Distance Geometry in Data Science

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

CNMAC 2017

Line of reasoning for this talk

- I. Graphs and weighted graphs necessary to model data
- 2. Computers can "reason by analogy" (clustering)
- 3. Clustering on vectors allows more flexibility
- 4. Need to embed (weighted) graphs into Euclidean spaces
- 5. High dimensions make clustering expensive/unstable
- 6. Use random projections to reduce dimensions

Outline

Reasoning Relations, graphs, distances

Solution methods

Reasoning

The philosophical motivation to distance geometry

Modes of rational thought

[Arist. 24a, Peirce CP, Putnam 79, Eco 83]

Modes of rational thought

- ▶ deduction (hypothesis + prediction → observation) TRUTH; logician, mathematician
- ► induction (observation + prediction → hypothesis) CAUSALITY; physicist, chemist, biologist
- ► abduction (hypothesis + observation → prediction) PLAUSIBILITY; everyone else

Abduction might infer falsehoods

- ► Peirce:
 - 1. All beans in this bag are white
 - 2. There is a white bean next to this bag
 - 3. The bean was in the bag
 - 4. but what if the bean wasn't in the bag?
- Sherlock Holmes wannabe:
 - 1. People who walk in the park have their shoes full of dirt
 - 2. John's shoes are dirty
 - 3. John walked in the park
 - 4. but what if John did not walk in the park?

Only deduction infers truth

[Desclés, Jackiewicz 2006]

Statistician's abduction

- Evaluate $\mathbb{P}(\text{observation} \mid \text{hypothesis}_i \rightarrow \text{prediction}_i) \forall i$
- Choose inference *i* with largest probability

Example

- Repeat experiences, collect data
- Probability distribution $\leftarrow \begin{cases} \text{frequency} \\ \text{personal conviction} \end{cases}$

Compare different observations

- Repeat experiences, collect data
- Probability distribution $\Leftarrow \begin{cases} \text{frequency} \\ \text{personal conviction} \end{cases}$

Subsection 1

Relations, graphs, distances

Modelling a good prediction

Observation graph

- set V of observations
- ► set *I* of inferences (hypotheses ∧ predictions)
- $\forall v \in V$ get probability distribution P^v on I
- ▶ relation E if $u, v \in V$ have similar distributions on I
- $\mathcal{F} = (V, E)$: observation graph
- $\blacktriangleright \ \ {\rm relation} \sim {\rm if} \ h, k \in I \ {\rm not} \ {\rm contradictory}$
- ► Densest subgraphs U with every $h_u \sim k_u$ (for $u \in U$) richest observation sets with non-contradictory inferences

Think of Sherlock Holmes: set of clues compatible with most likely consistent explanations

Example

- V = {u, v} where u = white bean, v = red bean lots of beans (both red and white) found next to all-white bean bag
- largest combined probabilities:
 - 1. farmer market: 0.59
 - 2. *kid playing*: 0.34
 - 3. UFO fuel: 0.4
- ▶ UFO hovering above market square \rightarrow farmer market disbanded $\Rightarrow 1 \sim 2 \land 2 \sim 3$ but $\neg(1 \sim 3)$
- Observation graph:
 - $\blacktriangleright \ \mathbb{P}(u \cup v \mid 1 \lor 2) = 0.93 > 0.74 = \mathbb{P}(u \cup v \mid 2 \lor 3)$
 - $\blacktriangleright \Rightarrow U = V = \{u, v\}, E = \{\{u, v\}\}$
 - with scaled edge weight 0.93/(0.93 + 0.74) = 0.55

Where we are and where we are going

Relations on observations

encoding most likely compatible predictions \Rightarrow graphs

Similarity

probability / magnitude / intensity \Rightarrow weighted graphs

- "Machine intelligence" by analogy: clustering in graphs
- More refined clustering techniques?
 - ▶ pull in tools from linear algebra
 - work with vectors rather than graphs
 - Euclidean embeddings of weighted graphs
- Distances lose "resolution" in high dimensions
- Project into lower dimensional spaces

Outline

Clustering Clustering in graphs Clustering in Euclidean spaces

Solution methods

Clustering

"Machine intelligence": analogy based on proximity

Subsection 1

Clustering in graphs

Example graph

• Goal: find partition in densest subgraphs

Modularity clustering

"Modularity is the fraction of the edges that fall within a cluster minus the expected fraction if edges were distributed at random."

- *"at random"* = random graphs over same degree sequence
- degree sequence = (k_1, \ldots, k_n) where $k_i = |N(i)|$
- *"expected"* = all possible "half-edge" recombinations

- expected edges between $u, v: k_u k_v / (2m)$ where m = |E|
- $\blacktriangleright \ \operatorname{mod}(u,v) = (A_{uv} k_u k_v / (2m))$

►
$$\operatorname{mod}(G) = \sum_{\{u,v\} \in E} \operatorname{mod}(u,v) x_{uv}$$

 $x_{uv} = 1$ if u, v in the same cluster and 0 otherwise

• "Natural extension" to weighted graphs: $k_u = \sum_v A_{uv}, m = \sum_{uv} A_{uv}$

[Girvan & Newman 2002]

Use modularity to define clustering

What is the "best clustering"?

 Maximize discrepancy between actual and expected "as far away as possible from average"

$$\max \quad \sum_{\{u,v\} \in E} \mathsf{mod}(u,v) x_{uv}$$
$$\forall u \in V, v \in V \quad x_{uv} \in \{0,1\}$$

- Issue: trivial solution x = 1 "one big cluster"
- Idea: treat clusters as cliques (even if zero weight) then clique partitioning constraints for transitivity

if $i, j \in C$ and $j, k \in C$ then $i, k \in C$

[Aloise et al. 2010]

Maximizing the modularity of a graph

- ► Formulation above is a Mathematical Program (MP)
 - MP is a formal language for describing optimization problems
 - each MP consists of:
 - parameters (input)
 - decision variables (output)
 - objective function(s)
 - explicit and implicit constraints
 - broad MP classification: LP, SDP, cNLP, NLP, MILP, cMINLP, MINLP
- ► Modularity Maximization MP is a MILP
- ▶ *MILP is* **NP**-hard but ∃ technologically advanced solvers
- Otherwise, use (fast) heuristics
- This method <u>decides</u> the number of clusters

[Cafieri et al. 2014]

The resulting clustering

Subsection 2

Clustering in Euclidean spaces

Minimum sum-of-squares clustering

- ▶ MSSC, a.k.a. the *k-means problem*
- Given points $p_1, \ldots, p_n \in \mathbb{R}^m$, find clusters C_1, \ldots, C_d

$$\min \sum_{j \le k} \sum_{i \in C_j} \|p_i - \mathsf{centroid}(C_j)\|_2^2$$

where centroid
$$(C_j) = \frac{1}{|C_j|} \sum_{i \in C_j} p_i$$

• k-means alg.: given initial clustering C_1, \ldots, C_d

I: $\forall j \leq d \text{ compute } y_j = \text{centroid}(C_j)$ 2: $\forall i \leq n, j \leq d \text{ if } y_j \text{ is the closest centroid to } p_i \text{ let } x_{ij} = 1 \text{ else } 0$ 3: $\forall j \leq d \text{ update } C_j \leftarrow \{p_i \mid x_{ij} = 1 \land i \leq n\}$ 4: repeat until stability In "k-means", "k" is the number of clusters, here denoted by d

note that d is given

[MacQueen 1967, Aloise et al. 2012]

MP formulation

$$\begin{array}{ll}
\min_{\substack{x,y,s \\ x,y,s \\ y \leq d}} & \sum_{i \leq n} \sum_{j \leq d} \|p_i - y_j\|_2^2 x_{ij} \\
\forall j \leq d & \frac{1}{s_j} \sum_{i \leq n} p_i x_{ij} = y_j \\
\forall i \leq n & \sum_{j \leq d} x_{ij} = 1 \\
\forall j \leq d & \sum_{i \leq n} x_{ij} = s_j \\
\forall j \leq d & y_j \in \mathbb{R}^m \\
& x \in \{0,1\}^{nd} \\
& s \in \mathbb{N}^d
\end{array}\right\}$$
(MSSC)

MINLP: nonconvex terms; continuous, binary and integer variables

Reformulations

The (MSSC) formulation has the same optima as:

- Only nonconvexities: products of bounded by binary variables
- Caveat: cannot have empty clusters

Products of binary and continuous vars.

- ► Suppose term *xy* appears in a formulation
- Assume $x \in \{0, 1\}$ and $y \in [0, 1]$ is bounded
- means "either z = 0 or z = y"
- Replace xy by a new variable z
- Adjoin the following constraints:

$$z \in [0,1]$$

$$y - (1-x) \le z \le y + (1-x)$$

$$-x \le z \le x$$

• \Rightarrow Everything's linear now!

[Fortet 1959]

Products of binary and continuous vars.

- ► Suppose term *xy* appears in a formulation
- Assume $x \in \{0, 1\}$ and $y \in [y^L, y^U]$ is bounded
- means "either z = 0 or z = y"
- Replace xy by a new variable z
- Adjoin the following constraints:

$$z \in [\min(y^{L}, 0), \max(y^{U}, 0)]$$

$$y - (1 - x) \max(|y^{L}|, |y^{U}|) \leq z \leq y + (1 - x) \max(|y^{L}|, |y^{U}|)$$

$$-x \max(|y^{L}|, |y^{U}|) \leq z \leq x \max(|y^{L}|, |y^{U}|)$$

• \Rightarrow Everything's linear now!

