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Graph searches are very well known and used

1. Euler (1735) for solving the famous walk problem in
Kœnisberg

2. Tremeaux (1882) and Tarry (1895) using DFS to solve maze
problems

3. Computer scientists from 1950 ....
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Two main aspects for a graph search :

1. its principle or its algorithm
(i.e. the description of the tie-break rules for the choice of the
next vertex (edge) to be explored )

2. its implementation or its program
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We will focus here on a third one :

I its characterization using forbidden structures
and the relationships with the algorithm

I I will try to convince you that these characterizations can be
helpful
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Problem

For an undirected graph G = (V ,E ),
explore the vertices of G ”traversing or following” the edges.

Result
I a tree structure rooted at the first visited vertex

I an ordering σ of the vertices

Questions
I Under which conditions an ordering σ of the vertices

corresponds to a search ?

I What are the properties of these orderings ?
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Main reference for this today lecture :

These easy questions have been only recently systematically
considered :
D.G. Corneil et R. M. Krueger, A unified view of graph searching,
SIAM J. Discrete Math, 22, N̊ 4 (2008) 1259-1276
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Generic Search
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Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected
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Generic Search

Generic search

S ← {s}
for i ← 1 à n do

Pick an unumbered vertex v of S
σ(i)← v
foreach unumbered vertex w ∈ N(v) do

if w /∈ S then
Add w to S

end
end

end
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Generic Search

Generic question ?

Let a, b et c be 3 vertices such that ab /∈ E et ac ∈ E .

a cb

Under which condition could we visit first a then b and last c ?
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Generic Search

Property (Gen)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that d < b et db ∈ E

<

cba

d <

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a generic search of
G iff σ satisfies property (Gen).
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Generic Search

Most of the searches that we will study are refinement of this
generic search
i.e. we just add new rules to follow for the choice of the next to be
visited
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Breadth First Search

BFS

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Create a queue S ; S ← {s}
for i ← 1 à n do

Extract v from head of S
σ(i)← v
foreach unumbered vertex w ∈ N(v) do

if w /∈ S then
Add w at tail of S

end
end

end
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Breadth First Search

Property (B)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that d < a et db ∈ E

d cba

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a BFS of G iff σ
satisfies property (B).
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Breadth First Search

Applications

1. Distance computations (unit length), diameter and centers

2. BFS provides a useful layered structure of the graph

3. Using BFS to search an augmenting path provides a
polynomial implementation of Ford-Fulkerson maximum flow
algorithm.
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Depth First Search

Classical DFS

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Create an empty stack S
Add s on top of S
for i ← n à 1 do

Extract v from top of the stack S
σ(i)← v
foreach unnumbered vertex w adjacent to v do

if w /∈ S then
Add w on top of the stack S

end
end

end
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Depth First Search

Proprerty (D)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that a < d < b and db ∈ E .

d cba

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a DFS of G iff σ
satisfies property (D).
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Depth First Search

Some applications

I Planarity testing.

I Computation of 2-connected (resp. strongly connected)
components.

I Computation of a linear extension (topological sorting) for an
acyclic digraph, applications to inheritance mechanisms. . . .
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Lexicographic Breadth First Search LexBFS

Lexicographic Breadth First Search (LexBFS)

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {n}
for i ← n à 1 do

Pick an unumbered vertex v with lexicographically largest label
σ(i)← v
foreach unnumbered vertex w adjacent to v do

label(w)← label(w).{i}
end

end
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Lexicographic Breadth First Search LexBFS
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Lexicographic Breadth First Search LexBFS

It is just a breadth first search with a tie break rule.
We are now considering a characterization of the
order in which a LexBFS explores the vertices.
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Lexicographic Breadth First Search LexBFS

Property (LexB)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that d < a et db ∈ E et dc /∈ E .

d cba

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a LexBFS of G iff
σ satisfies property (LexB).
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Lexicographic Breadth First Search LexBFS

Some Applications

1. Most famous one : Chordal graph recognition

2. For many classes of graphs using LexBFS ordering
”backward” provides structural information on the graph.

3. Last visited vertex (or clique) has some property (example
simplicial for chordal graph)



Graph Searches Revisited : A lego of graph searches

Lexicographic Breadth First Search LexBFS

A characterization theorem for chordal graphs

Theorem

Dirac 1961, Fulkerson, Gross 1965, Gavril 1974, Rose, Tarjan,
Lueker 1976.

