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Abstract We study a multi-criteria variant of the problem of routing hazardous ma-
terial on a geographical area subdivided in regions. The twoobjective functions are
given by a generally defined routing cost and arisk equityequal to the maximum,
over each region, of the riskperceivedwithin a region. This is a multicommodity
flow problem where integer variables are used to define the number of trucks used
for the routing. This problem admits a straightforward pathformulation, for which a
branch-and-price problem where, for each node of the branch-and-bound tree, col-
umn generation is used to obtain a lower bound.

1 Introduction

The transportation of hazardous materials (hazmatfrom now on) has received a
large interest in recent years, this results from the increase in public awareness of
the dangers of hazmats and the enormous amount of hazmats being transported [3].
The main target of this problem is to select routes from a given origin-destination
pair of nodes such that the risk for the surrounding population and the environment
minimum, without producing excessive economic costs. When solving such a prob-
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lem by minimizing both cost and the total risk, typically several vehicles share the
same (short) routes which results in high risks associated to regions surrounding
these paths whereas other regions are less affected. In thiscase, one may wish to
distribute the risk in an equitable way over the population and the environment. The
computation of routes with a fairly distributed risk consists in generating dissimi-
lar origin-destination paths, i.e paths which relatively don’t impact the same zones.
We classify solution approaches in two sets,resolution-equity-based methodsand
model-equity-based methods.

In resolution-equity-based methods, equity constraints are taken into account in
the resolution process. These methods are based on a dissimilarity index which per-
mits to indicate when two paths are considered as dissimilar. The iterative penalty
method [10] consists of computing iteratively a shortest path and penalize its arcs
by increasing their weights for discouraging the selectionof the same arc set in the
generated paths set in the next iteration. The Gateway shortest-paths method [13]
consists of generating dissimilar paths by forcing at each time a new path to go
through a different node (called the gateway node), the dissimilarity index is de-
fined as the absolute difference between areas under the paths (areas between paths
and the abscissa axis). The minimax method [12] consists of selectingk origin-
destination shortest-paths and select among them iteratively a subset of dissimilar
paths by means of a dissimilar index defined as the length of common parts between
the paths. Thep-dispersion method [1] generates an initial setU of paths and de-
termines a maximal dissimilar subsetS, i.e., the one with the maximum minimum
dissimilarity among its paths, the dissimilarity index is the length of common parts
or the common impact zones between the paths. The efficiency of these methods is
based on the dissimilarity index and the initial set of paths[3].

Model-equity-based methodsconsist of taking into account equity constraints in
the model formulation. In [8, 9], the authors propose an equity shortest path model
that minimizes the total risk of travel, while the difference between the risks imposed
on any two arbitrary zones does not exceed a given threshold,the authors solve the
lagrangean relaxation of the problem and a gap-closing procedure is presented. In
[3] is proposed a multi-commodity flow model for routing of hazmat, where each
commodity is considered as one hazmat type. The objective function is formulated
as the sum of the economical cost and the cost related to the consequences of an in-
cident for each material (commodity). To deal with risk equity, the costs are defined
as functions of the flow traversing the arcs, this imposes an increase of the arc’s cost
and risk when the number of vehicles transporting a given material increases on the
arc.

Our problem is similar to that proposed in [3]. We consider the problem where
a set of given quantities of hazmats has to be routed over a transportation network
from specific origin points to specific destination points. Our goal is the minimiza-
tion of the total routing costand the maximization of the risk equity, the latter
broadly defined as the risk shared by a set of regions that compose the geographical
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area under consideration. Thus our focus is a multi-criteria optimization problem
which we describe more in detail below. The originality of our work is the integra-
tion of the objective of minimization of the maximum of risk imposed on all regions
during the transportation activity into the multi-commodity flow model which can
be solved using a Branch-and-Price algorithm.

This paper is organized as follows. In section 2, the problemis described and an
optimization model is given. In section 3 a path formulationof the problem is given
and a column generation procedure is described. We present in section 5 a branch-
and-price procedure, in section 5 we present some preliminary experiments and we
close the paper in section 6.

2 Description of the problem

Let the transportation network be represented as a directedgraphG = (N,A), with
N being the set ofn nodes andA the set ofm arcs. LetC be the set of commodities,
given as a set of point-to-point demands to transport a certain amount of hazmats.
For any commodityc∈C, letsc andtc be respectively the source node and the desti-
nation node, and letDc be the amount of hazmats to be shipped, by means of a set of
trucks of given capacityFc, from sc to tc. We for now assume that each commodity
is associated with a unique type of hazmat.

