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Abstract

The Molecular Distance Geometry Problem (MDGP) consists in finding an em-
bedding in R

3 of a nonnegatively weighted simple undirected graph with the
property that the Euclidean distances between embedded adjacent vertices must
be the same as the corresponding edge weights. The Discretizable Molecular
Distance Geometry Problem (DMDGP) is a particular subset of the MDGP
which can be solved using a discrete search occurring in continuous space; its
main application is to find three-dimensional arrangements of proteins using Nu-
clear Magnetic Resonance (NMR) data. The model provided by the DMDGP,
however, is too abstract to be directly applicable in proteomics. In the last five
years our efforts have been directed towards adapting the DMDGP to be an
ever closer model of the actual difficulties posed by the problem of determining
protein structures from NMR data. This survey lists recent developments on
DMDGP related research.

Keywords: graph theory, bioinformatics, protein conformation,
branch-and-prune

1. Introduction

The determination of the three-dimensional structure of a given protein is
an all-important and formidable problem in biochemistry, mainly because the
function of a protein is linked to its structure as well as to its atomic composition
[39]. We consider here the subproblem of determining the protein structure with
information arising from Nuclear Magnetic Resonance (NMR) data [10].
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We assume NMR data can be stored as a nonnegatively interval-weighted
simple (i.e., without loops or parallel edges) undirected graph G = (V,E, d)
where V represents a subset of atoms of the molecule for which distance mea-
surements can be obtained, {u, v} ∈ E if a distance measurement is present
between atoms u and v, and d associates an edge {u, v} ∈ E with the respective
interval measurement [dLuv, d

U
uv] (since precise distances are also known for cer-

tain edges, such as for covalent bonds, some intervals might have dLuv = dUuv).
The main problem is that of finding a set (alternatively, all sets) of Cartesian
coordinates for the atoms that are consistent with all the distance informa-
tion. We shall call this problem the Protein Structure from NMR Data

(PSNMR).
Our survey will focus on several variants of the PSNMR. Specifically, we

shall consider the cases when: (a) d maps E into nonnegative real numbers
(instead of intervals); (b) V is the set of all atoms; (c) a particular order on V
guarantees the existence of an iterative search for the position of v ∈ V given
the positions of its adjacent predecessors; (d) the Euclidean space used for the
embedding has an arbitrary number of dimensions (this is useful for applications
other than to molecular structure prediction). Each case gives rise to different
theoretical results; we show how we combined them in order to derive a very
efficient discrete search in continuous space that addresses the main problem.

This paper is organized as follows: in the rest of Sect. 1 we give a very short
review of continuous search based methods and illustrate their weaknesses as a
motivation to work towards a discrete search. In Sect. 2 we introduce our dis-
crete approach. In Sect. 3 we generalize the discrete search method to Euclidean
spaces of arbitrary dimensions. In Sect. 4 we discuss automatic methods to find
“good” orders for V guaranteeing the existence of a discrete search method.
In Sect. 5 we restrict V to only contain hydrogen atoms. Sect. 6 presents our
implementation to serial and parallel architectures. Sect. 7 concludes the paper
and discusses future work.

1.1. Problems solved by continuous methods

Given a simple undirected graph G = (V,E) and a positive integer K, an
embedding of G in R

K is a function x : V → R
K . Let d : E → R+ be a given

edge weight function defined on G = (V,E, d). An embedding is valid for G if

∀{u, v} ∈ E ‖xu − xv‖ = duv, (1)

where ‖ · ‖ is the Euclidean norm, xv = x(v) for all v ∈ V and duv = d({u, v})
for all {u, v} ∈ E. For any U ⊆ V let G[U ] be the subgraph of G induced
by U (i.e., (U, {{u, v} ∈ E | u, v ∈ U})). An embedding of G[U ] is a partial
embedding of G. If x is an embedding of G and y is an embedding of G ∪ H,
for some simple undirected weighted graph H, such that ∀u ∈ U xu = yu then
y is an extension of x. With a slight abuse of notation, if v 6∈ U and y is an
embedding of G[U ∪ {v}], we write y = (x, yv); in this case we also say that the
point yv extends x.