[L. et al. 2009]

MSSC is a convex MINLP

$$\begin{split} \min_{\substack{x,y,P,\chi,\xi}} & \sum_{i \leq n} \sum_{j \leq d} \chi_{ij} \\ \forall i \leq n, j \leq d \quad 0 \leq \chi_{ij} \leq P_{ij} \\ \forall i \leq n, j \leq qquadP_{ij} - (1 - x_{ij})P^U \leq \chi_{ij} \leq x_{ij}P^U \\ \forall i \leq n, j \leq d \quad \|p_i - y_j\|_2^2 \leq P_{ij} \quad \Leftarrow \text{ convex} \\ \forall j \leq d \quad \sum_{i \leq n} p_i x_{ij} = \sum_{i \leq n} \xi_{ij} \\ \forall i \leq n, j \leq d \quad y_j - (1 - x_{ij}) \max(|y^L|, |y^U|) \leq \xi_{ij} \leq y_j + (1 - x_{ij}) \max(|y^L|, |y^U|) \\ \forall i \leq n, j \leq d \quad -x_{ij} \max(|y^L|, |y^U|) \leq \xi_{ij} \leq x_{ij} \max(|y^L|, |y^U|) \\ \forall i \leq n, j \leq d \quad y_j \in [y^L, y^U] \\ & \chi \in \{0, 1\}^{nd} \\ P \quad \in [0, P^U]^{nd} \\ & \chi \in [0, P^U]^{nd} \\ & \forall i \leq n, j \leq d \quad \xi_{ij} \in [\min(y^L, 0), \max(y^U, 0)] \end{split}$$

 y_j, ξ_{ij}, y^L, y^U are vectors in \mathbb{R}^m

Solving the MSSC

k-means

- heuristic (optimum not guaranteed)
- ▶ fast, well-known, lots of analyses
- scales reasonably well
- implemented in practically all languages
- convex MINLP
 - exact (guaranteed global optima)
 - reasonably fast only for small sizes
 - scales exponentially
 - Solvers: KNITRO (commercial), Bonmin (free) need an MP language interpreter (AMPL)

Outline

Metric embeddings Fréchet embeddings in ℓ_{∞} Embeddings in ℓ_2 Classic MDS PCA

Solution methods

Metric embeddings

Mapping metric spaces into each other

Graphs with shortest path metric

E.g. mathematical genealogy skeleton

The distance matrix

(only for a subgraph)

	Euler	Thibaut		Pfaff	Lagrange		Laplace		Möbius	Gu	Gudermann		Dirksen	Gauss
Kästner	IO	I		I	9		8		2	2			2	2
Euler		п		9	I		3		IO		12		12	8
Thibaut				2	IO		IO		3	I			I	3
Pfaff					8		8		I	3			3	I
Lagrange							2		9	п			п	7
Laplace									9		п		п	7
Möbius											4		4	2
Gudermann													2	4
Dirksen														4
	D	=	(0 10 1 1 9 8 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{c} 10 \\ 0 \\ 11 \\ 9 \\ 1 \\ 3 \\ 10 \\ 12 \\ 12 \\ 8 \\ \end{array} $	$ \begin{array}{c} 1 \\ 11 \\ 0 \\ 2 \\ 10 \\ 10 \\ 3 \\ 1 \\ 1 \\ 3 \\ 1 \\ 3 \end{array} $	$ \begin{array}{c} 1 \\ 9 \\ 2 \\ 0 \\ 8 \\ 1 \\ 3 \\ 1 \\ 1 \end{array} $	$9 \\ 1 \\ 10 \\ 8 \\ 0 \\ 2 \\ 9 \\ 11 \\ 11 \\ 7$		$2 \\ 10 \\ 3 \\ 1 \\ 9 \\ 9 \\ 0 \\ 4 \\ 4 \\ 2 \\ 2$	$2 \\ 12 \\ 1 \\ 3 \\ 11 \\ 11 \\ 4 \\ 0 \\ 2 \\ 4$	$2 \\ 12 \\ 1 \\ 3 \\ 11 \\ 11 \\ 4 \\ 2 \\ 0 \\ 4$	$ \begin{array}{c} 2 \\ 8 \\ 3 \\ 1 \\ 7 \\ 2 \\ 4 \\ 4 \\ 0 \end{array} $		

Subsection 1

Fréchet embeddings in ℓ_∞

ℓ_∞ embeddings

- Given a metric space (X, d) with distance matrix $D = (d_{ij})$
- Consider *i*-th row $\delta_i = (d_{i1}, \ldots, d_{in})$ of D
- Embed $i \in X$ by vector $\delta_i \in \mathbb{R}^n$
- Define $f(X) = \{\delta_1, \dots, \delta_n\}, f(d(i, j)) = ||f(i) f(j)||_{\infty}$
- Thm.: $(f(X), \ell_{\infty})$ is a metric space with distance matrix D
- If (X, d) not a metric space, $\exists i, j \in X \ (d(i, j) \neq ||\delta_i - \delta_j||_{\infty})$
- Issue: embedding is high-dimensional (\mathbb{R}^n)

[Kuratowski 1935]
Proof

• Consider $i, j \in X$ with distance $d(i, j) = d_{ij}$

$$f(d(i,j)) = \|\delta_i - \delta_j\|_{\infty} = \max_{k \le n} |d_{ik} - d_{jk}| \le \max_{k \le n} |d_{ij}| = d_{ij}$$

•
$$\max |d_{ik} - d_{jk}|$$
 over $k \le n$ is achieved when

$$k \in \{i, j\} \Rightarrow f(d(i, j)) = d_{ij}$$

Genealogical similarity example Fréchet embedding

in the 3 most significant (rotated) dimensions

Subsection 2

Approximate embeddings in ℓ_2

Lower dimensional (approximate) embeddings

- ► Given distance matrix, find approximate Euclidean embedding
- Application: visualize a metric space $\overline{e.g.\ embed\ genealogy\ tree\ in\ \mathbb{R}^3}$ (some errors allowed)
- ▶ For visualization purposes, $K \in \{1, 2, 3\}$ for other purposes, K < n

Classical methods

- Multi-Dimensional Scaling (MDS)
- Principal Component Analysis (PCA)

Classic Multidimensional Scaling

Definition and history

- [I. Schoenberg, Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espace de Hilbert", Ann. Math., 1935]
- Question: Given $n \times n$ symmetric matrix D, what are necessary and sufficient conditions s.t. D is a EDM¹ corresponding to n points $x_1, \ldots, x_n \in \mathbb{R}^K$ with minimum K?

• PSD: *positive semidefinite*, all eigenvalues ≥ 0

^IEuclidean Distance Matrix

Gram in function of EDM

- $x = (x_1, \ldots, x_n) \subseteq \mathbb{R}^K$, written as $n \times K$ matrix
- matrix $G = xx^{\top} = (x_i \cdot x_j)$ is the *Gram matrix* of x
- Schoenberg's theorem: relation between EDMs and Gram matrices

$$G = -\frac{1}{2}JD^2J \qquad (\S)$$

•
$$D^2 = (d_{ij}^2), J = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^\top$$

Multidimensional scaling (MDS)

- Often get approximate EDMs D
 from raw data (dissimilarities, discrepancies, differences)
- $\tilde{G} = -\frac{1}{2}J\tilde{D}^2J$ is an approximate Gram matrix
- Approximate Gram \Rightarrow spectral decomposition $P\tilde{\Lambda}P^{\top}$ has $\tilde{\Lambda} \not\geq 0$
- Let Λ be closest PSD diagonal matrix to Λ̃: zero the negative components of Λ̃
- $x = P\sqrt{\Lambda}$ is an "approximate realization" of \tilde{D}

Classic MDS: Main result

- I. Prove Schoenberg's theorem: $G = -\frac{1}{2}JD^2J$
- 2. Prove matrix is Gram iff it is PSD

Classic MDS: Proof 1/3

- Assume zero centroid WLOG (can translate x as needed)
- Expand: $d_{ij}^2 = ||x_i x_j||_2^2 = (x_i x_j)(x_i x_j) = x_i x_i + x_j x_j 2x_i x_j$ (*)
- Aim at "inverting" (*) to express $x_i x_j$ in function of d_{ij}^2
- Sum (*) over $i: \sum_{i} d_{ij}^2 = \sum_{i} x_i x_i + n x_j x_j 2x_j \sum_{i} x_i^0$ by zero centroid
- Similarly for *j* and divide by *n*, get:

$$\frac{1}{n}\sum_{i\leq n}d_{ij}^2 = \frac{1}{n}\sum_{i\leq n}x_ix_i + x_jx_j \quad (\dagger)$$
$$\frac{1}{n}\sum_{j\leq n}d_{ij}^2 = x_ix_i + \frac{1}{n}\sum_{j\leq n}x_jx_j \quad (\ddagger)$$

Sum (†) over j, get:

$$\frac{1}{n}\sum_{i,j}d_{ij}^{2} = n\frac{1}{n}\sum_{i}x_{i}x_{i} + \sum_{j}x_{j}x_{j} = 2\sum_{i}x_{i}x_{i}$$

Divide by n, get:

$$\frac{1}{n^2} \sum_{i,j} d_{ij}^2 = \frac{2}{n} \sum_i x_i x_i \quad (**)$$
[Borg 2010]

Classic MDS: Proof 2/3

Rearrange (*), (†), (‡) as follows:

$$2x_i x_j = x_i x_i + x_j x_j - d_{ij}^2 \tag{1}$$

$$x_i x_i = \frac{1}{n} \sum_j d_{ij}^2 - \frac{1}{n} \sum_j x_j x_j$$
 (2)

$$x_{j}x_{j} = \frac{1}{n}\sum_{i}d_{ij}^{2} - \frac{1}{n}\sum_{i}x_{i}x_{i}$$
(3)

