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Pregress notions

Mathematical Programming Formulation . a set of parameters,

decision variables, objective function(s) and constraints
that precisely define an optimization problem (“model”)

LP, MILP, NLP, MINLP: main classes of MP formulations
(linear, mixed-integer linear, nonlinear, mixed-integer
nonlinear)

(BB): algorithm used for solving
MILPs exactly and MINLPs at s-optimality.

Variable Neighbourhood Search JAANS) I EHOYE

metaheuristic based on a given local search
neighbourhood

General-purpose algorithm | solution method targeting all

problems in a given (large) class (such as e.g. MINLPS):
typically, solution algorithms used to solve models J
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Existing definitions

PTG ATEOMUBIONONE o does it

mean?

Definition in Mathematical Programming Glossary

Obtaining a new formulation () of a problem P that is in some sense
better, but equivalent to a given formulation. Trouble: vague.

Definition by H. Sherali [private communication]

bijection between feasible sets, objective function of () is a
monotonic univariate function of that of /. Trouble: feasible sets
bijection: condition Is too restrictive

Definition by P. Hansen [Audet et al., JOTA 1997][ P, Q

opt. problems; given an instance p of P and ¢ of () and an optimal
solution y™* of q, () is a reformulation of P if an optimal solution x*

of p can be computed from y* within a polynomial amount of time. J
Trouble: ignores feasible / locally optimal solutions
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Motivation 1

-

Widespread use of nonlinear modelling

Solution methods for nonlinear models are not as
advanced as for linear ones

Modelling many real-life problems as linear is innatural /
difficult

Practitioners cannot solve nonlinear models and are not
always able to model linearly

= Inhibits spreading of mathematical programming /
optimization technigques in non-specialist industrial
settings

|
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Motivation 2
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Efficiency/choice of solution algorithms

# Most general purpose solution algorithms compute
optima by means of the formulation

# Different formulations influence algorithmic behaviour
1. In BB, alter (tighten) the bound
2. In VNS, define different (more advantageous)
neighbourhoods

# Reformulation may allow the use of a different general
purpose solver (e.g. finding feasible solutions for tightly
constrained MILPs by reformulation to LCPs [Di
Giacomo et al., JOC 2007])

o |
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Motivation 3

- N

Solving large-scale NLPs/MINLPs

® Solution methods for nonlinear models are not as
advanced as for linear ones (again)

# Instead of solving the original (nonlinear) model, can
attempt to reformulate it to a linear one

# The reformulation should be automatic (I.e. transparent
for the user)

o |
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Current status and needs

Google search: T
reformul ation "mat hemati cal programm ng"
yields 419,000 hits = everyone uses them

No satisfactory definitions, no general theoretical
results (how do we combine simple reformulations into
a more complicated one? what is the size/solution
difficulty of the complex reformulation?), no
reformulation-based literature review, no software!
Need for:

1. reformulation theory

2. list of elementary reformulations

3. reformulation software

Develop a reformulation systematics J
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Definitions

f.o Mathematical expressions as n-ary expression trees T
PN
3 + log
> xiy; — log(z1/y3) SN
i=1 X X X /
/\ /\ /\ \
1 Y1rz2 Y2r3 Y3 i Y3

# A formulation P is a 7-tuple (P, V,£,0,C,B,T)
=(parameters, variables, expression trees, objective
functions, constraints, bounds on variables, variable

types)
# Constraints are encoded as triplets ¢ = (e, s,b) (e € &,
se{<,>, =} beR)

® F(P) = feasible set, £L(P) = local optima, G(P) = global

L optima J
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Auxiliary problems

If problems P, () are related by a computable function f
through the relation f(P,Q) = 0, @ IS an auxiliary problem
with respect to P.

9o

9
9
9

Opt-reformulations . preserve all optimality properties
Narrowings . preserve some optimality properties
Relaxations : drop constraints / bounds / types

Approximations . formulation () depending on a
parameter £ such that “ lim Q(e)” Iis an

k— 00

opt-reformulation, narrowing or relaxation

|
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Opt-reformulations

Main idea: If we find an optimum of ¢, we can map it back to
the same type of optimum of P, and for all optima of P,
L there is a corresponding optimum in Q). J
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Narrowings

Main idea: If we find a global optimum of ¢, we can map it
back to a global optimum of P. There may be optima of P
without a corresponding optimum in ().

o |
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Relaxations

A problem @ is a relaxation of P if 7(P) C F(Q).
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Approximations
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() IS an approximation Of P If there exist: (a) an auxiliary
problem @Q* of P; (b) a sequence {Q;} of problems;
(c) an integer k&’ > 0; such that:

1. Q@ =Qp
2. Vf* e O(Q*) there is a sequence of functions
1 € O(Qy) converging uniformly to f*;

3. V' = (e, s%,b") € C(Q*) there Is a sequence of
constraints ¢ = (eg, sk, b)) € C(Qy) such that e,
converges uniformly to e¢*, s, = s* for all k£, and b,
converges to b*.

