0.05 23.4497 0.05 23.4497 0.00
nvs09 -43.1343 0.95 -43.1343 0.00 -43.1343 0.00 -43.1343 0.99 ∞ 0.00
nvs10 -310.8000 1.28 -310.8000 0.01 -310.8000 0.03 -310.8000 0.06 -310.8000 0.00
nvs11 -431.0000 1.20 -431.0000 0.02 -431.0000 0.06 -431.0000 0.12 -431.0000 0.00
nvs12 -481.2000 1.43 -481.2000 0.01 -481.2000 0.07 -481.2000 0.29 -481.2000 0.00
nvs13 -585.2000 1.53 -585.2000 0.02 -585.2000 0.23 -585.2000 0.82 -585.2000 0.00
nvs14 -40358.1142 3.32 ∞ 7200.04 -40358.1548 0.01 -40358.1548 0.05 -40358.1548 0.00
nvs15 1.0000 1.30 1.0000 0.00 1.0000 0.02 1.0000 0.05 1.0000 0.00
nvs16 0.7031 1.63 0.7031 0.00 0.7031 0.01 0.7031 0.05 0.7031 0.00
nvs17 -1100.4000 2.27 -1100.4000 2.31 -1100.4000 4.45 -1100.4000 14.35 -1100.4000 0.00
nvs18 -778.4000 1.90 -778.4000 0.32 -778.4000 0.91 -778.4000 2.17 -778.4000 0.00
nvs19 -1098.4000 2.95 -1098.4000 9.19 -1098.4000 15.46 ∞ 0.00 -1098.4000 0.00
nvs20 230.9222 1.83 230.9222 1.24 230.9222 1.34 230.9222 3.37 230.9222 0.00
nvs21 -5.6848 1.56 -0.0001 0.01 -5.6848 0.03 -4.4552 0.05 -5.6848 0.00
nvs22 6.0582 57.65 40.3053 7200.09 6.0582 0.65 6.0582 0.14 6.0582 0.00
nvs23 -1125.2000 4.63 -1125.2000 10.30 -1125.2000 61.63 -1125.2000 649.69 -1125.2000 0.02
nvs24 -1033.2000 4.65 -1033.2000 104.49 -1033.2000 314.06 ∞ 7764.79 -1033.2000 0.10
o7 2 116.9459 7200.04 116.9459 967.56 123.9855 7200.00 118.7666 7620.36 123.9808 7200.00
o7 ar2 1 140.4120 7200.04 140.4120 193.21 146.2676 7200.01 ∞ 1571.35 163.5146 7199.99
o7 ar25 1 141.6231 7202.21 140.4120 461.57 141.1893 7200.00 ∞ 7482.83 172.4345 7199.93
o7 ar3 1 138.8649 7200.04 137.9318 1366.73 138.8649 7200.01 ∞ 7631.79 165.5136 2584.10
o7 ar4 1 131.6531 7200.04 131.6531 2526.52 138.8649 7200.01 ∞ 7630.42 170.6387 7199.99
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RECIPE AlphaECP Baron Couenne sBB
Instance f∗ time f∗ time f∗ time f∗ time f∗ time
o7 ar5 1 116.9458 7200.55 116.9458 457.25 123.9807 7200.00 ∞ 7636.28 133.5345 7199.99
o7 131.6531 7203.14 131.6531 3235.39 137.8693 7200.01 134.1667 7638.95 159.2485 6243.61
o8 ar4 1 254.9776 7200.06 251.3129 7200.81 ∞ 7200.00 ∞ 7675.80 313.4221 7200.00
o9 ar4 1 316.0128 7200.08 311.9231 7200.06 ∞ 7200.00 ∞ 7683.12 ∞ 7200.00
oaer -1.9231 2.72 0.0000 0.00 -1.9231 0.01 -1.9231 0.08 -1.9231 0.00
oil2 ∞ 0.00 ∞ 52.59 -0.7333 7200.01 ∞ 1825.65 -0.7333 0.20
oil -0.9325 7202.21 -0.8514 520.03 -0.8367 7201.62 ∞ 0.00 -0.9325 1406.28
ortez -9532.0398 68.70 -3668.8535 0.18 -9532.0391 0.26 ∞ 0.77 -9532.0391 0.01
parallel 924.2986 1.14 924.2956 0.12 924.2947 51.72 ∞ 0.00 924.2956 0.07
prob02 112235.0000 1.45 112235.0000 0.00 112235.0000 0.01 112235.0000 0.04 112235.0000 0.00
prob03 10.0000 1.07 10.0000 0.00 10.0000 0.00 10.0000 0.04 10.0000 0.00
prob10 3.4455 1.60 ∞ 0.89 ∞ 0.00 3.4455 0.05 3.4455 0.00