The most basic model for the PSNMR problem is the following.
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Molecular Distance Geometry Problem (MDGP). Given a
nonnegatively weighted simple undirected graph G = (V,E, d), is
there a valid embedding of G in R

3?

This is one of the foremost problems in distance geometry [2]; we shall call
its generalization to R

K (with K being given as part of the input) the Dis-

tance Geometry Problem (DGP), and denote the restriction of the DGP
to a particular fixed dimension K by DGPK . If d is an interval-valued func-
tion, i.e., d({u, v}) = [dLuv, d

U
uv] for all {u, v} ∈ E, we obtain a problem which is

“closer” to the PSNMR.

interval Molecular Distance Geometry Problem (iMDGP).
Given a nonnegatively interval-weighted simple undirected graph
G = (V,E, d), is there an embedding x : V → R

3 such that:

∀{u, v} ∈ E dLuv ≤ ‖xu − xv‖ ≤ dUuv? (2)

In this case, an embedding is valid if it satisfies (2). Again, we consider the
generalization to R

K and call it the interval Distance Geometry Problem

(iDGP).

1.2. Characterization of the solution set

Let X̄ = {x : V → R
K | x satisfies (2)} be the set of all solutions to an

iDGP instance. Then, if T is a translation or rotation of RK , for all x ∈ X̄ we
also have T (x) ∈ X̄. Because there are continuously many such transformations,
it follows that |X̄| = 2ℵ0 . We define an equivalence relation ∼ on X̄ such that
x ∼ y if and only if there is a translation or rotation T such that y = T (x).
We then define X = X̄/∼ and identify the equivalence classes of X with one of
their representatives x ∈ X̄. We can now consider X as the “interesting” set of
solutions of an iDGP instance. We remark that |X| is not necessarily infinite.
In fact, most of the iDGP variants considered in the sequel will have a finite
|X|.

1.3. Problem complexity

A reduction from the Subset-Sum problem to the DGP1 with unit weights
was given in [38], showing that DGP1 is NP-complete. For fixed values of
K, [38] describes a reduction from 3-SAT to DGP1 with integer weights and a
reduction from DGP1 with integer weights to DGPK with integer weights. In
the same paper, Saxe also remarked that, since YES certificates for the DGP
generally involve irrational numbers for K > 1, it is not clear whether the
DGP belongs to the class NP or not. From this it follows that the MDGP is
NP-hard, and the same holds for DGPK for each integer K > 1. Considering
formal decision problems as sets of instances, it is clear that DGP3 = MDGP ⊂
iMDGP ⊂ iDGP and DGPK ⊂ DGP for all K ∈ N. Again, because singletons
are also intervals, DGP ⊂ iDGP. Thus, by restriction ([9], Sect. 3.2.1), the
DGP, iMDGP and iDGP are also NP-hard.
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1.4. Limitations of continuous methods

The problems listed above are naturally cast as nonlinear systems of equa-
tions and inequalities, and can therefore be reformulated to minimizing an ob-
jective function consisting of a sum of error terms, which is a Global Optimiza-
tion (GO) problem. Some continuous methods for solving such problems are
surveyed in [16, 25]. These methods often exhibit the following disadvantages.

• Reliability. All computations are floating-point; this yields inaccurate so-
lutions. Moreover, it is well known that floating point errors often accu-
mulate, which in the long run may invalidate the solution.

• Efficiency. GO methods often involve locally solving a (nonconvex) Non-
linear Programming (NLP) subproblem; local NLP solvers are complex
pieces of software which may take a long time to converge.

• Completeness. To the best of our knowledge, there is no continuous
method which is able to compute all solutions of an iDGP instance; and
in fact most continuous methods are actually designed to compute at most
one solution.

Of course these disadvantages are due to a trade-off against generality. In the
rest of this paper we shall present mixed combinatorial methods for solving
subclasses of the iDGP. It is this restriction that allows our methods to be
more reliable, efficient and complete than continuous methods. Moreover, the
subclasses for which our methods work are a good model for solving the iMDGP
on proteins, which are in fact the main motivation for the PSNMR.