Replace LHS of Eq. (2)-(3) in Eq. (1), get

$$2x_i x_j = \frac{1}{n} \sum_k d_{ik}^2 + \frac{1}{n} d_{kj}^2 - d_{ij}^2 - \frac{2}{n} \sum_k x_k x_k$$

• By (**) replace $\frac{2}{n} \sum_{i} x_i x_i$ with $\frac{1}{n^2} \sum_{i,j} d_{ij}^2$, get $2x_i x_j = \frac{1}{n} \sum_{k} (d_{ik}^2 + d_{kj}^2) - d_{ij}^2 - \frac{1}{n^2} \sum_{h,k} d_{hk}^2 \quad (\S)$

which expresses $x_i x_j$ in function of D

Classic MDS: Proof 3/3

• $Gram \subseteq PSD$

- x is an $n \times K$ real matrix
- $G = xx^{\top}$ its Gram matrix
- $\bullet \ \, \text{For each } y \in \mathbb{R}^n \text{ we have }$

$$yGy^{\top} = y(xx^{\top})y^{\top} = (yx)(x^{\top}y^{\top}) = (yx)(yx)^{\top} = ||yx||_2^2 \ge 0$$

 $\blacktriangleright \Rightarrow G \succeq 0$

- $PSD \subseteq Gram$
 - Let $G \succeq 0$ be $n \times n$
 - Spectral decomposition: $G = P\Lambda P^{\top}$
 - (P orthogonal, $\Lambda \geq 0$ diagonal)
 - $\Lambda \ge 0 \Rightarrow \sqrt{\Lambda}$ exists
 - $G = P\Lambda P^{\top} = (P\sqrt{\Lambda})(\sqrt{\Lambda}^{\top}P^{\top}) = (P\sqrt{\Lambda})(P\sqrt{\Lambda})^{\top}$
 - Let $x = P\sqrt{\Lambda}$, then G is the Gram matrix of x

Principal Component Analysis

Principal Component Analysis (PCA)

- $\bullet \quad MDS \text{ with fixed } K$
- Motivation: "draw" $x = P\sqrt{\Lambda}$ in 2D or 3D but rank $(\Lambda) = K > 3$
- Only keep 2 or 3 largest components of Λ zero the rest
- Get realization in desired space

[Pearson 1901]

Mathematicians genealogy in 2D/3D

Outline

Reasoning Relations, graphs, distances Clustering Clustering in graphs Clustering in Euclidean spaces Metric embeddings Fréchet embeddings in ℓ_{∞} Embeddings in ℓ_2 Classic MDS PCA

Distance Geometry

DGP applications Complexity of the DGP Number of solutions Solution methods

Direct methods Semidefinite Programming Diagonal Dominance Barvinok's naive algorithm Isomap for the DGP

Distance Geometry

Embedding weighted graphs in Euclidean spaces

Distance Geometry Problem (DGP)

Given $K \in \mathbb{N}$ and G = (V, E, d) with $d : E \to \mathbb{R}_+$, find $x : V \to \mathbb{R}^K$ s.t.

$$\forall \{i, j\} \in E \quad ||x_i - x_j||_2^2 = d_{ij}^2$$

[Cayley 1841, Menger 1928, Schoenberg 1935, Yemini 1978]

Subsection 1

DGP applications

Some applications

- clock synchronization (K = 1)
- sensor network localization (K = 2)
- molecular structure from distance data (K = 3)
- autonomous underwater vehicles (K = 3)
- distance matrix completion (whatever K)

Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from a partial measurements of their time differences

- ► *K* = 1
- ► V: timestamps
- ▶ $\{u, v\} \in E$ if known time difference between u, v
- ► *d*: values of the time differences

Used in time synchronization of distributed networks

Clock synchronization

Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to locate a set of geographically distributed objects using measurements of the distances between some object pairs

- ► *K* = 2
- ► V: (mobile) sensors
- ▶ $\{u, v\} \in E$ iff distance between u, v is measured
- ► *d*: distance values

Used whenever GPS not viable (e.g. underwater) $d_{uv} \lesssim {\rm battery\ consumption\ in\ P2P\ communication\ betw.}\ u,v$

Sensor network localization

Molecular structure from distance data

From [L. et al., SIAM Rev., 2014]

- ► V: atoms
- $\{u, v\} \in E$ iff distance between u, v is known
- ► *d*: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid) Covalent bond lengths and angles known precisely Distances $\lessapprox 5.5$ measured approximately by NMR

Subsection 2

Complexity of the DGP

Complexity class

- DGP_1 with $d: E \to \mathbb{Q}_+$ is in NP
 - if instance YES \exists realization $x \in \mathbb{R}^{n \times 1}$
 - if some component $x_i \notin \mathbb{Q}$ translate x so $x_i \in \mathbb{Q}$
 - consider some other x_j
 - ▶ let $\ell = (\text{length sh. path } p : i \to j) = \sum_{\{u,v\} \in p} d_{uv} \in \mathbb{Q}$

• then
$$x_j = x_i \pm \ell \to x_j \in \mathbb{Q}$$

 \blacktriangleright \Rightarrow verification of

$$\forall \{i, j\} \in E \quad |x_i - x_j| = d_{ij}$$

in polytime

• DGP_K may not be in **NP** for K > 1

don't know how to verify $||x_i - x_j||_2 = d_{ij}$ for $x \notin \mathbb{Q}^{nK}$

Hardness

► Want to show DGP₁ is **NP**-hard by reduction from **PARTITION**

Given $a = (a_1, \ldots, a_n) \in \mathbb{N}^n$, $\exists I \subseteq \{1, \ldots, n\}$ s.t. $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

 $\blacktriangleright a \longrightarrow \text{cycle } C$ $V(C) = \{1, \dots, n\}, E(C) = \{\{1, 2\}, \dots, \{n, 1\}\}$

► For
$$i < n$$
 let $d_{i,i+1} = a_i$
 $d_{n,n+1} = d_{n1} = a_n$

• *E.g. for* a = (1, 4, 1, 3, 3), get cycle graph:

[Saxe, 1979]

PARTITION is YES \Rightarrow DGP₁ is YES (1/2)

• Given:
$$I \subset \{1, \ldots, n\}$$
 s.t. $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$

• Construct: realization x of C in \mathbb{R}

- I. $x_1 = 0$ // start 2. induction step: suppose x_i known
 - if $i \in I$ let $x_{i+1} = x_i + d_{i,i+1}$ // go right else

$$\operatorname{let} x_{i+1} = x_i - d_{i,i+1} \qquad \qquad \textit{// go left}$$

► Correctness proof: by the same induction but careful when i = n: have to show x_{n+1} = x₁

PARTITION is YES \Rightarrow DGP₁ is YES (2/2)

$$(1) = \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \in I} d_{i,i+1} =$$
$$= \sum_{i \in I} a_i = \sum_{i \notin I} a_i =$$
$$= \sum_{i \notin I} d_{i,i+1} = \sum_{i \notin I} (x_i - x_{i+1}) = (2)$$

$$(1) = (2) \Rightarrow \sum_{i \in I} (x_{i+1} - x_i) = \sum_{i \notin I} (x_i - x_{i+1}) \Rightarrow \sum_{i \le n} (x_{i+1} - x_i) = 0$$

$$\Rightarrow (x_{n+1} - x_n) + (x_n - x_{n-1}) + \dots + (x_3 - x_2) + (x_2 - x_1) = 0$$

$$\Rightarrow x_{n+1} = x_1$$

PARTITION is NO \Rightarrow DGP₁ is NO

▶ By contradiction: suppose DGP₁ is YES, *x* realization of *C*

▶
$$F = \{\{u, v\} \in E(C) \mid x_u \le x_v\},\ E(C) \smallsetminus F = \{\{u, v\} \in E(C) \mid x_u > x_v\}$$

Trace x_1, \ldots, x_n : follow edges in $F(\rightarrow)$ and in $E(C) \smallsetminus F(\leftarrow)$

► Let
$$J = \{i < n \mid \{i, i+1\} \in F\} \cup \{n \mid \{n, 1\} \in F\}$$

$$\Rightarrow \sum_{i \in J} a_i = \sum_{i \notin J} a_i$$

- ► So J solves Partition instance, contradiction
- ▶ \Rightarrow DGP is NP-hard; since \in **NP**, DGP₁ is also NP-complete

Subsection 3

Number of solutions

Number of solutions

- (G, K): DGP instance
- $\tilde{X} \subseteq \mathbb{R}^{Kn}$: set of solutions
- Congruence: composition of translations, rotations, reflections
- $C = \text{set of congruences in } \mathbb{R}^K$
- ► $x \sim y$ means $\exists \rho \in C \ (y = \rho x)$: distances in x are preserved in y through ρ
- $\blacktriangleright \Rightarrow \text{if } |\tilde{X}| > 0, |\tilde{X}| = 2^{\aleph_0}$

Number of solutions modulo congruences

 Congruence is an *equivalence relation* ~ on X
 (reflexive, symmetric, transitive)

- Partitions \tilde{X} into equivalence classes
- $X = \tilde{X} / \sim$: sets of representatives of equivalence classes
- Focus on |X| rather than $|\tilde{X}|$