(0) G is chordal (every cycle of length ≥ 4 has a chord) .

(i) G has a simplicial elimination scheme

(ii) Every minimal separator is a clique



Graph Searches Revisited : A lego of graph searches

Lexicographic Breadth First Search LexBFS

Simplicial

5

1 4 38

6 7 2

A vertex is simplicial if its neighbourhood is a clique.

Simplicial elimination scheme

σ = [x1 . . . xi . . . xn] is a simplicial elimination scheme if xi is
simplicial in the subgraph Gi = G [{xi . . . xn}]

ca b
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Lexicographic Breadth First Search LexBFS

Chordal graphs are hereditary
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Lexicographic Breadth First Search LexBFS

Theorem [Tarjan et Yannakakis, 1984]

G is a chordal graph iff every LexBFS ordering provides a simplicial
elimination scheme.

1 8
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Lexicographic Breadth First Search LexBFS

How can we prove such an algorithmic theorem ?

1. A direct proof, finding the invariants ?

2. Find some structure of chordal graphs

3. Understand how LexBFS explores a chordal graph
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Lexicographic Breadth First Search LexBFS

A direct proof

Theorem [Tarjan et Yannakakis, 1984]

G is a chordal graph iff every LexBFS ordering provides a simplicial
elimination scheme.
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Lexicographic Breadth First Search LexBFS

proof

Let c be the leftmost non simplicial vertex.
Therefore it exists a < b ∈ N(c) with ab /∈ E . Using LexB
property, it necessarily exists d < a with db ∈ E and dc /∈ E .
Since G is chordal, we have ad /∈ E (else we would have the cycle
[a, c , b, d ] without a chord).
But then considering the triple d , a, b, it exists d ′ < d such that
d ′a ∈ E and d ′b /∈ E .
If dd ′ ∈ E , using the cycle [d , d ′, a, c , b] we must have the chord
d ′c ∈ E which provides the cycle [d , d ′c , b] which has no chord.
Therefore dd ′ /∈ E .
And we construct an infinite sequence of such d and d’.
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Lexicographic Breadth First Search LexBFS

Of course property LexB was known by authors such as M.
Golumbic to study
chordal graphs but they did not noticed that it was a
characterization
of LexBFS
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Lexicographic Breadth First Search LexBFS

LexDFS

Can we introduce a Lexicographic depth first search ?
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Lexicographic Breadth First Search LexBFS

LexDFS

BFS vs LexBFS

BFS

d cba

LexBFS

d cba

DFS vs LexDFS

DFS

d cba

LexDFS

d cba
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Lexicographic Breadth First Search LexBFS

Property (LD)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that a < d < b and db ∈ E and
dc /∈ E .

d cba

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a LexDFS of G iff
σ satisfies property (LD).
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Lexicographic Depth First Search LexDFS

Lexicographic Depth First Search (LexDFS)

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {0}
for i ← 1 à n do

Pick an unumbered vertex v with lexicographically largest label
σ(i)← v
foreach unnumbered vertex w adjacent to v do

label(w)← {i}.label(w)
end

end
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Lexicographic Depth First Search LexDFS
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Lexicographic Depth First Search LexDFS
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Lexicographic Depth First Search LexDFS
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Lexicographic Depth First Search LexDFS
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Lexicographic Depth First Search LexDFS
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Lexicographic Depth First Search LexDFS
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Lexicographic Depth First Search LexDFS

LexDFS

Complexity

Is it possible to compute a LexDFS in O(n + m) ?

Krueger and Spinrad independantly 2008

Best implementation so far needs O(n + mloglogn) using Van der
Boas trees.

Applications D. Corneil, B. Dalton, M. H. 2009

Hamiltonicity on co-comparability graphs via LexDFS.
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Maximal Neighbourhood Search (MNS)

MNS

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

S ← {s}
for i ← 1 à n do

Pick an unumbered vertex v ∈ S with a label maximal under
inclusion
σ(i)← v
foreach unumbered vertex w ∈ N(v) do

label(w)← {i} ∪ label(w)
end

end
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Maximal Neighbourhood Search (MNS)

Property (MNS)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that d < b, db ∈ E et dc /∈ E .