procsel -1.7210 0.66 -1.9231 0.00 -1.9231 0.03 -1.9231 0.06 -1.9231 0.00
product2 -2096.7699 7201.63 ∞ 1.98 ∞ 15.70 ∞ 7472.33 -2100.0774 7200.00
product -2142.9275 7200.50 -1922.0353 7200.05 ∞ 23.13 ∞ 2400.41 -2142.9481 1355.45
pump 128894.0029 7.75 ∞ 3.65 ∞ 0.02 ∞ 5.40 134263.5853 0.00
qap 388870.0000 1541.90 400528.0000 26.65 390374.0000 7200.83 ∞ 7764.23 395738.0000 7.53
qapw 388988.0000 4410.31 402948.0000 33.71 440710.0000 7200.11 403182.0000 7393.13 394086.0000 1.81
ravem 269590.2650 2.93 269590.2193 0.85 269590.0793 3.91 ∞ 16.21 269590.2193 0.01
ravempb 269590.2650 57.39 269590.2193 1.22 269590.0793 3.78 ∞ 18.26 269590.2193 0.01
risk2b -56.8208 305.67 -55.8761 0.61 -55.8761 2.26 ∞ 27.17 -55.7362 0.07
risk2bpb -56.8208 1631.20 -55.8761 0.62 -55.8761 2.43 ∞ 28.06 -55.8761 0.06
saa 2 ∞ 0.00 12.8818 7200.16 ∞ 7474.95 12.7651 8371.30 12.8818 7200.10
sep1 -470.1301 15.26 -510.0810 0.02 -510.0810 0.04 ∞ 0.29 -510.0810 0.00
space25a 484.3278 302.06 ∞ 7201.24 499.1340 7200.00 ∞ 7628.21 484.3286 2.14
space25 484.3278 1146.59 ∞ 7200.55 ∞ 7200.01 ∞ 7641.96 484.3286 6.30
space960 ∞ 7200.65 ∞ 7200.23 ∞ 7216.49 ∞ 7369.59 ∞ 7199.99
spectra2 13.9783 228.87 13.9783 94.59 13.9783 17.14 13.9783 3.99 13.9783 0.16
spring 0.8462 28.17 ∞ 107.95 0.8462 0.23 ∞ 0.35 0.8462 0.00
st e13 2.0000 2.85 2.0000 0.00 2.0000 0.01 2.0000 0.04 ∞ 0.00
st e14 4.5796 1.84 4.5796 0.01 4.5796 0.06 ∞ 0.17 4.5796 0.00
st e15 7.6672 2.43 ∞ 7200.02 7.6672 0.01 7.6672 0.04 ∞ 0.00
st e27 2.0000 1.22 2.0000 0.00 2.0000 0.01 2.0000 0.05 ∞ 0.00
st e29 -0.9435 2.57 -0.7191 0.01 -0.9435 0.03 -0.9435 0.25 -0.9435 0.00
st e31 -2.0000 24.51 -2.0000 0.05 -2.0000 0.92 ∞ 5.13 ∞ 0.00
st e32 -1.4304 0.19 -1.2404 3046.57 -1.4304 4.31 -1.2404 4.48 -1.4304 0.01
st e35 ∞ 0.21 301340.5026 0.00 64868.0769 4.30 ∞ 3.27 ∞ 0.00
st e36 -246.0000 2.40 -226.1825 0.01 -246.0000 0.04 -246.0000 0.53 ∞ 0.02
st e38 7197.7216 1.14 7197.7271 0.00 7197.7271 0.02 ∞ 0.06 ∞ 0.00
st e40 30.4142 4.58 ∞ 0.85 30.4142 0.04 30.4142 0.37 ∞ 0.00
st miqp1 281.0000 1.33 281.0000 0.00 281.0000 0.01 281.0000 0.04 281.0000 0.00
st miqp2 2.0000 7.37 2.0000 0.00 2.0000 0.02 2.0000 0.05 2.0000 0.00
st miqp3 -6.0000 1.19 -6.0000 0.00 -6.0000 0.00 -6.0000 0.04 ∞ 0.00
st miqp4 -4574.0000 1.32 -4574.0000 0.00 -4574.0000 0.01 -4574.0000 0.05 ∞ 0.00
st miqp5 -333.8900 2.49 -333.8889 0.00 -333.8889 0.01 -333.8889 0.06 ∞ 0.00
stockcycle 119948.7606 5124.47 123932.6350 7200.87 119948.6883 566.94 119948.6883 108.87 119948.6883 11.35
st test1 -0.0000 1.27 0.0000 0.00 0.0000 0.01 0.0000 0.05 0.0000 0.00
st test2 -9.2500 1.66 -9.2500 0.00 -9.2500 0.02 -9.2500 0.04 ∞ 0.00
st test3 -7.0000 1.59 -7.0000 0.00 -7.0000 0.03 -7.0000 0.07 ∞ 0.00
st test4 -7.0000 1.61 -7.0000 0.00 -7.0000 0.01 -7.0000 0.04 ∞ 0.00
