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Abstract We discuss a discretization-based solution approach for a classic problem in global1

optimization, namely the distance geometry problem (DGP). We focus our attention on a par- 12

ticular class of the DGP which is concerned with the identification of the conformation of3

biological molecules. Among the many relevant ideas for the discretization of the DGP in4

the literature, we identify the most promising ones and address their inherent limitations5

to application to this class of problems. The result is an improved method for estimating 26

3D structures of small proteins based only on the knowledge of some distance restraints7

between pairs of atoms. We present computational results showcasing the usefulness of the8

new proposed approach. Proteins act on living cells according to their geometric and chem-9

ical properties: finding protein conformations can be very useful within the pharmaceutical10

industry in order to synthesize new drugs.11
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1 Introduction13

Given a positive integer K and a simple weighted undirected graph G = (V, E, d), where14

d maps edges {u, v} ∈ E to positive interval weights [d({u, v}), d̄({u, v})], the Distance15

Geometry Problem (DGP) [38] is the problem of finding a realization of the graph G in a16

K -dimensional Euclidean space. In other words, the DGP requires the identification of a map17

x : V → R
K , satisfying the distance constraints:18

d({u, v}) ≤ ‖x(u) − x(v)‖ ≤ d̄({u, v}), ∀{u, v} ∈ E, (1)19

where ‖ · ‖ denotes the Euclidean norm.20

A solution for (1) is called a realization or an embedding. In order to simplify the notation,21

we will use xu := x(u) and duv := d(u, v) := d({u, v}) hereafter.22

In structural biology, the problem of identifying molecular conformations from a given23

list of distance restraints between atom pairs is a DGP in dimension K = 3. This problem is24

also known in the scientific literature as the Molecular Distance Geometry Problem (MDGP).25

In this particular application, the distances may be exact (i.e. duv = d̄uv) or represented by26

a positive real-valued interval (i.e. d̄uv > duv > 0).27

Exact distances are related to the chemical bonds whereas interval ones can be provided28

by experimental techniques. Such techniques include Nuclear Magnetic Resonance (NMR)29

[3], Förster resonance energy transfer (FRET) [7] and mass spectrometry (MS) cross-linking30

[10].31

The DGP is NP-hard [56] and there exist several approaches to this problem (see [38,32

52] and Sect. 1.1), where the DGP is reformulated as a global optimization problem on a33

continuous search domain, whose objective function is generally a penalty function of the34

distance constraints. More recently, a discrete approach to the DGP was proposed [39], where35

the continuous domain of the optimization problem is transformed into a discrete domain.36

1.1 Literature review37

Distance Geometry (DG) has played a prominent part in Global Optimization (GO) inso-38

far as it has important applications to science (e.g. protein conformation) and engineering39

(localization of sensor networks, structural rigidity, control of unmanned underwater vehi-40

cles and robotic arms), and it is naturally cast as a system of nonconvex constraints (Eq. (1))41

in terms of continuous decision variables. In general, DGPs are reformulated as a mini-42

mization of constraint violations. Such reformulations have the property that the optimal43

objective function value is zero for feasible instances, and strictly positive for infeasi-44

ble ones. Various approaches have been proposed in this journal for the general case45

[15,16,26,27,34,37,47,64,68], and many others on the application to protein conforma-46

tion [11,17,21,43,46,54]. In this paper we focus on the case where the input graph is rigid,47

which implies that the search process has an inherently combinatorial side.48

Over the years, the solution to MDGPs (DGPs arising in structural biology) have been49

typically attempted by employing tools such as ARIA [42], CYANA [23] and UNIO [22],50

which are all based on the Simulated Annealing (SA) meta-heuristic [28].51

While molecular conformations are generally obtained by the above methods and succes-52

sively stored in databases such as the Protein Data Bank (PDB) [4], a second class of methods53

based on Nonlinear Programming (NLP) solution techniques has emerged in the last decades.54

A well-known example is the DGSOL algorithm [48], which employs a homotopy method55

based on locally solving progressively finer Gaussian smoothings of the original problem.56
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A third class of methods is based on Euclidean Distance Matrix Completion [1,14]. This is57

the case for the EMBED algorithm [12], which aims to fill in the missing distance bounds by58

constraint propagation of triangle and tetrangle inequalities. Thereafter, a candidate distance59

matrix (named dissimilarity matrix) is sampled from the completed interval distance matrix,60

and atom coordinates are obtained by matrix decomposition [13,58]. Since the dissimilarity61

matrix is not guaranteed to be a Euclidean Distance matrix, some of the original constraints62

might be violated. The last phase therefore consists in minimizing the constraint violation63

by local minimization, using the obtained embedding as an initial point.64

A fourth class is centered around the so-called Build-Up algorithm [15,64]. These methods65

are based on the ancient idea of triangulation, used by humankind ever since navigation66

existed. In the context of distance geometry, where a point position is determined by the67

distances to it rather than the angles they subtend, this is known as “trilateration”. Build-Up68

algorithms in dimension K = 3 attempt to place an unknown point xi (for some i ≤ n) by69

identifying at least four other points with known positions, and having known distances to70

xi . When dealing with proteins and experimental data, the assumption of having four known71

exact distances to any given point may be excessively strong [44]. We point out, however,72

that some variants of the Build-Up algorithm overcome this limitation. For example, in order73

to address the uncertainty of the given distance values, the extension presented in [60] takes74

into account atomic coordinates and an unknown radius representing the uncertainty. Another75

variant [65] partly addresses the requirement of unknown vertices having at least four adjacent76

vertices with known positions. This variant can find multiple valid realizations, but appears77

to lack the ability to finding all possible incongruent realizations.78

A fifth and very important class of methods is based on solving a Semidefinite Program-79

ming (SDP) relaxation of the DGP [6,29,45]. In particular, [29] exploits the cliques in the80

graph to reduce the size of the SDP formulation (also see [2]). This method was shown to81

be able to solve NMR instances containing real data and to reconstruct conformation models82

that are very close to the ones available on the PDB.83

The authors of this paper are among the researchers who proposed and worked on a sixth84

class of methods based on a combinatorial algorithm called Branch & Prune (BP) [36].85

