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Abstract We give a short review of existing mathematical programming based
bounds for kissing numbers. The kissing number in K dimensions is the maximum
number of unit balls arranged around a central unit ball in such a way that the in-
tersection of the interiors of any pair of balls in the configuration is empty. It is a
cornerstone of the theory of spherical codes, a good way to find n equally spaced
points on the surface of a hypersphere, and the object of a diatribe between Isaac
Newton and David Gregory.

1 A brit and a scot went down the pub. . .

“Kissing” is billiard jargon. British players would say two adjacent billiard balls
on the table “kiss”. The term found its way into mathematics thanks to Isaac New-
ton (whom everyone knows) and David Gregory (a professor of Mathematics at
Edinburgh — without having ever obtained a degree — and then Savilian Profes-
sor of Astronomy at Oxford thanks to Newton’s influence). In the 1690s, scared
of the social unrest in Scotland, Gregory left and visited Newton in Cambridge.
According to rumours and well-established British protocol, the brit and the scot
went down the pub for a few pints of ale and a game of pool. There, among kiss-
ing balls and fumes of alcohol, they got into a brawl about the number of balls
that could kiss a central ball on the billiard table. Still sober enough, they counted
them, and came to agree on the number six. As the number of pints increased,
the two started blabbering about gravity-defying floating balls passionately kiss-
ing in three dimensions, and disagreed: Newton, embracing the voice of Kepler,
said no more than twelve balls could be arranged around a central one. Gregory,
who had to gain his master’s approval by attempting to be brilliant and surpris-
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ing, said that perhaps thirteen could fit? George Szpiro [20] recounts a differ-
ent story in plus.maths.org/content/newton-and-kissing-problem (some
nonsense about astronomy and planets), but since neither he nor I were present at
the quabble, his word on the matter is just as good as mine.

1.1 Applications

Quite aside from the satisfaction I get out of spreading academic gossip on Isaac
Newton, it turns out that arranging balls in a kissing configuration has applications.

If we only consider the points of contact of n surrounding balls of radius r with
the central unit ball, we obtain a set of unit vectors x1, . . . ,xn in RK

that have pairwise distances at least 2r
1+r . This can

be seen in the figure on the left (a two-dimensional
section of part of some K-dimensional balls config-
uration), together with the proportion 2r : (1+ r) =
di j : 1, where di j = ‖xi− x j‖2. This is useful if you
ever want to send one of the vectors xi (for i ≤ n)
over a noisy communication channel. You might re-
ceive a vector y different from all xi’s, but assuming
the channel is not too noisy, you can simply assume
that y is a corruption of the closest xi. This type of
error correcting code is called a spherical code, and
denoted by A(n,K,r). There is interest in maximiz-
ing r, since this corresponds to larger balls and con-
sequently more errors being corrected by the code.

Kissing number configurations correspond to spherical codes A(n,K,1) where n is
maximum for a given K. Finding a spherical code given n,K,r is the SPHERICAL
CODE PROBLEM (SCP).

The other (less cited) application is finding n equally spaced points on the K-
dimensional sphere SK−1. On websites such as stackoverflow.com or math.

stackexchange.com, it seems people expect this to be an easy problem (possibly
because the circle is a simple case: place xi on the circle at an angle 2iπ/n). Some
3D solutions advise scattering equally spaced points on a spiral going from one pole
to the opposite, warning readers that it does not guarantee equal spacing. The prob-
lem can be formulated for any K by means of spherical codes where the smallest r is
maximum. Finding n equally spaced unit vectors on SK−1 is the EQUALLY SPACED
SPHERICAL POINTS PROBLEM (ESSPP).
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1.2 Contents

Most of the results in this paper are known. I propose a new SDP-based heuristic for
finding lower bounds, and I give a practitioner’s view of Delsarte’s Linear Program-
ming (LP) upper bound [7], which is useful for conducting experiments in view of
trying to improve current bounds ([2, 14] also discuss practical issues of computing
these bounds). All the experiments reported in this paper are preliminary. Lastly, I
enjoyed writing this paper more informally than is usual — I hope readers won’t
object!

2 The Kissing Number Problem

Finding kissing numbers and kissing configurations is known as the KISSING NUM-
BER PROBLEM (KNP). Formally, this consists in finding the maximum number
n of vectors x1, . . . ,xn ∈ RK such that ‖xi‖2

2 = 1 for all i ≤ n and xi · x j ≤ 1
2 for

all i < j ≤ n. If n is the kissing number in K dimensions, we write kn(K) = n.
We know that kn(2) = 6, kn(3) = 12 (so Newton was right), kn(4) = 24, and
we do not know kn(5) but it is at least 40. We also know kn(8) = 240 and
kn(24) = 196560 [4, p. 510], and have bounds in many other dimensions (see
https://en.wikipedia.org/wiki/Kissing_number_problem).

