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Martin Kneser proposed in 1955 the following problem (“Aufgabe
360”):

Let k and n be two natural numbers, 2k ≤ n; let N be a set with
n elements, Nk the set of all subsets of N with exactly k elements;
let f : Nk → M with the property f(K1) 6= f(K2) if K1 ∩K2 = ∅.
Let m(k, n) be the minimal number of elements in M such that f
exists. Prove that there are m0(k) and n0(k) such that
m(k, n) = n−m0(k) for n ≥ n0(k); here m0(k) ≥ 2k− 2 and
n0(k) ≥ 2k− 1; both inequalities probably hold with equality.
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Kneser graphs

The Kneser graph KG(n, k):

vertex set V = {A ⊆ [n] : |A| = k}
pairs of disjoint elements of V as edge set.

Examples of Kneser graphs

KG(4,2) KG(5,2)

{1, 2} {3, 4}

{1, 3} {2, 4}

{1, 4} {2, 3}

{1, 2}

{3, 4}

{2, 3}

{1, 5}

{4, 5}

Matching

Petersen graph

{3, 5}

{1, 3}

{2, 5}

{1, 4}

{2, 4}
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“Aufgabe 360” becomes in the terminology of graphs

Conjecture (Kneser’s conjecture)

For n ≥ 2k
χ (KG(n, k)) = n− 2k + 2.

The proof of ≤ n− 2k + 2 has a simple proof:

F 7→ min(min(F), n− 2k + 2))

is a proper coloring.
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Before 1979, only few cases were proved (k ≤ 3).

In 1979, Lovász found a suprising proof, using tools of algebraic
topology.

Theorem (The Lovász-Kneser theorem)

For n ≥ 2k
χ (KG(n, k)) = n− 2k + 2.
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One of the interest of Kneser graphs is – among many other
properties – the gap between the chromatic number χ(KG(n, k))
and the fractionnal chromatic number χf(KG(n, k)).

Fractionnal chromatic number of a graph G = (V,E): minimum
of the fractions a

b such that V can be covered by a independent
sets in such a way that every vertex is covered at least b times.
By definition

|V|
α(G)

≤ χf(G) ≤ χ(G).

We can prove that

χf(KG(n, k)) =
n

k
.
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Even if the proof by Lovász was simplified over the years (Barany
1979, Greene 2002), it remains purely topological.

In 2003, Matoušek proposed the first combinatorial proof of the
Lovász theorem.

The main tool of the approach by Matoušek is Tucker’s lemma.
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Why looking for combinatorial proofs ?

to get a better insight

to get (sometimes) shorter proofs

to get new results

to be constructive
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Lemma (Tucker’s lemma)

If for any set-pair A,B ⊆ [n] with A ∩ B = ∅ and A ∪ B 6= ∅ we
have a label
λ(A,B) ∈ {−1,+1,−2,+2, . . . ,−(n− 1),+(n− 1)} such
that λ(A,B) + λ(B,A) = 0, then there exist two set-pairs
(A1,B1) and (A2,B2) such that (A1,B1) ⊆ (A2,B2) and
λ(A1,B1) + λ(A2,B2) = 0.
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Case n = 2

λ({1}, ∅) = 1
λ({2}, ∅) = 1
λ({1}, {2}) = 1
λ({1, 2}, ∅) = 1
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The proof by Matoušek

Assume that KG(n, k) is properly colored by a map

c :
([n]

k

)
7→ {1, . . . , t}.

Define

λ(A,B) =

{
±(|A|+ |B|) if |A|+ |B| ≤ 2k− 2
±(c(S) + 2k− 2) if not,

where S is a k-set ⊆ A or ⊆ B and such that c(S) takes the
smallest possible value.

In the first case, the sign is + is min(A) < min(B) and − if not.
In the second case, the sign is + if S ⊆ A and − if not.
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If t ≤ n− 2k + 1, we would have a map λ satisfying exactly the
requirement of Tucker’s lemma. Hence, there are two set-pairs
(A1,B1) and (A2,B2) such that (A1,B1) ⊆ (A2,B2) and
λ(A1,B1) + λ(A2,B2) = 0.

But this would mean that two disjoint k-sets have the same color
through c.
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Schrijver’s theorem

A k-set A ⊆ [n] is said to be stable if it does not contain two
adjacent elements modulo n (if i ∈ A, then i + 1 /∈ A, and if
n ∈ A, then 1 /∈ A).

