
Distance Geometry in Data Science

Leo Liberti, CNRS LIX Ecole Polytechnique
liberti@lix.polytechnique.fr

CNMAC 2017

1 / 160

liberti@lix.polytechnique.fr

Line of reasoning for this talk

1. Graphs and weighted graphs necessary to model data
2. Computers can “reason by analogy” (clustering)
3. Clustering on vectors allows more flexibility
4. Need to embed (weighted) graphs into Euclidean spaces
5. High dimensions make clustering expensive/unstable
6. Use random projections to reduce dimensions

2 / 160

Outline

Reasoning
Relations, graphs, distances

Clustering
Clustering in graphs
Clustering in Euclidean spaces

Metric embeddings
Fréchet embeddings in `∞
Embeddings in `2

Classic MDS
PCA

Distance Geometry
DGP applications
Complexity of the DGP
Number of solutions
Solution methods

Direct methods
Semidefinite Programming
Diagonal Dominance

Barvinok’s naive algorithm
Isomap for the DGP

Distance resolution limit
When to start worrying

Random projections
More efficient clustering
Random projections in LP

Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression

The end

3 / 160

Reasoning
The philosophical motivation to

distance geometry

4 / 160

Modes of rational thought

hypothesis

abduction

observation

induction

predictiondeduction

[Arist. 24a, Peirce CP, Putnam 79, Eco 83]

5 / 160

Modes of rational thought

All humans are mortal︸ ︷︷ ︸
hypothesis

, Socrates is human︸ ︷︷ ︸
prediction

, hence Socrates is mortal︸ ︷︷ ︸
observation

I deduction (hypothesis + prediction→ observation)
TRUTH; logician, mathematician

I induction (observation + prediction→ hypothesis)
CAUSALITY; physicist, chemist, biologist

I abduction (hypothesis + observation→ prediction)
PLAUSIBILITY; everyone else

6 / 160

Abduction might infer falsehoods
I Peirce:

1. All beans in this bag are white
2. There is a white bean next to this bag
3. The bean was in the bag
4. but what if the bean wasn’t in the bag?

I Sherlock Holmes wannabe:
1. People who walk in the park have their shoes full of dirt
2. John’s shoes are dirty
3. John walked in the park
4. but what if John did not walk in the park?

Only deduction infers truth

[Desclés, Jackiewicz 2006]

7 / 160

Statistician’s abduction

observation

hypothesis1 → prediction1

hypothesis2 → prediction2

hypothesis3 → prediction3

hypothesis4 → prediction4

hypothesis5 → prediction5

I Evaluate P(observation | hypothesisi → predictioni) ∀i
I Choose inference iwith largest probability

8 / 160

Example

white bean beside bag

bag of white beans→bean was in bag

0.3 white bean field closeby→bean came from field
0.25

farmer market yesterday→bean came frommarket
0.1

kid was playing with beans→kid lost a bean

0.15

UFOs fueled with beans→bean clearly a UFO sign

0.2

I Repeat experiences, collect data

I Probability distribution⇐
{

frequency
personal conviction

9 / 160

Compare different observations

white bean beside bag

bag of white beans→bean was in bag
0.3

white bean field closeby→bean came from field
0.25

farmer market yesterday→bean came frommarket

0.1

kid was playing with beans→kid lost a bean

0.15

UFOs fueled with beans→bean clearly a UFO sign

0.2

red bean beside bag

0.01

0.01

0.49

0.29

0.2

I Repeat experiences, collect data

I Probability distribution⇐
{

frequency
personal conviction

10 / 160

Subsection 1

Relations, graphs, distances

11 / 160

Modelling a good prediction

Observation graph
I set V of observations
I set I of inferences (hypotheses∧ predictions)
I ∀v ∈ V get probability distribution P v on I
I relationE if u, v ∈ V have similar distributions on I
I F = (V,E): observation graph
I relation∼ if h, k ∈ I not contradictory
I Densest subgraphs U with every hu ∼ ku (for u ∈ U)

richest observation sets with non-contradictory inferences

Think of Sherlock Holmes:
set of clues compatible with most likely consistent explanations

12 / 160

Example

I V = {u, v}where u = white bean, v = red bean
lots of beans (both red and white) found next to all-white bean bag

I largest combined probabilities:
1. farmer market: 0.59
2. kid playing: 0.34
3. UFO fuel: 0.4

I UFO hovering above market square→ farmer market disbanded
⇒ 1 ∼ 2 ∧ 2 ∼ 3 but ¬(1 ∼ 3)

I Observation graph:
I P(u ∪ v | 1 ∨ 2) = 0.93 > 0.74 = P(u ∪ v | 2 ∨ 3)
I ⇒ U = V = {u, v}, E = {{u, v}}
I with scaled edge weight 0.93/(0.93 + 0.74) = 0.55

13 / 160

Where we are and where we are going
I Relations on observations

encoding most likely compatible predictions⇒ graphs

I Similarity
probability / magnitude / intensity⇒weighted graphs

I “Machine intelligence” by analogy:
clustering in graphs

I More refined clustering techniques?
I pull in tools from linear algebra
I work with vectors rather than graphs
I Euclidean embeddings of weighted graphs

I Distances lose “resolution” in high dimensions
I Project into lower dimensional spaces

14 / 160

Outline

Reasoning
Relations, graphs, distances

Clustering
Clustering in graphs
Clustering in Euclidean spaces

Metric embeddings
Fréchet embeddings in `∞
Embeddings in `2

Classic MDS
PCA

Distance Geometry
DGP applications
Complexity of the DGP
Number of solutions
Solution methods

Direct methods
Semidefinite Programming
Diagonal Dominance

Barvinok’s naive algorithm
Isomap for the DGP

Distance resolution limit
When to start worrying

Random projections
More efficient clustering
Random projections in LP

Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression

The end

15 / 160

Clustering
“Machine intelligence”:

analogy based on proximity

16 / 160

Subsection 1

Clustering in graphs

17 / 160

Example graph

I Goal: find partition in densest subgraphs
18 / 160

Modularity clustering
“Modularity is the fraction of the edges that fall within a cluster minus the
expected fraction if edges were distributed at random.”

I “at random” = random graphs over same degree sequence
I degree sequence = (k1, . . . , kn)where ki = |N(i)|
I “expected” = all possible “half-edge” recombinations

I expected edges between u, v: kukv/(2m)wherem = |E|
I mod(u, v) = (Auv − kukv/(2m))

I mod(G) =
∑

{u,v}∈E
mod(u, v)xuv

xuv = 1 if u, v in the same cluster and 0 otherwise

I “Natural extension” to weighted graphs: ku =
∑
v Auv ,m =

∑
uv Auv

[Girvan &Newman 2002]

19 / 160

Use modularity to define clustering
I What is the “best clustering”?

I Maximize discrepancy between actual and expected
“as far away as possible from average”

max
∑

{u,v}∈E
mod(u, v)xuv

∀u ∈ V, v ∈ V xuv ∈ {0, 1}

I Issue: trivial solution x = 1 “one big cluster”

I Idea: treat clusters as cliques (even if zero weight)
then clique partitioning constraints for transitivity

∀i < j < k xij + xjk − xik ≤ 1

∀i < j < k xij − xjk + xik ≤ 1

∀i < j < k − xij + xjk + xik ≤ 1

∀{i, j} 6∈ E xij = 0

if i, j ∈ C and j, k ∈ C then i, k ∈ C [Aloise et al. 2010]

20 / 160

Maximizing the modularity of a graph
I Formulation above is a Mathematical Program (MP)

I MP is a formal language for describing optimization problems
I each MP consists of:

I parameters (input)
I decision variables (output)
I objective function(s)
I explicit and implicit constraints

I broad MP classification:
LP, SDP, cNLP, NLP, MILP, cMINLP, MINLP

I Modularity MaximizationMP is a MILP
I MILP isNP-hard but ∃ technologically advanced solvers
I Otherwise, use (fast) heuristics
I This method decides the number of clusters

[Cafieri et al. 2014]