2.1 Computational complexity

The computational complexity of solving KNP, as an optimization or even a decision
problem, is a prominent and embarassing question mark. Since the input is a pair of
integers n,K, mapping an NP-complete problem (e.g. SAT) to a KNP, such that an
instance of one problem is yes if and only if the corresponding instance of the other
problem is also yes, really seems quite hard.

On the other hand, the KNP is certainly very hard to solve empirically, and no-
one working on this problem ever suggested that there might be a polynomial-time
algorithm for solving it — even on a real RAM computational model.

Reductions between decision versions of KNP, SCP and ESSPP are as follows:
the KNP is included in the SCP by definition (so it trivially reduces to the SCP),
and, as pointed out in Sect. 3.2, the KNP can be decided by the decision version of
the ESSPP (so, again, it reduces to the ESSPP). The decision versions of the SCP
and ESSPP are really the same (though the optimization versions differ). The only
reduction I cannot immediately prove is from SCP/ESSCP to the KNP, since only
the latter fixes the angular separation at π/3.

I am not aware of any method for proving NP-hardness of problems whose input
consists of a constant number of integers. For example, the complexity status of the
well-known PACKING EQUAL CIRCLES IN A SQUARE (PECS) problem is as yet
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undetermined [6]. This is certainly an interesting open problem in computational
complexity.

A referee pointed out an interesting link with another problem having unde-
termined complexity status: the PALLET LOADING PROBLEM (PLP), which asks
whether n identical a× b rectangles can be packed in a given X ×Y rectangle [12,
§2.C]. Thus, PLP instances, like KNP ones, are described by a constant number of
integers. Again, establishing reductions between KNP, SCP, ESSPP, PECS and PLP
is an open question.

3 Lower bounds

Since the KNP is a maximization problem, the cardinality of any kissing configura-
tion of balls yields a lower bound. Since any heuristic method might be able to find
a good configuration, lower bounds for the KNP are considered “easy” to obtain.

3.1 The formulation of Maculan, Michelon and Smith

We start with the MMS95 formulation proposed in [11], a Mixed-Integer Nonlinear
Program (MINLP) which correctly formulates the KNP:

max
x∈[−1,1]τK ,α∈{0,1}τ

τ

∑
i=1

αi

∀i≤ τ ‖xi‖2
2 = αi

∀i < j ≤ τ ‖xi− x j‖2
2 ≥ αiα j,

 (1)

where τ is some (estimated) upper bound to the kissing number. The αi (binary) vari-
ables choose whether vector xi is part of the configuration or not. Note that the an-
gular separation constraint xi ·x j ≤ 1

2 is replaced by a Euclidean distance separation
‖xi−x j‖2

2 ≥ 1, which is equivalent since 1≤ ‖xi−x j‖2
2 = ‖xi‖2

2 +‖x j‖2
2−2xi ·x j =

2−2xi ·x j (whence xi ·x j ≤ 1/2) as the vectors all have unit norm. Since the problem
is formulated exactly, an exact MINLP solver would provide a feasible and optimal
solution if it exists, given some guessed upper bound.

Unfortunately, the state of the art in MINLP solver technology cannot even pro-
vide an answer in K = 2 if τ = 7 (one more than kn(2) = 6) in “reasonable time” of
a “reasonable laptop” using Eq. (1).
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3.2 A feasibility formulation

Given K and n, the formulation below finds the configuration of n unit vectors where
the minimal separation between closest vectors is maximum [10]:

max
x∈[−1,1]nK ,α≥0

α

∀i≤ n ‖xi‖2
2 = 1

∀i < j ≤ n ‖xi− x j‖2
2 ≥ α.

 (2)

Eq. (2) has a single scalar α variable, which is continuous and represents the min-
imum distance between pairs of vectors. Solving this nonconvex Nonlinear Pro-
gram (NLP) to global optimality and obtaining an optimal α ≥ 1 yields a proof that
kn(K)≥ n; if α < 1 then kn(K)< n. The issue with this strategy for proving kissing
numbers is the same as for Eq. (1): current solvers just cannot solve these instances
to global optimality for interesting values of n,K.

On the other hand, Eq. (2) can be used heuristically to find KNP configurations
given n,K. Moreover, these feasible solutions will in general spread points over the
K-sphere quite evenly, each point being at roughly the same distance from its closest
points. They will therefore provide a practical solution to the ESSPP.

3.3 Semidefinite Programming relaxations

Semidefinite Programming (SDP) relaxations of Eq. (1)-(2) have not been looked
at yet, as far as I know. I performed a few preliminary tests on both, and while the
SDP from Eq. (1) seems extremely slack (trivially yielding the upper bound τ for
whatever given τ , probably due to relaxed integrality), I found the SDP relaxation
of Eq. (2) more interesting:

max
X∈[−1,1]n2

,α≥0
α

∀i≤ n Xii = 1
∀i < j ≤ n Xii +X j j−2Xi j ≥ α

X � 0.