The Schrijver graph SG(n, k):

vertex set V = {A ⊆ [n] : |A| = k and A is stable}
pairs of disjoint elements of V as edge set.

Examples of Schrijver graphs

SG(4,2) SG(5,2)

{1, 3} {2, 4}

Matching

5-cycle

{3, 5}

{1, 3}

{2, 5}

{1, 4}

{2, 4}
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Theorem (Schrijver’s theorem, 1979)

χ(SG(n, k)) = n− 2k + 2.

The proof was again topological.
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Ziegler (2004) adapted Matoušek’s idea to get a combinatorial
proof of Schrijver’s theorem. It was a rather long proof using
oriented matroids.

Our goal is now to show that it is actually possible to modify
slightly Matoušek’s proof in order to get a short and combinatorial
proof of Schrijver’s theorem.
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For A,B ⊆ [n], define alt(A,B) to be the length of the longest
increasing sequence x1, x2, . . . , xl such that xi ∈ A ∪ B for all i
and such that if xi ∈ A, then xi+1 ∈ B and if xi ∈ B, then
xi+1 ∈ A.

alt({3}, {1, 6}) = 3

alt({1, 4}, {2, 5, 6}) = 4

alt({2, 3, 5, 11}, {1, 6, 8, 9, 16}) = 5

Ecole des Ponts, CERMICS



Combinatorial proof of Schrijver’s theorem

Assume that KG(n, k) is properly colored by a map

c :
([n]

k

)
7→ {1, . . . , t}.

Define

λ(A,B) =

{
±(alt(A,B)) if alt(A,B) ≤ 2k− 1
±(c(S) + 2k− 1) if not,

where S is a k-set ⊆ A or ⊆ B and such that c(S) takes the
smallest possible value.

In the first case, the sign is + is min(A) < min(B) and − if not.
In the second case, the sign is + if S ⊆ A and − if not.
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If t ≤ n− 2k + 1, we would have a map λ satisfying exactly the
requirement of Tucker’s lemma. Hence, there are two set-pairs
(A1,B1) and (A2,B2) such that (A1,B1) ⊆ (A2,B2) and
λ(A1,B1) + λ(A2,B2) = 0.

But this would mean that two disjoint k-sets have the same color
through c.
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Hedetniemi’s conjecture

The tensorial product G× H of two graphs G and H has vertex
set V(G× H) = V(G)× V(H) and edge set
E(G× H) = {(v,w), (v′,w′) : vv′ ∈ E(G), ww′ ∈ E(H)}.

Conjecture (Hedetniemi)

χ(G× H) = min(χ(G), χ(H))

Proved for various families of graphs. Proved for Kneser and
Schrijver graphs through advanced topological tools.

With the same kind of proof as before, again, we get a short
combinatorial proof.
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Theorem

χ(SG(n1, k1), SG(n2, k2)) =

min(χ(SG(n1, k1)), χ(SG(n2, k2)))

Ecole des Ponts, CERMICS



Let n := n1 + n2 and k := k1 + k2. Assume w.l.o.g. that
n1 − 2k1 ≥ n2 − 2k2.

Assume that SG(n1, k1)× SG(n2, k2) is properly colored by a

map c :
([n1]

k1

)
×
([n2]

k2

)
7→ {1, . . . , t}.

For Ai,Bi ⊆ [ni], define

λ(A1,B1,A2,B2) =


±(alt(A1,B1) + alt(A2,B2))
if alt(A1,B1) + alt(A2,B2) ≤ n1 + 2k2 − 2
±(c(S1, S2) + n1 + 2k2 − 2)
if not,

where Si is a ki-set ⊆ Ai or ⊆ Bi and such that c(S1, S2) takes
the smallest possible value.

With A := A1 ] A2 and B := B1 ] B2, λ satisfies the
requirements of Tucker’s lemma: if t = n2− 2k2 + 1, the maximal
value taken by λ is n2 − 2k2 + 1 + n1 + 2k2 − 2 = n− 1.
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Kneser hypergraphs

The Kneser hypergraph KG(n, k, r):

vertex set V = {A ⊆ [n] : |A| = k}
r-uples of disjoint elements of V as edge set.