Protein graphs share some common properties: for example, they can be decomposed into a86

backbone subgraph and many side chains subgraphs [57] (these can be realized separately87

and then put together [55]). The backbone subgraph is larger than the subgraphs related to88

side chains, and hence most difficult to realize. However, it also defines an order on the atoms89

with certain topological properties, which we formally discuss below (informally, we can say90

that every atom in this order has at least three predecessors which are also adjacent in the91

graph structure). Under this assumption, the search domain of the underlying optimization92

problem can be reduced to a discrete set with a tree structure [32,51], which can be searched93

by the BP algorithm [36]. If the distances are exact, BP can find all realizations of a given94

protein backbone graph. Although an exhaustive search in the conformation tree is worst95

case exponential [32], numerical experiments have shown that BP behaves polynomially in96

protein-like instances [40]. In fact, it can be proved that, in such cases, the problem is Fixed97

Parameter Tractable (FPT) [41]. In computational experiments, the parameter value could98

always be fixed at a single constant, which explains the polytime behaviour. For protein99

backbone instances with exact distances, BP is one of the fastest available methods, one of100

the most reliable, and the only one which can certifiably find all incongruent realizations.101

An adaptation of the BP to the interval distance setting was proposed in [34], where102

intervals are replaced with a finite set of discrete points. We refer to this BP adaptation as103

the interval BP (iBP). This algorithm was tested on real protein instances in [8]. Although104

123

Journal: 10898-JOGO Article No.: 0493 TYPESET DISK LE CP Disp.:2016/12/24 Pages: 21 Layout: Small

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

J Glob Optim

this BP variant shows promise, its practical applicability is currently limited by the choice105

of discretization points.106

Several other approaches for solving DGPs can be found in the scientific literature. The107

interested reader can refer to [33,38,52].108

1.2 Aim of this paper109

Our main motivation in this work is to improve the iBP algorithm proposed in [34] for110

solving MDGPs with interval data. For this purpose, we identify the main limitations of this111

discrete approach in presence of interval distances and propose a new variant of iBP to find112

approximate solutions for interval MDGPs.113

The identification of the barriers against the successful application of iBP in real set-114

tings represents an important step towards a combinatorial methodology with the following115

properties:116

– it is specifically suitable for solving the protein conformation problem from distance117

restraint data;118

– it can work with uncertain data, specified as interval distances provided by experimental119

techniques;120

– it can potentially find all incongruent realizations of a given instance.121

The paper is organized as follows. In Sect. 2, we define the subclass of DGP instances122

describing protein backbone graphs: we discuss assumptions, discretization orders, the iBP123

algorithm variant, pruning devices, and the parameterization of the coordinates. Section 3124

presents a method, based on some interval distance constraints, which is able to reduce the125

set of candidate positions for certain vertices before the iBP branching phase. Section 4126

addresses the main limitations in handling larger molecules in presence of interval data and127

presents a heuristic for finding approximate realizations. The computational results in Sect. 5128

illustrate the improvements due to the proposed approaches.129

2 A combinatorial approach130

Let G = (V, E, d) be a simple weighted undirected graph representing an instance of the131

MDGP. In the following, vertices of V will represent atoms of the given molecule and {u, v} ∈132

E if the distance between the atoms u and v is available. The map d relates each edge {u, v} ∈133

E to a positive interval weight [d(u, v), d̄(u, v)]. The MDGP asks to find a realization134

x : V → R
3 (see Introduction), i.e. a molecular conformation in three-dimensional space135

such that:136

d(u, v) ≤ ‖xu − xv‖ ≤ d̄(u, v), ∀{u, v} ∈ E . (2)137

Recall that d(u, v) and d̄(u, v) denote, respectively, the lower and upper bounds for the138

distance d(u, v) (with d(u, v) = d̄(u, v) if d(u, v) is exact). We also suppose that the given139

set of distances is realizable in R
3.140

In order to discretize the search domain, MDGP instances need to satisfy some particular141

assumptions. The main requirement is that the atoms need to be sorted in a way that there142

are at least three reference atoms for each of them (aside, obviously, from the first three). We143

say that an atom u is a reference for another atom v when u precedes v in the given atomic144

order, and the distance d(u, v) is known. In such a case, candidate positions for v belong to145

the sphere centered in u and having radius d(u, v). When the reference distance d(u, v) is146

given through an interval, the sphere becomes a spherical shell, namely, the region between147
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Fig. 1 The two feasible arcs
obtained by intersecting two

spheres and one spherical shell

an inner sphere of radius d and an outer sphere of radius d̄ with the same center. If three148

reference atoms are available for v, then candidate positions (for v) belong to the intersection149

of three spherical shells. The easiest situation is the one where the three available distances150

are exact and the intersection gives, in general, two possible positions for v [32]. However,151

if only one of the three distances is allowed to take values into a certain interval, then the152

intersection gives two arcs of a circle, generally disjoint, where sample points can be chosen153

