LEHMAN MATRICES

Gérard Cornuéjols

Carnegie Mellon University

Pretty Structures 2011, Paris

The problem

Which pairs of square 0,1 matrices A, B satisfy

$$
A B^{T}=E+k l
$$

where E is the $n \times n$ matrix of all 1 s and k is a positive integer.
Example: Circulant $n \times n$ matrices C_{r}^{n} with r consecutive 1 s , for positive integers n and r such that $n=r s+1$ for some positive integer s.

$$
\left[\begin{array}{lllll}
1 & 1 & & & \\
& 1 & 1 & & \\
& & 1 & 1 & \\
& & & 1 & 1 \\
1 & & & & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 1 & & 1 & \\
& 1 & 1 & & 1 \\
1 & & 1 & 1 & \\
& 1 & & 1 & 1 \\
1 & & 1 & & 1
\end{array}\right]^{T}=\left[\begin{array}{lllll}
2 & 1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 \\
1 & 1 & 1 & 2 & 1 \\
1 & 1 & 1 & 1 & 2
\end{array}\right]
$$

Examples

Finite projective planes $\quad A=B$.

$$
\begin{aligned}
C_{2}^{3}= & {\left[\begin{array}{lll}
1 & 1 & \\
& 1 & 1 \\
1 & & 1
\end{array}\right] } \\
& A A^{T}=E+1
\end{aligned}
$$

$$
F_{7}=\left[\begin{array}{lllllll}
1 & 1 & & 1 & & & \\
& 1 & 1 & & 1 & & \\
& & 1 & 1 & & 1 & \\
& & & 1 & 1 & & 1 \\
1 & & & & 1 & 1 & \\
& 1 & & & & 1 & 1 \\
1 & & 1 & & & & 1
\end{array}\right]
$$

$$
A A^{T}=E+2 I
$$

Finite projective planes

A projective plane is degenerate if at least three of any four points belong to the same line.

All the lines of a nondegenerate finite projective plane have the same number of points.

Therefore, point-line incidence matrices A of nondegenerate finite projective planes are exactly the solutions of the equation

$$
A A^{T}=E+k l .
$$

We have $n=k^{2}+k+1$.
Number of projective planes for small orders k :

k	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\#	1	1	1	1	0	1	1	4	0	≥ 1	?	≥ 1	0	?	≥ 22
		and	Ry	r	94				am	991					

The New Infinite Family of Jonathan Wang JCTA 2011
$W_{2}=C_{2}^{3}=\left[\begin{array}{l|l|l|l}1 & 1 & \\ & 1 & 1 \\ \hline 1 & & 1\end{array}\right] \quad W_{3}=\left[\begin{array}{ll|ll|ll|ll}1 & & & 1 & 1 & & & \\ 1 & & & 1 & & 1 & & \\ \hline & & 1 & & & 1 & 1 & \\ & & 1 & & & 1 & & 1 \\ \hline 1 & & & & 1 & & & 1 \\ & 1 & & & 1 & & & 1 \\ \hline & 1 & 1 & & & & 1 & \\ & 1 & & 1 & & & 1 & \end{array}\right]$

	1 1 1	1 1 1	1 1 1	1 1 1	
$W_{4}=$		1	1	1	1
		1	1	1	1
		1	1	1	1
	1		1	1	1
	1		1	1	1
	1		1	1	1
	1	1		1	1
	1	1		1	1
	1	1		1	1
	1	1	1		1
	1	1	1		1
	1	1	1		1

Why are Jonathan Wang's matrices Lehman Matrices?

In general, $\quad W_{k} \times \operatorname{Permut}\left(W_{k}\right)^{T}=E+2 l$ where $\operatorname{Permut}\left(W_{k}\right)$ is obtained from W_{k} by permuting the rows and columns in a certain way.

Motivation

Lehman matrices are key to understanding the set covering problem $\min \left\{c^{T} x: M x \geq \mathbf{1}, x \in\{0,1\}^{n}\right\}$, where M is a 0,1 matrix.

When can the set covering problem be solved by linear programming?