21 / 160

The resulting clustering

22 / 160

Subsection 2

Clustering in Euclidean spaces

23 / 160

Minimum sum-of-squares clustering
I MSSC, a.k.a. the k-means problem
I Given points p1, . . . , pn ∈ Rm, find clustersC1, . . . , Cd

min
∑
j≤k

∑
i∈Cj

‖pi − centroid(Cj)‖2
2

where centroid(Cj) = 1
|Cj |

∑
i∈Cj

pi

I k-means alg.: given initial clusteringC1, . . . , Cd

1: ∀j ≤ d compute yj = centroid(Cj)
2: ∀i ≤ n, j ≤ d if yj is the closest centroid to pi let xij = 1 else 0
3: ∀j ≤ d updateCj ← {pi | xij = 1 ∧ i ≤ n}
4: repeat until stability

In “k-means”, “k” is the number of clusters, here denoted by d
note that d is given

[MacQueen 1967, Aloise et al. 2012]

24 / 160

MP formulation

min
x,y,s

∑
i≤n

∑
j≤d
‖pi − yj‖2

2 xij

∀j ≤ d 1
sj

∑
i≤n

pixij = yj

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d
∑
i≤n

xij = sj

∀j ≤ d yj ∈ Rm

x ∈ {0, 1}nd
s ∈ Nd

(MSSC)

MINLP: nonconvex terms; continuous, binary and integer variables

25 / 160

Reformulations
The (MSSC) formulation has the same optima as:

min
x,y,P

∑
i≤n

∑
j≤d

Pij xij

∀i ≤ n, j ≤ d ‖pi − yj‖2
2 ≤ Pij

∀j ≤ d
∑
i≤n

pixij =
∑
i≤n

yjxij

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d yj ∈ ([min
i≤n

pia],max
i≤n

pia | a ≤ d)

x ∈ {0, 1}nd
P ∈ [0, PU]nd

I Only nonconvexities:

products of bounded by binary variables

I Caveat: cannot have empty clusters

26 / 160

Products of binary and continuous vars.
I Suppose term xy appears in a formulation
I Assume x ∈ {0, 1} and y ∈ [0, 1] is bounded
I means “either z = 0 or z = y”
I Replace xy by a new variable z
I Adjoin the following constraints:

z ∈ [0, 1]

y − (1− x) ≤ z ≤ y + (1− x)

−x ≤ z ≤ x

I ⇒ Everything’s linear now!

[Fortet 1959]

27 / 160

Products of binary and continuous vars.
I Suppose term xy appears in a formulation

I Assume x ∈ {0, 1} and y ∈ [yL, yU] is bounded
I means “either z = 0 or z = y”
I Replace xy by a new variable z
I Adjoin the following constraints:

z ∈ [min(yL, 0),max(yU , 0)]

y − (1− x) max(|yL|, |yU |) ≤ z ≤ y + (1− x) max(|yL|, |yU |)
−xmax(|yL|, |yU |) ≤ z ≤ xmax(|yL|, |yU |)

I ⇒ Everything’s linear now!

[L. et al. 2009]

28 / 160

MSSC is a convex MINLP
min

x,y,P,χ,ξ

∑
i≤n

∑
j≤d

χij

∀i ≤ n, j ≤ d 0 ≤ χij ≤ Pij
∀i ≤ n, j ≤ qquadPij − (1− xij)PU ≤ χij ≤ xijPU

∀i ≤ n, j ≤ d ‖pi − yj‖22 ≤ Pij ⇐ convex

∀j ≤ d
∑
i≤n

pixij =
∑
i≤n

ξij

∀i ≤ n, j ≤ d yj − (1− xij) max(|yL|, |yU |) ≤ ξij ≤ yj + (1− xij) max(|yL|, |yU |)

∀i ≤ n, j ≤ d − xij max(|yL|, |yU |) ≤ ξij ≤ xij max(|yL|, |yU |)

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d yj ∈ [yL, yU]

x ∈ {0, 1}nd

P ∈ [0, PU]nd

χ ∈ [0, PU]nd

∀i ≤ n, j ≤ d ξij ∈ [min(yL, 0),max(yU , 0)]

yj , ξij , yL, yU are vectors inRm
29 / 160

Solving the MSSC

I k-means
I heuristic (optimum not guaranteed)
I fast, well-known, lots of analyses
I scales reasonably well
I implemented in practically all languages

I convex MINLP
I exact (guaranteed global optima)
I reasonably fast only for small sizes
I scales exponentially
I Solvers: KNITRO (commercial), Bonmin (free)

need an MP language interpreter (AMPL)

30 / 160

Outline

Reasoning
Relations, graphs, distances

Clustering
Clustering in graphs
Clustering in Euclidean spaces

Metric embeddings
Fréchet embeddings in `∞
Embeddings in `2

Classic MDS
PCA

Distance Geometry
DGP applications
Complexity of the DGP
Number of solutions
Solution methods

Direct methods
Semidefinite Programming
Diagonal Dominance

Barvinok’s naive algorithm
Isomap for the DGP

Distance resolution limit
When to start worrying

Random projections
More efficient clustering
Random projections in LP

Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression

The end

31 / 160

Metric embeddings
Mapping metric spaces into each other

32 / 160

Graphs with shortest path metric
E.g. mathematical genealogy skeleton

33 / 160

The distance matrix
(only for a subgraph)

Euler Thibaut Pfaff Lagrange Laplace Möbius Gudermann Dirksen Gauss
Kästner 10 1 1 9 8 2 2 2 2
Euler 11 9 1 3 10 12 12 8

Thibaut 2 10 10 3 1 1 3
Pfaff 8 8 1 3 3 1

Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Möbius 4 4 2

Gudermann 2 4
Dirksen 4

D =

0 10 1 1 9 8 2 2 2 2
10 0 11 9 1 3 10 12 12 8
1 11 0 2 10 10 3 1 1 3
1 9 2 0 8 8 1 3 3 1
9 1 10 8 0 2 9 11 11 7
8 3 10 8 2 0 9 11 11 7
2 10 3 1 9 9 0 4 4 2
2 12 1 3 11 11 4 0 2 4
2 12 1 3 11 11 4 2 0 4
2 8 3 1 7 7 2 4 4 0

34 / 160

Subsection 1

Fréchet embeddings in `∞

35 / 160

`∞ embeddings
I Given a metric space (X, d) with distance matrixD = (dij)

I Consider i-th row δi = (di1, . . . , din) ofD

I Embed i ∈ X by vector δi ∈ Rn

I Define f(X) = {δ1, . . . , δn}, f(d(i, j)) = ‖f(i)− f(j)‖∞

I Thm.: (f(X), `∞) is a metric space with distance matrixD

I If (X, d) not a metric space,
∃i, j ∈ X (d(i, j) 6= ‖δi − δj‖∞)

I Issue: embedding is high-dimensional (Rn)

[Kuratowski 1935]

36 / 160

Proof

I Consider i, j ∈ X with distance d(i, j) = dij
I Then

f(d(i, j)) = ‖δi−δj‖∞ = max
k≤n
|dik−djk| ≤ max

k≤n
|dij| = dij

I max |dik − djk| over k ≤ n is achieved when

k ∈ {i, j} ⇒ f(d(i, j)) = dij

37 / 160

Genealogical similarity example
Fréchet embedding
in the 3 most significant (rotated) dimensions

38 / 160

Subsection 2

Approximate embeddings in `2

39 / 160

Lower dimensional (approximate) embeddings

I Given distance matrix, find approximate Euclidean embedding
I Application: visualize a metric space

e.g. embed genealogy tree in R3 (some errors allowed)
I For visualization purposes,K ∈ {1, 2, 3}

for other purposes, K < n

Classical methods
I Multi-Dimensional Scaling (MDS)
I Principal Component Analysis (PCA)

40 / 160

Classic Multidimensional Scaling

41 / 160

Definition and history

I [I. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la
définition axiomatique d’une classe d’espaces distanciés
vectoriellement applicable sur l’espace de Hilbert”, Ann. Math., 1935]

I Question: Given n× n symmetric matrixD, what are necessary and
sufficient conditions s.t.D is a EDM1 corresponding to n points
x1, . . . , xn ∈ RK with minimumK?