st test5 -110.0000 1.45 -110.0000 0.00 -110.0000 0.02 -110.0000 0.07 -110.0000 0.00
st test6 471.0000 1.28 471.0000 0.00 471.0000 0.04 471.0000 0.10 471.0000 0.00
st test8 -29605.0000 2.46 -29605.0000 0.00 -29605.0000 0.03 -29605.0000 0.07 -29605.0000 0.00
st testgr1 -12.8116 1.47 -12.8116 0.01 -12.8116 0.07 -12.8116 0.26 -12.8116 0.00
st testgr3 -20.5900 2.54 -20.5900 0.00 -20.5900 0.80 -20.5900 0.81 -20.5900 0.00
st testph4 -80.5000 1.33 -80.5000 0.00 -80.5000 0.01 -80.5000 0.04 -80.5000 0.00
super1 9.6438 7224.29 ∞ 7200.30 ∞ 26.40 ∞ 0.00 ∞ 0.53
super2 5.2468 7221.22 ∞ 7200.64 ∞ 35.57 ∞ 0.00 ∞ 0.75
super3 12.9385 7205.99 ∞ 7200.54 ∞ 35.48 ∞ 0.00 ∞ 0.63
super3t -0.6684 7206.03 -0.6414 7200.08 ∞ 7200.34 ∞ 0.00 ∞ 0.22
synheat 154997.3349 11.13 154997.3349 7.36 154997.3354 266.64 ∞ 98.46 154997.3349 0.00
synthes1 6.0098 1.37 6.0098 0.00 6.0098 0.02 ∞ 0.07 6.0098 0.00
synthes2 73.0353 3.90 73.0353 0.01 73.0353 0.03 73.0353 0.13 73.0353 0.00
synthes3 68.0097 2.48 68.0097 0.03 68.0097 0.07 68.0903 0.12 68.0097 0.00
tln12 106.8000 7200.04 99.8000 7200.76 ∞ 7200.02 ∞ 0.00 ∞ 7200.00
tln2 5.3000 7.15 5.3000 0.00 5.3000 0.03 5.3000 0.09 5.3000 0.00
tln4 8.3000 541.30 8.8000 0.47 8.3000 4.70 8.3000 2.64 8.3000 0.00
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RECIPE AlphaECP Baron Couenne sBB
Instance f∗ time f∗ time f∗ time f∗ time f∗ time
tln5 10.3000 442.67 11.1000 1.17 10.3000 194.45 10.3000 32.25 11.3000 7200.00
tln6 15.4000 7200.03 16.3000 3.96 15.3000 7200.00 15.3000 7511.64 15.7000 7200.00
tln7 15.6000 7200.03 16.4000 709.71 15.4000 7200.01 15.0000 7535.61 ∞ 7200.00
tloss 16.3000 5.30 16.3000 0.69 16.3000 0.48 16.3000 5.17 16.3000 0.00
tls12 ∞ 7200.23 ∞ 7200.04 ∞ 7200.21 ∞ 7309.00 ∞ 7200.00
tls2 5.3000 7.56 5.3000 0.00 5.3000 0.52 5.3000 1.25 5.3000 0.00
tls4 8.8000 7200.04 8.3000 1987.74 8.3000 520.37 8.3000 3327.67 8.5000 7200.00
tls5 14.2000 7200.67 15.9000 7200.74 10.6000 7200.00 ∞ 7339.42 13.6000 7200.00
tls6 16.4000 7200.10 ∞ 7200.37 16.3000 7200.01 ∞ 7281.92 ∞ 7200.00
tls7 ∞ 7200.16 ∞ 7200.87 ∞ 7200.01 ∞ 7256.41 ∞ 7200.00
tltr ∞ 2.67 48.0667 0.00 48.0667 0.16 48.0667 1.32 ∞ 0.00
uselinear ∞ 816.29 ∞ 90.77 ∞ 7200.21 ∞ 0.00 ∞ 226.65
util 999.5790 313.65 999.5788 0.78 999.5788 0.57 ∞ 0.00 999.5788 0.00
var con10 444.1032 2550.53 ∞ 2.93 ∞ 0.00 ∞ 7583.87 444.2140 0.98
var con5 278.0384 2293.98 ∞ 6.78 ∞ 0.00 ∞ 7578.81 278.1449 0.88
waste 679.0943 7208.15 1056.3587 7200.19 711.5902 1650.71 ∞ 7944.02 ∞ 0.66
water4 907.0174 298.20 1115.6358 3788.09 1051.8529 7200.00 ∞ 7600.85 910.8822 7.23
waterx 914.1837 142.69 917.3819 1.70 911.2815 7200.01 ∞ 7543.11 938.8628 0.25
waterz 910.8823 7200.08 1129.9849 18.05 ∞ 7200.01 ∞ 7584.73 907.0170 2101.60
windfac ∞ 4.87 0.2545 7200.01 ∞ 0.00 0.2545 0.62 0.2545 0.00