We assume that the risk is computed on each arc of the network and is propor-
tional to the flow traversing such an arc. We consider a setQ of regions, each given
as subsetsNq of nodes for eachq∈ Q of the transportation network, and we define
rcq
i j as the risk imposed on regionq∈ Q when the arc(i, j) ∈ A is used for the trans-

portation of one unit of hazmats of typec. We remark that we employ a notion of
spread risk, in that an accidental event on arc(i, j) within regionq∈Q may strongly
affect another regionq′ ∈ Q.

2.1 Multiple objective functions

The problem of transporting hazmat is multi-objective in nature: one usually wants
to minimize two (or more) objectives, namely the total cost of transportation, com-
puted as a function of the amount of hazmat transported throughout the network and
the trucks used for the transportation, and thedistributed risk, which can be defined
as a measure of risk that is shared among different regions. More specifically, for a
given solution each regionq ∈ Q will be affected by a risk which is dependent on
the transportation patterns in all other regions, and whichcan be summarized by a
quantityωq. The second objective will then be maxq∈Q ωq, and has to be minimized.
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2.2 An optimization model

We introduce a flow variablef c
i j defining the portion of commodityc being trans-

ported on arc(i, j). These variables are subject to flow conservation constraints

∑
j∈δ+(i)

f c
i j − ∑

j∈δ−(i)

f c
ji = bc

i ∀i ∈ N,c∈C

whereδ−(i) andδ+(i) are the forward and backward star ofi, i.e.,

δ−(i) = { j ∈ N : ( j, i) ∈ A}, δ+(i) = { j ∈ N : (i, j) ∈ A},

and

bc
i =







1 if i = sc

−1 if i = tc

0 otherwise.

Also, yc
i j defines the number of trucks to be used on arc(i, j) for commodityc. The

link between variablesf andy is given by the constraint

Dc f c
i j ≤ Fcy

c
i j ∀(i, j) ∈ A,c∈C.

The first objective is a function of bothf andy variables and is to be minimized:
∑c∈C ∑(i, j)∈A(αc

i j f c
i j + β c

i j y
c
i j ), with α andβ suitable cost coefficients which we as-

sume nonnegative. We define the riskωq imposed on a regionq ∈ Q as a linear
combination of the flow variables:

ωq := ∑
c∈C

∑
(i, j)∈A

rcq
i j f c

i j

and add a new variablez := maxq∈Q ωq, which therefore is subject to the constraints

z≥ ∑
c∈C

∑
(i, j)∈A

rcq
i j f c

i j ∀q∈ Q.

The y variables represent trucks that transport hazmat from eachsource to each
destination, and are therefore subject to flow conservationconstraints. We write
such constraints here for each commodity and for all intermediate nodes of each
commodity, as the source and destination flow balance is redundant here (i.e., it is
strictly dependent on the flow variablesf ):

∑
j∈δ+(i)

yc
i j − ∑

j∈δ−(i)

yc
ji = 0 ∀i ∈ N\{sc, tc},∀c∈C

The optimization model is therefore as follows:

min ∑c∈C ∑(i, j)∈A(αc
i j f c

i j +β c
i j y

c
i j ) (1)

min z (2)
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s.t. ∑ j∈δ+(i) f c
i j −∑ j∈δ−(i) f c

ji = bc
i , ∀i ∈ N,c∈C (3)

∑ j∈δ+(i) yc
i j −∑ j∈δ−(i) yc

ji = 0 ∀i ∈ N\{sc, tc},∀c∈C (4)

Dc f c
i j ≤ Fcyc

i j ∀(i, j) ∈ A,c∈C (5)

z≥ ∑c∈C ∑(i, j)∈A rcq
i j f c

i j ∀q∈ Q (6)

f c
i j ∈ [0,1] ∀(i, j) ∈ A,c∈C (7)

yc
i j ∈ Z ∀(i, j) ∈ A,c∈C. (8)

Notice that constraints (4) and (5) guarantee that a sufficient number of trucks is
allocated for each commodity regardless of the flow of hazmat. The path formulation
described below is unable to provide such a guarantee and will therefore have to be
modified.

3 Column generation formulation

The abovearc-flow formulation is polynomial in|N|, |A|, |Q|, and|C|, but its size
can make it impractical to solve real-world instances of ourproblem. A common
approach is to use apath-flowformulation [7]. In these formulations, for each com-
modity c a variable is associated with everypath from sc to tc. We denote byPc

the set of paths fromsc to tc for a commodityc∈C and byPc
i j the set of paths in

Pc containing arc(i, j) ∈ A. A new path variablefp, ∀p∈ Pc,∀c∈C, represents
the portion of commodity transported on pathp.