Examples

 $V^{1} = \{1, 2, 3\}$ $E^{1} = \{\{u, v\} \mid u < v\}$ $d^{1} = 1$

$$V^{2} = V^{1} \cup \{4\}$$

$$E^{2} = E^{1} \cup \{\{1,4\},\{2,4\}\}$$

$$d^{2} = 1 \land d_{14} = \sqrt{2}$$

$$\begin{split} V^3 &= V^2 \\ E^3 &= \{\{u, u+1\} | u \leq 3\} \cup \{1, 4\} \\ d^1 &= 1 \end{split}$$

 ρ congruence in \mathbb{R}^2 $\Rightarrow \rho x$ valid realization |X| = 1

 ρ reflects x_4 wrt $\overline{x_1, x_2}$ $\Rightarrow \rho x$ valid realization $|X| = 2 (\measuredangle, \bigcirc)$

 $\begin{array}{l} \rho \text{ rotates } \overline{x_2 x_3}, \ \overline{x_1 x_4} \text{ by } \theta \\ \Rightarrow \rho x \text{ valid realization} \\ |X| \text{ is uncountable} \\ (\Box, \Box, \Box, , \Box, , \ldots) \end{array}$

Rigidity, flexibility and |X|

- infeasible $\Leftrightarrow |X| = 0$
- rigid graph $\Leftrightarrow |X| < \aleph_0$
- globally rigid graph $\Leftrightarrow |X| = 1$
- flexible graph $\Leftrightarrow |X| = 2^{\aleph_0}$
- DMDGP graphs $\Leftrightarrow |X|$ a power of 2
- $|X| = \aleph_0$: impossible by Milnor's theorem

[Milnor 1964, L. et al. 2013]
Milnor's theorem implies $|X| \neq \aleph_0$

► System S of polynomial equations of degree 2

$$\forall i \le m \quad p_i(x_1, \dots, x_{nK}) = 0$$

- Let X be the set of $x \in \mathbb{R}^{nK}$ satisfying S
- Number of connected components of X is O(3^{nK})
 [Milnor 1964]
- If |X| is countably ∞ then G cannot be flexible
 ⇒ incongruent elts of X are separate connected components
 ⇒ by Milnor's theorem, there's finitely many of them

Subsection 4

MP based solution methods

Direct methods

System of quadratic equations

$$\forall \{u, v\} \in E \quad \|x_u - x_v\|^2 = d_{uv}^2 \tag{4}$$

Computationally: useless (less than 10 vertices with K = 3 using Octave)

Unconstrained Global Optimization

$$\min_{x} \sum_{\{u,v\} \in E} (\|x_u - x_v\|^2 - d_{uv}^2)^2$$
(5)

Globally optimal obj. fun. value of (5) is 0 iff x solves (4)

Computational experiments in [L. et al., 2006]:

- GO solvers from 10 years ago
- ▶ randomly generated protein data: ≤ 50 atoms
- ▶ cubic crystallographic grids: ≤ 64 atoms

Constrained global optimization

- $\min_x \sum_{\{u,v\} \in E} |||x_u x_v||^2 d_{uv}^2|$ exactly reformulates (4)
- ► Relax objective f to concave part, remove constant term, rewrite min f as max f
- Reformulate convex part of obj. fun. to convex constraints
- ► Exact reformulation

$$\max_{\substack{\{u,v\} \in E \\ \forall \{u,v\} \in E \\ \|x_u - x_v\|^2 \le d_{uv}^2 } }$$
(6)

Theorem (Activity)

At a glob. opt. x^* of a YES instance, all constraints of (6) are active

[Mencarelli et al. 2017]

Semidefinite Programming

Linearization

$$\forall \{i, j\} \in E \quad \|x_i - x_j\|_2^2 = d_{ij}^2$$

$$\Rightarrow \quad \forall \{i, j\} \in E \quad \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i \cdot x_j = d_{ij}^2$$

$$\Rightarrow \quad \left\{ \begin{array}{ccc} \forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\ & X = x x^\top \end{array} \right.$$

$$X = x \, x^\top \Leftrightarrow \forall i, j \; X_{ij} = x_i x_j$$

Relaxation

$$\begin{array}{rcl} X &=& x \, x \\ \Rightarrow & X - x \, x^{\top} &=& 0 \end{array}$$
$$(\text{relax}) &\Rightarrow & X - x \, x^{\top} &\succeq& 0 \\\\ \text{Schur}(X, x) = \left(\begin{array}{cc} I_K & x^{\top} \\ x & X \end{array}\right) &\succeq& 0 \end{array}$$

If x does not appear elsewhere \Rightarrow get rid of it (e.g. choose x = 0):

replace
$$\mathsf{Schur}(X, x) \succeq 0$$
 by $X \succeq 0$

Reason for this weird relaxation: there are efficient solvers for Semidefinite Programming (SDP)

SDP relaxation

$$\min F \bullet X$$

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2$$

$$X \succeq 0$$

How do we choose F?

Some possible objective functions

For protein conformation:

$$\max \sum_{\{i,j\} \in E} (X_{ii} + X_{jj} - 2X_{ij})$$

with = changed to \leq in constraints (or min and \geq) [Dias & L. 2016] "push-and-pull" the realization

▶ [Ye, 2003], application to wireless sensors localization

 $\min \operatorname{tr}(X)$

improve covariance estimator accuracy

How about "just random"? [Barvinok 1995]

Computational evaluation

- Download protein files from Protein Data Bank (PDB) they contain atom realizations
- Mimick a Nuclear Magnetic Resonance experiment Keep only pairwise distances < 5.5
- ► Try and reconstruct the protein shape from those weighted graphs
- Quality evaluation of results:

•
$$LDE(x) = \max_{\{i,j\} \in E} | ||x_i - x_j|| - d_{ij} |$$

• $MDE(x) = \frac{1}{|E|} \sum_{\{i,j\} \in E} | ||x_i - x_j|| - d_{ij}$

Objective function tests

SDP solved with Mosek

SDP + PCA											
Instar	nce			LDE			MDE		CPU		
Name	V	E	PP	Ye	Rnd	PP	Ye	Rnd	PP	Ye	Rnd
C0700odd.1	15	39	3.31	4.57	4.44	1.92	2.52	2.50	0.13	0.07	0.08
CO700odd.C	36	242	10.61	4.85	4.85	3.02	3.02	3.02	0.69	0.43	0.44
C0700.odd.G	36	308	4-57	4.77	4.77	2.41	2.84	2.84	0.86	0.54	0.54
C0150alter.1	37	335	4.66	4.88	4.86	2.52	3.00	3.00	0.97	0.59	0.58
C0080create.1	60	681	7.17	4.86	4.86	3.08	3.19	3.19	2.48	1.46	1.46
tiny	37	335	4.66	4.88	4.88	2.52	3.00	3.00	0.97	0.60	0.60
1guu-1	150	959	10.20	4.93	4.93	3.43	3.43	3.43	9.23	5.68	5.70

SDP + PCA + NLP

	Instance			LDE			MDE			CPU	
Name	V	E	PP	Ye	Rnd	PP	Ye	Rnd	PP	Ye	Rnd
1b03	89	456	0.00	0.00	0.00	0.00	0.00	0.00	8.69	6.28	9.91
1crn	138	846	0.81	0.81	0.81	0.07	0.07	0.07	33-33	31.32	44.48
1guu-1	150	959	0.97	4.93	0.92	0.10	3-43	0.08	56.45	7.89	65.33

[Dias & L., 2016]

Empirical considerations

- ► *Ye* very fast but often imprecise
- Random good but nondeterministic
- ► Push-and-Pull relaxes $X_{ii} + X_{jj} 2X_{ij} = d_{ij}^2$ to $X_{ii} + X_{jj} 2X_{ij} \ge d_{ij}^2$, easier to satisfy feasibility

... will be useful in DDP later on

Focus on Push-and-Pull objective

Diagonally Dominant Programming

When SDP solvers hit their size limit

- SDP solver: technological bottleneck
- How can we best use an LP solver?
- ► Diagonally Dominant (DD) matrices are PSD
- Not vice versa: inner approximate PSD cone $Y \succeq 0$
- ▶ Idea by A.A. Ahmadi and co-authors

[Ahmadi & Majumdar 2014, Ahmadi & Hall 2015]

Diagonally dominant matrices

 $n \times n$ matrix X is DD if

$$\forall i \le n \quad X_{ii} \ge \sum_{j \ne i} |X_{ij}|.$$

 $\text{E.g.} \quad \left(\begin{array}{ccccccccc} 1 & 0.1 & -0.2 & 0 & 0.04 & 0 \\ 0.1 & 1 & -0.05 & 0.1 & 0 & 0 \\ -0.2 & -0.05 & 1 & 0.1 & 0.01 & 0 \\ 0 & 0.1 & 0.1 & 1 & 0.2 & 0.3 \\ 0.04 & 0 & 0.01 & 0.2 & 1 & -0.3 \\ 0 & 0 & 0 & 0.3 & -0.3 & 1 \end{array} \right)$

DD Linearization

$$\forall i \le n \quad X_{ii} \ge \sum_{j \ne i} |X_{ij}| \tag{*}$$

- introduce "sandwiching" variable T
- write |X| as T
- add constraints $-T \leq X \leq T$
- by \geq constraint sense, write (*) as

$$X_{ii} \ge \sum_{j \ne i} T_{ij}$$

DD Programming (DDP)

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\ X \quad \text{is DD}$$

$$\Rightarrow \begin{cases} \forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\ \forall i \le n \qquad \sum_{\substack{j \le n \\ j \ne i}} T_{ij} \le X_{ii} \\ -T \le X \le T \end{cases}$$