I Main theorem:
Thm.
D = (dij) is an EDM iff 1

2(d2
1i + d2

1j − d2
ij | 2 ≤ i, j ≤ n) is PSD

of rankK

I PSD: positive semidefinite, all eigenvalues≥ 0

1Euclidean Distance Matrix
42 / 160

Gram in function of EDM

I x = (x1, . . . , xn) ⊆ RK , written as n×K matrix
I matrixG = xx> = (xi · xj) is theGram matrix of x
I Schoenberg’s theorem: relation between EDMs and Gram

matrices
G = −1

2
JD2J (§)

I D2 = (d2
ij), J = In − 1

n
11>

43 / 160

Multidimensional scaling (MDS)

I Often get approximate EDMs D̃ from raw data
(dissimilarities, discrepancies, di�erences)

I G̃ = −1
2
JD̃2J is an approximate Grammatrix

I Approximate Gram⇒ spectral decomposition P Λ̃P> has Λ̃ 6≥ 0

I Let Λ be closest PSD diagonal matrix to Λ̃:
zero the negative components of Λ̃

I x = P
√

Λ is an “approximate realization” of D̃

44 / 160

Classic MDS: Main result

1. Prove Schoenberg’s theorem: G = −1
2
JD2J

2. Prove matrix is Gram iff it is PSD

45 / 160

Classic MDS: Proof 1/3
I Assume zero centroidWLOG (can translate x as needed)
I Expand: d2ij = ‖xi − xj‖22 = (xi − xj)(xi − xj) = xixi + xjxj − 2xixj (∗)
I Aim at “inverting” (∗) to express xixj in function of d2ij

I Sum (∗) over i:
∑
i d

2
ij =

∑
i xixi + nxjxj − 2xj���:

0 by zero centroid∑
i xi

I Similarly for j and divide by n, get:

1

n

∑
i≤n

d2ij =
1

n

∑
i≤n

xixi + xjxj (†)

1

n

∑
j≤n

d2ij = xixi +
1

n

∑
j≤n

xjxj (‡)

I Sum (†) over j, get:

1

n

∑
i,j

d2ij = n
1

n

∑
i

xixi +
∑
j

xjxj = 2
∑
i

xixi

I Divide by n, get:
1

n2

∑
i,j

d2ij =
2

n

∑
i

xixi (∗∗) [Borg 2010]

46 / 160

Classic MDS: Proof 2/3
I Rearrange (∗), (†), (‡) as follows:

2xixj = xixi + xjxj − d2ij (1)

xixi =
1

n

∑
j

d2ij −
1

n

∑
j

xjxj (2)

xjxj =
1

n

∑
i

d2ij −
1

n

∑
i

xixi (3)

I Replace LHS of Eq. (2)-(3) in Eq. (1), get

2xixj =
1

n

∑
k

d2ik +
1

n
d2kj − d

2
ij −

2

n

∑
k

xkxk

I By (∗∗) replace 2
n

∑
i
xixi with 1

n2

∑
i,j
d2ij , get

2xixj =
1

n

∑
k

(d2ik + d2kj)− d
2
ij −

1

n2

∑
h,k

d2hk (§)

which expresses xixj in function ofD

47 / 160

Classic MDS: Proof 3/3
I Gram ⊆ PSD

I x is an n×K real matrix
I G = xx> its Grammatrix
I For each y ∈ Rn we have

yGy> = y(xx>)y> = (yx)(x>y>) = (yx)(yx)> = ‖yx‖22 ≥ 0

I ⇒ G � 0

I PSD ⊆ Gram
I LetG � 0 be n× n
I Spectral decomposition:G = PΛP>

(P orthogonal, Λ ≥ 0 diagonal)

I Λ ≥ 0⇒
√

Λ exists
I G = PΛP> = (P

√
Λ)(
√

Λ
>
P>) = (P

√
Λ)(P

√
Λ)
>

I Let x = P
√

Λ, thenG is the Grammatrix of x
48 / 160

Principal Component Analysis

49 / 160

Principal Component Analysis (PCA)

I MDS with fixed K

I Motivation: “draw” x = P
√

Λ in 2D or 3D
but rank(Λ) = K > 3

I Only keep 2 or 3 largest components of Λ
zero the rest

I Get realization in desired space

[Pearson 1901]

50 / 160

Mathematicians genealogy in 2D/3D

In 2D In 3D

51 / 160

Outline

Reasoning
Relations, graphs, distances

Clustering
Clustering in graphs
Clustering in Euclidean spaces

Metric embeddings
Fréchet embeddings in `∞
Embeddings in `2

Classic MDS
PCA

Distance Geometry
DGP applications
Complexity of the DGP
Number of solutions
Solution methods

Direct methods
Semidefinite Programming
Diagonal Dominance

Barvinok’s naive algorithm
Isomap for the DGP

Distance resolution limit
When to start worrying

Random projections
More efficient clustering
Random projections in LP

Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression

The end

52 / 160

Distance Geometry
Embedding weighted graphs in

Euclidean spaces

53 / 160

Distance Geometry Problem (DGP)
Given K ∈ N and G = (V,E, d) with d : E → R+,
find x : V → RK s.t.

∀{i, j} ∈ E ‖xi − xj‖2
2 = d2

ij

Given a weighted graph , draw it so edges are drawn as segments

with lengths=weights

[Cayley 1841, Menger 1928, Schoenberg 1935, Yemini 1978]

54 / 160

Subsection 1

DGP applications

55 / 160

Some applications

I clock synchronization (K = 1)
I sensor network localization (K = 2)
I molecular structure from distance data (K = 3)
I autonomous underwater vehicles (K = 3)
I distance matrix completion (whateverK)

56 / 160

Clock synchronization

From [Singer,Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from a partial
measurements of their time di�erences

I K = 1

I V : timestamps
I {u, v} ∈ E if known time difference between u, v
I d: values of the time differences

Used in time synchronization of distributed networks

57 / 160

Clock synchronization

58 / 160

Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to locate a set of
geographically distributed objects using measurements of the

distances between some object pairs

I K = 2

I V : (mobile) sensors
I {u, v} ∈ E iff distance between u, v is measured
I d: distance values

Used whenever GPS not viable (e.g. underwater)
duv ∝∼ battery consumption in P2P communication betw. u, v

59 / 160

Sensor network localization

60 / 160

Molecular structure from distance data
From [L. et al., SIAM Rev., 2014]

I K = 3

I V : atoms
I {u, v} ∈ E iff distance between u, v is known
I d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances/ 5.5measured approximately by NMR

61 / 160

Subsection 2

Complexity of the DGP

62 / 160

Complexity class

I DGP1 with d : E → Q+ is inNP
I if instance YES ∃ realization x ∈ Rn×1

I if some component xi 6∈ Q translate x so xi ∈ Q
I consider some other xj
I let ` = (length sh. path p : i→ j) =

∑
{u,v}∈p

duv ∈ Q

I then xj = xi ± `→ xj ∈ Q
I ⇒ verification of

∀{i, j} ∈ E |xi − xj | = dij

in polytime
I DGPK may not be inNP forK > 1

don’t know how to verify ‖xi − xj‖2 = dij for x 6∈ QnK

63 / 160

Hardness

I Want to show DGP1 isNP-hard by reduction from Partition
Given a = (a1, . . . , an) ∈ Nn, ∃ I ⊆ {1, . . . , n} s.t.

∑
i∈I

ai =
∑
i6∈I

ai ?