[34]. In both last situations, the discretization can be performed. More details are given in154

the next section.155

2.1 iBP algorithm and discretization orders156

Let G = (V, E, d) be an instance of the MDGP and let us suppose that there exist an order157

for the atoms v ∈ V , so that we can assign a numerical label i ∈ {1, 2, . . . , |V |} to each of158

them. At each recursive call of the iBP algorithm, candidate positions for the current atom i159

are computed using the positions of the previously placed reference atoms and their distances160

to the atom i .161

When the distances between i and its references are exact, the intersection of three spheres162

needs to be computed. If the reference atoms {a, b, c} are not collinear, then such an inter-163

section results in at most two points. When this situation is verified for all atoms i > 3, then164

the search domain has the structure of a binary tree [32].165

However, if one of the three reference distances, say dci , is an interval, then the two spheres166

centered at xa and xb need to be intersected with a spherical shell centered at xc. As a result,167

the intersection gives two candidate arcs (see Fig. 1). These arcs are over the dashed circle168

C defined by the intersection of the two spheres. When the intersection consists of two arcs,169

a finite number D of sample positions should be selected from each of them [34]. This way,170

we still have a discrete set of possible positions for the atom i .171

Therefore, the discretization strongly depends on an order for the vertices (atoms) of G172

satisfying specific properties. Definition 1 formalizes the assumptions mentioned above.173

Definition 1 The interval Discretizable DGP in dimension 3 (iDDGP3)174

Given a simple weighted undirected graph G = (V, E, d), where E ′ ⊂ E is the subset of175

edges for which their weights are exact distances, we say that G represents an instance of the176

iDDGP3 if there exists a total order on the vertices of V verifying the following conditions:177

(a) GC = (VC , EC ) ≡ G[{1, 2, 3}] is a clique and EC ⊂ E ′;178

(b) ∀i ∈ {4, . . . , |V |}, there exists {a, b, c} such that179
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Algorithm 1 The iBP algorithm.
1: iBP(i, n, d, D)

2: if (i > n) then

3: // one solution is found

4: print current conformation;
5: else

6: // coordinate computation

7: if (dci is an interval) then

8: compute the two candidate arcs and add them to the list L

9: else

10: compute the two candidate positions and add them to the list L

11: end if

12: for j = 1, . . . , |L| do

13: if (L( j) is an arc) then

14: take D samples from the arc; set N = D;
15: else

16: set N = 1;
17: end if

18: // verifying the feasibility of the computed positions

19: for k = 1, . . . , N do

20: if (x j,k
i

is feasible) then

21: iBP(i + 1, n, d, D);
22: end if

23: end for

24: end for

25: end if

1. a < i , b < i , c < i ;180

2. {{b, i}, {c, i}} ⊂ E ′ and {a, i} ∈ E ;181

3. �S(a, b, c) > 0,182

where �S(a, b, c) stands for the area of the triangle formed by {a, b, c}. Assumption (a)183

allows us to place the first 3 atoms uniquely and fixes the realization with respect to rotation184

and translations. Assumptions (b.1) ensures the existence of three reference atoms for every185

i > 3, and assumption (b.2) ensures that at most one of the three reference distances may186

be represented by an interval. Finally, assumption (b.3) requires that the area �S(a, b, c) is187

strictly positive, which prevents the references from being collinear. Under these assumptions,188

the MDGP can be discretized.189

Algorithm 1 is a sketch of the iBP algorithm for solving iDDGP3 instances. In the algo-190

rithm call, i is the current atom for which the candidate positions are searched, n is the total191

number of atoms forming the considered molecule, d is the list of available distances (exact192

or interval distances), and D is the discretization factor, i.e. the number of sample points that193

are taken from the arcs in case the distance dci is represented by an interval. In the algorithm194

(see lines 8 and 10), we make use of a list L of positions and arcs, from which candidate195

positions are extracted.196

Given an order for the vertices in V satisfying the assumptions in Definition 1, the algo-197

rithm calls itself recursively in order to explore the tree of candidate positions. Every time198

a new atomic position is computed, it defines a new branch of the tree. This phase in iBP199

is named branching phase. For every computed atomic position, its feasibility is verified by200

checking the constraints (2), up to the current tree layer, or other additional feasibility criteria201

based on properties of the molecule, e.g, van der Waals’ separation distance (VdW), chirality202

constraints, and others [8,53]. This phase in iBP is named pruning phase, and the criteria203

are called pruning devices (see line 20 of Algorithm 1).204
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Fig. 2 A model for the protein backbone and a possible discretization order

Even if the tree grows exponentially (in the worst case scenario), the pruning devices allow205

iBP to focus the search on the feasible parts of the tree. The easiest and most efficient pruning206

device is the Direct Distance Feasibility (DDF) criterion [32], which consists in verifying207

the ǫ-feasibility of constraints involving distances between the current atom i and previously208

placed atoms:209

d(h, i) − ǫ ≤ ‖xh − xi‖ ≤ d̄(h, i) + ǫ, ∀{h, i} ∈ E, with h < i and h /∈ {a, b, c}. (3)210

The distances involved in the above constraints are called pruning distances.211

2.2 Protein backbone model: discretization orders and pruning devices212

A necessary preprocessing step for solving MDGPs by this discrete approach consists in213

finding suitable atomic orders allowing each atom v to have at least three reference atoms.214

We name such orders discretization orders [9]. In previous works, discretization orders have215

been either handcrafted [34], or obtained by looking for paths on pseudo de Bruijn graphs216

consisting of cliques of G [50], or even automatically detected by a greedy algorithm [31,49].217