2. The Discretizable Molecular Distance Geometry Problem

Although the DGP implicitly requires a search in continuous space, if an
appropriate order is given on V , we can show that the search space has a finite
number of valid embeddings, up to translations and rotations. For an order <
on V and for each v ∈ V , let ρ(v) = |{u ∈ V | u ≤ v}| be the rank of v in V with
respect to <. Since the rank defines a bijection between V and {1, . . . , |V |},
we can identify v with its rank and extend arithmetic notation to V so that for
some appropriate i ∈ Z, v + i denotes the vertex u ∈ V with ρ(u) = ρ(v) + i.

We now outline an iterative algorithm for solving the DMDGP, a subset of
the MDGP which will be defined below. We assume that an order is given on
V . Suppose we want to embed a vertex v ∈ V of rank greater than three
in R

3, and suppose also that: (a) we already know a valid embedding for
all vertices preceding v; (b) the edges {v − 3, v}, {v − 2, v}, {v − 1, v} are
in E. This means that the embedding of v, denoted by xv, belongs to the three
spheres centered at xv−3, xv−2, xv−1 with respective radii dv−3,v, dv−2,v, dv−1,v.
The intersection of three spheres in R

3 can either be empty, or consist of ex-
actly one point, or of exactly two points (see Fig. 1), or of uncountably many
points [4] (see Fig. 2). Because we assume all vertices preceding v are already
embedded prior to v, we know all their mutual distances. In particular, we
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Figure 1: Three spheres intersect in exactly two points.

know dv−3,v−1, dv−3,v−2, dv−2,v−1. As long as the strict triangular inequality
dv−3,v−1 < dv−3,v−2+dv−2,v−1 holds, then the intersection can only have either
one or two points, depending on whether the discriminant of a certain quadratic
polynomial in xv is zero or nonzero [4]: we call this the finite sphere intersection
property. Because this discriminant can in general take any value in R+, and a
singleton set has Lebesgue measure zero in R+, the sphere intersection has one
point with probability 0 and two points with probability 1. We remark that
the strict triangular inequality condition can only be checked once the predeces-
sors of v have been embedded; this prevents us from recognizing aprioristically
whether an MDGP instance conforms to this condition or not. We address this
limitation by requiring that all 4-cliques of consecutive vertices are subgraphs of
G. Thus, each 3-(sub)clique Kv

3 = {v−3, v−2, v−1} is used to verify the strict
triangular inequality, and the edges from Kv

3 to v guarantee the finite sphere
intersection property. If we proceed by embedding vertices iteratively this way
we end up with a tree of possibilities where each embedded vertex gives rise
to either one or two new positions for the embedding of the next vertex in the
order. Since the first vertex triplet has only one possible embedding up to trans-
lations and rotations (because E contains a clique on the first four vertices), |X|
is finite with probability 1 [15, 17].

Several existing works exploit the finite sphere intersection property, but
considering four (rather than three, as in our case) spheres [6, 7, 8, 41, 40, 5]; in
general, the non-empty intersection of four spheres in R

3 contains exactly one
point: this follows because the system ∀j ∈ {1, 2, 3, 4} ‖xv−j − xv‖

2 = d2v−j,v

can be reduced to a square 3×3 linear system which is nonsingular under simple
geometric regularity conditions. This ensures that the worst-case running time
of an iterative algorithm based on this idea is O(|V |). In [6] G is assumed to
be a clique. In [7] this requirement is weakened: the so-called geometric build-
up algorithm can only find a valid embedding if, for the current vertex, one
can find at least four previously embedded adjacent vertices; depending on the
instance, however, the algorithm in [7] may fail to find a valid embedding even
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Figure 2: Locus of the intersection of three spheres: exactly two points (above) with
dv−3,v−1 < dv−3,v−2+dv−2,v−1 and uncountably many (below) with dv−3,v−1 = dv−3,v−2+
dv−2,v−1.

if one exists. In [40] the geometric build-up algorithm is modified to deal with
some restricted types of measurement errors in the data. In [8] the finite sphere
intersection property is introduced in the framework of wireless sensor networks.

Naturally, requiring known distances to four previously embedded adjacent
vertices limits the extent of the iterative embedding algorithm to instances with
relatively dense graphs. Because distances are usually hard to obtain (this is
true for both molecules and sensor networks), an effort should be made in order
to weaken this requirement. Although similar concepts were already known
in rigidity [36], the first work providing an iterative discrete search algorithm
for the MDGP that only requires three (rather than four) previously embedded
adjacent vertices is [15, 17]. Other methods based on this weaker assumption
are given in [23, 3, 42]. The following defines a subclass of MDGP instances
conforming to these weaker assumptions [15, 17].

