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Abstract We study a multi-criteria variant of the problem of routingzlardous ma-
terial on a geographical area subdivided in regions. Theotwyective functions are
given by a generally defined routing cost andsk equityequal to the maximum,
over each region, of the rigkerceivedwithin a region. This is a multicommodity
flow problem where integer variables are used to define thebeuwf trucks used
for the routing. This problem admits a straightforward gfatimulation, for which a

branch-and-price problem where, for each node of the brandkbound tree, col-
umn generation is used to obtain a lower bound.

1 Introduction

The transportation of hazardous materidiazgmatfrom now on) has received a
large interest in recent years, this results from the irewea public awareness of
the dangers of hazmats and the enormous amount of hazmagstimsported [3].
The main target of this problem is to select routes from argimegin-destination
pair of nodes such that the risk for the surrounding popaadind the environment
minimum, without producing excessive economic costs. Wlodrirgy such a prob-
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lem by minimizing both cost and the total risk, typically seal vehicles share the
same (short) routes which results in high risks associategdions surrounding
these paths whereas other regions are less affected. loasgs one may wish to
distribute the risk in an equitable way over the populatiod #the environment. The
computation of routes with a fairly distributed risk cortsig generating dissimi-
lar origin-destination paths, i.e paths which relativebnt impact the same zones.
We classify solution approaches in two setsolution-equity-based methodad
model-equity-based methods

In resolution-equity-based methqasjuity constraints are taken into account in
the resolution process. These methods are based on a thsgynindex which per-
mits to indicate when two paths are considered as dissiniter iterative penalty
method [10] consists of computing iteratively a shortesh@and penalize its arcs
by increasing their weights for discouraging the selectibthe same arc set in the
generated paths set in the next iteration. The Gatewayestgraths method [13]
consists of generating dissimilar paths by forcing at eatie & new path to go
through a different node (called the gateway node), thaendissity index is de-
fined as the absolute difference between areas under the (pattas between paths
and the abscissa axis). The minimax method [12] consist&letsngk origin-
destination shortest-paths and select among them itelgiivsubset of dissimilar
paths by means of a dissimilar index defined as the lengthrofraan parts between
the paths. The-dispersion method [1] generates an initial Sebf paths and de-
termines a maximal dissimilar subs®ti.e., the one with the maximum minimum
dissimilarity among its paths, the dissimilarity indexh®tlength of common parts
or the common impact zones between the paths. The efficidrtbgse methods is
based on the dissimilarity index and the initial set of pg#is

Model-equity-based methodensist of taking into account equity constraints in
the model formulation. In [8, 9], the authors propose antghiortest path model
that minimizes the total risk of travel, while the differerteetween the risks imposed
on any two arbitrary zones does not exceed a given threstm@duthors solve the
lagrangean relaxation of the problem and a gap-closingephae is presented. In
[3] is proposed a multi-commodity flow model for routing ofzZmaat, where each
commodity is considered as one hazmat type. The objectivetifin is formulated
as the sum of the economical cost and the cost related to tise=goences of an in-
cident for each material (commaodity). To deal with risk eguhe costs are defined
as functions of the flow traversing the arcs, this imposesamease of the arc’s cost
and risk when the number of vehicles transporting a givereristincreases on the
arc.

Our problem is similar to that proposed in [3]. We consider pinoblem where
a set of given quantities of hazmats has to be routed ovenapoatation network
from specific origin points to specific destination pointsir@oal is the minimiza-
tion of the total routing cosand the maximization of the risk equity, the latter
broadly defined as the risk shared by a set of regions that asenihe geographical
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area under consideration. Thus our focus is a multi-cateptimization problem
which we describe more in detail below. The originality of eork is the integra-
tion of the objective of minimization of the maximum of riskjposed on all regions
during the transportation activity into the multi-commiydilow model which can
be solved using a Branch-and-Price algorithm.

This paper is organized as follows. In section 2, the prohfedescribed and an
optimization model is given. In section 3 a path formulatidthe problem is given
and a column generation procedure is described. We pressattion 5 a branch-
and-price procedure, in section 5 we present some prelisna@eriments and we
close the paper in section 6.