In fact, if we consider distances defined by bond lengths and bond angles as exact, along with218

the peptide plane geometry, it is possible to find orders for the protein backbone (and also for219

side chains [11]) satisfying the assumptions required for the discretization. This preprocessing220

step can be performed efficiently, in polynomial time [49], so that the necessary assumptions221

can be fulfilled by graphs related to proteins. However, we point out that when some additional222

assumptions are imposed to the searched orders, such as the consecutivity of the reference223

vertices, this problem becomes NP-hard [9]. In this work, we consider a model for the protein224

backbone as depicted in Fig. 2.225

With the backbone atoms N, Cα, and C, we also considered the attached H and Hα, and we226

have included only the Cβ and Hβ atoms to represent the side chain of each amino acid. There227

are two exceptions for this amino acid model: the glycine, where Cβ and Hβ are replaced228

by one H, and the proline, which has a missing hydrogen. The backbone model in Fig. 2229

only considers 3 amino-acids, but it can be repeated for all amino-acids in a longer protein230

sequence, because of the regular pattern defining the protein backbone.231

The order depicted in Fig. 2 is the one used in our numerical experiments.232

The first three atoms, N−Cα−Hα, of the first amino-acid can be used as initial clique (see233

assumption (a) in Definition 1) for the discretization order because the involved distances are234

defined by bond lengths and angles, that can be considered as exact [12]. Analogously, taking235

into account the peptide plane distances and the distances between hydrogens provided by236
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NMR, it is not hard to verify that assumptions (b.1)–(b.2) of Definition 1 are satisfied by the237

order given in Fig. 2.238

On the basis of the model in Fig. 2 for the protein backbone geometry, it is possible to239

conceive other pruning devices [8,53] to be integrated with DDF (see, Eq. 3), based on the240

following considerations:241

– Helices in proteins can be either right or left-handed. The former situation is statistically242

more common, because of side chains steric constraints. In this work, we do not consider243

side chains explicitly, but we suppose that it is possible to understand, from an analysis244

of the protein sequence, whether right-handed or left-handed helices are expected to be245

present. We call this pruning device as the chirality-based device: in some situations, it can246

allow for placing uniquely some atoms during the execution of the search. For the carbon247

C, in fact, we can get only one (instead of two) possible positions by using N−Cα−Hα248

as reference atoms. An analogous reasoning can be applied to Cβ. The chirality defines249

the orientation of the tetrahedron formed by C, Cβ, N, Cα, Hα, where Cα is the chiral250

center, and it can be used to avoid unnecessary branching;251

– The tetrahedron around Cα forms a clique as well as the peptide planes [2]. Such local252

structures define rigid regions of the protein backbone. Using the peptide plane clique,253

it is possible to find a unique position for Cα. It is also possible to place N uniquely,254

because its relative orientation with respect to H, C and Cα of the same peptide plane can255

be computed by taking into account the van der Waals minimum distance;256

– The oxygen atoms in Fig. 2 are included in the model because they participate in hydrogen257

bonds. Each oxygen can be placed uniquely by using the exact distances with the other258

atoms of the peptide plane.259

2.3 Computing coordinates for candidate positions260

The method employed to compute the candidate positions at each recursive call of Algorithm 1261

has a fundamental importance. While looking for candidate atomic positions for the atom i , it262

is supposed that the reference atoms {a, b, c} are already positioned. These reference atoms263

define a local coordinate system centered at a [19,62]. This coordinate system is illustrated264

in Fig. 3.265

Let v1 be the vector from b to a and v2 be the vector from b to c. The x-axis for the system266

in a can be defined by v1, and the unit vector in this direction is x̂ = v1/‖v1‖. Moreover, the267

vectorial product v1 × v2 gives another vector that defines the z-axis, whose corresponding268

unit vector is ẑ. Finally, the vectorial product x̂ × ẑ provides the vector that defines the y-axis269

(let the unit vector be ŷ).270

x

y Ua = [x̂ ŷ ẑ]

z

v1v2

b

ac

Fig. 3 The reference vertices a, b and c induce a system of coordinates
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These three unit vectors are the columns of a matrix Ua =
[

x̂ ŷ ẑ
]

, whose role is to271

convert directly vertex positions from the coordinate system defined in a to the canonical272

system.273

Once the matrix Ua has been computed, the canonical Cartesian coordinates for a candidate274

position for the vertex i can be obtained by:275

xi (ωi ) = xa + Ua

⎡

⎣

−dai cos θi

dai sin θi cos ωi

dai sin θi sin ωi

⎤

⎦ , (4)276

where θi and ωi are the angles related to the spherical coordinates of vertex i .277

We will use the symbol θi in order to refer to the angle formed by the two segments (i, a)278

and (a, b), and we will use the symbol ωi to refer to the angle formed by the two planes279

defined by the triplets (a, b, c) and (b, a, i) (see Fig. 1). The cosine of the angles θi and ωi280

can be computed by exploiting the positions of the reference vertices a, b and c, as well as281

the available distances dai , dbi and dci . Thus,282

cos ωi = cos θc,b,i − cos θa,b,i cos θa,b,c

sin θa,b,i sin θa,b,c

,283

where we consider the positive values for the sines, and284

cos θi = cos θb,a,i =
d2

ab + d2
ai − d2

bi

2 dab dai

.285

Recall from Sect. 2.1 that if the three reference distances are all exact, then the three286

spherical shells are in fact three spheres, whose intersection gives 2 points, with probability287

1 [32]. The two points x+
i and x−

i correspond to two possible opposite values, ω+
i and ω−

i ,288

for the angle ωi . When one of the three distances is instead represented by an interval (see289

Definition 1), the third sphere becomes a spherical shell, and the intersection provides two290

curves (see Fig. 1). These two curves correspond to two intervals, [ω+
i , ω̄+

i ] and [ω−
i , ω̄−

i ],291

for the angle ωi . In order to discretize these intervals, a certain number of points, say D, can292

be chosen from the two curves.293

As shown in [19], the generalized procedure for the computation of atomic coordinates in294