Discretizable Molecular Distance Geometry Problem (DMDGP).
Given a nonnegatively weighted simple undirected graphG = (V,E, d),
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an order < on V and a mapping x′ : {1, 2, 3} → R
3 such that:

1. x′ is a valid embedding of G[{1, 2, 3}] (Start)

2. G contains all 4-cliques of <-consecutive vertices as induced
subgraphs (Discretization)

3. ∀v ∈ V of rank greater than 3, dv−3,v−1 < dv−3,v−2 + dv−2,v−1

(Strict Triangular Inequalities),

is there a valid embedding x of G in R
3 extending x′?

We remark that the formal definition of the DMDGP introduces an order on
V as an essential part of the input data; this marks a fundamental difference
between [15, 17] and [23, 3, 42]. We shall discuss this further in Sect. 4.

2.1. Problem complexity

While it is clear that DMDGP ⊂ MDGP, the DMDGP does not include any
of the NP-hard classes described in Sect. 1.3, so restriction cannot be used to
establish itsNP-hardness. An explicit reduction from the Subset-Sum problem
to the DMDGP was, however, provided in [15, 17].

2.2. Branch-and-Prune framework

We describe the Branch-and-Prune (BP) algorithm for solving the DMDGP
[15, 17, 23]. The version given here is recursive (for clarity); it is also pa-
rameterized so that its variants, described in the rest of this paper, can be
presented as configurations or simple modifications of Alg. 1. We recall that,
given G = (V,E) and U ⊆ V , G[U ] denotes the subgraph of G induced by U .
For v ∈ V , N(v) = {u ∈ V | {u, v} ∈ E} is set of vertices adjacent to v. We
denote by SK−1(y, r) the sphere in R

K (where K = 3) centered at y with radius
r.

The BranchAndPrune call has five arguments: the weighted simple undi-
rected graph G = (V,E, d) given as part of the DMDGP instance, a current
vertex v being embedded, a subset U ⊆ N(v) with |U | = K (where K is the
dimension of the embedding space), a valid embedding x′ of a subgraph of G
containing G[U ], and the set X of valid embeddings of G currently found. The
recursion starts with the call BranchAndPrune(G, 4, {1, 2, 3}, y, ∅) where y is
the valid embedding of {1, 2, 3} given as part of the DMDGP instance.

The BP algorithm shown in Alg. 1 builds a binary search tree whose nodes at
level v represent possible spatial positions p for the vertex v. Whenever the test
in Step 5 for validity of an embedding fails, the branch of p is pruned; pruning
techniques are discussed in Sect. 2.2.4.

Theorem 1 ([15, 17]). At termination of Alg. 1, X contains all valid embed-
dings of G extending x′.
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Algorithm 1 The Branch-and-Prune algorithmic framework.

1: BranchAndPrune(G, v, U , x′, X):
2: Let P be the intersection of the K spheres SK−1(x′

u, duv) for u ∈ U
3: for p ∈ P do
4: Extend the current embedding to x = (x′, p)
5: if x is a valid embedding of G[{1, . . . , v}] then
6: if (v is the last vertex) then
7: Append x to X
8: else
9: Let U ′ = (U r {minU}) ∪ {v}

10: BranchAndPrune(G, v + 1, U ′, x, X)
11: end if
12: end if
13: end for

2.2.1. Completeness

The BP algorithm generates a search tree. For each leaf node of this tree,
the unique path to the root node encodes an embedding of G. By Thm. 1, the
unique paths from each leaf node at level |V | encode all valid embeddings of
G extending x′. We remark that the BP can be stopped after the first valid
embedding has been found when just one solution of the DMDGP is needed. It
can also be allowed to proceed until all valid embeddings have been identified.
This makes the BP algorithm complete.

2.2.2. Algorithmic complexity

In the worst case, when no pruning occurs, |P | = 2 at each iteration, which
means that the search tree is a full binary tree. This makes the BP worst-case
complexity exponential in |V |.