Table 3: Comparison of the results obtained by RECIPE with Ipopt as NLP sub-
solver, AlphaECP, Baron, Couenne and sBB.

RECIPE AlphaECP Baron Couenne sBB

# feasible solutions 221 192 203 136 199
# at least as good solutions 195 146 160 121 149
# strictly better solutions 25 14 5 3 18
Average CPU time 112.44 29.28 55.63 52.65 13.03
CPU time:
< 600 147 184 155 157 183
< 1800 11 4 5 8 6
< 7200 20 12 8 9 11
7200+ 73 51 83 77 51

Table 4 Summary of the results in Table 3. For each algorithm, we report: the number of
instances for which a feasible solution is found, the number of instances for which it finds a
solution with an objective value (∞ included) that is at least as good as the other methods,
the number of instances for which it finds a solution strictly better than the remaining
methods, the average CPU time in seconds (geometric mean), and the number of instances
that require a given CPU time.

As can be seen from Table 4, RECIPE is very effective. Not only does it find
more feasible solutions (18 solutions more than its closest competitor, Baron),
but they are of better quality: for 195 instances out of 251 (78%), RECIPE
with Ipopt finds a solution which is at least as good as the remaining methods,
and comes out as the winning algorithm in the comparison with respect to
this criterion. A more detailed analysis of Table 3 indicates that AlphaECP is
typically the fastest method on convex instances (such as the fo, m7, no7 and
o7 instances); RECIPE is more effective on nonconvex instances such as the
nuclear, super and water problems. On the majority of our test problems,
RECIPE returns a solution which is at least of the same quality as the ones
found by the exact BB solvers for nonconvex MINLPs Baron and Couenne, and
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the convex MINLP solvers AlphaECP and sBB; in several cases the solution is
strictly better. For applications where no guarantee of optimality is required,
and the problem is not known to be convex, RECIPE seems to be a better
choice.