Algorithm 1, based on equation (4), is very stable when working on MDGP instances related295

to real proteins. Moreover, equation (4) is also at the basis of an important technique that can296

be used to reduce the feasible arcs obtained by sphere intersection. This technique for arc297

reduction was firstly proposed in [20]. Another approach for arc reduction, based on Clifford298

algebra, is presented in [30].299

3 Pruning distances and arc reduction300

When candidate atomic positions, at each recursive call of the iBP algorithm (see Algo-301

rithm 1), are computed by intersecting two spheres with one spherical shell, a continuous302

set of positions is obtained, which generally corresponds to two disjoint arcs, related to two303

intervals for the corresponding torsion angle values.304

During a typical run of Algorithm 1, every time the reference distance dci is represented305

by an interval, D equidistant samples are taken from each arc [34]. As a consequence, 2 D306

atomic positions are generated in total, and 2 D new branches are added to the tree, at the307

current layer, for every branch at the upper level. After their computation, the feasibility308

of each atomic position is verified. On the one hand, too large D values can drastically309
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increase the width of the tree; on the other hand, too small values can generate trees where310

no solutions can be found (all branches are pruned, because all positions, at a certain layer,311

are not compatible with pruning distances).312

In [20], an adaptive scheme was proposed for tailoring the branching phase of the iBP313

algorithm so that all computed candidate positions are feasible at the current layer. The idea314

is to identify, before the branching phase of the algorithm, the subset of positions on the315

two candidate arcs that is feasible with respect to all pruning distances to be verified on the316

current layer.317

Let us suppose that, at the current layer i , the distance dci is represented by the interval318

[dci , d̄ci ]. By using Equation (4), two intervals for the angle ωi can be identified: [ω+
i , ω̄+

i ] ⊂319

[0,π] and [ω−
i , ω̄−

i ] ⊂ [π, 2 π], such that the distance constraints320

‖xa − xi (ωi )‖ = dai ,

‖xb − xi (ωi )‖ = dbi ,

dci ≤ ‖xc − xi (ωi )‖ ≤ d̄ci ,

(5)321

are satisfied.322

However, there may be pruning distances, at layer i , that could be exploited for tightening323

these two arcs. Let us suppose there is an h ∈ { j < i | j /∈ {a, b, c}}, such that the distance324

dhi is known and lies in the interval [dhi , d̄hi ]. The solution set of the inequalities325

dhi ≤ ‖xh − xi (ωi )‖ ≤ d̄hi (6)326

consists of intervals for ωi that are compatible with the distance dhi .327

A discussion about how to solve the inequalities (6), by using Eq. (4), is presented in328

details in [20].329

The feasible positions for the atom i can be therefore obtained by intersecting the two330

previously computed arcs (in bold in Fig. 1), and several spherical shells, each of them defined331

by considering one pruning distance between i and h < i . For each available pruning distance,332

other inequalities (6) can be defined and new arcs on the circle C may be identified. The final333

subset of C which is compatible with all available distances can be found by intersecting the334

arcs obtained for each pruning distance with the two initial disjoint arcs, given by Eq. (5).335

After considering all pruning distances, i.e., after performing all intersections, the final336

result provides a list of arcs on C that are feasible with all the distances that can be verified337

at the current layer. All positions that can be taken from these arcs are feasible at the current338

layer: all of them generate a new branch and may serve as a reference for computing new339

candidate positions on deeper layers of the tree. In order to integrate the iBP algorithm with340

this adaptive scheme, there are two main changes to be performed on Algorithm 1. On line 8,341

the adaptive scheme needs to be invoked for taking into consideration the information about342

the pruning distances. Moreover, the use of the DDF pruning device has become unnecessary,343

and it should not be considered at line 20 of Algorithm 1.344

It is important to remark that this adaptive scheme is not supposed to speed up the execution345

of the search, but rather to help in defining search trees that can actually contain solutions.346

Without the use of this adaptive scheme, all sample positions selected from the two arcs347

obtained with the discretization may be discovered to be infeasible as soon as the DDF348

pruning device is invoked. The other extreme situation is instead the one where the adaptive349

scheme can allow us to select a subset of sample positions that all bring to the definition of a350

solution. Naturally, the second situation is desirable, even if, in terms of complexity, it tends351

to increase the total computational cost.352
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Fig. 4 Realization of five points
in R

3

4 Limitations of the current approach: finding approximate realizations353

For DGP instances where all available distances are exact, the presented discrete approach354

is extremely efficient, allowing for example to realize graphs having thousands of vertices in355

few seconds with a standard computer [32].356

However, for iDDGP3 instances, there are some difficulties encountered by the iBP algo-357

rithm [34], even for finding one solution. Such limitations, related to the presence of interval358

data in both discretization and pruning distances, are discussed in this section and a heuristic359

to overcome such barriers is proposed.360

4.1 Sampled distances and embeddability361

Recent computational experiments have shown that taking equidistant sample points on the362

feasible arcs (or equidistant samples from the interval distance, see Algorithm 1 in Sect. 2.1),363

even after the intersection with the available pruning distances (see Sect. 3), is not enough to364

allow the iBP algorithm to solve some MDGPs within a predefined precision. The sampled365

distances are taken independently in each layer of the tree and, in particular for small D366

values, it is not likely that they are compatible with each other and with other pruning367

distances available at deeper layers.368

The underlying issue is related to the embeddability of a given set of distances. Sup-369

pose that we are positioning the atom i and that the interval distance [dci , d̄ci ] is used in370

the discretization. Even if we assume that there exists a distance value d∗
ci which is com-371

patible with the other distances in E leading to a solution, we cannot ensure that, with a372

finite number D of samples taken from [dci , d̄ci ], the compatible distance d∗
ci is actually373

sampled.374

In order to illustrate this fact, consider the following example where five points in R
3 are375

embedded (Fig. 4).376

Suppose that the straight lines represent exact distances, and let the black lines be the377

exact distances used in the discretization. The dashed blue lines are the interval distances378