<

cba

d <

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a MNS of G iff σ
satisfies property MNS.
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Maximal Neighbourhood Search (MNS)

Back to the generic search

<

cba

d <

This search is a kind of Lex Generic Search (using analogy between
BFS (resp. DFS) and LexBFS (resp. LexDFS). This is why MNS is
sometimes named LexGen.
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Maximal Neighbourhood Search (MNS)

Maximal Cardinality Search

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

S ← {s}
for i ← 1 à n do

Pick an unumbered vertex v ∈ S with maximum label
σ(i)← v
foreach unumbered vertex w ∈ N(v) do

label(w)← label(w) + 1
end

end
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Maximal Neighbourhood Search (MNS)

Conclusions

Using the 4-points configurations we have the following inclusion
ordering between searches

Inclusions

Gen
↗ ↑ ↖
↗ ↑ ↖
↗ ↑ ↖

BFS MNS DFS
↑ ↗ ↑ ↖ ↑
↑ ↗ ↑ ↖ ↑
↑ ↗ ↑ ↖↑

LexBFS MCS LexDFS
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Maximal Neighbourhood Search (MNS)

Exercises

1. What can we say of a search which is both BFS and MNS ?
BFS+MNS =LexBFS ?

2. Same DFS and MNS
DFS + MNS = LexDFS ?
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Maximal Neighbourhood Search (MNS)

BFS + MNS

BFS

d cba

MNS

<

cba

d <

= LexBFS ?

LexBFS

d cba
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Maximal Neighbourhood Search (MNS)

DFS + MNS

DFS

d cba

MNS

<

cba

d <

= LexDFS ?

LexDFS

d cba
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Lego with basic graph searches

A kind of lego with simple searches

LexBFS

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {n}
for i ← n à 1 do

Pick an unumbered vertex v with lexicographically largest label
σ(i)← v
foreach unnumbered vertex w adjacent to v do

label(w)← label(w).{i}
end

end
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Lego with basic graph searches

LexBFS

for i ← n à 1 do
Pick a lexicographic max

end
label(w)← label(w).{i}

d cba
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Lego with basic graph searches

LexDFS

for i ← 1 à n do
Pick a lexicographic max

end
label(w)← {i}.label(w)

d cba
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Lego with basic graph searches

Using a remark by Berry, Krueger and Simonet 2008
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Lego with basic graph searches

co-LexBFS

for i ← 1 à n do
Pick a lexicographic min

end
label(w)← label(w).{i}

LexBFS on G
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Lego with basic graph searches

co-LexDFS

for i ← 1 à n do
Pick a lexicographic min

end
label(w)← {i}.label(w)

LexDFS on G
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Lego with basic graph searches

LexUP

for i ← 1 à n do
Pick a lexicographic max

end
label(w)← label(w).{i}
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Lego with basic graph searches

LexDown

for i ← n à 1 do
Pick a lexicographic max

end
label(w)← {i}.label(w)
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Lego with basic graph searches

These two new searches LexUP and LexDown are studied by
Jérémie Dusart (Master)
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Importance of 4 points conditions for graph recognition

Importance of 4 points conditions for graph recognition

Many classes of graphs or partial orders can be characterized by
the existence of a particular ordering of the vertices with some
forbidden configuration on three points.
Examples with forbidden configuration on three points :

1. Interval graphs : ordering of the left ends of the intervals.

2. Chordal : simplicial elimination ordering.

3. Co-comparability : transitivity violation of the complement
graph

4. Permutation : transitivity violation of the graph and its
complement.
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Importance of 4 points conditions for graph recognition

Forbidden 3 points suborderings
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Importance of 4 points conditions for graph recognition

Consequences

LexBFS is involved in many recognition algorithms for these classes
of graphs.

I Apply a LexBFS on G giving an ordering σ

I If G is a comparability graph the last vertex of σ, can be
taken as a source in a transitive orientation of G .

I The starting point for comparability and permutation graph
recognition algorithms.
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The set of all simplicial schemes

There exist simplicial elimination schemes which are not MNS,
LexBFS, LexDFS or MCS
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The set of all simplicial schemes

M* search

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

S ← {s}
for i ← 1 à n do

Pick an unumbered vertex v of S {applying the M selection rule
on some connected component of G -{numbered vertices}}
σ(i)← v
foreach unumbered vertex w ∈ N(v) do

Update its label applying the M rule
end
if w /∈ S then

Add w to S
end

end
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The set of all simplicial schemes

Définition

So we can define : LexBFS*, LexDFS*, MCS*, MNS*.