2.2.3. Performance

In order to assess the empirical behaviour of the BP algorithm we measure
its efficiency in terms of seconds of user CPU time, and its reliability in terms
of the Largest Distance Error (LDE):

1

|E|

∑

{u,v}∈E

|‖xu − xv‖ − duv|

duv
. (3)

The computational results shown in [15, 17] are markedly different from most
continuous approaches: they scale up with instance size considerably better
both in terms of CPU time and reliability. On the 1epw PDB [1] instance,
for example, which has 3861 atoms and 35028 distances, the BP took 0.25s
to find all solutions, and yielded an LDE of 4 × 10−12, which is very close to
the zero LDE of an exactly valid embedding (we remark that all computations
are carried out in floating point, so attaining an LDE of value exactly zero is
practically impossible). By comparison, DGSOL [28] took 2038s and produced
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an embedding with an LDE value around 0.5. This instance is not an isolated
case: the BP consistently outperforms all continuous approaches we have tested
[28, 14, 24].

In very recent work [27] we argue that on average protein instances the BP
search tree has bounded width, thus yielding a polynomial-time algorithm; this
makes the BP efficient.

As for the reliability, our implementation employs several devices in order
to limit the propagation of floating point errors given by the computation of P ,
from the choice of appropriate vertex orders minimizing the range of values taken
by the entries in the distance matrix (Sect. 4) to the exploitation of repeated
vertices (Sect. 5), for which the zero distance between a vertex and its repetition
is used as verification device for the embedding of nearby vertices. This makes
the BP reliable.

2.2.4. Pruning the BP search tree

In this section we use the notation of Alg. 1. Pruning out infeasible branches
of the BP search tree reduces the CPU time taken by the BP algorithm. Con-
sider the point p ∈ P ⊆ R

K embedding vertex v (line 2 in Alg. 1): if p extends
x′ to a valid embedding x = (x′, p) of G[{1, . . . , v}] then p is feasible; otherwise
it is infeasible. In the latter case, the whole sub-tree rooted at p can be pruned.

The most natural pruning test at the iteration when the BP places vertex
v is to consider the vertex subset Ū = {u ∈ V | u < v ∧ u ∈ N(v) ∧ u 6∈ U}.
Vertices in Ū provide distances to v. Since u < v for u ∈ Ū , such vertices will
already have been embedded in previous BP iterations; however, since u 6∈ U ,
these vertices have not been used to compute P . Thus their positions xu can
be matched against xv to check for consistency of xv. If ‖xu − xv‖ 6= duv,
then (x′, xv) is not a valid embedding of G and the BP node encoding xv can
be pruned from the search tree. In practical implementation, the condition on
which we prune a BP node is |‖xu − xv‖ − duv| > ε, for a constant tolerance
ε > 0 [15, 17, 23]. We shall call this pruning device Direct Distance Feasibility

(DDF).
Another pruning device that can be used during the discrete search is based

on the point-to-point Dijkstra shortest-path searches on Euclidean graphs [19].
Consider the vertices u, v, w with u < v < w such that {u,w} ∈ E, i.e.
the distance duw is known. Suppose that a position for the vertex u is already
available, and that the feasibility of the node xv needs to be verified. LetD(v, w)
be an upper bound to the distance ‖xv − xw‖ for all possible valid embeddings.
Then, if ‖xu − xv‖ > duw + D(v, w) holds, the node xv can be pruned [19]
because the triangular inequality is negated. A valid upper bound D(v, w) can
be computed by finding the shortest path between the vertex v and the vertex
w in G. We call this pruning device Dijkstra Shortest Path (DSP).

Computational experiments showed that the DSP detects infeasible embed-
dings sooner than the DDF, but it is also more computationally expensive.
From a worst-case complexity point of view, the DDF is O(1), whereas in a
naive implementation the DSP is O(|V |2). Pre-computing all shortest paths in
G in O(|V |3) reduces the DSP computation to a look-up operation on a table
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of |V |2 entries. Using a hash table, this yields an average O(1) query time, but
tests in this sense revealed that in practice the DDF strikes a better practical
tradeoff between pruning efficacy and computational cost.