I a −→ cycleC
V (C) = {1, . . . , n},E(C) = {{1, 2}, . . . , {n, 1}}

I For i < n let di,i+1 = ai
dn,n+1 = dn1 = an

I E.g. for a = (1, 4, 1, 3, 3), get cycle graph:

[Saxe, 1979]

64 / 160

Partition is YES⇒DGP1 is YES (1/2)

I Given: I ⊂ {1, . . . , n} s.t.
∑
i∈I
ai =

∑
i 6∈I
ai

I Construct: realization x ofC inR
1. x1 = 0 // start

2. induction step: suppose xi known
if i ∈ I

let xi+1 = xi + di,i+1 // go right

else
let xi+1 = xi − di,i+1 // go left

I Correctness proof: by the same induction
but careful when i = n: have to show xn+1 = x1

65 / 160

Partition is YES⇒DGP1 is YES (2/2)

(1) =
∑
i∈I

(xi+1 − xi) =
∑
i∈I

di,i+1 =

=
∑
i∈I

ai =
∑
i 6∈I

ai =

=
∑
i 6∈I

di,i+1 =
∑
i 6∈I

(xi − xi+1) = (2)

(1) = (2)⇒
∑
i∈I

(xi+1 − xi) =
∑
i 6∈I

(xi − xi+1)⇒
∑
i≤n

(xi+1 − xi) = 0

⇒ (xn+1 − xn) + (xn − xn−1) + · · ·+ (x3 − x2) + (x2 − x1) = 0

⇒ xn+1 = x1

66 / 160

Partition is NO⇒DGP1 is NO
I By contradiction: suppose DGP1 is YES, x realization ofC
I F = {{u, v} ∈ E(C) | xu ≤ xv},
E(C) r F = {{u, v} ∈ E(C) | xu > xv}

I Trace x1, . . . , xn: follow edges in F (→) and inE(C) r F (←)

∑
{u,v}∈F

(xv − xu) =
∑

{u,v}6∈F

(xu − xv)

∑
{u,v}∈F

|xu − xv| =
∑

{u,v}6∈F

|xu − xv|

∑
{u,v}∈F

duv =
∑

{u,v}6∈F

duv

I Let J = {i < n | {i, i+ 1} ∈ F} ∪ {n | {n, 1} ∈ F}

⇒
∑
i∈J

ai =
∑
i 6∈J

ai

I So J solves Partition instance, contradiction
I ⇒DGP is NP-hard; since∈ NP, DGP1 is also NP-complete

67 / 160

Subsection 3

Number of solutions

68 / 160

Number of solutions

I (G,K): DGP instance

I X̃ ⊆ RKn: set of solutions

I Congruence: composition of translations, rotations, reflections

I C = set of congruences inRK

I x ∼ y means ∃ρ ∈ C (y = ρx):
distances in x are preserved in y through ρ

I ⇒ if |X̃| > 0, |X̃| = 2ℵ0

69 / 160

Number of solutions modulo congruences

I Congruence is an equivalence relation∼ on X̃
(reflexive, symmetric, transitive)

I Partitions X̃ into equivalence classes

I X = X̃/∼: sets of representatives of equivalence classes

I Focus on |X| rather than |X̃|

70 / 160

Examples

71 / 160

Rigidity, flexibility and |X|

I infeasible⇔ |X| = 0

I rigid graph⇔ |X| < ℵ0

I globally rigid graph⇔ |X| = 1

I flexible graph⇔ |X| = 2ℵ0

I DMDGP graphs⇔ |X| a power of 2

I |X| = ℵ0: impossible byMilnor’s theorem

[Milnor 1964, L. et al. 2013]

72 / 160

Milnor’s theorem implies |X| 6= ℵ0

I System S of polynomial equations of degree 2

∀i ≤ m pi(x1, . . . , xnK) = 0

I LetX be the set of x ∈ RnK satisfying S

I Number of connected components ofX isO(3nK)
[Milnor 1964]

I If |X| is countably∞ thenG cannot be flexible
⇒ incongruent elts of X are separate connected components
⇒ byMilnor’s theorem, there’s finitely many of them

73 / 160

Subsection 4

MP based solution methods

74 / 160

Direct methods

75 / 160

System of quadratic equations

∀{u, v} ∈ E ‖xu − xv‖2 = d2
uv (4)

Computationally: useless
(less than 10 vertices withK = 3 using Octave)

76 / 160

Unconstrained Global Optimization

min
x

∑
{u,v}∈E

(‖xu − xv‖2 − d2
uv)

2 (5)

Globally optimal obj. fun. value of (5) is 0 iff x solves (4)

Computational experiments in [L. et al., 2006]:
I GO solvers from 10 years ago

I randomly generated protein data: ≤ 50 atoms

I cubic crystallographic grids: ≤ 64 atoms

77 / 160

Constrained global optimization
I minx

∑
{u,v}∈E

|‖xu − xv‖2 − d2uv| exactly reformulates (4)

I Relax objective f to concave part, remove constant term, rewritemin−f
asmax f

I Reformulate convex part of obj. fun. to convex constraints

I Exact reformulation

maxx

∑
{u,v}∈E

‖xu − xv‖2

∀{u, v} ∈ E ‖xu − xv‖2 ≤ d2uv

}
(6)

Theorem (Activity)
At a glob. opt. x∗ of a YES instance, all constraints of (6) are active

[Mencarelli et al. 2017]

78 / 160

Semidefinite Programming

79 / 160

Linearization

∀{i, j} ∈ E ‖xi − xj‖2
2 = d2

ij

⇒ ∀{i, j} ∈ E ‖xi‖2
2 + ‖xj‖2

2 − 2xi · xj = d2
ij

⇒
{
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

X = x x>

X = x x> ⇔ ∀i, j Xij = xixj

80 / 160

Relaxation

X = x x>

⇒ X − x x> = 0

(relax) ⇒ X − x x> � 0

Schur(X, x) =

(
IK x>

x X

)
� 0

If x does not appear elsewhere⇒ get rid of it (e.g. choose x = 0):

replace Schur(X, x) � 0 by X � 0

Reason for this weird relaxation: there are efficient solvers for Semidefinite Programming (SDP)

81 / 160

SDP relaxation

minF •X
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

X � 0

How do we choose F ?

82 / 160

Some possible objective functions

I For protein conformation:

max
∑
{i,j}∈E

(Xii +Xjj − 2Xij)

with= changed to≤ in constraints (or min and≥) [Dias & L. 2016]
“push-and-pull” the realization

I [Ye, 2003], application to wireless sensors localization

min tr(X)

improve covariance estimator accuracy

I How about “just random”? [Barvinok 1995]

83 / 160

Computational evaluation

I Download protein files from Protein Data Bank (PDB)
they contain atom realizations

I Mimick a Nuclear Magnetic Resonance experiment
Keep only pairwise distances < 5.5

I Try and reconstruct the protein shape from those weighted graphs
I Quality evaluation of results:

I LDE(x) = max
{i,j}∈E

| ‖xi − xj‖ − dij |

I MDE(x) = 1
|E|

∑
{i,j}∈E

| ‖xi − xj‖ − dij |

84 / 160

Objective function tests

SDP solved withMosek

SDP + PCA
Instance LDE MDE CPU

Name |V | |E| PP Ye Rnd PP Ye Rnd PP Ye Rnd
C0700odd.1 15 39 3.31 4.57 4.44 1.92 2.52 2.50 0.13 0.07 0.08
C0700odd.C 36 242 10.61 4.85 4.85 3.02 3.02 3.02 0.69 0.43 0.44
C0700.odd.G 36 308 4.57 4.77 4.77 2.41 2.84 2.84 0.86 0.54 0.54
C0150alter.1 37 335 4.66 4.88 4.86 2.52 3.00 3.00 0.97 0.59 0.58
C0080create.1 60 681 7.17 4.86 4.86 3.08 3.19 3.19 2.48 1.46 1.46
tiny 37 335 4.66 4.88 4.88 2.52 3.00 3.00 0.97 0.60 0.60
1guu-1 150 959 10.20 4.93 4.93 3.43 3.43 3.43 9.23 5.68 5.70

SDP + PCA + NLP
Instance LDE MDE CPU

Name |V | |E| PP Ye Rnd PP Ye Rnd PP Ye Rnd
1b03 89 456 0.00 0.00 0.00 0.00 0.00 0.00 8.69 6.28 9.91
1crn 138 846 0.81 0.81 0.81 0.07 0.07 0.07 33.33 31.32 44.48
1guu-1 150 959 0.97 4.93 0.92 0.10 3.43 0.08 56.45 7.89 65.33

[Dias & L., 2016]

85 / 160

Empirical considerations

I Ye very fast but often imprecise
I Random good but nondeterministic
I Push-and-Pull relaxesXii +Xjj − 2Xij = d2

ij to
Xii +Xjj − 2Xij ≥ d2

ij , easier to satisfy feasibility
. . . will be useful in DDP later on

Focus on Push-and-Pull objective

86 / 160

Diagonally Dominant Programming

87 / 160

When SDP solvers hit their size limit

I SDP solver: technological bottleneck
I How can we best use an LP solver?
I Diagonally Dominant (DD) matrices are PSD
I Not vice versa: inner approximate PSD cone Y � 0

I Idea by A.A. Ahmadi and co-authors

[Ahmadi &Majumdar 2014, Ahmadi &Hall 2015]

88 / 160

Diagonally dominant matrices

n× nmatrixX is DD if

∀i ≤ n Xii ≥
∑
j 6=i

|Xij|.