(used to compute the possible positions of atoms 4 and 5) and the red straight line represents379

one pruning distance (that can be used to validate the possible positions for the atom 5). The380

associated distances are the following: d12 = d23 = d24 = d34 = d35 = d45 = 1, d13 =
√

2,381

d14 = √
x ∈ [0.5, 2], d15 =

√
3, d25 = √

y ∈ [0.5, 2].382

According to the Cayley–Menger conditions [38,59], for this set of distances to be real-383

izable in R
3, it is necessary that384
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Fig. 5 Solution set for the five point Cayley–Menger determinant with d2
14 and d2

25 as missing distances
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∣

∣
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∣

= 0,385

where the above matrix is a bordered distance matrix and | · | denotes its determinant. The386

solution set of this equation (the values for the missing (interval) squared distances x = d2
14387

and y = d2
25) is represented by the blue curve in Fig. 5.388

It is easy to see that, unless the grid is sufficient refined (number of samples D is sufficient389

large), a valid pair of distances (d2
14, d2

25) can be sampled with probability zero.390

4.2 Long-range distance restraints391

Long-range distance restraints are related to atoms that are at least four amino-acids apart in392

the protein sequence. Even if far in the protein sequence, some atom pairs may be in condition393

to be detected by an experimental technique. For example, if we consider NMR, it is typical394

to detect distances between atoms that are very far in the sequence, but quite close in space395

(≤5 Å).396

In case of all available distances are exact, the pruning distances efficiently guide the397

search in the binary tree corresponding to the discretized search space [32,40]. However,398

when interval distances are present, the search tree is no longer binary, because D samples399

are taken from each feasible arc. Moreover, the DDF pruning criterion (3) becomes much400

less effective when the bounds [d, d̄] are loose, resulting in a large number of active nodes401

in the tree, which increases exponentially the cost of exploring a whole subtree.402

Furthermore, since other interval distances are also employed in the discretization, the403

sampled positions in the feasible arcs for previous atoms are only approximations for their404

true positions, and such a sequence of approximate positions may lead to an infeasibility at405

a further layer. For this reason, the longest-range pruning distances may fail to be verified406

(even if they are represented by an interval).407
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Fig. 6 Available distances for the instances 1FJK (left) and 2E2F (right)

To illustrate this fact, we depict in Fig. 6 the available entries of the upper triangu-408

lar part of the distance matrices for two instances belonging to our set: 1FJK and 2E2F.409

Notice that the almost-band structure close to the main diagonal is a consequence of the410

assumptions concerning the discretization. In fact, the distances between pairs (i − 1, i)411

and (i − 2, i) are generally derived from the bond lengths and angles, while the distances412

(i − 3, i) can be generally obtained from the analysis of the torsion angle among the413

quadruplet of atoms (i − 3, i − 2, i − 1, i). Moreover, the distance (i − 3, i) may be also414

estimated by applying an experimental technique such as NMR. Other distances that are415

far from the main diagonal of the matrix can be obtained applying an experimental tech-416

nique.417

Although 1FJK has more atoms than 2E2F, the former instance can be easily solved418

by iBP in a few seconds, whereas the latter cannot be solved in less than one minute419

(using D ≤ 20). The difficulty in solving 2E2F is related to the presence of long-range420

pruning distances: there are several entries in its distance matrix that are far from the diag-421

onal.422

4.3 Approximate realizations423

The presence of interval distances implies uncertainty on the atomic positions obtained by424

sampling points in the intersection between spheres and spherical shells: even a small error425

introduced at tree layer i can have a relevant propagation until the layer j >> i and, when426

the pruning distance is finally tested, it is likely that the propagated error leads to infeasible427

positions for atom j .428

Thus, an error introduced during the intersection discretization in a certain tree layer,429

might make every sampled candidate position infeasible with pruning distances in a further430

layer. This phenomenon is more evident when considering long-range distance restraints. One431

possibility to avoid pruning out all branches of the search tree, in order to obtain approximate432

solutions to the problem, is to relax the distance constraints related to long-range distances.433

We define the set434

L = {{i, j} ∈ E | |i − j | ≥ M}, (7)435
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where M is a positive integer used to identify long-range distance restraints. Our relax-436

ation consists in avoiding the application of the DDF feasibility test (Eq. 3), as well as the437

intersection scheme (Sect. 3), to pruning distances in L.438

Naturally, when such pruning distances are neglected, some information is lost and this439

can have an impact on the found solutions. In fact, long-range distance restraints are the main440

responsible for the global fold. Thus, in order to mitigate this effect, we introduce another441

pruning criterion based on the partial Mean Distance Error (MDE) at the current layer k:442

PMDEk(X) = 1

|Jk |
∑

{i, j}∈Jk

⎡

⎣

max
{

d i, j −‖xi −x j‖ , 0
}

d i, j

+
max

{

‖xi − x j‖ − d̄i, j , 0
}

d̄i, j

⎤

⎦ ,

(8)443

where444

Jk = {{i, j} ∈ E | i ≤ k ∧ j ≤ k}.445

Let n = |V | and note that Jn = E . It is common to measure the quality of a realization by446

the Mean Distance Error measure:447

MDE(X) = PMDEn(X).448

Thus, by monitoring the PMDEk(X) for k < n, we can control the quality of partial real-449

izations. This suggests the PMDE pruning device: if at layer k, PMDEk(X) > ε̂, then the450

candidate partial realization should be pruned. We set ε̂ > ε, where ε is the tolerance used in451