Other pruning devices could be conceived in the application of the DMDGP
to protein structure determination using NMR data. Proteins are composed by
a main chain of amino acids (the backbone) to which are attached some side
chains. We can model atoms (i.e., vertices) using their van der Waals radii [39]:
if the two atoms are not bound, they should not be embedded at points with
shorter distance than the threshold given by van der Waals radii. Naturally, such
thresholds depend on the kind of atoms involved. Moreover, when considering
DMDGPs restricted to backbone atoms only, an auxiliary problem could be
solved during the search. Every time a Cα carbon is placed, the conformation
of the side chain attached to the carbon could be found by solving a Side Chain

Placement Problem (SCPP) [37]. If such a problem has no solutions, then
the atomic position for the Cα carbon is deemed infeasible.

2.3. Cardinality of the solution set

It was empirically observed that for most DMDGP instances, BP always
finds a number of solutions that is a power of two [23]. Counterexamples to
this conjecture are given in Lemma 5.1 in [15, 17] and in Sect. 6 in [26]. It was
shown in [26] that, for the DMDGP, |X| is a power of two with probability 1.

2.4. Overcoming practical limitations

Computational experiments (see for example [15, 17, 23, 19]) showed that the
BP algorithm, when employing the pruning device DDF only, is very efficient in
finding the whole set of solutions for DMDGPs. In at most a few seconds of user
CPU time on a standard computer all the possible valid embeddings for G can
be identified. The DMDGP, however, is an inaccurate model of the PSNMR,
which is our main target application.

2.4.1. Interval distances

NMR experiments cannot provide exact distances, but only a lower and an
upper bound to these distances. As a consequence, for each distance, an interval
is generally available in which the actual distance value is contained. This makes
the discretization process much more complex. While the pruning device DDF,
for example, can be trivially adapted for interval data [29], the generation of
the binary tree of solutions may require the computation of the intersection of
three spherical shells [32]. In other words, interval distances cannot natively be
used to satisfy the Discretization axiom, but they can be used effectively to
prune the BP search tree.

Suppose we need to find the possible positions for the vertex v. If dv−3,v,
dv−2,v and dv−1,v are represented by the intervals [dLv−3,v, d

U
v−3,v], [d

L
v−2,v, d

U
v−2,v]

and [dLv−1,v, d
U
v−1,v], three spherical shells can be defined, which are centered in

xv−3, xv−2 and xv−1, have inner radii d
L
v−3,v, d

L
v−2,v and dLv−1,v, and outer radii

dUv−3,v, d
U
v−2,v and dUv−1,v, respectively. Representing arbitrary spherical shell
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intersections in function of distance intervals by means of finite data structures
does not seem an easy task. In [18] we propose a strategy to deal with this
problem with a further (realistic) discretization assumption.

2.4.2. Distances between hydrogens

Another important issue is related to the enforcement of the Discretiza-

tion requirement in DMDGP instances arising from proteins. Discretization

requires the availability of a certain number of distances, whereas NMR exper-
iments can usually only estimate short range distances (no larger than 4Å or
5Å, depending on the NMR machinery). Moreover, generally, only distances
between hydrogen atoms are available from NMR experiments [39].

We address this problem from two points of view. In Sect. 4 we describe
an automatic method to find best vertex orders to satisfy Discretization. A
second strategy, addressing the limitation in hydrogen-related distances posed
by the NMR, is discussed in Sect. 5: a hand-crafted vertex order satisfying
Discretization is defined for the hydrogen atoms of the protein backbones,
which are placed first; the other backbone atoms (mainly carbons and nitrogens)
are placed in a second stage using an auxiliary DMDGP instance.

3. The Discretizable Distance Geometry Problem

Although our driving application is to embed proteins in 3D, other appli-
cations of graph embedding (wireless sensor networks, graph drawing) require
embeddings in Euclidean spaces of varying dimensions. Since the finite sphere
intersection property also holds in Euclidean spaces of arbitrary dimensions, we
discuss two variants of the DMDGP requiring embeddings in R