E.g.

1 0.1 −0.2 0 0.04 0

0.1 1 −0.05 0.1 0 0
−0.2 −0.05 1 0.1 0.01 0

0 0.1 0.1 1 0.2 0.3
0.04 0 0.01 0.2 1 −0.3

0 0 0 0.3 −0.3 1

89 / 160

DDLinearization

∀i ≤ n Xii ≥
∑
j 6=i

|Xij| (∗)

I introduce “sandwiching” variable T
I write |X| as T
I add constraints−T ≤ X ≤ T

I by≥ constraint sense, write (∗) as

Xii ≥
∑
j 6=i

Tij

90 / 160

DD Programming (DDP)

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2
ij

X is DD

}

⇒

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2

ij

∀i ≤ n
∑
j≤n
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T

91 / 160

DDP formulation for the DGP

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2
ij

∀i ≤ n
∑
j≤n
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T
T ≥ 0

[Dias & L., 2016]

92 / 160

SDP vs. DDP: tests

Using “push-and-pull” objective in SDP
SDP solved withMosek, DDP with CPLEX

SDP/DDP + PCA

SDP DDP
Instance LDE MDE CPU modl/soln LDE MDE CPU modl/soln
C0700odd.1 0.79 0.34 0.06/0.12 0.38 0.30 0.15/0.15
C0700.odd.G 2.38 0.89 0.57/1.16 1.86 0.58 1.11/0.95
C0150alter.1 1.48 0.45 0.73/1.33 1.54 0.55 1.23/1.04
C0080create.1 2.49 0.82 1.63/7.86 0.98 0.67 3.39/4.07
1guu-1 0.50 0.15 6.67/684.89 1.00 0.85 37.74/153.17

93 / 160

Subsection 5

Barvinok’s naive algorithm

94 / 160

Concentration of measure

From [Barvinok, 1997]
The value of a “well behaved” function at a random point
of a “big” probability space X is “very close” to the mean
value of the function.

and
In a sense, measure concentration can be considered as an
extension of the law of large numbers.

95 / 160

Concentration of measure

Given Lipschitz function f : X → R s.t.

∀x, y ∈ X |f(x)− f(y)| ≤ L‖x− y‖2

for someL ≥ 0, there is concentration of measure if ∃ constants c, C
s.t.

∀ε > 0 Px(|f(x)− E(f)| > ε) ≤ c e−Cε
2/L2

≡ “discrepancy from mean is unlikely”

96 / 160

Barvinok’s theorem

Consider:

I for each k ≤ m, manifoldsXk = {x ∈ Rn | x>Qkx = ak}
I a feasibility problem x ∈

⋂
k≤m
Xk

I its SDP relaxation ∀x ≤ m (Qk •X = ak)with soln. X̄

Let T = factor(X̄) , y ∼ Nn(0, 1) and x′ = Ty

Then ∃c and n0 ∈ N s.t. if n ≥ n0,

Prob
(
∀k ≤ m dist(x′,Xk) ≤ c

√
‖X̄‖2 lnn

)
≥ 0.9.

IDEA: since x′ is “close” to eachXk
try local Nonlinear Programming (NLP)

97 / 160

Application to the DGP

I ∀{i, j} ∈ E Xij = {x ∈ RnK | ‖xi − xj‖2
2 = d2

ij}

I DGP can be written as
⋂

{i,j}∈E
Xij

I SDP relaxationXii +Xjj − 2Xij = d2
ij ∧X � 0 with

soln. X̄

I Difference with Barvinok: x ∈ RKn, rk(X̄) ≤ K

I IDEA: sample y ∼ N nK(0, 1√
K

)

I Thm. Barvinok’s theorem works in rankK
[L. & Vu, unpublished]

98 / 160

The heuristic

1. Solve SDP relaxation of DGP, get soln. X̄
use DDP+LP if SDP+IPM too slow

2. a. T = factor(X̄)
b. y ∼ N nK(0, 1√

K
)

c. x′ = Ty

3. Use x′ as starting point for a local NLP solver on formulation

min
x

∑
{i,j}∈E

(
‖xi − xj‖2 − d2

ij

)2

and return improved solution x

[Dias & L., 2016]

99 / 160

SDP+Barvinok vs. DDP+Barvinok

SDP DDP
Instance LDE MDE CPU LDE MDE CPU
C0700odd.1 0.00 0.00 0.63 0.00 0.00 1.49
C0700.odd.G 0.00 0.00 21.67 0.42 0.01 30.51
C0150alter.1 0.00 0.00 29.30 0.00 0.00 34.13
C0080create.1 0.00 0.00 139.52 0.00 0.00 141.49
1b03 0.18 0.01 132.16 0.38 0.05 101.04
1crn 0.78 0.02 800.67 0.76 0.04 522.60
1guu-1 0.79 0.01 1900.48 0.90 0.04 667.03

Most of the CPU time taken by local NLP solver

100 / 160

Subsection 6

Isomap for the DGP

101 / 160

Isomap for DG

1. LetD′ be the (square) weighted adjacency matrix ofG
2. CompleteD′ to approximate EDM D̃

3. MDS/PCA on D̃⇒ obtain embedding x ∈ RK

for given K

Vary Step 2 to generate Isomap heuristics

[Tenenbaum et al. 2000, L. & D’Ambrosio 2017]

102 / 160

Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm onG
(classic Isomap)

B. Find a spanning tree (SPT) ofG, compute any embedding x̄ ∈ RK for STP,
use its EDM

C. Solve a push-and-pull SDP relaxation, get soln. x̄ ∈ Rn, use its EDM

D. Solve an SDP relaxation with “Barvinok objective”, find x̄ ∈ Rr (with
r ≤ b(

√
8|E|+ 1− 1)/2c), use its EDM

haven’t really talked about this, sorry

Post-processing: x̃ as starting point for NLP descent in GO formulation

[L. & D’Ambrosio 2017]

103 / 160

Results
Comparison with dgsol [Moré, Wu 1997]

104 / 160

Large instances

Instance mde lde CPU
Name |V | |E| IsoNLP dgsol IsoNLP dgsol IsoNLP dgsol
water 648 11939 0.005 0.15 0.557 0.81 26.98 15.16
3al1 678 17417 0.036 0.007 0.884 0.810 170.91 210.25
1hpv 1629 18512 0.074 0.078 0.936 0.932 374.01 60.28
il2 2084 45251 0.012 0.035 0.910 0.932 465.10 139.77
1tii 5684 69800 0.078 0.077 0.950 0.897 7400.48 454.375

105 / 160

Outline

Reasoning
Relations, graphs, distances

Clustering
Clustering in graphs
Clustering in Euclidean spaces

Metric embeddings
Fréchet embeddings in `∞
Embeddings in `2

Classic MDS
PCA

Distance Geometry
DGP applications
Complexity of the DGP
Number of solutions
Solution methods