As for the flow of hazmat, in this formulation the number of trucks, previously
denoted by variablesyc

i j , might be dependent on path variablesfp. They are by
definition the number of trucks to be used on arc(i, j) ∈ A for commodityc∈C. In
practice, each truck drives on the whole pathp, hence there should be a variableyp

that counts the number of trucks and that is related to variable fp as follows:

Fcyp ≥ Dc fp ∀p∈ P
c,c∈C. (9)

This constraint substitutes the flow conservation constraint (4) and the “capacity”
constraint (5). Let us write this path formulation for completeness:

min ∑c∈C(∑p∈Pc αp fp +∑(i, j)∈A βi j yc
i j ) (10)

min z (11)

s.t. ∑p∈Pc fp ≥ 1 ∀c∈C (12)

Fcyp−Dc fp ≥ 0 ∀p∈ P
c,c∈C (13)

z−∑c∈C ∑p∈Pc rq
p fp ≥ 0 ∀q∈ Q (14)

fp ≥ 0 ∀p∈ P
c,c∈C (15)

yc
p ∈ Z ∀p∈ P

c,c∈C, (16)
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whereαp = ∑(i, j)∈p αc
i j are cost coefficients on the pathp∈Pc andrq

p = ∑(i, j)∈p rcq
i j

is the risk imposed on regionq∈Q when the pathp∈Pc is used for the transporta-
tion of one unit of hazmats of typec. Constraint (12) is the path-flow counterpart of
the flow conservation constraint (3) and requires that, regardless of the set of paths
used, each commodity is fully routed. Constraints (13) and (14) are straightforward
extensions of (5) and (6) respectively, given that the flow ofcommodityc∈C on arc
(i, j) ∈ A is equal to∑p∈Pc

i j
fp.

When restricting to a single-objective optimization problem, this model is an in-
teger multicommodity flow problem. Regardless of considering only one objective,
problem (11)-(16) containsV = ∑c∈C |P

c| variables, which can be exponential in
|N|. Therefore, solving it by introducing all path variables isin general impractical
using the usual combinatorial optimization methods.

Column generation algorithms are very well suited for solving this kind of prob-
lems [4]. They use a relatively small initial set of columns to solve a problem, and
iteratively introduce a new column when necessary to improve the objective func-
tion. Specifically, given a set of columns with negative reduced cost (among those
that haven’t been considered yet), one can introduce one or more such variables and
apply a primal simplex method to resolve the amended problem. The problem with
an initially small subset of columns is called therestricted master problem, while
the problem of finding a variable (column) with negative reduced cost is called the
pricing problem.

Constraint (13) introduces a major issue in the problem. In principle, introducing
y variables indexed on paths rather than arcs and commoditiesallows to further re-
duce the number of columns, as we only need 1+2∑c∈C |P

c| variables. However,
analogously to columns, we do not want to have exponentiallymany rows (there are
exponentially many paths). The above constraint could bedynamicallygenerated,
hence instead of column generation we would needrow-columngeneration. One
huge problem here is that to dynamically generate paths one needs to know all dual
variablesσp, for eachp ∈ Pc and for allc ∈ C, to solve a pricing problem, and
most of these dual variables arenot available since we didn’t generate all of them.

One possible way to deal with this is to usesurrogate constraints: rather than im-
pose all such constraints or generate them dynamically, we consider acoverof such
set of constraints and impose conic combinations thereof (see for instance [14]).
More specifically, for each(i, j) ∈ A, consider all constraints (9) summed up for all
paths containing(i, j). We obtain

Fc ∑
p∈Pc

i j

yp ≥ Dc ∑
p∈Pc

i j

fp ∀(i, j) ∈ A,c∈C. (17)

The problem has now|C|(1+m)+ |Q| rows and 1+2∑c∈C |P
c| variables. Since we

relax all of the path constraints (9), the model (10)-(16) constitutes a relaxation of
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(1)-(8). Column generation can be applied safely now, although it has to be applied
to both f andy variables, and it converges to adual feasiblesolution which gives a
lower bound but not necessarily an optimal solution of the continuous relaxation of
(1)-(8).

Suppose an integer solution is found as the optimal solutionof the LP relaxation
(solved with column generation). If at least one of the constraints (13) is violated,
we are stuck with a solution that has no physical value but that cannot be proven
primal infeasible unless a constraint is added. What we can dois therefore to create
a second branching rule which discriminates between integer feasible solutions and
eliminates the integer (but infeasible) solution just found. We will detail this proce-
dure later in this paper, and instead provide insight on how to generate variables.