K .
The DGP, which generalizes the MDGP to a Euclidean space of arbitrary

dimension K, asks for a valid embedding of G in R
K . The generalization of the

DMDGP to R
K replaces triplets of immediate adjacent predecessors with K-

tuples of adjacent (but not necessarily immediate) predecessors. Furthermore,
strict triangle inequalities are replaced with strict simplex inequalities [2]. Strict
triangle inequalities ensure that the three predecessors in the DMDGP state-
ment are not collinear; in other words, they ensure that the 2-simplex defined
by the predecessors has nonzero volume. Strict simplex inequalities generalize
this idea. For a set U = {xi ∈ R

K−1 | i ≤ K} of points in R
K−1, let D be the

symmetric matrix whose (i, j)-th component is ‖xi − xj‖
2 for all i, j ≤ K and

let D′ be D bordered by a left (0, 1, . . . , 1)
⊤

column and a top (0, 1, . . . , 1) row
(both of size K + 1). Then the Cayley-Menger formula [2, 12] states that the
volume ∆K−1(U) of the (K − 1)-simplex on U is given by

∆K−1(U) =

√

(−1)K

2K−1((K − 1)!)2
|D′|. (4)

The strict simplex inequalities are given by ∆K−1(U) > 0. For K = 3, these
reduce to strict triangle inequalities. We remark that only the distances of the
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simplex edges are necessary to compute ∆K−1(U), rather than the actual points
in U ; the needed information can be encoded as a complete graph KK on K
vertices with edge weights as the distances. This implies that ∆K−1(U) is well
defined also if U is a set of vertices of V (instead of points in R

K−1) as long as
G[U ] = KK . We also let [K] = {1, . . . ,K}.

3.1. From immediate to adjacent predecessors

For intersections ofK appropriately defined spheres to yield at most 2 points,
the centers need not necessarily be immediate predecessors, as the DMDGP
require. To embed a vertex v using the embedding of vertices before v in the
order, it suffices that there are at least K adjacent predecessors of v. Because
of this, we can relax Discretization and define a larger class of discretizable
instances [30]. For v ∈ V , if V is ordered let γ(v) be the set of predecessors of
v.

Discretizable Distance Geometry Problem (DDGP). Given
a positive integer K, a nonnegatively weighted simple undirected
graph G = (V,E, d), an order < on V and a mapping x′ : [K] → R

K

such that:

1. x′ is a valid embedding of G[[K]] (Start)

2. ∀v ∈ V r [K] (|N(v) ∩ γ(v)| ≥ K) (Discretization)

3. ∀v ∈ V r[K] ∃Uv ⊂ N(v)∪γ(v) (G[Uv] = KK∧∆K−1(Uv) > 0)
(Strict Simplex Inequalities),

is there a valid embedding x of G in R
K extending x′?

Again, we denote DDGP instances with fixed K by DDGPK . By Discretiza-

tion and Strict Simplex Inequalities, the DDGP can be solved using BP
(Alg. 1) — just replace Step 9 with “let U ′ = Uv+1”. We remark that the results
of Sect. 2.3 do not apply to the DDGP.

Requiring G[Uv] = KK is a strong condition. In practice we usually relax
G[Uv] = KK ∧ ∆K−1(Uv) > 0 to simply |Uv| = K. This does not necessarily
ensure that the instance can be discretized. However, because BP is an iterative
algorithm on the order of V , the positions of all vertices in Uv are known before
embedding v, which implies that the Strict Simplex Inequalities condition
can be verified by the BP algorithm itself.

3.2. Problem complexity

Because the DDGP contains all DMDGP instances as a subproblem, it is
NP-hard by restriction. We remark that the Discretization condition makes
this problem the “smallest” NP-hard problem with respect to K: replacing K
by K +1 would yield instances having a K-trilateration order [8], for which the
embedding problem is in P. This can be seen by restricting the set P in Alg. 1
such that |P | ≤ 1: the BP search tree width would then be bounded by 1, which
means that the BP would have a worst-case running time O(L|V |), where L is
the complexity of finding P .
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4. Discretization orders

In the family of problems that the BP can solve, i.e., DMDGP and DDGP,
an order < on the vertex set V is always given, guaranteeing that the edges
in E satisfy the Discretization requirement. In practice, DMDGP instances
coming from proteins are endowed with their natural backbone order, which may
not satisfy Discretization. In this section we discuss the problem of finding
a good order or determining that one such order does not exist.