DDF (Eq. 3).452

When this new pruning device is introduced, a solution found by Algorithm 1 is actually453

an approximate solution in the sense that it satisfies all distances in E \ L (with tolerance ε),454

while some distances in L can be violated. However, the total MDE value for such a solution455

remains relatively small, because of the new pruning device based on (8). By applying this456

scheme, together with the chirality and peptide plane constraints (see Sect. 2.2), we expect457

that the fold of the obtained conformation mimics the fold of the true protein. This is the case458

for the set of instances used in the computational experiments.459

5 Computational experiments460

In this section we present some computational results on a set of artificially generated MDGP461

instances. Our aim is to assess the improvements on iBP (Algorithm 1) due to the integration462

of a set of recently proposed techniques: the pruning devices based on chirality and peptide463

plane geometry, described in Sect. 2.2; the arc reduction technique presented in Sect. 3; and464

the partial MDE pruning device introduced in Sect. 4.3.465

The instances that we consider in our experiments were generated as it follows. The466

protein conformations were extracted from the PDB: by using the coordinates of a known467

conformation, all pairwise distances between atom pairs of the backbone were computed.468

Then, only a small subset of all distance pairs is kept for defining an instance. The distances469

related to bond lengths and those that can be obtained from bond angles are considered as470

exact, as well as distances between atoms belonging to the same peptide plane (see Fig 2).471

Torsion angles on the protein backbones give rise to the definition of interval distances, related472

to the minimal and maximal extension of such torsion angles. Distances between pairs of473

hydrogens are also included, as specified in the next subsection.474
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5.1 Assumptions concerning distances between hydrogens475

During the generation of our instances, we rely on the premise that experimental techniques,476

such as NMR spectroscopy, are able to give information about all distances between hydrogen477

atoms that are close in space [35]. Moreover, these distances can be supposed to be more478

precise than other ones. Statistics on such distances [5,66], with the geometry of consecutive479

peptide planes, validate this assumption.480

We will consider therefore that all distances between hydrogens belonging to the same481

or to two consecutive amino-acids are available, and we suppose that they lie in an interval482

having width 0.1•. Besides these distances, responsible for the local geometry, we also483

consider distances between hydrogens that belong to amino acids that are far in the protein484

sequence, but close in space. These distances are responsible for the global fold. We include485

these distances in our generated instances whenever they are smaller than 5• and consider486

that imprecisions lead to an interval of width 1•.487

Hydrogen bondsHÐO, responsible for stabilizing� -helices and� -strands, are also con-488

sidered. If the distance betweenH andO of distinct amino-acids is greater than 1.3• and489

less than 3.5•, such a distance is included in our instances as an interval of width 1•. All490

intervals have a predeÞned width and their extremes are randomly generated in a way that491

the interval contains the true distance.492

5.2 Numerical results493

Let us refer to the algorithm presented in [34] as i BP, while we will name ÒNewi BPÓ the494

algorithm integrated with the new method for the computation of candidate positions (see495

Sect.2.3), with the technique for arc reduction (see Sect.3), with the chirality and peptide496

plane pruning devices (see Sect.2.2), and with the pruning device introduced in Sect.4.3.497

In bothi BP variants, the tolerance used in the experiments for the DDF criterion (Eq.3)498

is � = 0.001. In newi BP, for the PMDE-based pruning device, we used�� = 0.01 and set499

M = 40 in deÞnition ofL (see Eq.7). We gradually increased the number of samplesD500

taken from the feasible arcs until the Þrst solution is found in less than 60 s (timeout).501

The numerical experiments were run in a Intel MacBook Pro, 2Ghz, 2GB RAM, and the502

Algorithm 1 was implemented in C programming language, compiled using GNU GCC with503

ßag -O3.504

Table1 shows a comparison betweeni BP and Newi BP. The number of amino acids (aa),505

atoms (|V|) and available distances (|E|) are given for each instance. For the two versions506

of i BP, the performance is evaluated by the minimum number of samplesD (taken from507

interval arcs) necessary to Þnd one solution, the number of recursive calls and the CPU time508

in seconds. The quality of the realization is assessed through the MDE. The character Ò*Ó509

means that the instance could not be solved in less than one minute for any value ofD � 20.510

We can notice that the arc reduction technique presented in Sect.3 is very effective in511

reducing the number of sample positions that we need to extract from the arcs in order to512

obtain at least one solution. This is an important improvement because it is not known a513

priori how many samples are sufÞcient to allowi BP to Þnd a conformation. We can observe514

that the number of calls and CPU time were reduced in 9 out of 11 instances. It is also worth515

to mention that the pruning criteria based on peptide plane geometry and chirality helped516

the new version ofi BP in reducing the number of calls in some instances and improving the517

global fold as well.518

Concerning the MDE, the originali BP seems to be more stable, although it fails to519

solve four of the instances (within the speciÞed timeout). On the other hand, since the New520
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Table 1 Numerical results on artificially generated instances from the PDB