There can be approximations to opt-reformulations,
narrowings, relaxations.

o |
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Fundamental results

Opt-reformulation, narrowing, relaxation, approximation
are all transitive relations

An approximation of any type of reformulation is an
approximation

A reformulation consisting of opt-reformulations,
narrowings, relaxations is a relaxation

A reformulation consisting of opt-reformulations and
narrowings is a narrowing

A reformulation consisting of opt-reformulations is an
opt-reformulation

/
/
/

opt-reformulations| narrowings relaxations approximations

N
N

J J
J
J
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. |1he SymmBRrREAK2 narrowing 1/7
s motivating example o

# Consider the mathematical program P:

min r1; +x12 +x13 +xo1 +x22 +xo3

r11 +r12 +T13 > 1
r91 +Too +wxoz3 > 1

r11 +1x21 > 1
T12 +229 > 1

r13 +ro3 = 1

# The set of solutions is G(P) =

{(0,1,1,1,0,0), (1,0,0,0,1,1), (0,0,1,1,1,0),
| (1,1,0,0,0,1), (1,0,1,0,1,0), (0,1,0,1,0,1)} |
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The SymmBREAK2 narrowing 2/7

The group G* of automorphisms of G(P) is T
<(17 4)(27 5)(37 6)7 (17 5)(27 4)(37 6)7 (17 4)(27 6) (37 5)> = Dy

Forall z* € G(P), Gx* = G(P) =
3 only one solution in G(P) (modulo symmetries)

This is bad for Branch-and-Bound techniques: many branches will
contain (symmetric) optimal solutions and therefore will not be
pruned by bounding = deep and large BB trees

If we knew G* in advance, we might add constraints eliminating
(some) symmetric solutions out of G(P)

... In other words, look for a narrowing of P

Can we find G* (or a subgroup thereof) a priori?

What constraints provide a valid narrowing of P excluding symmetric

solutions of G(P)? J
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The SymmBREAK2 narrowing 3/7

The cost vector ¢! = (1,1,1,1,1,1) is fixed by all (column)
permutations in Sg

The vector b = (1,1, 1,1, 1) is fixed by all (row) permutations in S;

Consider P’s constraint matrix:

(11100 0)
000 1 1 1
10010 0
0100 1 0
\0 0100 1)

Let 7 € Sg be a column permutation such that 4 a row permutation
o€ Ss;witho(Ar) = A

Then permuting the variables/columns in P according to = does not
change the problem formulation
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The SymmBREAK2 narrowing 4/7

-

For a packing or covering problem with ¢ = 1,, and
b — 1m;

Gp={mreS,|doe€ S, (cAr = A)} (1)

IS called the problem symmetry group of P
In the example above, we get Gp = Do =2 G*

Thm.
For a covering/packing problem P, Gp < G*.

Result can be extended to all MILPs [Margot02,
Margot03, Margot07/]

Extension to MINLPs under way

|
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The SymmBREAK2 narrowing 5/7
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hm.
Assume:

#® dr* e G(P)with 1 <supp(z*) <n —1;
9 ‘Gp| > 1.

Let v = (v1,...,7%) With £ > 1 be a cycle in the disjoint
cycle representation of € Gp. Then adjoining the con-
straints:

V2< 3 <k x5 <4, (2)

to P results in a nontrivial narrowing ¢ of P (i.e. one
s.t. [G(Q)] < |G(P))).

o |
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The SymmBREAK2 narrowing 6/7

Good news: there are automatic ways to find o
permutations in Gp

One formulates an auxiliary mathematical pro-
gram the solution of which encodes © € Gp (In-
cidentally if = = e this proves Gp = {e})

Bad news: the CPU time required to find permutations of
G p 1S prohibitively high (for now)

Good news: once some 7 € GGp Is known, adding
constraints (2) for the longest disjoint cycle of = yields a
narrowing () computationally as tractable as P

Bad news: there is an element of arbitrary choice in (2),
namely that x,, IS a minimum element within z|o]

... found no way (yet) to eliminate this arbitrary choice
without adding more variables to ) J
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from MILPLIib, some from Margot’s website):

The SymmBREAK2 narrowing 7/7

Very preliminary computational results on a small set of instances (some

-

Instance Group ol BBn(P) | BBn(Q)
eni gma Co 2 3321 269
jgtl8 Cy X Sy 6 573 1300
0a66234 || Ss 2 0) 0)
0a67233 || Cy x Sy 6 6 0
0a76234 || Ss 2 0 0
of sub9 ('3 x Sy 21 | 1111044 980485
stein27 || ((C3x C3xC3)x PSL(3,3)) x Cy | 24 1084 1843
st s27 ((C3 x C3 x C3) x PSL(3,3)) x Cy | 26 1317 968

Results are promising but not exciting

Need to improve narrowing efficacy
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Other applications

f.’ opt-reformulation: applied in (L., 40R, 2007) to the GrapH T

PARTITIONING PROBLEM (GPP), the MuLTIPROCESSOR SCHEDULING PROBLEM
WITH CoMmunIcATIoN DELAYs (MSPCD) and the QUADRATIC ASSIGNMENT
ProBLEM (QAP): CPU improvement 2 Orders of Magnitude (OMSs)

9 FINIEYNE relaxation:

1. used in (L. &Pantelides, JOGO, 2006) to drastically tighten the
convex relaxation of pooling and blending problems from the oll
Industry: sBB nodes improvements 2-5 OMs

2. use in (Lavor et al., EPL, 2007 and L. et al., DAM, accepted) to
be able to compute molecular orbitals solving Hartree-Fock
systems by sBB (impossible without it)

r approximation: found feasible solutions of a large-scale
(25-50K bin vars/constrs) convex MINLP occurring in a sphere
covering problem arising in the configuration of gamma-ray

L radiotherapy units (using CPLEX) J
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Perspectives

Principal Investigator for the Automatic Reformulation Search (ARS)
project funded by ANR, and part of a WP in the EU project
“Morphex”. extend the reformulation library and implement a
prototype of the automatic reformulation software

Reformulation techniques offer high didactical value when teaching
modelling courses

W\YAEIR: successful algorithms for large scale MINLPs

will have to employ automatic reformulation techniques
to some extent

LUAERIEY: there is a widespread belief that

reformulations are “just” modelling tricks, and to dismiss
them as implementation details, even though
computational results improvements due to

reformulations are major. J
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The end

Thank you
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