2 Description of the problem

Let the transportation network be represented as a dirgetgghG = (N, A), with

N being the set ofi nodes and\ the set ofmarcs. LetC be the set of commodities,
given as a set of point-to-point demands to transport aicestaount of hazmats.

For any commoditg € C, lets® andt® be respectively the source node and the desti-
nation node, and |€° be the amount of hazmats to be shipped, by means of a set of
trucks of given capacit¥, from s° to t°. We for now assume that each commodity

is associated with a unique type of hazmat.

We assume that the risk is computed on each arc of the netwadrisgoropor-
tional to the flow traversing such an arc. We consider &xaftregions, each given
as subsetsly of nodes for eacly € Q of the transportation network, and we define
rich as the risk imposed on regiane Q when the argi, j) € Ais used for the trans-
portation of one unit of hazmats of type We remark that we employ a notion of
spread riskin that an accidental event on dicj) within regionq € Q may strongly
affect another regiog’ € Q.

2.1 Multiple objective functions

The problem of transporting hazmat is multi-objective itune: one usually wants
to minimize two (or more) objectives, namely the total cdsransportation, com-
puted as a function of the amount of hazmat transported ¢ivaut the network and
the trucks used for the transportation, anddigributed risk which can be defined
as a measure of risk that is shared among different regionge Bpecifically, for a
given solution each regiog € Q will be affected by a risk which is dependent on
the transportation patterns in all other regions, and whaibe summarized by a
quantitywy. The second objective will then be may wy, and has to be minimized.
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2.2 An optimization model

We introduce a flow variabldé¢ defining the portion of commodity being trans-
ported on argi, j). These variables are subject to flow conservation constrain

Z fi§ — > fi=b" VieNceC
jedt(i) jedo (i)

whered ™ (i) andd™ (i) are the forward and backward staripf.e.,

O (i) ={jeN:(j,i) eA}, 5T(i)={jeN:(i,j) A},
and
1ifi=¢
bt =< —1 ifi=t°
0 otherwise.

Also, y{; defines the number of trucks to be used on(arg) for commodityc. The
link between variable$ andy is given by the constraint

Deff <Fy§  V(i,j)eAceC.

The first objective is a function of both andy variables and is to be minimized:
Yeec Y (i.j)ealaf £ + BSYS ), with a and B suitable cost coefficients which we as-
sume nonnegative. We define the rigk imposed on a regiog € Q as a linear

combination of the flow variables:

= redfe
ay ;(%@ ij iy

and add a new variable= maxycq wy, which therefore is subject to the constraints
z> 2(: S rif§  vgeQ
ceC(i,j)eA

They variables represent trucks that transport hazmat from saalce to each
destination, and are therefore subject to flow conservatmstraints. We write
such constraints here for each commodity and for all inteliate nodes of each
commodity, as the source and destination flow balance isnggtht here (i.e., it is
strictly dependent on the flow variablék

> Yi— > ¥i=0 VieN\{st}vceC
)

jedT (i) jed— (i
The optimization model is therefore as follows:

min- Yeee ¥ i, jyealas i + BIYH) o
min 7 o
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st. Jjes+i) fif — Yjes—) ffi =bf, VieN,ceC (3)
zj€5+(i)yﬁ- *Zjeg—(i)y]@i =0 Vie N\{Sc,tc},VCG C 4)
Dcf§ < Feyj; v(i,j)e A,ceC (5)

2> SeecTijeali i VA€Q (6)

fi; €[0,1] v(i,j) e A,ceC (7)

Yij €Z v(i,j) e A,ceC. (8)

Notice that constraints (4) and (5) guarantee that a sufficiember of trucks is
allocated for each commaodity regardless of the flow of hazfta path formulation
described below is unable to provide such a guarantee ahtheiiefore have to be
modified.