 (3)

Based on past experience with other problems involving Euclidean distance con-
straints, I tried the following heuristic strategy:

1. solve Eq. (3) and obtain an optimal solution (X̄ , ᾱ);
2. perform Principal Component Analysis (PCA) using the K largest eigenvalues of

X̄ to obtain an n×K matrix x̄ such that the i-th row x̄i is a vector in RK ;
3. use x̄ as a starting point for a local NLP solver deployed on Eq. (2), obtain a

“good” feasible solution (x∗,α∗).
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Using Mosek [15], a Python implementation of PCA, and IPOPT [5], I was able to
derive the following KNP configurations on my “resonable laptop” based on a 3.1
GHz Intel Core i7 with 16GB RAM.

(n,K) (6,2) (12,3) (24,4) (40,5) (72,6)
ε 0 0 0.04 0.05 0.07
CPU (s) 0.02 0.02 0.32 1.57 12.26

The first row measures the (additive) solution error with respect to a valid KNP
configuration: α∗ = 1− ε for all α < 1 (whereas α∗ > 1 whenever ε = 0). Unfor-
tunately, the next interesting case, n = 12 and K = 7, made Mosek crash for lack of
RAM (the computational bottleneck on solving SDPs is well known).

4 Upper bounds

In general, upper bounds to the KNP are considered hard to obtain. Each new upper
bound either requires a completely new theoretical point of view, or a substantial
body of theoretical work and some computation.

4.1 Direct LP and SDP bounds

A couple of easy upper bounding techniques, however, are readily available in the
optimization literature: LP and SDP relaxation. Expanding the Euclidean distances
in Eq. (1) and Eq. (2) yields a MINLP and, respectively, a nonconvex NLP involving
products of decision variables as the only type of nonlinearity. Using McCormick’s
[13] for bilinear products and the secant relaxation for square terms one can obtain
an LP. For having tested it in the past while I worked on [10], I know that this kind
of LP bound is as slack as they come.

Based on some preliminary experiments using the Mosek SDP solver [15] on
Eq. (3) for K ∈ {2,3}, I observed a regular decrease in the optimal value ᾱ of the
objective function of Eq. (3) as n increases for a given fixed K, as shown in the
figures below.
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The decreasing sequence of optimal ᾱ values appears to be converging to 2 for both
K = 2 and K = 3. I have not even started considering how to prove it (or disprove
it), nor whether it would have any interesting consequence.

4.2 Delsarte’s LP bound

This is an adaptation to the spherical context of Delsarte’s upper bound technique
for binary codes [8], based on LP.

Broadly speaking, Delsarte’s idea is based on deciding the distance distribution
of the code so as to maximize its cardinality. Let at be the fraction of the vectors
in a KNP configuration code A(n,K,1) that have scalar product equal t. Since these
codes contain n vectors, there are at most n2 values of t (there could be fewer if
many scalar products have the same value). In any case, summing over the at we
obtain n2/n = n, which is the cardinality of the code. Also, since these are fractions,
at ≥ 0. Moreover, there are exactly n scalar products having value 1, namely xi ·xi =
‖x‖2

2 = 1 for all i≤ n, thus a1 = n/n = 1. Hence, the LP

max{∑
t

at | a1 = 1∧a≥ 0} (†)

is of interest to us, insofar as it maximizes the cardinality of the code it describes.
The issue at this point is that this LP is unbounded — there is nothing that links
the decision variables at to the “code structure”. Delsarte’s idea consists in finding
a family F = {φ1,φ2, . . .} of functions φ : [−1,1]→ R such that

∀φ ∈F ∑
t

atφ(t)≥ 0 (‡)

is a valid constraint for the LP (†).
Delsarte’s “main theorem” has been proved many times, and generalized in var-

ious ways [4, §2.2]. Its statement is also valid for the SPC and the ESSPP, as it
considers an arbitrary separation angle ζ with cosζ = z.

Theorem 1. Let c0 > 0 and f : [−1,1]→ R such that:

(i) ∑i, j≤n f (xi · x j)≥ 0
(ii) ∀t ∈ [−1,z] f (t)+ c0 ≤ 0
(iii) f (1)+ c0 ≤ 1.

Then n≤ 1
c0

.

My favorite proof is the one-liner given in [18]. Let g(t) = f (t)+ c0, then:

n2c0 ≤ n2c0 + ∑
i, j≤n

f (xi · x j) = ∑
i, j≤n

g(xi · x j)≤∑
i≤n

g(xi · xi) = ng(1)≤ n,

whence n≤ 1/c0. This suggests that the problem max{c | (i)-(iii)} (∗) is relevant, as
higher values for c0 correspond to tighter bounds. We look for a function f written
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as a linear combination of functions φh ∈F , and introduce the coefficients ch so
that f (t) = ∑h chφh(t).

