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LIX, École Polytechnique, F-91128 Palaiseau, France

Email:liberti@lix.polytechnique.fr

May 7, 2011

Abstract

This report describes the two-hour mini-course given by myself at the Pretty Structures 2011
workshop (http://www.lix.polytechnique.fr/~liberti/pretty_structures). This work is due to
a research team also including Carlile Lavor, Jon Lee, Benoıt Masson and Antonio Mucherino. The
proofs and mistakes in this presentations are, however, entirely mine.

The problem I treat here is the Distance Geometry Problem (DGP): we are given a simple
undirected graph G = (V,E) with a real-valued edge weight function d : E → R≥0 and we look for
an embedding x : V → R

K of the vertices of G which preserves the Euclidean distances assigned to
each edge, i.e. ∀{u, v} ∈ E ‖xu − xv‖ = duv. I shall limit the problem to consist of a set of instances
describing protein graphs.

Past computational experience showed us that protein graphs always had a set of solutions of
cardinality either empty or a power of two; but we could manually construct counterexamples to this
conjecture.

I find the results contained here amazing because they show that essentially the conjecture holds
notwithstanding the counterexamples! Furthermore, an amazing consequence (not discussed here) of
this “power of two” property is that in we can find protein conformations in polynomial time.

1 Introduction

Pharmaceutical companies manufacture drugs, and in order to do so they must know the biological
function of several proteins. It turns out that the function of proteins is strongly linked to the shape it
has in 3D space [13]. In order to determine this shape we dispose of a certain amount of information. In
this work I assume some general knowledge on the structure of each protein, some chemical information
about certain inter-atomic distances, and experimental information about another set of inter-atomic
distances. More precisely, I shall make the following assumptions:

• each protein can be decomposed into a sequence of atoms with a linear order, called the backbone,
and several sets (called side chains) of variously interconnected atoms which are connected to the
backbone via only one link between each side chain and the backbone;

• we know the distances between each atom on the backbone and its two preceding (and hence two
subsequent) atoms in the order;

• we can measure the distances between each atom i on the backbone and the atom ranked i− 3 in
the order using Nuclear Magnetic Resonance (NMR).

Because of the first assumption, the problem of finding protein embeddings can be decomposed into
finding embeddings of the backbone and, separately, of each side chain. In this work I only treat the
former. The second and third assumptions will allow me to describe the class of graphs for which I mean
to find embeddings.



2 THE PROBLEM 2

2 The problem

I shall consider the following decision problem [6]:

K-Discretizable Molecular Distance Geometry Problem (KDMDGP). Given a pos-
itive integer K and a simple weighted undirected graph G = (V,E, d) where d : E → R+, V
is ordered so that V = [n] = {1, . . . , n} and the following assumptions hold:

1. for all v > K and u ∈ V with 1 ≤ v − u ≤ K, {u, v} ∈ E (Discretization)

2. for all v > K, E contains all edges {u,w} with u 6= w ∈ Uv = {u ∈ V | 1 ≤ v − u ≤ K},
and the distances duw with u 6= w ∈ Uv obey the strict simplex inequalities [1] (Strict
Simplex Inequalities),

and given an embedding x′ : [K] → R
K , is there an embedding x : V → R

K extending x′,
such that

∀{u, v} ∈ E ‖xu − xv‖ = duv ? (1)

Note that the strict simplex inequalities in R
3 reduce to the strict triangular inequalities dv−3,v−1 <

dv−3,v−2+dv−2,v−1. An embedding x extends an embedding x′ if x′ is a restriction of x; an embedding is
feasible if it satisfies (1). Other related problems also exist in the literature, such as the Discretizable

Distance Geometry Problem (DDGP) [11], where the Discretization axiom is relaxed to require
that each vertex v > K has at least K adjacent predecessors. The results in these notes, however, only
refer to the KDMDGP.

This problem models the protein conformation problem described in the introduction. For any atom
v ∈ V , the distances dv−1,v and dv−2,v−1 are known because they refer to covalent bonds. Furthermore,
the angle between v− 2, v− 1 and v is known because it is adjacent to two covalent bonds, which implies
that dv−2,v is also known by triangular geometry. In general, the distance dv−3,v is smaller than 5Å and
can therefore be assumed to be known by NMR experiments; in practice, there are ways to find atomic
orders which ensure that dv−3,v is known [7]. There is currently no known protein with dv−3,v−1 being
exactly equal to dv−3,v−2 + dv−2,v−1 [8].