Direct methods
Semidefinite Programming
Diagonal Dominance

Barvinok’s naive algorithm
Isomap for the DGP

Distance resolution limit
When to start worrying

Random projections
More efficient clustering
Random projections in LP

Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression

The end

106 / 160

Distance resolution limit
Clustering in high dimensions is

unstable

107 / 160

Nearest Neighbours
k-Nearest Neighbours (k-NN).Given:

I k ∈ N
I a distance function d : Rn × Rn → R+

I a set X ⊂ Rn

I a point z ∈ Rn r X ,

find the subset Y ⊂ X such that:

(a) |Y| = k

(b) ∀y ∈ Y, x ∈ X (d(z, y) ≤ d(z, x))

I basic problem in data science
I pattern recognition, computational geometry, machine learning, data compression, robotics,

recommender systems, information retrieval, natural language processing and more

I Example: Used in Step 2 of k-means:
assign points to closest centroid

[Cover &Hart 1967]

108 / 160

With random variables

I Consider 1-NN
I Let ` = |X |
I Distance function family
{dm : Rn × Rn → R+}m

I For eachm:
I random variableZm with some distribution overRn
I for i ≤ `, random variableXm

i with some distrib. overRn
I Xm

i iid w.r.t. i,Zm independent of allXm
i

I Dm
min = min

i≤`
dm(Zm, Xm

i)

I Dm
max = max

i≤`
dm(Zm, Xm

i)

109 / 160

Distance Instability Theorem

I Let p > 0 be a constant
I If

∃i ≤ ` (dm(Zm, Xm
i))p converges asm→∞

then, for any ε > 0,

closest and furthest point are at about the same distance

Note “∃i” suffices since ∀mwe haveXm
i iid w.r.t. i

[Beyer et al. 1999]

110 / 160

Distance Instability Theorem

I Let p > 0 be a constant
I If

∃i ≤ ` lim
m→∞

Var((dm(Zm, Xm
i))p) = 0

then, for any ε > 0,

lim
m→∞

P(Dm
max ≤ (1 + ε)Dm

min) = 1

Note “∃i” suffices since ∀mwe haveXm
i iid w.r.t. i

[Beyer et al. 1999]

111 / 160

Preliminary results

I Lemma. {Bm}m seq. of rnd. vars with finite variance and
lim
m→∞

E(Bm) = b ∧ lim
m→∞

Var(Bm) = 0; then

∀ε > 0 lim
m→∞

P(‖Bm − b‖ ≤ ε) = 1

denotedBm →P b

I Slutsky’s theorem. {Bm}m seq. of rnd. vars and g a continuous
function; ifBm →P b and g(b) exists, then g(Bm)→P g(b)

I Corollary. If {Am}m, {Bm}m seq. of rnd. vars. s.t.Am →P a

andBm →P b 6= 0 then {Am
Bm
}m →P

a
b

112 / 160

Proof

1. µm = E((dm(Zm, Xm
i))p) independent of i (since allXm

i iid)

2. Vm =
(dm(Zm,Xm

i))p

µm
→P 1:

I E(Vm) = 1 (rnd. var. over mean)⇒ limm E(Vm) = 1
I Hypothesis of thm.⇒ limm Var(Vm) = 0
I Lemma⇒ Vm →P 1

3. Dm = ((dm(Zm, Xm
i))p | i ≤ `)→P 1 (Xm

i iid)

4. Slutsky’s thm.⇒ min(Dm)→P min(1) = 1, simy formax

5. Corollary⇒ max(Dm)
min(Dm)

→P 1

6. Dmmax
Dmmin

= µm max(Dm)
µm min(Dm)

→P 1

7. Result follows (defn. of→P andDm
max ≥ Dm

min)

113 / 160

Subsection 1

When to start worrying

114 / 160

When it applies

I iid random variables from any distribution
I Particular forms of correlation

e.g.Ui ∼ Uniform(0,
√
i),X1 = U1,Xi = Ui + (Xi−1/2) for i > 1

I Variance tending to zero
e.g.Xi ∼ N(0, 1/i)

I Discrete uniform distribution onm-dimensional hypercube
for both data and query

I Computational experiments: instability already with n > 15

115 / 160

Example of k-means inR100

116 / 160

. . . and when it doesn’t

I Complete linear dependence on all distributions
can be reduced to NN in 1D

I Exact and approximate matching
query point = (or ≈) data point

I Query point in a well-separated cluster in data
I Implicitly low dimensionality

project; but NN must be stable in lower dim.

117 / 160

Outline

Reasoning
Relations, graphs, distances

Clustering
Clustering in graphs
Clustering in Euclidean spaces

Metric embeddings
Fréchet embeddings in `∞
Embeddings in `2

Classic MDS
PCA

Distance Geometry
DGP applications
Complexity of the DGP
Number of solutions
Solution methods

Direct methods
Semidefinite Programming
Diagonal Dominance

Barvinok’s naive algorithm
Isomap for the DGP

Distance resolution limit
When to start worrying

Random projections
More efficient clustering
Random projections in LP

Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression

The end

118 / 160

Random projections
The mathematics of big data

119 / 160

The magic of random projections

I “Mathematics of big data”
I In a nutshell

I Clustering on A′ rather than A
yields approx. same results with arbitrarily high probability (wahp)

[Johnson & Lindenstrauss, 1984]

120 / 160

The magic of random projections

I “Mathematics of big data”
I In a nutshell

1. Given pointsAi, . . . , An ∈ Rm withm large and ε ∈ (0, 1)

2. Pick “appropriate” k ≈ O(1
ε2

lnn)

3. Sample k × dmatrix T (each comp. i.i.d. N (0, 1√
k
))

4. Consider projected pointsA′i = TAi ∈ Rk for i ≤ n

5. With prob→ 1 exponentially fast as k →∞

∀i, j ≤ n (1−ε)‖Ai−Aj‖2 ≤ ‖A′i−A′j‖2 ≤ (1+ε)‖Ai−Aj‖2

[Johnson & Lindenstrauss, 1984]

121 / 160

The shape of a set of points

I Lose dimensions but not too much accuracy
GivenA1, . . . , An ∈ Rm find k � m and points
A′1, . . . , A

′
n ∈ Rk s.t. A andA′ “have almost the same shape”

I What is the shape of a set of points?

A’

A

congruent sets have the same shape
I Approximate congruence⇔ distortion:
A,A′ have almost the same shape if
∀i < j ≤ n (1− ε)‖Ai −Aj‖ ≤ ‖A′i −A′j‖ ≤ (1 + ε)‖Ai −Aj‖
for some small ε > 0

Assume norms are all Euclidean

122 / 160

Losing dimensions= “projection”

In the plane, hopeless

In 3D: no better

123 / 160

Johnson-Lindenstrauss Lemma

Thm.
GivenA ⊆ Rm with |A| = n and ε > 0 there is k ∼ O(1

ε2
lnn) and

a k ×mmatrix T s.t.

∀x, y ∈ A (1− ε)‖x− y‖ ≤ ‖Tx− Ty‖ ≤ (1 + ε)‖x− y‖

If k×mmatrix T is sampled componentwise fromN(0, 1√
k
), thenA

and TA have almost the same shape

[Johnson & Lindenstrauss, 1984]

124 / 160

Sketch of a JLL proof by pictures
Thm.
Let T be a k×m rectangular matrix with each

component sampled fromN(0, 1√
k

), andu ∈

Rm s.t. ‖u‖ = 1. Then E(‖Tu‖2) = 1

125 / 160

Sampling to desired accuracy
I Distortion has low probability:

∀x, y ∈ A P(‖Tx− Ty‖ ≤ (1− ε)‖x− y‖) ≤ 1

n2

∀x, y ∈ A P(‖Tx− Ty‖ ≥ (1 + ε)‖x− y‖) ≤ 1

n2

I Probability ∃ pair x, y ∈ A distorting Euclidean distance:
union bound over

(
n
2

)
pairs

P(¬(A and TA have almost the same shape)) ≤
(n

2

) 2

n2
= 1−

1

n

P(A and TA have almost the same shape) ≥
1

n

⇒ re-sampling T gives JLL with arbitrarily high probability

[Dasgupta & Gupta, 2002]

126 / 160

In practice

I Empirically, sample T very few times (e.g. once will do!)
on average ‖Tx− Ty‖ ≈ ‖x− y‖, and distortion decreases
exponentially with n

We only need a logarithmic number of dimensions in function of the
number of points

Surprising fact:
k is independent of the original number of dimensionsm

127 / 160

Subsection 1

More efficient clustering

128 / 160

Clustering Google images

[L. & Lavor, in press]

129 / 160

Recall k-means

I Input:X = set of images (as vectors inR|pixels|)
I Output: a k-partition ofX

1. pick k random centroid candidates
2. assign points to closest centroid
3. recompute correct centroid for assigned points
4. repeat from Step 2 until stability

130 / 160

Without random projections

VHimg = Map[Flatten[ImageData[#]] &, Himg];

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
Out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

Too slow!