We now come to the family F : Delsarte’s LP bounding techniques require an or-
thogonal family of polynomials. In the KNP case, this family consist of Gegenbauer
polynomials C(λ )

h (t) [1, p. 776], that encode certain properties of SK−1. For exam-
ple, so far our description of Delsarte’s LP has failed to include any information
about K, which is provided by this choice of F , notably by setting λ = (K−2)/2
[19, §3]. Another crucial property is that if a function f is a conic combination of
Gegenbauer polynomials, then ( f (xi · x j)i j) � 0, whence condition (i) of Thm. 1
holds; moreover, conversely, any function satisfying ( f (xi ·x j)i j)� 0 can be written
as a conic combination of Gegenbauer polynomials [19]. We therefore adjoin the
constraints (‡) quantified over G K = {C(K−2)/2

h (t) | h ∈ H} (for some set H) to the
LP (†).

We explicitly write the LP (∗) by requiring that the f appearing in Thm. 1 should
be a conic combination of elements of G K :

max
c≥0
{c0 | ∀t ( f (t) = ∑

φh∈G K

chφh(t) ∧ c0 + f (t)≤ 0) ∧ c0 + f (1)≤ 1}. (4)

As observed in [17], (†) and (∗) are a pair of dual LPs. You have to “massage” (∗)
somewhat before the duality relation with (4) becomes apparent, though (eliminate
c0 and minimize ∑h ch, see [2, Eq. (5), p. 615]). By duality, we only focus on one
LP, namely Eq. (4).

4.2.1 Getting your hands dirty

As stated, Eq. (4) is infinite in both dimensions: F is countably infinite (if we re-
strict λ to be integer) and t varies in the uncountably infinite set T̄ = [−1,1/2]∪{1}.
Only a couple among the many works in the literature mention this as a difficulty
(without providing a discussion, however). The only paper I found that provides a
satisfactory discussion of this issue is [2].

1. For an upper bound to kn(K), start with polynomials in G K up to degree, say, 15
[17], and gradually work your way up the degrees to see if the bounds improve
(be wary of floating point errors arising from evaluating polynomials large de-
grees — they may invalidate the bound, see [2, Lemma 1]). You can also use any
polynomial from G ` for ` ≥ K (though not for ` < K), since Gegenbauer poly-
nomials having lower λ “dominate” — in the sense that they yield larger values
of c0 — those for higher λ . Essentially, the minimum ` for which you choose
elements in G ` determines the dimensionality of the KNP instance you are going
to compute a bound for.

2. A safe way to deal with the fact that T̄ is infinite is to choose any finite T ⊆ T̄ ,
as removing constraints yields a relaxation (and hence a valid bound). A few
experiments will convince you that this discretization has a very small impact on
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the value of the bound — moreover, since these are “small LPs”, you can still
instantly obtain answers even when |T | is pretty large (e.g. O(105)).

3. In order to obtain closed form expressions for Gegenbauer polynomials, I used
Mathematica’s GegenbauerC[h,λ,t]. However, Eq. (4) expects Gegenbauer
polynomials to be normalized so that Cλ

h (1) = 1, whereas Mathematica’s im-
plementation normalizes them differently — you have to remember to evaluate
GegenbauerC[h,λ,t] / GegenbauerC[h,λ,1].

I obtained the following (standard) LP upper bounds using Gegenbauer families
C0.5

h and C1
h respectively, for h ≤ 10: kn(3) ≤ b13.1583c, kn(4) ≤ b25.5581c and

kn(5)≤ b46.3365c.

4.3 Extensions

I would like to emphasize three among the extensions to Delsarte’s LP bound:

(a) Oleg Musin’s extension [16], which brought us the proof that kn(4) = 24;
(b) Pfender’s extension [18], yielding new upper bounds for K ∈{10,16,17,25,26};
(c) Bachoc and Vallentin’s extension [3], which brought us kn(5) ≤ 45 (further

improved to kn(5)≤ b44.99899685c= 44 in [14], obtained using the GNU Mul-
tiple Precision (GMP) arithmetic library: if you trust the GMP library, you should
also trust this bound.

The first two extensions are based on enriching the function family F : in case (a)
by including some polynomials f such that condition (ii) of Thm. 1 is violated for a
fixed xi and finitely many x j (the exceptions that ensue are dealt with combinatori-
ally); and in case (b) by adding a new family of functions to F that are not convex
combinations of Gegenbauer polynomials but satisfy the conditions of Thm. 1. The
case (c) is even more interesting as it considers distance distributions on triplets of
vectors (rather than pairs) and derives a semidefinite programming (SDP) formula-
tion instead of an LP.

See [4] for further extensions.
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