2.1 Probability 1 statements

Statement such as “∀p ∈ P F (p) holds with probability 1”, for some uncountable set P and valid sentence
F , actually mean that there is a Lebesgue-measurable Q ⊆ P with Lebesgue measure 1 w.r.t. P such
that ∀p ∈ Q F (p) holds. This notion is less restrictive than genericity based on algebraic independence
[2].

2.2 The DMDGP axioms

I shall give explanations and examples for the cases K = 2 and K = 3 which are easier to visualize. The
Discretization axiom guarantees that the locus of the points embedding v in R

3 is the intersection of
the three spheres centered at v − 3, v − 2, v − 1 with radii dv−3,v, dv−2,v, dv−1,v. If this intersection is
non-empty, then it contains two points (Fig. 1, left) apart from a set of Lebesgue measure 0 where it may
contain either one point or infinitely many (Fig. 1, right). The role of the Strict Simplex Inequalities

axiom is to prevent the latter case of infinitely many points. As such, one might actually dispense with
this axiom altogether and simply state that all the results hold with probability 1. Remark that if the
intersection of the three spheres is empty, then the instance is a NO one.

The Discretization axiom allows the solution of KDMDGP instances using a recursive algorithm
called Branch-and-Prune (BP) [8]: at level v, the search is branched according to the (at most two)
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Figure 1: Locus of the intersection of three spheres: exactly two points (above) with dv−3,v−1 < dv−3,v−2+
dv−2,v−1 and uncountably many (below) with dv−3,v−1 = dv−3,v−2 + dv−2,v−1.

possible positions for v. The BP generates a (partial) binary search tree of height n, each full branch of
which represents a feasible embedding for the given graph.

3 The BP algorithm

For all v ∈ V we let N(v) = {u ∈ V | {u, v} ∈ E} be the set of vertices adjacent to v. An embedding
of a subgraph of G is called a partial embedding of G. We denote by X the set of embeddings (modulo
congruences) solving a KDMDGP instance.

The BP algorithm exploits the edges guaranteed by the Discretization axiom in order to search
a discrete set: vertex v can be placed in at most two possible positions (the intersection of K spheres
in R

K). Each is tested in turn and the procedure called recursively for each feasible position. The BP
exploits all other edges in the graph in order to prune some branches: a position might be feasible with
respect to the distances to the K immediate predecessors v − 1, . . . , v − K, but not necessarily with
distances to other adjacent predecessors.

For a partial embedding x̄ of G and {u, v} ∈ E let Sx̄
uv be the sphere centered at xu with radius duv.

The BP algorithm is BP(K+1, x′, ∅) (see Alg. 1), where x′ is the initial embedding of the first K vertices
mentioned in the problem definition. By the KDMDGP axioms, |T | ≤ 2. At termination, X contains all
embeddings (modulo congruences) extending x′ [8, 6].
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Algorithm 1 BP(v, x̄, X)

Require: A vtx. v ∈ V r [K], a partial embedding x̄ = (x1, . . . , xv−1), a set X.
1: T =

⋂

u∈N(v)
u<v

Sx̄
uv;

2: ∀p ∈ T { let x = (x̄, p); if (v = n) X ← X ∪ {x} else BP(v + 1, x, X) }.

3.1 Chirality

Embeddings x ∈ X can be represented by sequences χ(x) ∈ {−1, 1}n with: (i) χ(x)i = 1 for all i ≤ K;
(ii) for all i > K, χ(x)i = −1 if axi < a0 and χ(x)i = 1 if axi ≥ a0, where ax = a0 is the equation
of the hyperplane through xi−K , . . . , xi−1. For an embedding x ∈ X, χ(x) is the chirality [3, 12] of x
(the formal definition of chirality actually states χ(x)0 = 0 if axi = a0, but since this case holds with
probability 0, we do not consider it here).

3.2 Advertisement

The BP (Alg. 1) can be run to termination to find all possible embeddings of G, or stopped after the
first leaf node at level n is reached, in order to find just one embedding of G. In the last few years
we have conceived and described several BP variants targeting different problems [5], including, very
recently, problems with interval-type uncertainties on some of the distance values [7]. The BP algorithm
is currently the only method which is able to find all incongruent embeddings for a given protein backbone.
Compared to continuous search algorithms (e.g. [10]), the performance of the BP algorithm is impressive
from the point of view of both efficiency and reliability.

You can download an open-source BP implementation from http://www.antoniomucherino.it/

download/mdjeep/mdjeep-0.1.tar.gz.