3 Column generation formulation

The abovearc-flow formulation is polynomial inN|, |A|, |Q|, and|C|, but its size
can make it impractical to solve real-world instances of prablem. A common
approach is to use@ath-flowformulation [7]. In these formulations, for each com-
modity ¢ a variable is associated with evguath from s° to t¢. We denote by°¢
the set of paths frors to t© for a commodityc € C and by 7§ the set of paths in
Z¢ containing ardi, j) € A. A new path variable,, Vp € 22¢,Vc € C, represents
the portion of commodity transported on path

As for the flow of hazmat, in this formulation the number ofcks, previously
denoted by variableyﬁ-, might be dependent on path variablgs They are by
definition the number of trucks to be used on @rg) € A for commodityc € C. In
practice, each truck drives on the whole ppifhence there should be a varialgle
that counts the number of trucks and that is related to vierigjoas follows:

Feyp > Dcfp Vpe #°,ceC. 9)

This constraint substitutes the flow conservation constr@i) and the “capacity”
constraint (5). Let us write this path formulation for coeteiness:

min 3 cec (Y pese apfp+Z(i,j)eAﬁinﬁ) (10)
min z (11)
st. Ypezefp>1 vceC (12)
Feyp —Dcfp >0 Vpe #°cecC (13)

Z— 3 ceC Y pest rgfp >0 Ve Q (14)

fo>0 Vpe #°ceC (15)

Yo €Z Vpe #C.ceC, (16)
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whereap =¥ i jjcp QS are cost coefficients on the patie 27¢ andrg =5 i j)cpri}’

is the risk imposed on regiane Q when the patlp € £2¢is used for the transporta-
tion of one unit of hazmats of type Constraint (12) is the path-flow counterpart of
the flow conservation constraint (3) and requires that,ridgss of the set of paths
used, each commaodity is fully routed. Constraints (13) ddd &re straightforward
extensions of (5) and (6) respectively, given that the flowahmodityc € C on arc
(i,j) € Ais equal t0 pe e fp.

When restricting to a single-objective optimization prab)ehis model is an in-
teger multicommodity flow problem. Regardless of consiagnnly one objective,
problem (11)-(16) containg = y..c || variables, which can be exponential in
IN|. Therefore, solving it by introducing all path variablesrigeneral impractical
using the usual combinatorial optimization methods.

Column generation algorithms are very well suited for saiMhis kind of prob-
lems [4]. They use a relatively small initial set of columnssblve a problem, and
iteratively introduce a new column when necessary to imptbe objective func-
tion. Specifically, given a set of columns with negative i@shlicost (among those
that haven't been considered yet), one can introduce on® such variables and
apply a primal simplex method to resolve the amended probléma problem with
an initially small subset of columns is called ttestricted master problenwhile
the problem of finding a variable (column) with negative reglli cost is called the
pricing problem

Constraint (13) introduces a major issue in the problemrilmciple, introducing
y variables indexed on paths rather than arcs and commoditass to further re-
duce the number of columns, as we only need2ly .. | #¢| variables. However,
analogously to columns, we do not want to have exponentiadlgry rows (there are
exponentially many paths). The above constraint couldyemicallygenerated,
hence instead of column generation we would nemd-columngeneration. One
huge problem here is that to dynamically generate paths eeésto know all dual
variablesoy, for eachp € #7¢ and for allc € C, to solve a pricing problem, and
most of these dual variables aret available since we didn’t generate all of them.

One possible way to deal with this is to us@rogate constraintgather than im-
pose all such constraints or generate them dynamicallypnsider ecoverof such
set of constraints and impose conic combinations theres fer instance [14]).
More specifically, for eacli, j) € A, consider all constraints (9) summed up for all
paths containingi, j). We obtain

Fe Yp > Dc fo  V(i,j)eAceC. 17)

peZf; pEZf

The problem has noyC|(1+m)+|Q| rows and 125 ..c | Z¢| variables. Since we
relax all of the path constraints (9), the model (10)-(1&)stdutes a relaxation of
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(2)-(8). Column generation can be applied safely now, aighat has to be applied
to both f andy variables, and it converges talaal feasiblesolution which gives a
lower bound but not necessarily an optimal solution of thaticmous relaxation of

(1)-(8).