In terms of CPU time, RECIPE is the slowest algorithm on average, even
though Baron and Couenne hit the time limit on a larger number of instances.
There are two reasons for this. First, on instances that run in just a few
seconds (<≈ 5 seconds), the overhead for employing AMPL as a scripting
language is not negligible. Second, RECIPE cannot stop because a solution is
proven to be optimal. There are several instances on which the solvers that we
compare RECIPE to are able to quickly prove optimality, whereas RECIPE
keeps running even after finding the optimal solution.

We observe that Couenne exceeds the 2 hours time limit on some instances,
sometimes by a large amount. This is due to the solution of time-consuming
NLPs or LPs: Couenne uses no or very loose upper bounds on the time con-
sumption for solving subproblems, therefore it may happen that the time limit
is exceeded while the main algorithm is waiting for a subproblem to be solved.
From Table 4, we can also see that Couenne seems to be the weakest solver
among the ones that were tested. Computational testing revealed that this is
due to small infeasibilities in the reported solutions. Indeed, Couenne reports
feasible solutions on most instances, but many of those are discarded by the
post-processing scripts that we employed to ensure that all solutions satis-
fied our feasibility criteria (the same used by RECIPE). In our tests, Couenne
seemed to have troubles with constraints involving exponential functions, and
it often reported solutions violating those constraints by small amounts. If we
trust Couenne’s feasibility test, we obtain a different ranking of the solvers
employed in this section. In Table 5, we report the analogue of Table 4 with
the difference that now we accept all solutions found to be feasible by Couenne,
regardless of the result of our post-processing feasibility check. In this case, it
can be seen that Couenne finds more feasibile solutions that any other method.
However, RECIPE is still the best method in terms of solution quality.

3.5 Comparison with the Feasibility Pump

We now compare RECIPE with another heuristic for nonconvex MINLPs:
the recently proposed Feasibility Pump [15,14, Chapter 2]. Results for FP
are taken from [16]; since computational experiments with several versions of
the heuristic are reported, we keep the best one available (i.e. best objective
function value or best CPU time if the objective value is tied). Likewise, we
consider the best solution found by RECIPE using either Ipopt or filterSQP
as the NLP solver. [16] reports detailed results on a much smaller test set than
ours (they only consider hard instances), and rounds CPU times to the nearest
second; we conform to that paper.
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RECIPE AlphaECP Baron Couenne sBB

# feasible solutions 221 192 203 234 199
# at least as good solutions 183 136 151 168 136
# strictly better solutions 24 9 5 18 16
Average CPU time 112.44 29.28 55.63 52.65 13.03
CPU time:
< 600 147 184 155 157 183
< 1800 11 4 5 8 6
< 7200 20 12 8 9 11
7200+ 73 51 83 77 51

Table 5 Summary of the results when trusting the feasibility checks of Couenne. For each
algorithm, we report: the number of instances for which a feasible solution is found, the
number of instances for which it finds a solution with an objective value (∞ included) that
is at least as good as the other methods, the number of instances for which it finds a solution
strictly better than the remaining methods, the average CPU time in seconds (geometric
mean), and the number of instances that require a given CPU time.