131 / 160

With random projections

Get["Projection.m"];
VKimg = JohnsonLindenstrauss[VHimg, 0.1];
VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]
Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

From 0.405 CPU time to 0.00232
Same clustering

132 / 160

Works on the MSSCMP formulation too!

min
x,y,s

∑
i≤n

∑
j≤d
‖Tpi − Tyj‖2

2 xij

∀j ≤ d 1
sj

∑
i≤n

Tpixij = Tyj

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d
∑
i≤n

xij = sj

∀j ≤ d yj ∈ Rm

x ∈ {0, 1}nd
s ∈ Nd

where T is a k ×m random projector

133 / 160

Works on the MSSCMP formulation too!

min
x,y′,s

∑
i≤n

∑
j≤d
‖Tpi − y′j‖2

2 xij

∀j ≤ d 1
sj

∑
i≤n

Tpixij = y′j

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d
∑
i≤n

xij = sj

∀j ≤ d y′j ∈ Rk

x ∈ {0, 1}nd
s ∈ Nd

(MSSC′)

I where k = O(1
ε2

lnn)

I less data, |y′| < |y| ⇒ get solutions faster
I Yields smaller cMINLP

134 / 160

Subsection 2

Random projections in Linear Programming

135 / 160

The gist

I LetA, b be very large, consider LP

min{c>x | Ax = b ∧ x ≥ 0}

I T short & fat normally sampled
I Then

Ax = b ∧ x ≥ 0 ⇔ TAx = Tb ∧ x ≥ 0

wahp

[Vu & al. to appear]

136 / 160

Losing dimensions
Restricted Linear Membership (RLMX)
GivenA1, . . . , An, b ∈ Rm andX ⊆ Rn, ∃ ? x ∈ X s.t.

b =
∑
i≤n

xiAi

Given X ⊆ Rn and b, A1, . . . , An ∈ Rm, find k � m,
b′, A′1, . . . , A

′
n ∈ Rk such that:

∃x ∈ X b =
∑
i≤n

xiAi︸ ︷︷ ︸
high dimensional

iff ∃x ∈ X b′ =
∑
i≤n

xiA
′
i︸ ︷︷ ︸

low dimensional

with high probability

137 / 160

Projecting feasibility

138 / 160

Projecting infeasibility (easy cases)
Thm.
T : Rm → Rk a JLL random projection, b, A1, . . . , An ∈ Rm a RLMX instance.
For any given vector x ∈ X , we have:

(i) If b =
n∑

i=1

xiAi then Tb =
n∑

i=1

xiTAi

(ii) If b 6=
n∑

i=1

xiAi then P
(
Tb 6=

n∑
i=1

xiTAi

)
≥ 1− 2e−Ck

(iii) If b 6=
n∑

i=1

yiAi for all y ∈ X ⊆ Rn, where |X| is finite, then

P
(
∀y ∈ X Tb 6=

n∑
i=1

yiTAi

)
≥ 1− 2|X|e−Ck

for some constant C > 0 (independent of n, k).
[Vu & al. to appear, arXiv:1507.00990v1/math.OC]

139 / 160

Separating hyperplanes

When |X| is large, project separating hyperplanes instead

I ConvexC ⊆ Rm, x 6∈ C: then ∃ hyperplane c separating x,C
I In particular, true ifC = cone(A1, . . . , An) forA ⊆ Rm

I We can show x ∈ C ⇔ Tx ∈ TC with high probability

I As above, if x ∈ C then Tx ∈ TC by linearity of T
Difficult part is proving the converse

We can also project point-to-cone distances

140 / 160

Projecting the separation
Thm.
Given c, b, A1, . . . , An ∈ Rm of unit norm s.t. b /∈ cone{A1, . . . , An} pointed, ε > 0, c ∈ Rm
s.t. c>b < −ε, c>Ai ≥ ε (i ≤ n), and T a random projector:

P
[
Tb /∈ cone{TA1, . . . , TAn}

]
≥ 1− 4(n+ 1)e−C(ε

2−ε3)k

for some constant C.
Proof
Let A be the event that T approximately preserves ‖c − χ‖2 and ‖c + χ‖2 for all χ ∈
{b, A1, . . . , An}. Since A consists of 2(n + 1) events, by the JLL Corollary (squared version) and
the union bound, we get

P(A) ≥ 1− 4(n+ 1)e−C(ε
2−ε3)k

Now consider χ = b

〈Tc, T b〉 =
1

4
(‖T (c+ b)‖2 − ‖T (c− b)‖2)

by JLL ≤
1

4
(‖c+ b‖2 − ‖c− b‖2) +

ε

4
(‖c+ b‖2 + ‖c− b‖2)

= c>b+ ε < 0

and similarly 〈Tc, TAi〉 ≥ 0

[Vu et al. to appear, arXiv:1507.00990v1/math.OC]

141 / 160

The feasibility projection theorem

Thm.
Given δ > 0, ∃ sufficiently largem ≤ n such that:

for any LFP inputA, bwhereA ism× n
we can sample a random k ×mmatrix T with k � m and

P(orig. LFP feasible⇐⇒ proj. LFP feasible) ≥ 1− δ

142 / 160

Projecting optimality

143 / 160

Notation

I P ≡ min{cx | Ax = b ∧ x ≥ 0} (original problem)

I TP ≡ min{cx | TAx = Tb ∧ x ≥ 0} (projected problem)

I v(P) = optimal objective function value of P

I v(TP) = optimal objective function value of TP

144 / 160

The optimality projection theorem
I Assume feas(P) is bounded
I Assume all optima of P satisfy

∑
j xj ≤ θ for some given

θ > 0
(prevents cones from being “too flat”)

Thm.
Given δ > 0,

v(P)− δ ≤ v(TP) ≤ v(P) (∗)

holds wahp
in fact (∗) holds with prob. 1− 4ne−C(ε

2−ε3)k where ε = δ/(2(θ+ 1)η)

and η = O(‖y‖2)where y is a dual optimal solution of P having
minimum norm

[Vu & al. to appear]

145 / 160

The easy part

Show v(TP) ≤ v(P):
I Constraints of P : Ax = b ∧ x ≥ 0

I Constraints of TP : TAx = Tb ∧ x ≥ 0

I ⇒ constraints of TP are lin. comb. of constraints of P

I ⇒ any solution of P is feasible in TP
(btw, the converse holds almost never)

I P and TP have the same objective function

I ⇒ TP is a relaxation of P ⇒ v(TP) ≤ v(P)

146 / 160

The hard part (sketch)
I Eq. (7) equivalent to P for δ = 0

cx = v(P)− δ
Ax = b
x ≥ 0

 (7)

Note: for δ > 0, Eq. (7) is infeasible

I By feasibility projection theorem,

cx = v(P)− δ
TAx = Tb

x ≥ 0

is infeasible wahp for δ > 0

I Hence cx < v(P)− δ ∧ TAx = Tb ∧ x ≥ 0 infeasible wahp
I ⇒ cx ≥ v(P)− δ holds wahp for x ∈ feas(TP)

I ⇒ v(P)− δ ≤ v(TP)

147 / 160

Solution retrieval

148 / 160

Projected solutions are infeasible in P

I Ax = b ⇒ TAx = Tb by linearity

I However,
Thm.
For x ≥ 0 s.t. TAx = Tb,Ax = bwith probability zero

I Can’t get solution for original LFP using projected LFP!