4 BP search trees with bounded width

We partition E into the sets ED = {{u, v} | |v−u| ≤ K} and EP = ErED. We call ED the discretization
edges and EP the pruning edges. Discretization edges guarantee that a DGP instance is in the KDMDGP.
Pruning edges are used to reduce the BP search space by pruning its tree. In practice, pruning edges
might make the set T in Alg. 1 have cardinality 0 or 1 instead of 2. We assume G is a YES instance of
the KDMDGP.

4.1 The discretization group

Let GD = (V,ED, d) and XD be the set of embeddings of GD; since GD has no pruning edges, the
BP search tree for GD is a full binary tree and |XD| = 2n−K . The discretization edges arrange the
embeddings so that, at level ℓ, there are 2ℓ−K possible positions for the vertex v with rank ℓ. We assume
that |T | = 2 (see Alg. 1) at each level v of the BP tree, an event which, in absence of pruning edges,
happens with probability 1 — thus many results in this section are stated with probability 1. Let therefore
T = {xv, x

′
v} be the two possible embeddings of v at a certain recursive call of Alg. 1 at level v of the BP

tree; then because T is an intersection of K spheres, x′
v is the reflection of xv through the hyperplane

defined by xv−K , . . . , xv−1. Denote this reflection operator by Rv
x.

4.1 Theorem (Cor. 4.5 and Thm. 4.8 in [9])
With probability 1, for all v > K and u < v − K there is a set Huv, with |Huv| = 2v−u−K , of real

positive values such that for each x ∈ X we have ‖xv − xu‖ ∈ Huv. Furthermore, ∀x ∈ X ‖xv − xu‖ =
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‖Ru+K
x (xv)− xu‖ and ∀x

′ ∈ X, if x′
v 6∈ {xv, R

u+K
x (xv)} then ‖xv − xu‖ 6= ‖x

′
v − xu‖.

Proof. Sketched in Fig. 2 for K = 2; the solid circles at levels 3, 4, 5 mark equidistant levels from 1. The
dashed circles represent the spheres Sx

uv (see Alg. 1). Intuitively, two branches from level 1 to level 4 or 5
will have equal segment lengths but different angles between consecutive segments, which will cause the
end nodes to be at different distances from the node at level 1. The formal proof is by induction on the
level distance. 2
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Figure 2: A pruning edge {1, 4} prunes either ν6, ν7 or ν5, ν8.

We now give a basic result on reflections in R
K . For any nonzero vector y ∈ R

K let Ry be the
reflection operator through the hyperplane passing through the origin and normal to y.

4.2 Lemma
Let x 6= y ∈ R

K and z ∈ R
K such that z is not in the hyperplanes through the origin and normal to x, y.

Then RxRyz = RR
xyRxz.

Proof. The proof is sketched in Fig. 3 for R2. By considering the reflection RR
xy of the map Ry through

Rx, we get ‖z−Ryz‖ = ‖Rxz−RR
xyRxz‖. By reflection through Rx we get ‖O− z‖ = ‖O−Rxz‖ and

‖O−Ryz‖ = ‖O−RxRyz‖. By reflection through Ry we get ‖O−z‖ = ‖O−Ryz‖. By reflection through
RR

xy we get ‖O −Rxz‖ = ‖O −RR
xyRxz‖. The triangles △(z,O,Ryz) and △(Rxz,O,RR

xyRxz) are
then equal because the side lengths are pairwise equal. Also, reflection of △(z,O,Ryz) through Rx yields
△(z,O,Ryz) = △(Rxz,O,RxRyz), whence RR

xyRxz = RxRyz. 2

For v > K and x ∈ X we now define partial reflection operators:

gv(x) = (x1, . . . , xv−1, R
v
x(xv), . . . , R

v
x(xn)). (2)

The gv’s map an embedding x to its partial reflection with first branch at v. It is easy to show that the
gv’s are injective with probability 1 and idempotent.

4.3 Lemma
For x ∈ X and u, v ∈ V such that u, v > K, gugv(x) = gvgu(x).
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Figure 3: Reflecting through Ry first and Rx later is equivalent to reflecting through Rx first and (the
reflection of Ry through Rx) later.