RECIPE Feasibility Pump
Instance f∗ time f∗ time
beuster ∞ 0.00 ∞ 7200.00
csched2a -165398.7013 3286.00 -112174.7256 624.00
csched2 -166101.9928 7315.00 -120066.0152 241.00
deb10 ∞ 4.00 223.2910 25.00
deb6 ∞ 3.00 234.7799 197.00
deb7 ∞ 10.00 345.7648 10.00
deb8 ∞ 17.00 416332.3238 3.00
deb9 ∞ 11.00 425.3353 16.00
detf1 ∞ 0.00 8455.7458 961.00
eg all s 7.6578 201.00 223.1413 27.00
eg disc2 s 5.6421 293.00 65822.9573 7.00
eg disc s 5.7606 168.00 94165.4165 8.00
eg int s 6.4533 142.00 94167.1250 10.00
fo8 ar25 1 32.4477 7200.00 994207.0612 185.00
fo8 ar3 1 23.9101 7200.00 994235.3292 784.00
fo8 22.3819 7200.00 894678.4196 9.00
fo9 ar2 1 32.6250 7200.00 1136279.4869 1.00
fo9 ar25 1 43.7722 7200.00 1136997.7323 635.00
fo9 ar4 1 43.6116 7202.00 9959.6821 202.00
fo9 ar5 1 28.6727 7200.00 1428148.2023 17.00
fo9 30.7500 7200.00 1006964.2111 61.00
johnall -224.7302 6.00 -221.9212 618.00
lop97ic 4138.3292 7200.00 ∞ 7200.00
mbtd 4.6667 7203.00 91.3293 4.00
nuclear104 ∞ 7267.00 ∞ 7200.00
nuclear10a ∞ 0.00 ∞ 7200.00
nuclear10b ∞ 750.00 ∞ 7200.00
nuclear14a -1.1296 2732.00 -1.1134 2.00
nuclear14b -1.1093 7200.00 -1.1031 646.00
nuclear14 -1.1257 6062.00 -1.1156 1.00
nuclear24a -1.1296 2769.00 -1.1134 2.00
nuclear24b -1.1093 7201.00 -1.0904 1.00
nuclear24 -1.1257 6006.00 -1.1195 1.00
nuclear25a -1.1000 7217.00 -1.0614 6.00
nuclear25b -1.0977 7201.00 -1.0451 707.00
nuclear49a ∞ 8188.00 -1.1109 6.00
nuclear49b ∞ 0.00 -1.1319 4.00
nuclear49 ∞ 7200.00 -1.1373 1.00
nuclearva -1.0109 1323.00 -1.0087 496.00
nuclearvb -1.0289 1408.00 -1.0252 614.00
nuclearvc -0.9972 1370.00 -0.9971 2.00
nvs08 23.4497 0.00 24116.9437 0.00
nvs20 230.9222 1.00 138691481.6708 0.00
nvs24 -1033.2000 3.00 -536.2000 1.00
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RECIPE Feasibility Pump
Instance f∗ time f∗ time
o8 ar4 1 254.9776 7200.00 5822973.4498 22.00
o9 ar4 1 297.0642 7200.00 6877522.8246 198.00
qapw 388214.0000 5187.00 460118.0000 637.00
saa 2 ∞ 0.00 8455.7458 978.00
space25a 484.3278 32.00 650.6916 245.00
space25 484.3278 223.00 650.6916 773.00
space960 ∞ 0.00 24070000.0017 3.00
super1 9.6438 7224.00 ∞ 7200.00
super2 5.2468 7221.00 ∞ 7200.00
super3 12.9385 7205.00 ∞ 7200.00
super3t -0.6684 7206.00 ∞ 7200.00
tln12 102.3000 7200.00 ∞ 7200.00
tls12 ∞ 7200.00 ∞ 7200.00
tls2 5.3000 4.00 5.3000 1.00
tls5 11.0000 7200.00 22.5000 58.00
tls6 16.4000 7200.00 ∞ 7200.00
tls7 ∞ 7200.00 37.8000 2.00
uselinear ∞ 816.00 1951.3743 187.00
var con10 444.1032 2550.00 463.1678 12.00
var con5 278.0384 2293.00 315.1640 6.00
waste 679.0943 7208.00 62025.7781 50.00

Table 6: Comparison of RECIPE to the Feasibility Pump for nonconvex MINLPs.

Feasibility
RECIPE Pump

# feasible solutions 47 53
# at least as good solutions 52 20
# strictly better solutions 45 13
Average CPU time 578.76 76.16
CPU time:
< 600 22 42
< 1800 5 11
< 7200 8 0
7200+ 30 12

Table 7 Summary of the results in Table 6. For each algorithm, we report: the number of
instances for which a feasible solution is found, the number of instances for which it finds a
solution with an objective value (∞ included) that is at least as good as the other methods,
the number of instances for which it finds a solution strictly better than the remaining
methods, the average CPU time in seconds (geometric mean), and the number of instances
that require a given CPU time.

