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The problem

Which pairs of square 0, 1 matrices A, B satisfy

ABT = E + kI

where E is the n × n matrix of all 1s and k is a positive integer.

Example : Circulant n × n matrices Cn
r with r consecutive 1s, for

positive integers n and r such that n = rs + 1 for some positive
integer s.




1 1
1 1

1 1
1 1

1 1







1 1 1
1 1 1

1 1 1
1 1 1

1 1 1




T

=




2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 2






Examples

Finite projective planes A = B.
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Finite projective planes

A projective plane
is degenerate if at
least three of any
four points belong
to the same line.

All the lines of a nondegenerate finite
projective plane have the same number of
points.

Therefore, point-line incidence matrices A
of nondegenerate finite projective planes
are exactly the solutions of the equation

AAT = E + kI .

We have n = k2 + k + 1.

Number of projective planes for small orders k :

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# 1 1 1 1 0 1 1 4 0 ≥ 1 ? ≥ 1 0 ? ≥ 22

Bruck and Ryser 1949 Lam 1991



The New Infinite Family of Jonathan Wang JCTA 2011
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Why are Jonathan Wang’s matrices Lehman Matrices ?
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T

= E+2I

In general, Wk × Permut(Wk)T = E + 2I where Permut(Wk) is
obtained from Wk by permuting the rows and columns in a certain
way.



Motivation

Lehman matrices are key to understanding the set covering problem
min{cT x : Mx ≥ 1, x ∈ {0, 1}n}, where M is a 0,1 matrix.

When can the set
covering problem
be solved by linear
programming ?

This can be done for every objective function c
exactly when the set covering polytope
{x ∈ [0, 1]n : Mx ≥ 1} is integral. When this
occurs, the matrix M is said to be ideal.

THEOREM Lehman 1991

If M is a minimally nonideal matrix, then
either it is the point-line incidence matrix of a degenerate finite
projective plane
or it has a unique core A which is a Lehman matrix :

ABT = E + kI .



Motivation

A 0, 1 matrix M is Mengerian if for every nonnegative integral
vector c the linear program min{cT x : Mx ≥ 1, 0 ≤ x ≤ 1} and
its dual both have integral optimal solutions.

Many classical minimax theorems are associated with an underlying
Mengerian matrix (e.g. Max Flow Min Cut theorem).

A 0, 1 matrix is minimally
non-Mengerian if it is not
Mengerian but all its minors
are.

Minimally non-Mengerian
matrices are either minimally
nonideal or ideal.

THEOREM Cornuejols, Guenin, Margot 2000

If a matrix is minimally non-Mengerian and minimally nonideal,
then it is a Lehman matrix with k = 1.



Motivation

Analogy between the
Lehman equation
ABT = E + kI
and the equation
ABT = E − I
that arises in the study
of perfect graphs.

Minimally imperfect graphs satisfy
ABT = E − I where A (B respectively) is
the maximum clique (maximum stable set
respectively) incidence matrix.
Graphs that satisfy this matrix equation are
called partitionable graphs.



Basic results

THEOREM Bridges and Ryser 1969

Let A be an n × n Lehman matrix. Then

I A has the same number r of 1s in each row and column,

I B has the same number s of 1s in each row and column and
rs = n + k,

I AT is also a Lehman matrix.

REMARK

Let A be an r -regular Lehman matrix.

I If k = 1, then | det(A)| = r ,

I If A is a finite projective plane, then | det(A)| = (r − 1)
r(r−1)

2 r .



There are Two Lehman matrices with k = 1 and n = 8
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D8 was first discovered by Ding and is obtained from C 8
3 by adding

a 0,±1 matrix of rank 1.

REMARK D8 is Wang’s matrix W3 after permutation of rows and
columns.



Lehman Matrices Related to Circulants C n
r

Define the level of a r -regular n × n
Lehman matrix A to be the minimum rank
of A′ − Cn

r over all matrices A′ isomorphic
to A.

For example,
the circulant matrices Cn

r have level 0
and the matrix D8 above has level 1.

To demonstrate that the
notion of level is natural,
we appeal to information
complexity
(also known as Kolmogorov
complexity).

A parameter is any α ∈ {1, . . . , n}.
We say that an n× n matrix A can be described with k parameters
P = {p1, . . . , pk} if there exists an algorithm that, given P,
constructs a matrix isomorphic to A.

THEOREM

If A is an n × n Lehman matrix of level t with k = 1, then A can
be described with O(t4) parameters.



THEOREM Cornuéjols, Guenin, Tuncel 2009

A 0,1 matrix A is a Lehman matrix of level one if and only if A is
isomorphic to Cn

r + Σ where Σ is a 0,±1 matrix with four blocks.
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Two parameters : Number of rows in a block nR ∈ {1, . . . , r − 1} and vertical
shift tr with t ∈ {1, . . . , s − 1}. In the example, nR = 2 and t = 1.

Top left point (1, 1 + nR) ; Columns nC = r − nR ; Horizontal shift tr − 1.



Nearly self-dual Lehman matrices

A Lehman matrix A is
nearly self-dual if :

I A = AT and

I its dual is B = A + I .

Examples : C 5
2 and
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THEOREM

Let A be a nearly self-dual Lehman matrix which is r -regular. Then
r = 2, 3, 7 or 57.

Hoffman and Singleton 1960 gave a construction for r = 7.
It is not known whether there is an example with r = 57.



Minimally nonideal matrices and Seymour’s conjecture

The point-line matrices of degenerate
finite projective planes are minimally
nonideal.

The cores of most other known
minimally nonideal matrices are
Lehman matrices with k = 1.

We know only three
exceptions : F7, P10 and its
dual. These three matrices
play a central role in
Seymour’s conjecture about
ideal binary matrices.

A 0,1 matrix is binary if the sum modulo 2 of any three rows is
greater than or equal to at least one row of the matrix.

Seymour’s conjecture 1977 states that
there are only three minimally nonideal binary matrices :
Their cores are F7, P10 and its dual.



Open questions

Question 1 : Are there other infinite families of Lehman
matrices with k ≥ 2 beside nondegenerate finite projective planes ?

Question 2 : Is a Lehman matrix with k = 1 always the core of
some minimally nonideal matrix ?

Question 3 : Is F7 the only nondegenerate finite projective plane
whose point-line matrix is the core of a minimally nonideal matrix ?

Beth Novick 1990 answered this question positively when “the core
of” is removed from the statement.

Paper available on http ://integer.tepper.cmu.edu/