Conjectured by Erdös in 1976, proved by Alon, Frankl and Lovász
in 1986

Theorem

χ(KG(n, k, r)) =

⌈
n− (k− 1)r

r − 1

⌉
Again, the proof was completely topological. Ziegler gave in 2004
a combinatorial proof of it, very similar to the one proposed by
Matoušek, but this time with a Zp-Tucker lemma.
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Main tool: the Zp-Tucker lemma

Lemma (Zp-Tucker lemma)

Let p be a prime, n,m ≥ 1, α ≤ m and for
X = (X1,X2, . . . ,Xp) define

λ(X) = (λ1(X), λ2(X)) ∈ Zp × [m]

to be Zp-equivariant map and satisfying the following properties:

for all X(1) ⊆ X(2) ∈ (Zp ∪ {0})n \ {(0, . . . , 0)}, if
λ2(X(1)) = λ2(X(2)) ≤ α, then λ1(X(1)) = λ1(X(2));

for all
X(1) ⊆ X(2) ⊆ . . . ⊆ X(p) ∈ (Zp ∪ {0})n \ {(0, . . . , 0)}, if
λ2(X(1)) = λ2(X(2)) = . . . = λ2(X(p)) ≥ α + 1, then the
λ1(X(i)) are not pairwise distinct for i = 1, . . . , p.

Then α + (m− α)(p− 1) ≥ n.
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Conjecture (Alon-Ziegler)

χ(KG(n, k, r)r-stab) =

⌈
n− (k− 1)r

r − 1

⌉
where “r-stab” means that the elements of the k-subsets ⊆ [n] are
at distance r (modulo n) to each other.

In particular KG(n, k, 2)2-stab = SG(n, k).
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This conjecture is still open, but we have

Theorem (M., 2010)

χ(KG(n, k, r)quasi-stab) =

⌈
n− (k− 1)r

r − 1

⌉
where “quasi-stab” means that elements of the k-subsets ⊆ [n]
are at distance 2 to each other (but n and 1 can be together, 6=
2-stab) (notion defined by Aigner and De Longueville).
The proof is combinatorial, uses the generalization of the Zr-Tucker
lemma by Ziegler, and a map λ defined with alt(A1,A2, . . . ,Ar),
which is the length of the longest increasing sequence of elements
of the Ai, two consecutive terms being always in two different Ai’s.

No topological proof is known !
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A map c : V→ [p] is (p, q)-coloring of a graph G = (V,E) if
q ≤ |c(v)− c(u)| ≤ p− q for all uv ∈ E. The circular chromatic
number χc(G) is the minimum of p/q such that there exists a
(p, q)-coloring.

Another example of theorem whose proof has no topological
version is the following (conjectured by Johnson, Holroyd and
Stahl in 1997)

Theorem

χc(KG(n, k)) = n− 2k + 2

Proved combinatorially by Chen (2010). The case n even was
proved through topological arguments in 2006.

Chen proved first a version of Tucker’s lemma with increasing λ.
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A new conjecture concerning Kneser hypergraphs

Conjecture

Let n, k, r, s be positive integers such that n ≥ rk and s ≥ r.
Then

χ (KG(n, k, r)s-stab) =

⌈
n− (k− 1)s

r − 1

⌉
.
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Facts

The easy direction is proved as usual.

It contains the Alon-Ziegler conjecture as a special case.

It is enough to prove it when

r = s (Alon-Ziegler conjecture) and
r and s coprime
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A proposition

Proposition

Let k and s be two positive integers such that s ≥ 2. We have

χ (KG(ks + 1, k, 2)s-stab) = s + 1.
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Conjectures have been checked for...

The Alon-Ziegler conjecture has been checked with a computer for

n ≤ 9, k = 2, r = 3.

n ≤ 12, k = 3, r = 3.

n ≤ 14, k = 4, r = 3.

n ≤ 13, k = 2, r = 5.

n ≤ 16, k = 3, r = 5.

n ≤ 21, k = 4, r = 5.
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Conjectures have been checked for...

The new conjecture has been checked with a computer for

n ≤ 9, k = 2, r = 2, s = 3.

n ≤ 10, k = 2, r = 2, s = 4.

n ≤ 11, k = 3, r = 2, s = 3.

n ≤ 13, k = 3, r = 2, s = 4.

n ≤ 14, k = 4, r = 2, s = 3.

n ≤ 17, k = 4, r = 2, s = 4.

n ≤ 11, k = 2, r = 3, s = 4.

n ≤ 14, k = 3, r = 3, s = 4.

n ≤ 12, k = 2, r = 3, s = 5.

n ≤ 13, k = 2, r = 4, s = 5.
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Thank you
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