Suppose an integer solution is found as the optimal solwtidhe LP relaxation
(solved with column generation). If at least one of the caists (13) is violated,
we are stuck with a solution that has no physical value butd¢hanot be proven
primal infeasible unless a constraint is added. What we cas ttherefore to create
a second branching rule which discriminates between infegsible solutions and
eliminates the integer (but infeasible) solution just fduwWe will detail this proce-
dure later in this paper, and instead provide insight on lmgenerate variables.

3.1 Handling one objective only

We consider from now on a continuous relaxation of (11)-(@6)nded by the
surrogate constraints:

min z (18)
st. Spee fp>1 vcecC (19)
Fo S pers Yp 2 DeSpess fp V(i) €AceC (20)

Z— YoecTpeselpfp>0 VgeQ (21)
fp>0 Vpe #°ceC (22)

We associate the dual variables vectpe R'f' with constraints (19)g € RT'Cl

with constraints (20), and € R‘S‘ with constraints (21). We first analyze this
problem considering the single objective (11). Let us defiree subset of paths
P C P Ve e C. The restricted master problem (RMP from now on) of (11)}(16
generated on a restricted subset of varialijes € &¢,c € C, is as follows:

min z (23)
st. Spegefp>1 vceC (24)
Fche{ﬂicj Yp_DczpegEicj fo>0VvceC,(i,j) €A (25)
Z—YeecYpesetpfp>0  VqeQ (26)
fo>0 Vpe #CceC. 27)

It is barely worth noting here that (23)-(27) is a restrintiaf the continuous relax-
ation of (11)-(16), which therefore provides neither a lower an upper bound.
Only by applying column generation to (23)-(27), i.e., bgrétively amending
columns with negative reduced cost, can we find a lower bo@iitily-(16).

The reduced cost of variablég, for eachc € C,p € #¢, is as follows:
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h(fp) = —He+De 3 (i.j)ep O + ZqeqpAq
— D . C . CQ)\ (28)
= ~He+Ded(ij)ep Gij + 2aeQ Zii)eptij Aa:
Suppose an optimal primal soluti()ﬁ)T,Z) and an optimal dual solutiofu, o, X) is
given. At each iteration of the column generation algorithwva look for a negative
reduced cost variable by solving the problem:

CGC[TIPIQ@Ch(fp),
which provides the column with most negative reduced coke fdricing prob-
lem consists of finding the patp that minimizes (28), and is equivalent to solv-
ing a shortest pathproblem on a graplc where each ar¢i, j) € A has weight
Wij = DcOff + S qeqi Ag- The path must have an origin-destination pair among
those defined by the commodities@nSuppose that, for the shortest path obtained,
— U+ Dcle+ zqur%)\q < 0. Then variablefp has a negative reduced cost and can
be introduced in the model.

One may also look for a negative reduced cost variabledehcommaodity, and
add at mos|C| such variables. Although this usually speeds up convergierterms
of number of iterations, adding many column every time sltvesprimal simplex
used to obtain a new solution. We obt&@] origin-destination shortest path prob-
lems, therefore the pricing problem becon@stimes slower — this is negligible
given that most of the CPU time is usually spent on the prinmapkex.

Notice thaty variables do not need to be generated for the risk-objeptivielem:
they only appear in the surrogate constraint, which makes ttompletely useless
given that their value can be decided from an optirhalhis only happens if we
consider the second objective function, while the first dom#ain those variables
and would force us to generate them as well. Actually,fneariable is needed
either as long as thg variables are only contained in the capacity constrainé Th
next subsection should shed light on this and introduceh@naise fory variables.

3.2 Risk on trucks

Another consideration is on risk equity associated to sugkthe risk (especially
the perceived one) only related to the real quantity, oripoybf hazmat transported,
or is it also related on the trucks? If both quantity of hazarad number of trucks
should be considered, then the risk equity constraint wolihge. In this case, we
could probably use a parameﬁ? with an analogous meaning to that of parameter
r, i.e., the influence of one truck driving throughj), transporting commodityg €

C, on regiong, and modify (26) as follows:
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z> > (pfp+slyp)  VaeQ

el pey¢

where, similarly tor, we defines} := ¥ ; j)cpS;- This provides a motivation for
the generation of botli andy variables. In fact, now the procedure to genesate
variable can be defined as one that aims at finding a pathch that the reduced
cost of the corresponding, is minimum:

min__h(yp) = min{—D¢ o+ Z}sq)\q ‘pe 2}
ceC,pe ¢ (i,%ep 1 qe P

which provides a more difficult problem given that now thersbst path has to be
found on a network with possibly both positive and negatieggts.