DDP formulation for the DGP

$$\begin{array}{cccc}
\min & \sum_{\{i,j\}\in E} (X_{ii} + X_{jj} - 2X_{ij}) \\
\forall \{i,j\}\in E & X_{ii} + X_{jj} - 2X_{ij} \geq d_{ij}^2 \\
\forall i \leq n & \sum_{\substack{j\leq n \\ j\neq i}} T_{ij} \leq X_{ii} \\
& -T \leq X \leq T \\
& T \geq 0
\end{array}$$

[Dias & L., 2016]

Using "push-and-pull" objective in SDP SDP solved with Mosek, DDP with CPLEX

SDP/DDP + PCA

		SE)P	DDP				
Instance	LDE	MDE	CPU modl/soln	LDE	MDE	CPU modl/soln		
C0700odd.1	0.79	0.34	0.06/0.12	0.38	0.30	0.15/0.15		
C0700.odd.G	2.38	0.89	0.57/1.16	1.86	0.58	1.11/0.95		
C0150alter.1	1.48	0.45	0.73/1.33	1.54	0.55	1.23/1.04		
C0080create.1	2.49	0.82	1.63/7.86	0.98	0.67	3.39/4.07		
1guu-1	0.50	0.15	6.67/ <mark>684.8</mark> 9	I.00	0.85	37.74/153.17		

Subsection 5

Barvinok's naive algorithm

Concentration of measure

From [Barvinok, 1997]

The value of a "well behaved" function at a random point of a "big" probability space X is "very close" to the mean value of the function.

and

In a sense, measure concentration can be considered as an extension of the law of large numbers.

Concentration of measure

Given Lipschitz function $f: X \to \mathbb{R}$ s.t.

$$\forall x, y \in X \quad |f(x) - f(y)| \le L ||x - y||_2$$

for some $L \ge 0$, there is *concentration of measure* if \exists constants c, C s.t.

$$\forall \varepsilon > 0 \quad \mathsf{P}_x(|f(x) - \mathbb{E}(f)| > \varepsilon) \le c \, e^{-C\varepsilon^2/L^2}$$

 \equiv "discrepancy from mean is unlikely"

Barvinok's theorem

Consider:

• for each $k \leq m$, manifolds $\mathcal{X}_k = \{x \in \mathbb{R}^n \mid x^\top Q^k x = a_k\}$

• a feasibility problem
$$x \in \bigcap_{k \le m} \mathcal{X}_k$$

• its SDP relaxation $\forall x \leq m \; (Q^k \bullet X = a_k)$ with soln. \bar{X}

Let $T = factor(\bar{X})$, $y \sim \mathcal{N}^n(0, 1)$ and x' = Ty

Then $\exists c \text{ and } n_0 \in \mathbb{N}$ s.t. if $n \ge n_0$,

$$\mathsf{Prob}\left(orall k \leq m \operatorname{dist}(x', \mathcal{X}_k) \leq c \sqrt{\|\bar{X}\|_2 \ln n}
ight) \geq 0.9.$$

IDEA: since x' is "close" to each \mathcal{X}_k try local Nonlinear Programming (NLP)

Application to the DGP

- $\forall \{i, j\} \in E \quad \mathcal{X}_{ij} = \{x \in \mathbb{R}^{nK} \mid ||x_i x_j||_2^2 = d_{ij}^2\}$
- DGP can be written as $\bigcap_{\{i,j\}\in E} \mathcal{X}_{ij}$
- ► SDP relaxation $X_{ii} + X_{jj} 2X_{ij} = d_{ij}^2 \land X \succeq 0$ with soln. \overline{X}
- Difference with Barvinok: $x \in \mathbb{R}^{Kn}$, $\mathrm{rk}(\bar{X}) \leq K$
- IDEA: sample $y \sim \mathcal{N}^{nK}(0, \frac{1}{\sqrt{K}})$
- <u>Thm.</u> Barvinok's theorem works in rank K
 [L. & Vu, unpublished]

The heuristic

1. Solve SDP relaxation of DGP, get soln. \overline{X} use DDP+LP if SDP+IPM too slow

2. a.
$$T = \text{factor}(\bar{X})$$

b. $y \sim \mathcal{N}^{nK}(0, \frac{1}{\sqrt{K}})$
c. $x' = Ty$

3. Use x' as starting point for a local NLP solver on formulation

$$\min_{x} \sum_{\{i,j\} \in E} \left(\|x_i - x_j\|^2 - d_{ij}^2 \right)^2$$

and return improved solution x

[Dias & L., 2016]

SDP+Barvinok vs. DDP+Barvinok

		SDP			DDP	
Instance	LDE	MDE	CPU	LDE	MDE	CPU
C0700odd.1	0.00	0.00	0.63	0.00	0.00	I.49
C0700.odd.G	0.00	0.00	21.67	0.42	0.01	30.51
C0150alter.1	0.00	0.00	29.30	0.00	0.00	34.13
C0080create.1	0.00	0.00	139.52	0.00	0.00	141.49
1b03	0.18	0.01	132.16	0.38	0.05	101.04
1crn	0.78	0.02	800.67	0.76	0.04	522.60
1guu-1	0.79	0.01	1900.48	0.90	0.04	667.03

Most of the CPU time taken by local NLP solver

Subsection 6

Isomap for the DGP

Isomap for DG

- I. Let D' be the (square) weighted adjacency matrix of G
- 2. Complete D' to approximate EDM \tilde{D}
- 3. MDS/PCA on $\tilde{D} \Rightarrow$ obtain embedding $x \in \mathbb{R}^{K}$ for given K

Vary Step 2 to generate Isomap heuristics

[Tenenbaum et al. 2000, L. & D'Ambrosio 2017]

Variants for Step 2

- A. Floyd-Warshall all-shortest-paths algorithm on G (classic Isomap)
- B. Find a spanning tree (SPT) of G, compute any embedding $\bar{x} \in \mathbb{R}^{K}$ for STP, use its EDM
- C. Solve a push-and-pull SDP relaxation, get soln. $\bar{x} \in \mathbb{R}^n$, use its EDM
- **D.** Solve an SDP relaxation with "Barvinok objective", find $\bar{x} \in \mathbb{R}^r$ (with $r \leq \lfloor (\sqrt{8|E|+1}-1)/2 \rfloor$), use its EDM *baven't really talked about this, sorry*

Post-processing: \tilde{x} as starting point for NLP descent in GO formulation

[L. & D'Ambrosio 2017]

Results

Comparison with dgsol [Moré, Wu 1997]

			_	4	ß	с	P		4	~	B	С	P		~	A	B	С	D	
Insta	ice				n	nde					le	de					С	PU		
Name	n	E	Isomap	IsoNLP	SPT	SDP	Barvinok	DGSol	Isomap	IsoNLP	SPT	SDP	Barvinok	DGSol	Isomap	IsoNLP	SPT	SDP	Barvinok	DGSol
C0700odd.1	15	39	0.585	0.001	0.190	0.068	0.000	0.135	0.989	0.004	0.896	0.389	0.001	0.634	0.002	1.456	1.589	0.906	1.305	1.747
C0700odd.2	15	39	0.599	0.000	0.187	0.086	0.000	0.128	0.985	0.002	0.956	0.389	0.009	1.000	0.003	1.376	1.226	1.002	1.063	0.887
C0700odd.3	15	39	0.599	0.000	0.060	0.086	0.000	0.128	0.985	0.002	0.326	0.389	0.009	1.000	0.003	1.259	1.256	0.861	1.167	0.877
C0700odd.4	15	39	0.599	0.000	0.283	0.086	0.001	0.128	0.985	0.002	2.449	0.389	0.008	1.000	0.003	1.347	1.222	0.976	1.063	1.033
C0700odd.5	15	39	0.599	0.000	0.225	0.086	0.000	0.128	0.985	0.002	0.867	0.389	0.007	1.000	0.003	1.284	1.157	0.987	1.100	0.700
C0700odd.6	15	39	0.599	0.000	0.283	0.086	0.000	0.128	0.985	0.002	1.520	0.389	0.002	1.000	0.002	1.372	1.196	0.998	1.305	0.909
C0700odd.7	15	39	0.585	0.001	0.080	0.068	0.000	0.135	0.989	0.004	0.361	0.389	0.001	0.634	0.003	1.469	1.322	0.894	1.093	1.719
C0700odd.8	15	39	0.585	0.001	0.056	0.068	0.000	0.135	0.989	0.004	0.275	0.389	0.003	0.634	0.003	1.408	1.306	0.692	1.079	1.744
C0700odd.9	15	39	0.585	0.001	0.057	0.068	0.000	0.135	0.989	0.004	0.301	0.389	0.002	0.634	0.002	1.430	1.172	0.791	1.093	1.745
C0700odd.A	15	39	0.585	0.001	0.043	0.068	0.000	0.135	0.989	0.004	0.316	0.389	0.004	0.634	0.002	1.294	1.269	0.722	1.220	1.523
C0700odd.B	15	39	0.585	0.001	0.151	0.068	0.000	0.135	0.989	0.004	1.022	0.389	0.004	0.634	0.002	1.297	1.279	0.871	1.111	1.747
C0700odd.C	15	39	0.835	0.022	0.033	0.039	0.031	0.025	1.012	0.147	0.393	0.211	0.294	0.167	0.004	6.803	6.369	7.371	7.030	7.000
C0700odd.D	36	242	0.835	0.022	0.041	0.039	0.042	0.025	1.012	0.147	0.423	0.211	0.268	0.167	0.006	6.806	6.575	7.422	7.603	7.095
C0700odd.E	36	242	0.835	0.022	0.064	0.039	0.031	0.025	1.012	0.147	0.894	0.211	0.260	0.167	0.006	6.911	6.638	7.365	6.979	7.008
C0700odd.F	36	242	0.599	0.000	0.047	0.086	0.000	0.128	0.985	0.002	0.308	0.389	0.005	1.000	0.002	1.299	1.310	1.008	1.100	1.040
C0150alter.1	37	335	0.786	0.058	0.066	0.014	0.015	0.010	0.992	0.571	0.693	0.256	0.285	0.253	0.004	9.492	9.456	10.276	10.120	9.272
C0080create.	60	681	0.887	0.053	0.083	0.024	0.024	0.054	1.967	0.949	0.789	0.511	0.516	0.718	0.012	18.835	19.720	21.247	20.906	19.962
C0080create.	2 60	681	0.887	0.053	0.047	0.024	0.024	0.054	1.967	0.949	0.585	0.511	0.512	0.718	0.008	18.791	20.009	21.728	20.885	19.740
C0020pdb	107	999	0.939	0.110	0.119	0.059	0.060	0.103	1.242	1.113	1.349	1.082	1.138	0.798	0.035	29.024	27.772	35.273	35.486	32.479
1guu	150	955	0.986	0.068	0.069	0.057	0.057	0.061	0.999	0.854	0.830	0.735	0.751	0.768	0.048	30.869	28.784	41.488	41.852	37.848
1guu-1	150	959	0.986	0.061	0.063	0.058	0.057	0.060	1.000	0.711	0.855	0.805	0.829	0.778	0.053	31.322	31.442	42.308	41.590	37.218
1guu-4000	150	968	0.974	0.081	0.080	0.072	0.065	0.079	1.000	0.901	0.728	0.760	0.961	0.826	0.050	30.352	29.856	42.330	39.832	42.015
C0030pk1	198	3247	0.961	0.112	0.160	0.076	0.077	0.137	1.197	1.354	2.230	1.995	2.054	1.401	0.091	105.175	104.775	149.192	146.360	111.859
1PPT	302	3102	0.984	0.121	0.129	0.128	0.129	0.123	1.000	1.519	1.219	1.944	1.956	1.224	0.356	112.448	110.345	185.815	187.182	118.681
100d	488	5741	0.987	0.146	0.146	0.155	0.157	0.137	1.000	1.577	1.397	1.764	1.749	1.358	0.828	229.809	213.136	659.638	659.280	233.115
GeoMean			0.74	0.00	0.09	0.06	0.00	0.08	1.07	0.04	0.73	0.50	0.06	0.66	0.01	6.30	6.04	5.93	6.63	6.30
Avg			0.76	0.04	0.11	0.07	0.03	0.10	1.09	0.44	0.88	0.63	0.47	0.77	0.06	26.12	25.21	49.69	49.55	27.96
StDev			0.17	0.05	0.07	0.03	0.04	0.04	0.27	0.55	0.57	0.52	0.65	0.34	0.18	51.69	48.82	135.08	134.97	53.26