As expected, FP is more successful in terms of feasibility: for most instances
(53 out of 65 – 6 instances more than RECIPE), at least one of the variants of
FP is able to find a feasible solution. FP is also faster, hitting the time limit
only 12 times, as opposed to RECIPE’s 30 (this explains the large difference in
the geometric mean). However, FP returns as soon as a first feasible solution
is found, while RECIPE keeps trying to improve the solution: as a result,
RECIPE finds solution of much better quality in most of the instances. Indeed,
whenever RECIPE returns a feasible solution, it is at least as good as the one
returned by FP. These differences reflect the purposes for which the heuristics
were designed: quickly finding feasible solutions (FP) or finding solutions of
good quality (RECIPE).
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3.6 New optima

Our computational experiments with RECIPE led to the discovery of some
solutions for MINLPLib instances that, to the best of our knowledge, improve
on the currently best known objective values (taken from the MINLPLib web-
page and amended with better values found on recent papers or during our
experiments with MINLP solvers), and were not found by any other of the
tested solvers. These new solutions have the following values (we report the
previously known best feasible solutions in brackets):

– nuclear14a: -1.1296 (-1.1280)
– nuclear24a: -1.1296 (-1.1280)
– nuclearvf: -1.0225 (-1.0194)
– risk2b: -56.8208 (-55.8761)
– risk2bpb: -56.8208 (-55.8761)

3.7 Why does RECIPE work?

We now try to investigate the reason behind the practical effectiveness of
RECIPE. The key algorithmic idea of RECIPE is to run several local searches
on smaller, easier subproblems (see the definition of Qk(x

∗)), instead of al-
ways searching in the original space; RECIPE would not work if solving these
subproblems did not yield an improved solution. It turns out that in practice,
very often improved solutions can be found by solving Qk(x

∗) with a small
value of k, and they are found in a very short CPU time. We provide data to
support our claims; all data reported in this section is obtained by running
RECIPE with Ipopt as NLP solver and kmax = 20 on the 221 instances for
which a feasible solution is found.

First, we note that solving Qk(x
∗) is faster than solving the original prob-

lem P . On the instances for which more than one iteration of RECIPE is run,
we recorded the average CPU time for a local search iteration (i.e. running the
NLP and the MINLP subsolvers) before a feasible solution is found, and after.
We found that before a feasible solution is known, each iteration takes 647.32
seconds on average; but after, i.e. when the solvers are applied on Qk(x

∗) in-
stead of P , the time per iteration decreases to 54.96. Therefore, each problem
Qk(x

∗) can be solved considerably faster than P .
Additionally, improved solutions are typically found for small k. In Fig-

ure 1(a), we report the number of times that RECIPE finds an improved
solution while exploring a neighborhood of size k = 1, . . . , 20, on the instances
in the test set for this section. We can see that most solutions are found for
very small values of k. This suggests that our neighborhood definition is ef-
fective in practice, and leads RECIPE to a quick discovery of good feasible
solutions.

We now want to assess the importance of running the NLP solver to find a
starting point for the MINLP solver, and of using the neighborhood structure
for sampling points and constraining the search. These are two components
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(b) Discovery of first feasible solution

Fig. 1 Number of times that an improved solution (Fig. 1(a)) and the first feasible solution
(Fig. 1(b)) is found during the exploration of a neighborhood of size k = 1, . . . , 20.

that are not present in a simple multistart algorithm, and we want to verify
whether they are helpful or not. To do so, we ran two additional experiments.
First, we ran RECIPE without the NLP solver. Second, we ran a simple mul-
tistart algorithm that uses minlp bb as local subsolver, where the initial point
is chosen uniformly at random within the initial box constraints (i.e. ignor-
ing the neighborhood definition of RECIPE) and we use the same time and
iteration limit as RECIPE. Results are given in Table 8; for space reasons, we
do not report detailed results. We observe the following. Skipping the NLP
subsolver during the local search decreases performance in terms of feasibility
and solution quality. This loss of performance occurs on ≈ 5% of our set of test
instances. Therefore, finding a constraint-feasible point with an NLP solver to
start the MINLP solver is very important on some of the instances. We also
note that skipping the NLP solver brings an advantage in terms of average
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RECIPE minlp bb

RECIPE no NLP multistart
# feasible solutions 221 210 195
# at least as good solutions 221 212 196
# strictly better solutions 28 10 10
Average CPU time 112.96 78.26 78.20
CPU time:
< 600 147 154 151
< 1800 11 5 4
< 7200 20 12 10
7200+ 73 80 86

Table 8 Comparison of default RECIPE (Ipopt and minlp bb as subsolvers, kmax = 20, 2
hours time limit) with RECIPE without the NLP subsolver and with a multistart algorithm
implemented on top of minlp bb (2 hours time limit). For each algorithm, we report: the
number of instances for which a feasible solution is found, the number of instances for which
it finds a solution with an objective value (∞ included) that is at least as good as the
other methods, the number of instances for which it finds a solution strictly better than the
remaining methods, the average CPU time in seconds (geometric mean), and the number of
instances that require a given CPU time.