4 Branch-and-pricefor single objective problems

In order to find an optimal integer solution to problem (108), the column gener-
ation approach outlined above must be coupled with a branckbound algorithm.
This class of algorithms, better knownlamnch-and-pricesolve each branch-and-
bound node by applying column generation on each lower Hagn@ontinuous)
subproblem [2]. For the single objective routing problene, outline below an im-
plementation of a branch-and-price, which we have impldetkimn ABACUS.

If only integer variables;/icj are not dynamically generated (but this no longer
seems to be the case), the branching rule is rather simpisic® an optimal solu-
tion (f,y,z) obtained after column generation at a branch-and-bounel.ifdor all
ceCand(i, j) € A we havey]j € Z, then the node can be fathomed as the solution
is integer feasible. Otherwise, we select an @r¢) € A and a commodity € C
such thatfj ¢ Z and generate two new branch-and-bound nodes with the amhende

constraints/j < b?ﬁJ andyj; > Wﬂ respectively.

If we usey, variables instead, we need to take special care in branchlag:
given that these variables are generated, the branchieg Inave dual variables that
need to be taken into account in the pricing problem. Funtioee, simple branching
rules would not work and the branch-and-bound algorithmld/oot converge: the
branching ruley, <k, with k € Z, does not impose anything on the pricing problem,
which might generate another variable that uses the sarheagat with reduced
cost. Another issue is making sure that the pricing problemains a shortest path
problem. One common branching rule for these cases is tedtlmsBarnhart et al.

(2].
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5 Preliminary experiments and per spectives

In a first time, we test the efficiency of our model. We impleintie formulation
(12)-(16) in AMPL (A Modeling Language for Mathematical Bramming) [6]. We
report a sampling of our computational experiences withmbeel. We consider an
instance withN = 31, |C| = 3 and|Q| = 16 (figure 1). We focus on risk equity
objective function (11). Figure 2 present the solution oizd.

Fig. 1 Transportation risk model: network used in sample problem.

Throw our experimentations, we remarked that improvingettpeaity of the risks
imposed results in increased in the total risks imposed. Wiiributing the risk
in an equitable way, routes can be longer, this increasdsthettotal risk and the
economic costs. We present on Table 1 the solution valuesrgi=al by the weights
(y,9), wherey is the weight on the equity objectives adids weight on the total
risk objectives ( the objective function became:+ 3(5 cc,i.jcagealij 1i))-

The tradeoffs among risk and the equity of the risk imposeccamplex and the
number of options are extremely large. Distributing th& nisan equitable way can
result in an increase in the total risk and economic costhikdase, it seems to be
not realistic to consider the model with only one objectiuadtion. In a branch-
and-price algorithm, we can consider two possibilities donsidering more than
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Fig. 2 Transportation risk model: solution of a sample problem.

(v.5) ](0,1)](0.3,0.7)](0.5,0.5)](0.7,0.8)] (1,0)
z 18 | 160 | 138 | 11.7 |103
total risk| 124| 124.7 | 1265 | 129.3 |152.6

Table 1 Weighting approach

one objective function, (1) the weighting method can be iedpland (2) the total
risk objective function can be taken into account duringdbkimn generation al-
gorithm, where the pricing problem will compute Pareto wyti paths considering
both the reduced cost and the total risk generated by the path
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6 Conclusion

The transportation of hazmats is an important optimizagtimblem in the field of

sustainable development and in particular the equitaldtilolition of risks is of

high interest. Within this study, we formalize this trangption problem as the
minimization of two objectives (risk equity and economicstjoand show that a
third objective function (total risk) has to be taken int@agnt. Note that, for the
moment an actual implementation has to prove in the futuie vgtihe effectiveness
of the algorithm, which additional accelerating techngjaécolumn generation can
be used for solving large instances and how can we take istouat many objective
functions.
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