149 / 160

Solution retrieval from optimal basis

I Primal min{c>x | Ax = b ∧ x ≥ 0} ⇒
dual max{b>y | A>y ≤ c}

I Let x′ = sol(TP) and y′ = sol(dual(TP))

I ⇒ (TA)>y′ = (A>T>)y′ = A>(T>y′) ≤ c

I ⇒ T>y′ is a solution of dual(P)

I ⇒we can compute an optimal basis J for P

I SolveAJxJ = b, get xJ , obtain a solution x∗ of P

150 / 160

Solving large quantile regression LPs

151 / 160

Regression
I multivariate random var.X
function y = f(X)
sample {(ai, bi) ∈ Rp × R | i ≤ m}

I sample mean:

µ̂ = argmin
µ∈R

∑
i≤m

(bi − µ)2

I sample mean conditional toX = A = (aij):

ν̂ = argmin
ν∈Rp

∑
i≤m

(bi − νai)2

152 / 160

Quantile regression

I sample median:

ξ̂ = argmin
ξ∈R

∑
i≤m
|bi − ξ|

= argmin
ξ∈R

∑
i≤m

(
1

2
max(bi − ξ, 0)− 1

2
min(bi − ξ, 0)

)
I sample τ -quantile:

ξ̂ = argmin
ξ∈R

∑
i≤m

(τ max(bi − ξ, 0)− (1− τ)min(bi − ξ, 0))

I sample τ -quantile conditional to X = A = (aij):

β̂ = argmin
β∈Rp

∑
i≤m

(τ max(bi − βai, 0)− (1− τ)min(bi − βai, 0))

153 / 160

Usefulness

Amuch better visibility of one’s own poverty!

154 / 160

Linear Programming formulation

min τu+ + (1− τ)u−

A(β+ − β−) + u+ − u− = b
β, u ≥ 0

I parameters: A ism× p, b ∈ Rm, τ ∈ R
I decision variables: β+, β− ∈ Rp, u+, u− ∈ Rm

I LP constraint matrix ism× (2p+ 2m)
density: p/(p+m) — can be high

155 / 160

Large datasets
I Russia Longitudinal Monitoring Survey, household data
(hh1995f)

I m = 3783, p = 855
I A = hf1995f, b = log avg(A)
I 18.5% dense
I poorly scaled data, CPLEX yields infeasible (!!!) after around
70s CPU

I quantreg in R fails

I 14596 RGB photos on myHD, scaled to 90× 90 pixels

I m = 14596, p = 24300
I each row ofA is an image vector, b =

∑
A

I 62.4% dense
I CPLEX killed by OS after≈30min (presumably for lack of
RAM) on 16GB

156 / 160

Results on large datasets
Instance Projection Original

τ m p k opt CPU feas opt CPU qnt err
hh1995f

0.25 3783 856 411 0.00 8.53 0.038% 71.34 17.05 0.16
0.50 0.00 8.44 0.035% 89.17 15.25 0.05
0.75 0.00 8.46 0.041% 65.37 31.67 3.91

jpegs
0.25 14596 24300 506 0.00 231.83 0.51% 0.00 3.69E+5 0.04
0.50 0.00 227.54 0.51% 0.00 3.67E+5 0.05
0.75 0.00 228.57 0.51% 0.00 3.68E+5 0.05

random
0.25 1500 100 363 0.25 2.38 0.01% 1.06 6.00 0.00
0.50 0.40 2.51 0.01% 1.34 6.01 0.00
0.75 0.25 2.57 0.01% 1.05 5.64 0.00
0.25 2000 200 377 0.35 4.29 0.01% 2.37 21.40 0.00
0.50 0.55 4.37 0.01% 3.10 23.02 0.00
0.75 0.35 4.24 0.01% 2.42 21.99 0.00

feas = 100
‖Ax− b‖2
‖b‖1/m

qnt err =
‖qnt− proj. qnt‖2

cols

IPMwith no simplex crossover:
solution w/o opt. guarantee
cannot trust results
simplex method won’t work
due to ill-scaling and size

157 / 160

Outline

Reasoning
Relations, graphs, distances

Clustering
Clustering in graphs
Clustering in Euclidean spaces

Metric embeddings
Fréchet embeddings in `∞
Embeddings in `2

Classic MDS
PCA

Distance Geometry
DGP applications
Complexity of the DGP
Number of solutions
Solution methods

Direct methods
Semidefinite Programming
Diagonal Dominance

Barvinok’s naive algorithm
Isomap for the DGP

Distance resolution limit
When to start worrying

Random projections
More efficient clustering
Random projections in LP

Projecting feasibility
Projecting optimality
Solution retrieval
Quantile regression

The end

158 / 160

Summary

1. Graphs and weighted graphs necessary to model data
Abduction, observation graphs, consistency relations

2. Computers can “reason by analogy” (clustering)
Modularity clustering

3. Clustering on vectors allows more flexibility
k-means, MSSC

4. Need to embed (weighted) graphs into Euclidean spaces
Metric embeddings, Distance Geometry

5. High dimensions make clustering expensive/unstable
Distance resolution limit

6. Use random projections to reduce dimensions
Johnson-Lindenstrauss lemma

159 / 160

Some ofmy references
1. Vu, Poirion, L., Random Projections for Linear Programming, Math. Oper. Res., to appear
2. L., Lavor, Euclidean Distance Geometry: an Introduction, Springer, Zürich, in press
3. Mencarelli, Sahraoui, L.,A multiplicative weights update algorithm for MINLP,

Eur. J. Comp. Opt., 5:31-86, 2017
4. L., D’Ambrosio, The Isomap algorithm in distance geometry, in Iliopoulos et al. (eds.),

Proceedings of SEA, LIPICS 75(5)1:13, Dagstuhl Publishing, 2017
5. Dias, L.,Diagonally Dominant Programming in Distance Geometry, in Cerulli et al. (eds.)

Proceedings of ISCO, LNCS 9849:225-246, Springer, Zürich, 2016
6. L., Lavor, Maculan, Mucherino, Euclidean distance geometry and applications, SIAMReview,

56(1):3-69, 2014
7. Cafieri, Hansen, L., Improving heuristics for network modularity maximization using an exact

algorithm, Discr. Appl. Math., 163:65-72, 2014
8. L., Lavor, Mucherino, The DMDGP seems easier on proteins, in Mucherino et al. (eds.)

Distance Geometry: Theory, Methods, and Applications, Springer, New York, 2013
9. Aloise, Hansen, L.,An improved column generation algorithm for minimum sum-of-squares

clustering, Math. Prog. A 131:195-220, 2012
10. Aloise, Cafieri, Caporossi, Hansen, Perron, L., Column generation algorithms for exact

modularity maximization in networks, Phys. Rev. E, 82(4):046112, 2010
11. L., Cafieri, Tarissan, Reformulations in Mathematical Programming: A Computational

Approach, in Abraham et al. (eds.) Foundations of Computational Intelligence vol. 3, SCI
203:153-234, Springer, Heidelberg 2009

12. Lavor, L., Maculan, Computational Experience with the Molecular Distance Geometry
Problem, in Pintér (ed.) Global Optimization: Scientific and Engineering Case Studies,
Springer, Berlin, 2006

160 / 160

	Reasoning
	Relations, graphs, distances

	Clustering
	Clustering in graphs
	Clustering in Euclidean spaces

	Metric embeddings
	Fréchet embeddings in
	Embeddings in 2

	Distance Geometry
	DGP applications
	Complexity of the DGP
	Number of solutions
	Solution methods
	Barvinok's naive algorithm
	Isomap for the DGP

	Distance resolution limit
	When to start worrying

	Random projections
	More efficient clustering
	Random projections in LP

	The end