This can be done for every objective function c exactly when the set covering polytope $\left\{x \in[0,1]^{n}: M x \geq \mathbf{1}\right\}$ is integral. When this occurs, the matrix M is said to be ideal.

THEOREM Lehman 1991

If M is a minimally nonideal matrix, then
either it is the point-line incidence matrix of a degenerate finite projective plane or it has a unique core A which is a Lehman matrix :

$$
A B^{T}=E+k l
$$

Motivation

A 0,1 matrix M is Mengerian if for every nonnegative integral vector c the linear program $\min \left\{c^{\top} x: M x \geq \mathbf{1}, 0 \leq x \leq \mathbf{1}\right\}$ and its dual both have integral optimal solutions.

Many classical minimax theorems are associated with an underlying Mengerian matrix (e.g. Max Flow Min Cut theorem).

A 0,1 matrix is minimally non-Mengerian if it is not Mengerian but all its minors are.

Minimally non-Mengerian matrices are either minimally nonideal or ideal.

THEOREM Cornuejols, Guenin, Margot 2000
If a matrix is minimally non-Mengerian and minimally nonideal, then it is a Lehman matrix with $k=1$.

Motivation

Analogy between the Lehman equation $A B^{T}=E+k l$ and the equation $A B^{T}=E-I$
that arises in the study of perfect graphs.

Minimally imperfect graphs satisfy
$A B^{T}=E-I$ where A (B respectively) is the maximum clique (maximum stable set respectively) incidence matrix.
Graphs that satisfy this matrix equation are called partitionable graphs.

Basic results

THEOREM Bridges and Ryser 1969
Let A be an $n \times n$ Lehman matrix. Then

- A has the same number r of 1 s in each row and column,
- B has the same number s of 1 s in each row and column and $r s=n+k$,
- A^{T} is also a Lehman matrix.

REMARK

Let A be an r-regular Lehman matrix.

- If $k=1$, then $|\operatorname{det}(A)|=r$,
- If A is a finite projective plane, then $|\operatorname{det}(A)|=(r-1)^{\frac{r(r-1)}{2}} r$.

There are Two Lehman matrices with $k=1$ and $n=8$

$$
C_{3}^{8}=\left[\begin{array}{llllllll}
1 & 1 & 1 & & & & & \\
& 1 & 1 & 1 & & & & \\
& & 1 & 1 & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & & & 1 & 1 & 1 & \\
& & & & & 1 & 1 & 1 \\
1 & & & & & & 1 & 1 \\
1 & 1 & & & & & & 1
\end{array}\right] \quad D_{8}=\left[\begin{array}{llllllll}
1 & & 1 & & 1 & & & \\
& 1 & 1 & 1 & & & & \\
& & 1 & 1 & 1 & & & \\
& 1 & & 1 & & 1 & & \\
& & & & 1 & 1 & 1 & \\
& & & & & 1 & 1 & 1 \\
1 & & & & & & 1 & 1 \\
1 & 1 & & & & & & 1
\end{array}\right]
$$

D_{8} was first discovered by Ding and is obtained from C_{3}^{8} by adding a $0, \pm 1$ matrix of rank 1 .

REMARK D_{8} is Wang's matrix W_{3} after permutation of rows and columns.

Lehman Matrices Related to Circulants C_{r}^{n}

Define the level of a r-regular $n \times n$ Lehman matrix A to be the minimum rank of $A^{\prime}-C_{r}^{n}$ over all matrices A^{\prime} isomorphic to A.

For example, the circulant matrices C_{r}^{n} have level 0 and the matrix D_{8} above has level 1 .

To demonstrate that the notion of level is natural, we appeal to information complexity
(also known as Kolmogorov complexity).

A parameter is any $\alpha \in\{1, \ldots, n\}$.
We say that an $n \times n$ matrix A can be described with k parameters $\mathcal{P}=\left\{p_{1}, \ldots, p_{k}\right\}$ if there exists an algorithm that, given \mathcal{P}, constructs a matrix isomorphic to A.