Proof. Assume without loss of generality u < v. Then:

gugv(x) = gu(x1, . . . , xv−1, R
v
x(xv), . . . , R

v
x(xn))

= (x1 . . . , xu−1, R
u
gv(x)

(xu), . . . , R
u
gv(x)

Rv
x(xv), . . . , R

u
gv(x)

Rv
x(xn))

= (x1 . . . , xu−1, R
u
x(xu), . . . , R

v
gu(x)

Ru
x(xv), . . . , R

v
gu(x)

Ru
x(xn))

= gv(x1, . . . , xu−1, R
u
x(xu), . . . , R

u
x(xn))

= gvgu(x),

where Ru
gv(x)

Rv
x(xw) = Rv

gu(x)
Ru

x(xw) for each w ≥ v by Lemma 4.2. 2

We define the discretization group to be the group GD = 〈gv | v > K〉 generated by the gv’s.

4.4 Corollary
With probability 1, GD is an Abelian group isomorphic to Cn−K

2 .

For all v > K let γv = (1, . . . , 1,−1v, . . . ,−1) be the vector consisting of one’s in the first v−1 components
and −1 in the last components. Then the gv actions are naturally mapped onto the chirality functions.

4.5 Lemma
For all x ∈ X, χ(gv(x)) = χ(x)⊙ γv, where ⊙ is the componentwise vector multiplication.

Proof. This follows by definition of gv and of chirality of an embedding. 2

Because, by Alg. 1, each x ∈ X has a different chirality, for all x, x′ ∈ X there is g ∈ GD such
that x′ = g(x), i.e. the action of GD on X is transitive. By Thm. 4.1, the distances associated to the
discretization edges are invariant with respect to the discretization group.
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4.2 The pruning group

Consider a pruning edge {u, v} ∈ EP . By Thm. 4.1, with probability 1 we have duv ∈ Huv, otherwise
G cannot be a YES instance (against the hypothesis). Also, again by Thm. 4.1, duv = ‖xu − xv‖ 6=
‖gw(x)u − gw(x)v‖ for all w ∈ {u+K + 1, . . . , v} (e.g. the distance ‖ν1 − ν9‖ in Fig. 2 is different from
all its reflections ‖ν1 − νh‖, with h ∈ {10, 11, 12}, w.r.t. g4, g5). We therefore define the pruning group

GP = 〈gw | w > K ∧ ∀{u, v} ∈ EP (w 6∈ {u+K + 1, . . . , v})〉.

By definition, GP ≤ GD and the distances associated with the pruning edges are invariant with respect
to GP .

4.6 Theorem
The action of GP on X is transitive with probability 1.

Proof. Let x, x′ ∈ X, we aim to show that ∃g ∈ GP such that x′ = g(x) with probability 1. Since
the action of GD on X is transitive, ∃g ∈ GD with x′ = g(x). Now suppose g 6∈ GP , then there is

a pruning edge {u, v} ∈ EP and an ℓ ∈ N s.t. g =
∏ℓ

h=1 gvh
) for some vertex set {v1, . . . , vℓ > K}

including at least one vertex w ∈ {u+K + 1, . . . , v}. By Thm. 4.1, as remarked above, this implies that
duv = ‖xu−xv‖ 6= ‖gw(x)u− gw(x)v‖ with probability 1. If the set Q = {v1, . . . , vℓ}∩{u+K+1, . . . , v}
has cardinality 1, then gw is the only component of g not fixing duv, and hence x′ = g(x) 6∈ X, against the
hypothesis. Otherwise, the probability of another z ∈ Qr{w} yielding ‖xu−xv‖ = ‖gzgw(x)u−gzgw(x)v‖,
notwithstanding the fact that ‖gw(x)u−gw(x)v‖ 6= ‖xu−xv‖ 6= ‖gz(x)u−gz(x)v‖, is zero; and by induction
this also covers any cardinality of Q. Therefore g ∈ GP and the result follows. 2

The cardinality of X was shown to be a power of two with probability 1 in the unpublished technical
report [9]. We provide a shorter and clearer proof.

4.7 Theorem
With probability 1, ∃ℓ ∈ N |X| = 2ℓ.

Proof. Since GD ∼= Cn−K
2 , |GD| = 2n−K . Since GP ≤ GD, |GP | divides the order of |GD|, which implies

that there is an integer ℓ with |GP | = 2ℓ. By Thm. 4.6, the action of GP on X only has one orbit,
i.e. GPx = X for any x ∈ X. By idempotency, for g, g′ ∈ GP , if gx = g′x then g = g′. This implies
|GPx| = |GP |. Thus, for any x ∈ X, |X| = |GPx| = |GP | = 2ℓ. 2
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