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Pregress notions
Mathematical Programming Formulation : a set of parameters,
decision variables, objective function(s) and constraints
that precisely define an optimization problem (“model”)

LP, MILP, NLP, MINLP: main classes of MP formulations
(linear, mixed-integer linear, nonlinear, mixed-integer
nonlinear)

Branch-and-Bound (BB): algorithm used for solving
MILPs exactly and MINLPs at ε-optimality.
Variable Neighbourhood Search (VNS): effective
metaheuristic based on a given local search
neighbourhood

General-purpose algorithm : solution method targeting all
problems in a given (large) class (such as e.g. MINLPs):
typically, solution algorithms used to solve models
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Existing definitions
“Problem Q is a reformulation of P ” : what does it
mean?

Definition in Mathematical Programming Glossary :
Obtaining a new formulation Q of a problem P that is in some sense
better, but equivalent to a given formulation. Trouble: vague.

Definition by H. Sherali [private communication] :
bijection between feasible sets, objective function of Q is a
monotonic univariate function of that of P . Trouble: feasible sets
bijection: condition is too restrictive

Definition by P. Hansen [Audet et al., JOTA 1997] : P,Q

opt. problems; given an instance p of P and q of Q and an optimal
solution y∗ of q, Q is a reformulation of P if an optimal solution x∗

of p can be computed from y∗ within a polynomial amount of time.
Trouble: ignores feasible / locally optimal solutions
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Motivation 1

Widespread use of nonlinear modelling

Solution methods for nonlinear models are not as
advanced as for linear ones

Modelling many real-life problems as linear is innatural /
difficult

Practitioners cannot solve nonlinear models and are not
always able to model linearly

⇒ Inhibits spreading of mathematical programming /
optimization techniques in non-specialist industrial
settings
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Motivation 2

Efficiency/choice of solution algorithms

Most general purpose solution algorithms compute
optima by means of the formulation

Different formulations influence algorithmic behaviour
1. In BB, alter (tighten) the bound
2. In VNS, define different (more advantageous)

neighbourhoods

Reformulation may allow the use of a different general
purpose solver (e.g. finding feasible solutions for tightly
constrained MILPs by reformulation to LCPs [Di
Giacomo et al., JOC 2007])
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Motivation 3

Solving large-scale NLPs/MINLPs

Solution methods for nonlinear models are not as
advanced as for linear ones (again)

Instead of solving the original (nonlinear) model, can
attempt to reformulate it to a linear one

The reformulation should be automatic (i.e. transparent
for the user)
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Current status and needs
Google search:
reformulation "mathematical programming"

yields 419,000 hits ⇒ everyone uses them

No satisfactory definitions, no general theoretical
results (how do we combine simple reformulations into
a more complicated one? what is the size/solution
difficulty of the complex reformulation?), no
reformulation-based literature review, no software!

Need for:
1. reformulation theory

2. list of elementary reformulations

3. reformulation software

Develop a reformulation systematics
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Definitions
Mathematical expressions as n-ary expression trees
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A formulation P is a 7-tuple (P ,V , E ,O, C,B, T )
=(parameters, variables, expression trees, objective
functions, constraints, bounds on variables, variable
types)

Constraints are encoded as triplets c ≡ (e, s, b) (e ∈ E ,
s ∈ {≤,≥, =}, b ∈ R)

F(P ) = feasible set, L(P ) = local optima, G(P ) = global
optima
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Auxiliary problems

If problems P,Q are related by a computable function f
through the relation f(P,Q) = 0, Q is an auxiliary problem
with respect to P .

Opt-reformulations : preserve all optimality properties

Narrowings : preserve some optimality properties

Relaxations : drop constraints / bounds / types

Approximations : formulation Q depending on a
parameter k such that “ lim

k→∞
Q(ε)” is an

opt-reformulation, narrowing or relaxation
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Opt-reformulations
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Main idea: if we find an optimum of Q, we can map it back to
the same type of optimum of P , and for all optima of P ,

there is a corresponding optimum in Q.
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Narrowings
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Main idea: if we find a global optimum of Q, we can map it
back to a global optimum of P . There may be optima of P

without a corresponding optimum in Q.