3.1 Handling one objective only

We consider from now on a continuous relaxation of (11)-(16)amended by the
surrogate constraints:

min z (18)

s.t. ∑p∈Pc fp ≥ 1 ∀c∈C (19)

Fc ∑p∈Pc
i j

yp ≥ Dc ∑p∈Pc
i j

fp ∀(i, j) ∈ A,c∈C (20)

z−∑c∈C ∑p∈Pc rq
p fp ≥ 0 ∀q∈ Q (21)

fp ≥ 0 ∀p∈ P
c,c∈C (22)

We associate the dual variables vectorµ ∈ R
|C|
+ with constraints (19),σ ∈ R

m|C|
+

with constraints (20), andλ ∈ R
|Q|
+ with constraints (21). We first analyze this

problem considering the single objective (11). Let us definethe subset of paths
P̄c ⊂Pc,∀c∈C. The restricted master problem (RMP from now on) of (11)-(16),
generated on a restricted subset of variablesfp, p∈ P̄c,c∈C, is as follows:

min z (23)

s.t. ∑p∈P̄c fp ≥ 1 ∀c∈C (24)

Fc ∑p∈Pc
i j

yp−Dc ∑p∈P̄c
i j

fp ≥ 0 ∀c∈C,(i, j) ∈ A (25)

z−∑c∈C ∑p∈P̄c rq
p fp ≥ 0 ∀q∈ Q (26)

fp ≥ 0 ∀p∈ P
c,c∈C. (27)

It is barely worth noting here that (23)-(27) is a restriction of the continuous relax-
ation of (11)-(16), which therefore provides neither a lower nor an upper bound.
Only by applying column generation to (23)-(27), i.e., by iteratively amending
columns with negative reduced cost, can we find a lower bound of (11)-(16).
The reduced cost of variablesfp, for eachc∈C, p∈ Pc, is as follows:
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h( fp) = −µc +Dc ∑(i, j)∈p σc
i j +∑q∈Q rq

pλq

= −µc +Dc ∑(i, j)∈p σc
i j +∑q∈Q ∑(i, j)∈p rcq

i j λq.
(28)

Suppose an optimal primal solution( f̄ , ȳ, z̄) and an optimal dual solution(µ̄, σ̄ , λ̄ ) is
given. At each iteration of the column generation algorithm, we look for a negative
reduced cost variable by solving the problem:

min
c∈C,p∈Pc

h( fp),

which provides the column with most negative reduced cost. The pricing prob-
lem consists of finding the pathp that minimizes (28), and is equivalent to solv-
ing a shortest pathproblem on a graphG where each arc(i, j) ∈ A has weight
wi j = Dcσ̄c

i j + ∑q∈Q rcq
i j λ̄q. The path must have an origin-destination pair among

those defined by the commodities inC. Suppose that, for the shortest path obtained,
−µ̄c +DcLc +∑q∈Q rq

pλ̄q < 0. Then variablefp has a negative reduced cost and can
be introduced in the model.

One may also look for a negative reduced cost variable foreachcommodity, and
add at most|C| such variables. Although this usually speeds up convergence in terms
of number of iterations, adding many column every time slowsthe primal simplex
used to obtain a new solution. We obtain|C| origin-destination shortest path prob-
lems, therefore the pricing problem becomes|C| times slower — this is negligible
given that most of the CPU time is usually spent on the primal simplex.

Notice thaty variables do not need to be generated for the risk-objectiveproblem:
they only appear in the surrogate constraint, which makes them completely useless
given that their value can be decided from an optimalf . This only happens if we
consider the second objective function, while the first doescontain those variables
and would force us to generate them as well. Actually, nof variable is needed
either as long as they variables are only contained in the capacity constraint. The
next subsection should shed light on this and introduce another use fory variables.

3.2 Risk on trucks

Another consideration is on risk equity associated to trucks: is the risk (especially
the perceived one) only related to the real quantity, or portion, of hazmat transported,
or is it also related on the trucks? If both quantity of hazmatand number of trucks
should be considered, then the risk equity constraint wouldchange. In this case, we
could probably use a parameterscq

i j with an analogous meaning to that of parameter
r, i.e., the influence of one truck driving through(i, j), transporting commodityc∈
C, on regionq, and modify (26) as follows:
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z≥ ∑
c∈C

∑
p∈P̄c

(rq
p fp +sq

pyp) ∀q∈ Q.

where, similarly tor, we definesq
p := ∑(i, j)∈pscq

i j . This provides a motivation for
the generation of bothf andy variables. In fact, now the procedure to generatey
variable can be defined as one that aims at finding a pathp such that the reduced
cost of the correspondingyp is minimum:

min
c∈C,p∈Pc

h(yp) = min{−Dc ∑
(i, j)∈p

σc
i j + ∑

q∈Q

sq
pλq : p∈ P}

which provides a more difficult problem given that now the shortest path has to be
found on a network with possibly both positive and negative weights.