THEOREM

If A is an $n \times n$ Lehman matrix of level t with $k=1$, then A can be described with $O\left(t^{4}\right)$ parameters.

THEOREM Cornuéjols, Guenin, Tuncel 2009

A 0,1 matrix A is a Lehman matrix of level one if and only if A is isomorphic to $C_{r}^{n}+\Sigma$ where Σ is a $0, \pm 1$ matrix with four blocks.

$$
C_{r}^{n}+\Sigma=\left[\begin{array}{lllllllllllllll}
1 & 1 & 0 & 0 & 0 & & 1 & 1 & 1 & & & & & \\
& 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & & & & & \\
& & 1 & 1 & 1 & 1 & 1 & & & & & & & \\
& & & 1 & 1 & 1 & 1 & 1 & & & & & & \\
& & & & 1 & 1 & 1 & 1 & 1 & & & & & \\
& & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & & & & \\
& & 1 & 1 & 1 & & 0 & 0 & 0 & 1 & 1 & & & \\
& & & & & & & 1 & 1 & 1 & 1 & 1 & & \\
& & & & & & & & 1 & 1 & 1 & 1 & 1 & \\
& & & & & & & & & 1 & 1 & 1 & 1 & 1 \\
1 & & & & & & & & & & 1 & 1 & 1 & 1 \\
1 & 1 & & & & & & & & & & 1 & 1 & 1 \\
1 & 1 & 1 & & & & & & & & & & 1 & 1 \\
1 & 1 & 1 & 1 & & & & & & & & & & & 1
\end{array}\right]
$$

Two parameters : Number of rows in a block $n_{R} \in\{1, \ldots, r-1\}$ and vertical shift tr with $t \in\{1, \ldots, s-1\}$. In the example, $n_{R}=2$ and $t=1$.
Top left point $\left(1,1+n_{R}\right)$; Columns $n_{C}=r-n_{R}$; Horizontal shift tr -1 .

Nearly self-dual Lehman matrices

$$
\text { Examples: } C_{2}^{5} \text { and }
$$

A Lehman matrix A is nearly self-dual if :

- $A=A^{T}$ and
- its dual is $B=A+I$.

$$
P_{10}=\left[\begin{array}{llllllllll}
& & & & 1 & & & & & \\
& & & 1 & & & 1 & 1 & & 1 \\
& & & 1 & 1 & 1 & & & & \\
1 & 1 & 1 & & & & & & & \\
& & 1 & & & & & 1 & 1 & \\
& & 1 & & & & 1 & & & 1 \\
& 1 & & & & 1 & & & 1 & \\
& 1 & & & 1 & & & & & 1 \\
1 & & & & 1 & & 1 & & & \\
1 & & & & & 1 & & 1 & &
\end{array}\right]
$$

THEOREM

Let A be a nearly self-dual Lehman matrix which is r-regular. Then $r=2,3,7$ or 57 .

Hoffman and Singleton 1960 gave a construction for $r=7$.
It is not known whether there is an example with $r=57$.

Minimally nonideal matrices and Seymour's conjecture

The point-line matrices of degenerate finite projective planes are minimally nonideal.

The cores of most other known minimally nonideal matrices are Lehman matrices with $k=1$.

We know only three exceptions: F_{7}, P_{10} and its dual. These three matrices play a central role in Seymour's conjecture about ideal binary matrices.

A 0,1 matrix is binary if the sum modulo 2 of any three rows is greater than or equal to at least one row of the matrix.

Seymour's conjecture 1977 states that there are only three minimally nonideal binary matrices:
Their cores are F_{7}, P_{10} and its dual.

Open questions

Question 1: Are there other infinite families of Lehman matrices with $k \geq 2$ beside nondegenerate finite projective planes?

Question 2: Is a Lehman matrix with $k=1$ always the core of some minimally nonideal matrix?

Question 3: Is F_{7} the only nondegenerate finite projective plane whose point-line matrix is the core of a minimally nonideal matrix?

Beth Novick 1990 answered this question positively when "the core of" is removed from the statement.

Paper available on http ://integer.tepper.cmu.edu/