Optimeo08 Workshop, 4th April 2008 – p. 12



Relaxations

A problem Q is a relaxation of P if F(P ) ⊆ F(Q).

Optimeo08 Workshop, 4th April 2008 – p. 13



Approximations

Q is an approximation of P if there exist: (a) an auxiliary
problem Q∗ of P ; (b) a sequence {Qk} of problems;
(c) an integer k′ > 0; such that:

1. Q = Qk′

2. ∀f∗ ∈ O(Q∗) there is a sequence of functions
fk ∈ O(Qk) converging uniformly to f∗;

3. ∀c∗ = (e∗, s∗, b∗) ∈ C(Q∗) there is a sequence of
constraints ck = (ek, sk, bk) ∈ C(Qk) such that ek

converges uniformly to e∗, sk = s∗ for all k, and bk

converges to b∗.

There can be approximations to opt-reformulations,
narrowings, relaxations.
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Fundamental results
Opt-reformulation, narrowing, relaxation, approximation
are all transitive relations

An approximation of any type of reformulation is an
approximation

A reformulation consisting of opt-reformulations,
narrowings, relaxations is a relaxation

A reformulation consisting of opt-reformulations and
narrowings is a narrowing

A reformulation consisting of opt-reformulations is an
opt-reformulation

opt-reformulations narrowings relaxations approximations
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The SYMMBREAK2 narrowing 1/7

SYMMBREAK2 motivating example

Consider the mathematical program P :

min x11 +x12 +x13 +x21 +x22 +x23

x11 +x12 +x13 ≥ 1

x21 +x22 +x23 ≥ 1

x11 +x21 ≥ 1

x12 +x22 ≥ 1

x13 +x23 ≥ 1

The set of solutions is G(P ) =

{(0, 1, 1, 1, 0, 0), (1, 0, 0, 0, 1, 1), (0, 0, 1, 1, 1, 0),

(1, 1, 0, 0, 0, 1), (1, 0, 1, 0, 1, 0), (0, 1, 0, 1, 0, 1)}

Optimeo08 Workshop, 4th April 2008 – p. 16



The SYMMBREAK2 narrowing 2/7

The group G∗ of automorphisms of G(P ) is
〈(1, 4)(2, 5)(3, 6), (1, 5)(2, 4)(3, 6), (1, 4)(2, 6)(3, 5)〉 ∼= D12

For all x∗ ∈ G(P ), Gx∗ = G(P ) =⇒

∃ only one solution in G(P ) (modulo symmetries)

This is bad for Branch-and-Bound techniques: many branches will
contain (symmetric) optimal solutions and therefore will not be
pruned by bounding ⇒ deep and large BB trees

If we knew G∗ in advance, we might add constraints eliminating
(some) symmetric solutions out of G(P )

. . . in other words, look for a narrowing of P

Can we find G∗ (or a subgroup thereof) a priori?

What constraints provide a valid narrowing of P excluding symmetric
solutions of G(P )?
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The SYMMBREAK2 narrowing 3/7
The cost vector cT = (1, 1, 1, 1, 1, 1) is fixed by all (column)
permutations in S6

The vector b = (1, 1, 1, 1, 1) is fixed by all (row) permutations in S5

Consider P ’s constraint matrix:




















1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1





















Let π ∈ S6 be a column permutation such that ∃ a row permutation
σ ∈ S5 with σ(Aπ) = A

Then permuting the variables/columns in P according to π does not
change the problem formulation
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The SYMMBREAK2 narrowing 4/7

For a packing or covering problem with c = 1n and
b = 1m,

GP = {π ∈ Sn | ∃σ ∈ Sm (σAπ = A)} (1)

is called the problem symmetry group of P

In the example above, we get GP
∼= D12

∼= G∗

Thm.
For a covering/packing problem P , GP ≤ G∗.