4 Branch-and-price for single objective problems

In order to find an optimal integer solution to problem (10)-(16), the column gener-
ation approach outlined above must be coupled with a branch-and-bound algorithm.
This class of algorithms, better known asbranch-and-price, solve each branch-and-
bound node by applying column generation on each lower bounding (continuous)
subproblem [2]. For the single objective routing problem, we outline below an im-
plementation of a branch-and-price, which we have implemented in ABACUS.

If only integer variablesyc
i j are not dynamically generated (but this no longer

seems to be the case), the branching rule is rather simple: consider an optimal solu-
tion ( f̄ , ȳ, z̄) obtained after column generation at a branch-and-bound node. If, for all
c∈C and(i, j) ∈ A, we have ¯yc

i j ∈ Z, then the node can be fathomed as the solution
is integer feasible. Otherwise, we select an arc(i, j) ∈ A and a commodityc ∈ C
such that ¯yc

i j /∈ Z and generate two new branch-and-bound nodes with the amended

constraintsyc
i j ≤

⌊

ȳc
i j

⌋

andyc
i j ≥

⌈

ȳc
i j

⌉

, respectively.

If we useyp variables instead, we need to take special care in branchingrules:
given that these variables are generated, the branching rules have dual variables that
need to be taken into account in the pricing problem. Furthermore, simple branching
rules would not work and the branch-and-bound algorithm would not converge: the
branching ruleyp ≤ k, with k∈Z, does not impose anything on the pricing problem,
which might generate another variable that uses the same path asp with reduced
cost. Another issue is making sure that the pricing problem remains a shortest path
problem. One common branching rule for these cases is that used by Barnhart et al.
[2].
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5 Preliminary experiments and perspectives

In a first time, we test the efficiency of our model. We implement the formulation
(11)-(16) in AMPL (A Modeling Language for Mathematical Programming) [6]. We
report a sampling of our computational experiences with themodel. We consider an
instance withN = 31, |C| = 3 and |Q| = 16 (figure 1). We focus on risk equity
objective function (11). Figure 2 present the solution obtained.

s1

s2

s3

t3

t2

t1

1

4

5

6

7

8

9

10

11

14

15

16

17

18

20

21

23

24

2
3

13

12

19
22

25

Fig. 1 Transportation risk model: network used in sample problem.

Throw our experimentations, we remarked that improving theequity of the risks
imposed results in increased in the total risks imposed. Whendistributing the risk
in an equitable way, routes can be longer, this increases both the total risk and the
economic costs. We present on Table 1 the solution values generated by the weights
(γ,δ ), whereγ is the weight on the equity objectives andδ is weight on the total
risk objectives ( the objective function became:γz+δ (∑c∈C,(i, j)∈A,q∈Q rcq

i j f c
i j )).

The tradeoffs among risk and the equity of the risk imposed are complex and the
number of options are extremely large. Distributing the risk in an equitable way can
result in an increase in the total risk and economic cost. In this case, it seems to be
not realistic to consider the model with only one objective function. In a branch-
and-price algorithm, we can consider two possibilities forconsidering more than
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Commidity 1

Commodity 2

Commodity 3

Fig. 2 Transportation risk model: solution of a sample problem.

(γ,δ ) (0,1) (0.3,0.7) (0.5,0.5) (0.7,0.8) (1,0)
z 18 16.0 13.8 11.7 10.3
total risk 124 124.7 126.5 129.3 152.6

Table 1 Weighting approach

one objective function, (1) the weighting method can be applied, and (2) the total
risk objective function can be taken into account during thecolumn generation al-
gorithm, where the pricing problem will compute Pareto optimal paths considering
both the reduced cost and the total risk generated by the path.
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6 Conclusion

The transportation of hazmats is an important optimizationproblem in the field of
sustainable development and in particular the equitable distribution of risks is of
high interest. Within this study, we formalize this transportation problem as the
minimization of two objectives (risk equity and economic cost) and show that a
third objective function (total risk) has to be taken into account. Note that, for the
moment an actual implementation has to prove in the future what is the effectiveness
of the algorithm, which additional accelerating techniques of column generation can
be used for solving large instances and how can we take into account many objective
functions.
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