Large instances

Instance			mc	le	ld	e	CPU		
Name	V	E	IsoNLP	dgsol	IsoNLP	dgsol	IsoNLP	dgsol	
water	648	11939	0.005	0.15	0.557	0.81	26.98	15.16	
3al1	678	17417	0.036	0.007	0.884	0.810	170.91	210.25	
1hpv	1629	18512	0.074	0.078	0.936	0.932	374.01	60.28	
i12	2084	45251	0.012	0.035	0.910	0.932	465.10	139.77	
1tii	5684	69800	0.078	0.077	0.950	0.897	7400.48	454-375	

Outline

Distance resolution limit When to start worrying

Distance resolution limit Clustering in high dimensions is unstable

Nearest Neighbours

basic problem in data science

- pattern recognition, computational geometry, machine learning, data compression, robotics, recommender systems, information retrieval, natural language processing and more
- Example: Used in Step 2 of k-means: assign points to closest centroid

[Cover & Hart 1967]
With random variables

- ► Consider 1-NN
- Let $\ell = |\mathcal{X}|$
- ► Distance function family $\{d^m : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+\}_m$
- ► For each *m*:

- for $i \leq \ell$, random variable X_i^m with some distrib. over \mathbb{R}^n
- X_i^m iid w.r.t. i, Z^m independent of all X_i^m
- $\blacktriangleright D^m_{\min} = \min_{i < \ell} d^m(Z^m, X^m_i)$
- $\blacktriangleright D^m_{\max} = \max_{i \le \ell} d^m(Z^m, X^m_i)$

Distance Instability Theorem

- Let p > 0 be a constant
- ► If

 $\exists i\leq\ell\quad (d^m(Z^m,X^m_i))^p \text{ converges as }m\to\infty$ then, for any $\varepsilon>0,$

closest and furthest point are at about the same distance

Note " $\exists i$ " suffices since $\forall m$ we have X_i^m iid w.r.t. i

[Beyer et al. 1999]

Distance Instability Theorem

Let p > 0 be a constant
If

 $\exists i\leq\ell\quad\lim_{m\to\infty}{\rm Var}((d^m(Z^m,X^m_i))^p)=0$ then, for any $\varepsilon>0,$

$$\lim_{m \to \infty} \mathbb{P}(D_{\max}^m \le (1 + \varepsilon) D_{\min}^m) = 1$$

Note " $\exists i$ " suffices since $\forall m$ we have X_i^m iid w.r.t. i

[Beyer et al. 1999]

Preliminary results

► <u>Lemma</u>. $\{B^m\}_m$ seq. of rnd. vars with finite variance and $\lim_{m \to \infty} \mathbb{E}(B^m) = b \land \lim_{m \to \infty} \operatorname{Var}(B^m) = 0; \text{ then}$ $\forall \varepsilon > 0 \quad \lim_{m \to \infty} \mathbb{P}(||B^m - b|| \le \varepsilon) = 1$ denoted $B^m \to_{\mathbb{P}} b$

- ▶ Slutsky's theorem. $\{B^m\}_m$ seq. of rnd. vars and g a continuous function; if $B^m \to_{\mathbb{P}} b$ and g(b) exists, then $g(B^m) \to_{\mathbb{P}} g(b)$
- Corollary. If $\{A^m\}_m, \{B^m\}_m$ seq. of rnd. vars. s.t. $A^m \to_{\mathbb{P}} a$ and $B^m \to_{\mathbb{P}} b \neq 0$ then $\{\frac{A^m}{B^m}\}_m \to_{\mathbb{P}} \frac{a}{b}$

Proof

Subsection 1

When to start worrying

When it applies

- ▶ iid random variables from any distribution
- ▶ Particular forms of correlation e.g. $U_i \sim \text{Uniform}(0, \sqrt{i}), X_1 = U_1, X_i = U_i + (X_{i-1}/2)$ for i > 1
- ► Variance tending to zero e.g. X_i ~ N(0, 1/i)
- Discrete uniform distribution on *m*-dimensional hypercube for both data and query
- ▶ Computational experiments: instability already with n > 15

Example of k-means in \mathbb{R}^{100}

116 / 160

... and when it doesn't

- Complete linear dependence on all distributions can be reduced to NN in ID
- ► Exact and approximate matching query point = (or ≈) data point
- Query point in a well-separated cluster in data
- Implicitly low dimensionality project; but NN must be stable in lower dim.

Outline

Random projections More efficient clustering Random projections in LP Projecting feasibility Projecting optimality Solution retrieval Quantile regression

Random projections The mathematics of big data

The magic of random projections

- "Mathematics of big data"
- In a nutshell

 Clustering on A' rather than A yields approx. same results with arbitrarily high probability (wahp)

[Johnson & Lindenstrauss, 1984]

The magic of random projections

- "Mathematics of big data"
- In a nutshell
 - 1. Given points $A_i, \ldots, A_n \in \mathbb{R}^m$ with m large and $\varepsilon \in (0, 1)$
 - 2. Pick "appropriate" $k \approx O(\frac{1}{\varepsilon^2} \ln n)$
 - 3. Sample $k \times d$ matrix T (each comp. i.i.d. $\mathcal{N}(0, \frac{1}{\sqrt{k}})$)
 - 4. Consider *projected* points $A'_i = TA_i \in \mathbb{R}^k$ for $i \leq n$
 - 5. With prob ightarrow 1 exponentially fast as $k
 ightarrow \infty$

 $\forall i, j \le n \quad (1 - \varepsilon) \|A_i - A_j\|_2 \le \|A'_i - A'_j\|_2 \le (1 + \varepsilon) \|A_i - A_j\|_2$

[Johnson & Lindenstrauss, 1984]

The shape of a set of points

- Lose dimensions but not too much accuracy Given $A_1, \ldots, A_n \in \mathbb{R}^m$ find $k \ll m$ and points $A'_1, \ldots, A'_n \in \mathbb{R}^k$ s.t. A and A' "have almost the same shape"
- What is the shape of a set of points?

• Approximate congruence \Leftrightarrow distortion: A, A' have almost the same shape if $\forall i < j \le n \quad (1 - \varepsilon) \|A_i - A_j\| \le \|A'_i - A'_j\| \le (1 + \varepsilon) \|A_i - A_j\|$ for some small $\varepsilon > 0$

Assume norms are all Euclidean

Losing dimensions = "projection"

In the plane, hopeless

In 3D: no better

Johnson-Lindenstrauss Lemma

Thm.