CPU time, but the advantage is mostly gained on small, easy instances. In-
deed, the number of (difficult) instances that hit the time limit increases. If
we now remove from RECIPE the neighborhood structure (as well as the NLP
solver), essentially turning it into a simple multistart algorithm, we observe
(Table 8) a further loss of performance: ≈ 10% of the instances are affected,
in terms of feasibility and solution quality. These experiments confirm that all
the components of RECIPE contribute to the effectiveness of the algorithm.

Finally, in Figure 1(b) we report the number of times that the first fea-
sible solution for an instance is found while exploring a neighborhood of size
k = 1, . . . , 20 of the initial (infeasible) point x∗, defined as in (2). On most
instances, a feasible solution is found in the very first iteration, which allows
RECIPE to switch to problems of the form Qk(x

∗) in order to improve the
incumbent. For particular classes of structured problems, for which an initial
feasible solution is known in advance or can be easily constructed, we be-
lieve that RECIPE could be made more effective by skipping the initialization
phase, and moving directly to the solution improvement part of the algorithm,
which represents its core. An example of such an application is given in [44,
Chapter 9.3]. Another possibility to decrease the CPU time required before
switching to the solution improvement part of RECIPE is to use a MINLP
solver which provides the option of terminating as soon as a solution is avail-
able (this is not possible with minlp bb).



30

4 Conclusion

This paper describes a heuristic approach for finding solutions to nonconvex
MINLPs. Our approach, called RECIPE, combines several existing exact and
heuristic techniques, resulting in a method that can successfully find solutions
of very good quality to many difficult MINLPs. Such a reliable solver would
be particularly useful in industrial applications, where proving optimality is
of relative importance, and the possibility of plugging into the heuristic any
NLP and MINLP solution algorithm available is a great advantage.

Extensive computational experiments show that RECIPE performs better
than existing solvers (both heuristic and exact) for MINLPs in terms of solu-
tion quality. A more detailed analysis of the results indicates that the reason
for RECIPE’s effectiveness is the rapidity with which feasible solutions are
improved, exploring small neighborhoods.
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17. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to
improve MIP solutions. Mathematical Programming A 102, 71–90 (2005)
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30. Hansen, P., Mladenović, N., Moreno Pérez, J.: Variable neighbourhood search: methods
and applications. 4OR 6, 319–360 (2008)
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spectrum radar polyphase code design problem by tabu search and variable neighbour-
hood search. European Journal of Operations Research 151, 389–399 (2003)

44. Nannicini, G.: Point-to-point shortest paths in dynamic time-dependent road networks.
Ph.D. thesis, Ecole Polytechnique, Palaiseau, France (2009)

45. Nannicini, G., Belotti, P.: Rounding-based heuristics for nonconvex MINLPs. In:
P. Bonami, L. Liberti, A. Miller, A. Sartenaer (eds.) Proceedings of the European Work-
shop on MINLP. CIRM, Marseille, France (2010)

46. Puchinger, J., Raidl, G.: Relaxation guided variable neighbourhood search. In: Proc. of
Mini Euro Conference on Variable Neighbourhood Search, Tenerife, Spain (2005)

47. Sahinidis, N.: BARON: A general purpose global optimization software package. Journal
of Global Optimization 8(2), 201–205 (1996)

48. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algo-
rithm for the global optimisation of nonconvex MINLPs. Computers & Chemical Engi-
neering 23, 457–478 (1999)

49. Tawarmalani, M., Sahinidis, N.: Global optimization of mixed integer nonlinear pro-
grams: A theoretical and computational study. Mathematical Programming 99, 563–591
(2004)
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