Result can be extended to all MILPs [Margot02,
Margot03, Margot07]

Extension to MINLPs under way
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The SYMMBREAK2 narrowing 5/7

Thm.
Assume:

∃x∗ ∈ G(P ) with 1 ≤ supp(x∗) < n − 1;

|GP | > 1.

Let γ = (γ1, . . . , γk) with k > 1 be a cycle in the disjoint
cycle representation of π ∈ GP . Then adjoining the con-
straints:

∀2 ≤ j ≤ k xσ1
≤ xσk

(2)

to P results in a nontrivial narrowing Q of P (i.e. one
s.t. |G(Q)| < |G(P )|).
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The SYMMBREAK2 narrowing 6/7
Good news: there are automatic ways to find
permutations in GP

One formulates an auxiliary mathematical pro-
gram the solution of which encodes π ∈ GP (in-
cidentally if π = e this proves GP = {e})

Bad news: the CPU time required to find permutations of
GP is prohibitively high (for now)

Good news: once some π ∈ GP is known, adding
constraints (2) for the longest disjoint cycle of π yields a
narrowing Q computationally as tractable as P

Bad news: there is an element of arbitrary choice in (2),
namely that xσ1

is a minimum element within x[σ]

. . . found no way (yet) to eliminate this arbitrary choice
without adding more variables to Q
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The SYMMBREAK2 narrowing 7/7
Very preliminary computational results on a small set of instances (some
from MILPLib, some from Margot’s website):

Instance Group γ BBn(P ) BBn(Q)

enigma C2 2 3321 269

jgt18 C2 × S4 6 573 1300

oa66234 S3 2 0 0

oa67233 C2 × S4 6 6 0

oa76234 S3 2 0 0

ofsub9 C3 × S7 21 1111044 980485

stein27 ((C3 × C3 × C3) ⋉ PSL(3, 3)) ⋉ C2 24 1084 1843

sts27 ((C3 × C3 × C3) ⋉ PSL(3, 3)) ⋉ C2 26 1317 968

Results are promising but not exciting
Need to improve narrowing efficacy
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Other applications
RCLIN opt-reformulation: applied in (L., 4OR, 2007) to the GRAPH

PARTITIONING PROBLEM (GPP), the MULTIPROCESSOR SCHEDULING PROBLEM

WITH COMMUNICATION DELAYS (MSPCD) and the QUADRATIC ASSIGNMENT

PROBLEM (QAP): CPU improvement 2 Orders of Magnitude (OMs)

RRLTRELAX relaxation:

1. used in (L. &Pantelides, JOGO, 2006) to drastically tighten the
convex relaxation of pooling and blending problems from the oil
industry: sBB nodes improvements 2-5 OMs

2. use in (Lavor et al., EPL, 2007 and L. et al., DAM, accepted) to
be able to compute molecular orbitals solving Hartree-Fock
systems by sBB (impossible without it)

INNERAPPROX approximation: found feasible solutions of a large-scale
(25-50K bin vars/constrs) convex MINLP occurring in a sphere
covering problem arising in the configuration of gamma-ray
radiotherapy units (using CPLEX)
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Perspectives
Principal Investigator for the Automatic Reformulation Search (ARS)
project funded by ANR, and part of a WP in the EU project
“Morphex”: extend the reformulation library and implement a
prototype of the automatic reformulation software

Reformulation techniques offer high didactical value when teaching
modelling courses

My bet : successful algorithms for large scale MINLPs
will have to employ automatic reformulation techniques
to some extent

My regret : there is a widespread belief that
reformulations are “just” modelling tricks, and to dismiss
them as implementation details, even though
computational results improvements due to
reformulations are major.
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The end

Thank you
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