Given $A \subseteq \mathbb{R}^m$ with |A| = n and $\varepsilon > 0$ there is $k \sim O(\frac{1}{\varepsilon^2} \ln n)$ and a $k \times m$ matrix T s.t.

$$\forall x, y \in A \quad (1 - \varepsilon) \|x - y\| \leq \|Tx - Ty\| \leq (1 + \varepsilon) \|x - y\|$$

If $k\times m$ matrix T is sampled componentwise from $\mathsf{N}(0,\frac{1}{\sqrt{k}}),$ then A and TA have almost the same shape

[Johnson & Lindenstrauss, 1984]

Sketch of a JLL proof by pictures

Sampling to desired accuracy

Distortion has low probability:

$$\begin{aligned} \forall x, y \in A \quad \mathbf{P}(\|Tx - Ty\| \le (1 - \varepsilon)\|x - y\|) &\le \frac{1}{n^2} \\ \forall x, y \in A \quad \mathbf{P}(\|Tx - Ty\| \ge (1 + \varepsilon)\|x - y\|) &\le \frac{1}{n^2} \end{aligned}$$

▶ Probability \exists pair $x, y \in A$ distorting Euclidean distance: union bound over $\binom{n}{2}$ pairs

 $P(\neg(A \text{ and } TA \text{ have almost the same shape})) \leq {\binom{n}{2}} \frac{2}{n^2} = 1 - \frac{1}{n}$

 $P(A \text{ and } TA \text{ have almost the same shape}) \geq \frac{1}{2}$

 \Rightarrow re-sampling T gives JLL with arbitrarily high probability

[Dasgupta & Gupta, 2002]

1

In practice

• Empirically, sample T very few times (e.g. once will do!) on average $||Tx - Ty|| \approx ||x - y||$, and distortion decreases exponentially with n

We only need a logarithmic number of dimensions in function of the number of points

Surprising fact:

k is independent of the original number of dimensions m

Subsection 1

More efficient clustering

Clustering Google images

[L. & Lavor, in press]

Recall k-means

- *Input*: $X = \text{set of images (as vectors in } \mathbb{R}^{|\text{pixels}|})$
- *Output*: a *k*-partition of *X*
- 1. pick k random centroid candidates
- 2. assign points to closest centroid
- 3. recompute correct centroid for assigned points
- 4. repeat from Step 2 until stability

Without random projections

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
Out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 3}}

Too slow!

With random projections

Get["Projection.m"]; VKimg = JohnsonLindenstrauss[VHimg, 0.1]; VKcl = Timing[ClusteringComponents[VKimg, 3, 1]] Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

> From 0.405 CPU time to 0.00232 Same clustering

Works on the MSSC MP formulation too!

$$\min_{\substack{x,y,s \\ x,y,s}} \sum_{i \le n} \sum_{j \le d} \|Tp_i - Ty_j\|_2^2 x_{ij}$$

$$\forall j \le d \qquad \qquad \frac{1}{s_j} \sum_{i \le n} Tp_i x_{ij} = Ty_j$$

$$\forall i \le n \qquad \qquad \sum_{j \le d} x_{ij} = 1$$

$$\forall j \le d \qquad \qquad \sum_{i \le n} x_{ij} = s_j$$

$$\forall j \le d \qquad \qquad y_j \in \mathbb{R}^m$$

$$x \in \{0,1\}^{nd}$$

$$s \in \mathbb{N}^d$$

where T is a $k \times m$ random projector

Works on the MSSC MP formulation too!

- $\begin{array}{cccc} & -y'_{j} \|_{2}^{2} x_{ij} \\ \frac{1}{s_{j}} \sum\limits_{i \leq n} T p_{i} x_{ij} & = & y'_{j} \\ & \sum\limits_{j \leq d} x_{ij} & = & 1 \\ & \sum\limits_{i \leq n} x_{ij} & = & s_{j} \\ & & y'_{j} & \in & \mathbb{R}^{k} \\ & & x & \in & \{0, 1\}^{nd} \\ & & s & \in & \mathbb{N}^{d} \end{array} \right)$ $\min_{x,y',s} \quad \sum_{i \le n} \sum_{j < d} \|Tp_i - y'_j\|_2^2 x_{ij}$ $\forall j \le d$ $\forall i \leq n$ (MSSC') $\forall j \leq d$ $\forall j \leq d$
- where $k = O(\frac{1}{\varepsilon^2} \ln n)$
- ▶ less data, $|y'| < |y| \Rightarrow$ get solutions faster
- Yields smaller cMINLP

Subsection 2

Random projections in Linear Programming

The gist

• Let A, b be very large, consider LP

$$\min\{c^{\top}x \mid Ax = b \land x \ge 0\}$$

T short & fat normally sampledThen

$$Ax = b \land x \ge 0 \iff TAx = Tb \land x \ge 0$$

wahp

[Vu & al. to appear]

Losing dimensions

Restricted Linear Membership (RLM_X) Given $A_1, \ldots, A_n, b \in \mathbb{R}^m$ and $X \subseteq \mathbb{R}^n, \exists ? x \in X$ s.t.

$$b = \sum_{i \le n} x_i A_i$$

Given $X \subseteq \mathbb{R}^n$ and $b, A_1, \ldots, A_n \in \mathbb{R}^m$, find $k \ll m$, $b', A'_1, \ldots, A'_n \in \mathbb{R}^k$ such that:

with high probability

Projecting feasibility

Projecting infeasibility (easy cases)

<u>Thm.</u>

 $T: \mathbb{R}^m \to \mathbb{R}^k$ a JLL random projection, $b, A_1, \ldots, A_n \in \mathbb{R}^m$ a RLM_X instance. For any given vector $x \in X$, we have:

(i) If
$$b = \sum_{i=1}^{n} x_i A_i$$
 then $Tb = \sum_{i=1}^{n} x_i TA_i$
(ii) If $b \neq \sum_{i=1}^{n} x_i A_i$ then $P\left(Tb \neq \sum_{i=1}^{n} x_i TA_i\right) \ge 1 - 2e^{-Ck}$
(iii) If $b \neq \sum_{i=1}^{n} y_i A_i$ for all $y \in X \subseteq \mathbb{R}^n$, where $|X|$ is finite, then
 $P\left(\forall y \in X \ Tb \neq \sum_{i=1}^{n} y_i TA_i\right) \ge 1 - 2|X|e^{-Ck}$

for some constant C > 0 (independent of n, k).

[Vu & al. to appear, arXiv:1507.00990v1/math.OC]

Separating hyperplanes

When |X| is large, project separating hyperplanes instead

- ▶ Convex $C \subseteq \mathbb{R}^m, x \notin C$: then \exists hyperplane c separating x, C
- In particular, true if $C = \operatorname{cone}(A_1, \ldots, A_n)$ for $A \subseteq \mathbb{R}^m$
- We can show $x \in C \Leftrightarrow Tx \in TC$ with high probability
- As above, if $x \in C$ then $Tx \in TC$ by linearity of TDifficult part is proving the converse

We can also project point-to-cone distances

Projecting the separation

Thm.

Given $c, b, A_1, \ldots, A_n \in \mathbb{R}^m$ of unit norm s.t. $b \notin \operatorname{cone}\{A_1, \ldots, A_n\}$ pointed, $\varepsilon > 0, c \in \mathbb{R}^m$ s.t. $c^\top b < -\varepsilon, c^\top A_i \ge \varepsilon \ (i \le n)$, and T a random projector:

$$\mathbb{P}[Tb \notin \mathsf{cone}\{TA_1, \dots, TA_n\}] \ge 1 - 4(n+1)e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)b}$$

for some constant C.

Proof

Let \mathscr{A} be the event that T approximately preserves $||c - \chi||^2$ and $||c + \chi||^2$ for all $\chi \in \{b, A_1, \ldots, A_n\}$. Since \mathscr{A} consists of 2(n + 1) events, by the JLL Corollary (squared version) and the union bound, we get

$$\mathbb{P}(\mathscr{A}) \ge 1 - 4(n+1)e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$$

Now consider $\chi = b$

$$\langle Tc, Tb \rangle = \frac{1}{4} (\|T(c+b)\|^2 - \|T(c-b)\|^2)$$

by JLL $\leq \frac{1}{4} (\|c+b\|^2 - \|c-b\|^2) + \frac{\varepsilon}{4} (\|c+b\|^2 + \|c-b\|^2)$
 $= c^\top b + \varepsilon < 0$

and similarly $\langle Tc, TA_i \rangle \geq 0$

[Vu et al. to appear, arXiv:1507.00990v1/math.OC]

The feasibility projection theorem

Thm. Given $\delta > 0$, \exists sufficiently large $m \le n$ such that: for any LFP input A, b where A is $m \times n$ we can sample a random $k \times m$ matrix T with $k \ll m$ and

 $P(\text{orig. LFP feasible} \iff \text{proj. LFP feasible}) \ge 1 - \delta$

Projecting optimality

Notation

- $P \equiv \min\{cx \mid Ax = b \land x \ge 0\}$ (original problem)
- $TP \equiv \min\{cx \mid TAx = Tb \land x \ge 0\}$ (projected problem)
- v(P) = optimal objective function value of P
- v(TP) = optimal objective function value of TP
The optimality projection theorem

- Assume feas(P) is bounded
- ▶ Assume all optima of P satisfy $\sum_j x_j \le \theta$ for some given $\theta > 0$

(prevents cones from being "too flat")

