LEHMAN MATRICES

Gérard Cornuéjols

Carnegie Mellon University

Pretty Structures 2011, Paris

The problem

Which pairs of square 0, 1 matrices A, B satisfy

$AB^T = E + kI$

where E is the $n \times n$ matrix of all 1s and k is a positive integer.

Example : Circulant $n \times n$ matrices C_r^n with r consecutive 1s, for positive integers n and r such that n = rs + 1 for some positive integer s.

Examples

Finite projective planes A = B. $C_2^3 = \begin{vmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{vmatrix}$

 $AA^T = E + I$

Finite projective planes

A projective plane is *degenerate* if at least three of any four points belong to the same line.

All the lines of a nondegenerate finite projective plane have the same number of points.

Therefore, point-line incidence matrices A of nondegenerate finite projective planes are exactly the solutions of the equation

 $AA^T = E + kI.$

We have $n = k^2 + k + 1$.

Number of projective planes for small orders k:

k	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
#	1	1	1	1	0	1	1	4	0	≥ 1	?	≥ 1	0	?	\geq 22
Bruck and Ryser 1949								Lam 1991							

The New Infinite Family of Jonathan Wang JCTA 2011

Why are Jonathan Wang's matrices Lehman Matrices?

In general, $W_k \times Permut(W_k)^T = E + 2I$ where $Permut(W_k)$ is obtained from W_k by permuting the rows and columns in a certain way.

Motivation

Lehman matrices are key to understanding the set covering problem $\min\{c^T x : Mx \ge 1, x \in \{0, 1\}^n\}$, where M is a 0,1 matrix.

When can the set covering problem be solved by linear programming ? This can be done for every objective function c exactly when the set covering polytope $\{x \in [0,1]^n : Mx \ge 1\}$ is integral. When this occurs, the matrix M is said to be ideal.

THEOREM Lehman 1991

If M is a minimally nonideal matrix, then either it is the point-line incidence matrix of a degenerate finite projective plane

or it has a unique core A which is a Lehman matrix :

$$AB^{T} = E + kI.$$

Motivation

A 0,1 matrix *M* is *Mengerian* if for every nonnegative integral vector *c* the linear program $\min\{c^T x : Mx \ge 1, 0 \le x \le 1\}$ and its dual both have integral optimal solutions.

Many classical minimax theorems are associated with an underlying Mengerian matrix (e.g. Max Flow Min Cut theorem).

A 0,1 matrix is *minimally non-Mengerian* if it is not Mengerian but all its minors are.

Minimally non-Mengerian matrices are either minimally nonideal or ideal.

THEOREM Cornuejols, Guenin, Margot 2000

If a matrix is minimally non-Mengerian and minimally nonideal, then it is a Lehman matrix with k = 1.

Motivation

Analogy between the Lehman equation $AB^T = E + kI$ and the equation $AB^T = E - I$ that arises in the study of perfect graphs.

Minimally imperfect graphs satisfy $AB^{T} = E - I$ where A (B respectively) is the maximum clique (maximum stable set respectively) incidence matrix. Graphs that satisfy this matrix equation are called *partitionable graphs*.

Basic results

THEOREM Bridges and Ryser 1969

Let A be an $n \times n$ Lehman matrix. Then

- ▶ A has the same number r of 1s in each row and column,
- *B* has the same number *s* of 1s in each row and column and rs = n + k,
- A^{T} is also a Lehman matrix.

REMARK

Let A be an r-regular Lehman matrix.

• If k = 1, then $|\det(A)| = r$,

▶ If A is a finite projective plane, then $|\det(A)| = (r-1)^{\frac{r(r-1)}{2}}r$.

There are Two Lehman matrices with k = 1 and n = 8

 D_8 was first discovered by Ding and is obtained from C_3^8 by adding a 0, ± 1 matrix of rank 1.

REMARK D_8 is Wang's matrix W_3 after permutation of rows and columns.

Lehman Matrices Related to Circulants C_r^n

Define the *level* of a *r*-regular $n \times n$ Lehman matrix A to be the minimum rank of $A' - C_r^n$ over all matrices A' isomorphic to A.

For example,

the circulant matrices C_r^n have level 0 and the matrix D_8 above has level 1. To demonstrate that the notion of level is natural, we appeal to information complexity

(also known as Kolmogorov complexity).

A parameter is any $\alpha \in \{1, ..., n\}$. We say that an $n \times n$ matrix A can be described with k parameters $\mathcal{P} = \{p_1, ..., p_k\}$ if there exists an algorithm that, given \mathcal{P} , constructs a matrix isomorphic to A.

THEOREM

If A is an $n \times n$ Lehman matrix of level t with k = 1, then A can be described with $O(t^4)$ parameters.

THEOREM Cornuéjols, Guenin, Tuncel 2009

A 0,1 matrix A is a Lehman matrix of level one if and only if A is isomorphic to $C_r^n + \Sigma$ where Σ is a 0, ± 1 matrix with four blocks.

Two parameters : Number of rows in a block $n_R \in \{1, ..., r-1\}$ and vertical shift tr with $t \in \{1, ..., s-1\}$. In the example, $n_R = 2$ and t = 1. Top left point $(1, 1 + n_R)$; Columns $n_C = r - n_R$; Horizontal shift tr - 1.

Nearly self-dual Lehman matrices

Examples : C_2^5 and

THEOREM

Let A be a nearly self-dual Lehman matrix which is r-regular. Then r = 2, 3, 7 or 57.

Hoffman and Singleton 1960 gave a construction for r = 7. It is not known whether there is an example with r = 57.

Minimally nonideal matrices and Seymour's conjecture

The point-line matrices of degenerate finite projective planes are minimally nonideal.

The cores of most other known minimally nonideal matrices are Lehman matrices with k = 1.

We know only three exceptions : F_7 , P_{10} and its dual. These three matrices play a central role in Seymour's conjecture about ideal binary matrices.

A 0,1 matrix is *binary* if the sum modulo 2 of any three rows is greater than or equal to at least one row of the matrix.

Seymour's conjecture 1977 states that there are only three minimally nonideal binary matrices : Their cores are F_7 , P_{10} and its dual.

Open questions

Question 1: Are there other infinite families of Lehman matrices with $k \ge 2$ beside nondegenerate finite projective planes?

Question 2: Is a Lehman matrix with k = 1 always the core of some minimally nonideal matrix?

Question 3 : Is F_7 the only nondegenerate finite projective plane whose point-line matrix is the core of a minimally nonideal matrix?

Beth Novick 1990 answered this question positively when "the core of" is removed from the statement.

Paper available on http://integer.tepper.cmu.edu/