PDB ID Instance iBP from [34] New iBP

aa |V | |E | D Calls Time MDE D Calls Time MDE

2JMY 15 120 660 13 37,658 0.13 3e−06 5 2983 0.01 1e−16

2KXA 24 177 973 10 215,669 0.92 5e−06 3 5064 0.01 6e−03

1DSK 28 222 1210 14 31,309 0.13 4e−06 4 53,890 0.14 1e−06

2PPZ 36 287 1522 9 2,372,242 11.34 2e−06 3 442,965 1.87 4e−08

1AQR 40 310 1596 * * * * 4 114,671 0.20 6e−03

2ERL 40 324 1792 14 1,495,282 6.14 4e−06 3 10,410 0.03 1e−03

2E2F 41 315 1716 * * * * 3 19916 0.06 9e−03

1FJK 52 417 2306 12 115,426 0.73 4e−06 4 925,090 3.07 2e−06

2JWU 56 448 2416 * * * * 4 226870 0.81 1e−02

2KIQ 57 455 2452 20 1,217,945 12.79 6e−06 4 317,136 1.12 7e−04

2LOW 64 497 2650 * * * * 3 3,738,152 8.79 2e−07

iBP uses the relaxed pruning criterion PMDE, it cannot ensure a better MDE for all the521

instances. For some of them we observe a better MDE which is a consequence of the other522

considered pruning devices. Although we relaxed some distance constraints by using PMDE,523

the chirality constraints helped in improving the local geometry, resulting in a better MDE.524

For those instances with a worse MDE, like 2KXA, 2E2F or 2KIQ, the PMDE relaxation525

was, in some sense, the way to “pass-through” the long-range distance constraints and find a526

realization in a affordable time. Additionally, we remark that an MDE value around 10−3 is527

able to guarantee a sufficient detection of the global fold of the protein. In fact, the realizations528

found by the New iBP are not so far from the true ones. The quality of such realizations is529

discussed in the next subsection.530

5.3 Quality of a realization and practical usage531

While looking at Table 1, a natural question emerges: how good are the realizations X with532

M DE(X) ≈ 10−3 when compared to the “true” protein ?533

Since we have relaxed the distance constraints related to long-range distances, in principle,534

we cannot ensure that the underlying molecule is recovered. However, we will illustrate535

that the realization found by the New iBP gives a very good approximation of the true536

conformation.537

First, let us take a look at the instance 2KXA. Figure 7 shows the realizations found (first538

found solutions) by the original iBP and the New iBP. Although the MDE of the first is539

smaller than the second, 10−6 against 10−3, we can see that the conformations are roughly540

the same, except by partial reflections. The New iBP produced a right-handed helix because541

it contains, in its list of pruning devices, the chirality-based device.542

Now, let us consider the instance 2E2F. According to Table 1, the MDE for the realization543

found by the New iBP is approximately 10−2. By superimposing the realizations found with544

the true one from the PDB (first model), see Fig. 8, we obtain a RMSD value equal to 0.7 Å545

(according to TM-align [67]).546

Therefore, although the realization found by New iBP does not fit perfectly with the true547

conformation, it is close enough to identify its global fold, and it also can be used as a smart548
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Fig. 7 Realization for 2KXA found by the original iBP (left) and the new iBP (right)

Fig. 8 Superimposition of
solution found by the New iBP
(red) and the original PDB file
(blue) for 2E2F

starting point for a local optimization intended to minimize the MDE and enforce VdW549

constraints [61]. 3550

Once the first solution X1 is found by the “New iBP” , a set of feasible exact distances551

for the distances that were originally represented by intervals can be selected. This set of552

distances defines a DGP instance with exact distances which contains X1 in its finite solution553

set. Moreover, by solving such an instance with the basic BP algorithm (for exact distances),554

we can compute all other feasible conformations that can be obtained from X1 by partial555

reflections [32,38]. This procedure gets rid of the flexings 1 in the molecule, but only in this556

case the solution set is finite.557

Applying this scheme to a modified 1AQR instance, where hydrogen distances between558

consecutive amino-acids were removed and the threshold was lowered to 4.5 Å, four incon-559

gruent conformations are obtained, as depicted in Fig. 9.560

We claim that, even though interval distances pose some difficulties to the extension of561

this combinatorial approach, it is still possible to explore all the (discrete) conformational562

space obtained with discretization. Henceforth, we propose our New iBP as an exploratory563

tool to enumerate protein conformations that satisfy most of the given distance restraints,564

that can be further improved by local minimization procedures.565

1 Continuous motions of part of the structure preserving all distance restraints.
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Fig. 9 Four incongruent realizations for 1AQR. The conformations in the bottom are reflections of the top

ones. All four conformations differ by partial reflections

6 Conclusion and future work566

We collected in this paper the most recent and promising advances in solving the MDGP567

with our combinatorial approach. The main contributions presented in this paper can be568

summarized as follows:569

1. identification of the main barriers against the successful application of the discrete570

approach to real MDGPs with interval data;571

2. another pruning devices based on chirality and peptide planes, whose easy implementa-572

tion is allowed by the model and discretization order presented in Sect. 2.2;573

3. a new pruning device that “relaxes” long-range distance constraints (Sect. 4.3) which574

allows us to obtain approximate realizations.575

Computational experiments on artificially generated instances showed the effectiveness of576

all above mentioned points, when integrated in the iBP algorithm. We are in fact able to find577

approximate realizations for protein backbones up to 64 amino acids in an affordable time,578
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and with reasonable precision, that can be further improved by using our solutions as starting579

points for a local minimization solver.580

In the presented experiments, the two compared versions of the iBP algorithm were581

both used for identifying only one solution to the problem. However, as remarked before582

and illustrated in Sect. 5.3, the iBP algorithm can potentially enumerate the entire solution583

set of a discretizable MDGP. Research is currently focused on efficiently enumerating all584

conformations belonging to the search tree. Due to the presence of interval distances, many585

solutions may belong to the same cluster/ensemble of conformations. Hence, the next step is586

to define a method to classify the solutions in equivalence classes and integrate iBP with an587

scheme able to pick only one representative conformation from each incongruent ensemble.588
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