<u>Thm.</u>

Given $\delta > 0$,

$$v(P) - \delta \le v(TP) \le v(P) \qquad (*)$$

holds wahp

in fact (*) holds with prob. $1 - 4ne^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$ where $\varepsilon = \delta/(2(\theta + 1)\eta)$ and $\eta = O(\|y\|_2)$ where y is a dual optimal solution of P having minimum norm

[Vu & al. to appear]

The easy part

Show $v(TP) \leq v(P)$:

- Constraints of $P: Ax = b \land x \ge 0$
- Constraints of TP: $TAx = Tb \land x \ge 0$
- ▶ \Rightarrow constraints of *TP* are lin. comb. of constraints of *P*
- ➤ ⇒ any solution of P is feasible in TP (btw, <u>the converse holds almost never</u>)
- ▶ *P* and *TP* have the same objective function
- \Rightarrow *TP* is a relaxation of *P* \Rightarrow $v(TP) \le v(P)$

The hard part (sketch)

• Eq. (7) equivalent to P for $\delta = 0$

$$\left.\begin{array}{ccc} cx &=& v(P) - \delta \\ Ax &=& b \\ x &\geq& 0 \end{array}\right\}$$

Note: for $\delta > 0$, Eq. (7) is infeasible

By feasibility projection theorem,

$$\begin{cases} cx &= v(P) - \delta \\ TAx &= Tb \\ x &\geq 0 \end{cases}$$

is infeasible wahp for $\delta > 0$

- Hence $cx < v(P) \delta \wedge TAx = Tb \wedge x \ge 0$ infeasible wahp
- $\blacktriangleright \Rightarrow cx \ge v(P) \delta \text{ holds walp for } x \in \mathsf{feas}(TP)$

$$\blacktriangleright \Rightarrow v(P) - \delta \le v(TP)$$

(7)

Solution retrieval

Projected solutions are infeasible in P

•
$$Ax = b \Rightarrow TAx = Tb$$
 by linearity

• However,
Thm.
For
$$x \ge 0$$
 s.t. $TAx = Tb$, $Ax = b$ with probability zero

Can't get solution for original LFP using projected LFP!

Solution retrieval from optimal basis

▶ Primal min{
$$c^{\top}x \mid Ax = b \land x \ge 0$$
} ⇒
dual max{ $b^{\top}y \mid A^{\top}y \le c$ }

• Let
$$x' = \operatorname{sol}(TP)$$
 and $y' = \operatorname{sol}(\operatorname{dual}(TP))$

$$\blacktriangleright \Rightarrow (TA)^\top y' = (A^\top T^\top) y' = A^\top (T^\top y') \le c$$

•
$$\Rightarrow T^{\top}y'$$
 is a solution of $\mathsf{dual}(P)$

• \Rightarrow we can compute an optimal basis *J* for *P*

• Solve
$$A_J x_J = b$$
, get x_J , obtain a solution x^* of P

Solving large quantile regression LPs

Regression

- ► multivariate random var. X function y = f(X)sample $\{(a_i, b_i) \in \mathbb{R}^p \times \mathbb{R} \mid i \leq m\}$
- sample mean:

$$\hat{\mu} = \argmin_{\mu \in \mathbb{R}} \sum_{i \leq m} (b_i - \mu)^2$$

• sample mean conditional to $X = A = (a_{ij})$:

$$\hat{\nu} = \operatorname*{arg\,min}_{\nu \in \mathbb{R}^p} \sum_{i \leq m} (b_i - \nu a_i)^2$$

Quantile regression

► sample median:

$$\begin{split} \hat{\xi} &= \arg \min_{\xi \in \mathbb{R}} \sum_{i \leq m} |b_i - \xi| \\ &= \arg \min_{\xi \in \mathbb{R}} \sum_{i \leq m} \left(\frac{1}{2} \max(b_i - \xi, 0) - \frac{1}{2} \min(b_i - \xi, 0) \right) \end{split}$$

• sample τ -quantile:

$$\hat{\xi} = \operatorname*{arg\,min}_{\xi \in \mathbb{R}} \sum_{i \le m} \left(\tau \max(b_i - \xi, 0) - (1 - \tau) \min(b_i - \xi, 0) \right)$$

• sample τ -quantile conditional to $X = A = (a_{ij})$:

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \sum_{i \le m} \left(\tau \max(b_i - \beta a_i, 0) - (1 - \tau) \min(b_i - \beta a_i, 0) \right)$$

Usefulness

Linear Programming formulation

$$\begin{array}{ccc} \min & \tau u^{+} + (1 - \tau) u^{-} \\ & A(\beta^{+} - \beta^{-}) + u^{+} - u^{-} &= b \\ & \beta, u &\geq 0 \end{array} \right\}$$

- parameters: A is $m \times p, b \in \mathbb{R}^m, \tau \in \mathbb{R}$
- decision variables: $\beta^+, \beta^- \in \mathbb{R}^p, u^+, u^- \in \mathbb{R}^m$
- ► LP constraint matrix is $m \times (2p + 2m)$ density: p/(p + m) — can be high

Large datasets

- Russia Longitudinal Monitoring Survey, household data (hh1995f)
 - ▶ m = 3783, p = 855
 - $A = hf1995f, b = \log avg(A)$
 - ▶ 18.5% dense
 - poorly scaled data, CPLEX yields infeasible (!!!) after around 70s CPU
 - quantreg in R fails
- 14596 RGB photos on my HD, scaled to 90×90 pixels
 - ▶ *m* = 14596, *p* = 24300
 - each row of A is an image vector, $b = \sum A$
 - ▶ 62.4% dense
 - ► CPLEX killed by OS after ≈30min (presumably for lack of RAM) on 16GB

Results on large datasets

Instance			Projection				Original		
τ	m	p	k	opt	CPU	feas	opt	CPU	qnt err
hh1995f									
0.25	3783	856	411	0.00	8.53	0.038%	71.34	17.05	0.16
0.50				0.00	8.44	0.035%	89.17	15.25	0.05
0.75				0.00	8.46	0.041%	65.37	31.67	3.91
jpegs									
0.25	14596	24300	506	0.00	231.83	0.51%	0.00	3.69E+5	0.04
0.50				0.00	227.54	0.51%	0.00	3.67E+5	0.05
0.75				0.00	228.57	0.51%	0.00	3.68E+5	0.05
random									
0.25	1500	100	363	0.25	2.38	0.01%	1.06	6.00	0.00
0.50				0.40	2.51	0.01%	1.34	6.01	0.00
0.75				0.25	2.57	0.01%	1.05	5.64	0.00
0.25	2000	200	377	0.35	4.29	0.01%	2.37	21.40	0.00
0.50				0.55	4.37	0.01%	3.10	23.02	0.00
0.75				0.35	4.24	0.01%	2.42	21.99	0.00

feas =
$$100 \frac{||Ax - b||_2}{||b||_1/m}$$

qnt err = $\frac{||qnt - proj. qnt||_2}{\# cols}$

IPM with *no simplex crossover*: solution w/o opt. guarantee <u>cannot trust results</u> *simplex method won't work due to ill-scaling and size*

Outline

Solution methods

The end

Summary

- 1. Graphs and weighted graphs necessary to model data *Abduction, observation graphs, consistency relations*
- Computers can "reason by analogy" (clustering) Modularity clustering
- 3. Clustering on vectors allows more flexibility *k-means, MSSC*
- 4. Need to embed (weighted) graphs into Euclidean spaces *Metric embeddings, Distance Geometry*
- 5. High dimensions make clustering expensive/unstable *Distance resolution limit*
- 6. Use random projections to reduce dimensions *Johnson-Lindenstrauss lemma*

Some of my references

- I. Vu, Poirion, L., Random Projections for Linear Programming, Math. Oper. Res., to appear
- 2. L., Lavor, Euclidean Distance Geometry: an Introduction, Springer, Zürich, in press
- Mencarelli, Sahraoui, L., A multiplicative weights update algorithm for MINLP, Eur. J. Comp. Opt., 5:31-86, 2017
- L., D'Ambrosio, *The Isomap algorithm in distance geometry*, in Iliopoulos et al. (eds.), *Proceedings of SEA*, LIPICS 75(5)1:13, Dagstuhl Publishing, 2017
- 5. Dias, L., *Diagonally Dominant Programming in Distance Geometry*, in Cerulli et al. (eds.) *Proceedings of ISCO*, LNCS 9849:225-246, Springer, Zürich, 2016
- 6. L., Lavor, Maculan, Mucherino, *Euclidean distance geometry and applications*, SIAM Review, 56(1):3-69, 2014
- 7. Cafieri, Hansen, L., *Improving heuristics for network modularity maximization using an exact algorithm*, Discr. Appl. Math., 163:65-72, 2014
- 8. L., Lavor, Mucherino, *The DMDGP seems easier on proteins*, in Mucherino et al. (eds.) *Distance Geometry: Theory, Methods, and Applications*, Springer, New York, 2013
- 9. Aloise, Hansen, L., *An improved column generation algorithm for minimum sum-of-squares clustering*, Math. Prog. A 131:195-220, 2012
- Aloise, Cafieri, Caporossi, Hansen, Perron, L., Column generation algorithms for exact modularity maximization in networks, Phys. Rev. E, 82(4):046112, 2010
- L., Cafieri, Tarissan, *Reformulations in Mathematical Programming: A Computational Approach*, in Abraham et al. (eds.) *Foundations of Computational Intelligence* vol. 3, SCI 203:153-234, Springer, Heidelberg 2009
- 12. Lavor, L., Maculan, *Computational Experience with the Molecular Distance Geometry Problem*, in Pintér (ed.) *Global Optimization: Scientific and Engineering Case Studies*, Springer, Berlin, 2006