First Properties

I GEN = GEN *

I LexBFS* is not BFS et LexDFS* is not DFS
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The set of all simplicial schemes

Characterization of MNS*

Property (MNS*)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that d < b et db ∈ E . Furthermore if
b, c belong to the same connected component of G − {a]} then
dc /∈ E .

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a MNS* of G iff σ
satisfies property MNS*.
Analogous results yield for LexBFS*, LexDFS*, MCS*.
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The set of all simplicial schemes

From the forbidden configurations we obtain :

Inclusions

Gen
↑
↑

MNS*
↗ ↑ ↖
↗ ↑ ↖
↗ ↑ ↖

LexBFS* MCS* LexDFS*
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The set of all simplicial schemes

Theorem Shier 1984

For a chordal graph MNS* =LexBFS* = LexDFS* = MCS* = {
the set of all simplicial élimination schemes }.

Proof

First part of the proof.
Let c be the first non simplicial vertex to the left. It exist
a < b ∈ N(c) avec ab /∈ E . b et c b and c belong to the same
connected component of G − a] and therefore we can apply the
proof for MNS.
Therefore every MNS* provides a simplicial elimination scheme for
a chordal graph.
Therefore if G is chordal iff every search MNS* (resp. LexBFS*,
LexDFS*, MCS*) provides a simplicial elimination scheme.
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Principle of a Composition of Searches

Since we focus on the ordering of the vertices as the result of a
graph search, now we can compose graph searches in a natural way.
Therefore we can denote by M(G , x0) the order of the vertices
obtained by applying M on G starting from x0.

Definition

Let M be a graph search and σ an ordering of the vertices of G ,
M+(G , σ) (resp. M−(G , σ)) be the ordering of the vertices
obtained by applying M on G starting from the vertex σ(1) (resp.
σ(n)) and tie-breaking using σ in decreasing (resp. increasing)
order.
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Principle of a Composition of Searches

I Graph searches operate on total orderings :
M(G ,M(G , σ)) = M2(G , σ) . . .

I Does there exist fixed points ?

I Unfortunately a formal study of this composition remains to
be done !

I Also called multisweep algorithms.
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Principle of a Composition of Searches

1. Such an idea was already used for planarity testing in some
algorithm (de Fraysseix and Rosentiehl) with 2 consecutive
DFS.

2. To compute efficiently the diameter of a graph using
successive BFS
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Principle of a Composition of Searches

Linear time recognition algorithms for interval graphs

I Booth and Lueker 1976, using PQ-trees.

I Korte and Mohring 1981 using LexBFS and Modified
PQ-trees.

I Hsu and Ma 1995, using modular decomposition and a
variation on Maximal Cardinality Search.

I Corneil, Olariu and Stewart SODA 1998, using a series of 6
consecutive LexBFS, published in 2010.

I M.H, McConnell, Paul and Viennot 2000, using LexBFS and
partition refinement on maximal cliques (a kind of LexBFS on
cliques and minimal separators).

I New ! Peng Li, Yaokun Wu, using 3 special LexBFS, 2011
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Hamiltonicity on co-comparability graphs

Our problem D. Corneil, B. Dalton and MH

I For a co-comparability graph G find a Minimum Path Cover

I Let P be a transitive orientation of G
our problem reduce to computing the bump number of P
(Polynomial algorithm MH, Mohring, Steiner 1988)

I Another equivalent formulation as the 2-machine scheduling
problem
(Another polynomial algorithm Gabow, Tarjan 1985)
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Our Algorithm

1. Start with σ any co-comparability ordering of G (a linear
extension of P)

2. Apply LDFS+(σ) to produce an ordering τ .

3. Apply RightMostNeighbour(τ) which gives the path cover

4. Exhibit a certificate of minimality with a cut-set.
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Let us take an example
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1. σ = 2, 6, 0, 3, 4, 5, 1, 7, 8, 9 a co-comparability ordering

2. τ = LexDFS+(σ) = 9, 8, 5, 7, 4, 1, 3, 2, 0, 6

3. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9
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Magic

1. RightMostNeighbour(τ) = 6, 2, 0, 1, 3, 7, 4, 8, 5, ||9
2. The cutset S = {1, 7, 2, 8 } disconnects G into 6 connected

components.
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Lower bound
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As a byproduct we obtain new methods to produce linear
extensions

Important Lemma

If σ is a co-comp ordering of G , then LDFS+(σ) is a co-comp
ordering of G .

Problem

Can this algorithmic method be generalized for AT-free graphs ?
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Thank you for your attention !
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