Discretization Vertex Order Problem (DVOP). Given a sim-
ple undirected graph G = (V,E) and a positive integer K, establish
whether there is an order < on V such that: (a) {v ∈ V | ρ(v) ≤ K}
is a K-clique in G and (b) for each v ∈ V with rank ρ(v) > K, we
have |N(v) ∩ γ(v)| ≥ K.

We note that the DVOP does not verify whether the order satisfies the Strict

Simplex Inequalities requirement. This is because the set of distance ma-
trices yielding a Cayley-Menger determinant (see Eq. (4)) having value exactly
zero has Lebesgue measure zero within the set of all possible (real) distance ma-
trices. NP-completeness of the DVOP follows trivially from NP-completeness
of the K-clique problem, for finding a DVOP order implies finding K vertices
forming a clique in G.

Intuitively, the larger the sets N(v) ∩ γ(v) (for v of rank exceeding K), the
smaller the sets P in Alg. 1 for early ranks will be, and the better the BP will
perform. Sets of adjacent predecessors of size exactly K ensure that |P | ≤ 2, but
more pruning distances to v might make the current position for v infeasible,
thereby pruning the current branch and speeding up the search. We therefore
also consider the optimization version of the DVOP:

Optimal Discretization Vertex Ordering Problem (ODVOP).
Given a simple undirected graph G = (V,E) and a positive inte-
ger K, establish whether there is an order < on V such that: (a)
{v ∈ V | ρ(v) ≤ K} is a K-clique in G and (b) for each v ∈ V with
rank ρ(v) > K, |N(v) ∩ γ(v)| is maximum and exceeds K.

The ODVOP is a multi-objective maximization problem, whose objective func-
tion vector is (|N(v) ∩ γ(v)| | v ∈ V (ρ(v) > K)). We prove in [13] that all
DVOP solutions are in the Pareto set of the ODVOP. In practice, however, we
use the ODVOP maximality requirements to influence the choice of the next
vertex in the order in case of a draw. In other words, if there exist two or more
candidate next vertices whose set of adjacent predecessors is greater than K,
we choose one among the vertices yielding the largest such set.

NP-completeness of the DVOP notwithstanding, whenK is fixed, the DVOP
is in P: for each possible K-clique of G, we greedily build the order on V by
choosing large sets of adjacent predecessors earliest. Because K is typically
much smaller than |V |, and in practical instances arising from proteins K is
really fixed to 3, this algorithm performs fast enough to be able to determine
useful orders as a pre-processing step to the BP.
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Figure 3: The artificial backbone of hydrogens satisfying the DMDGP requirements. The
order is given in the arrow labels. Not all the edges of the graph are actually shown.

As a testbed for DVOP-based techniques, we considered a subset of DDGP3

instances from the PDB [1] where we kept all inter-atomic distances up to 5.5Å.
With such a low threshold, the backbone order is not valid w.r.t. Discretiza-

tion. Using the DVOP, we were able to embed all 18 protein graphs (from 90
to 2259 backbone atoms) in around 21 seconds of user CPU time for the whole
test set (this includes solving the DVOP, which took 1/40th of the DDGP so-
lution time on average), with average accuracy 10−10 measured in LDE (see
Eq. (3)); this confirms the reliability of the BP. By comparison, DGSOL [28] in
its standard configuration took 800s and yielded an average accuracy of 5×10−1.

5. An artificial backbone of hydrogens

Our first attempt to consider NMR data, which usually provide distances
between hydrogen atoms only if closer than a given threshold, has been pre-
sented in [20, 21, 31]. We defined an order for the hydrogens related to protein
backbones which allows us to satisfy Discretization. Figure 3 shows the pro-
posed vertex order, indicated by the black arrows in the picture and by their
labels (showing a progressive index), which we named artificial backbone of hy-
drogens. Note that this particular order considers the same atom more than
once. Because of this, the relative distances between atoms farther in sequence
are reduced, and a new kind of distance is introduced: the distance equal to
zero existing between two copies of the same atom (obviously placed in the same
spatial point).

The complexity of computing P in Alg. 1 does not change, because the
second copy of an atom can only be placed in the same place as the first copy.
Thus, no branching occurs in correspondence with duplicated atoms, and the
worst-case complexity of the BP variant exploiting orders with repetitions in
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still exponential in |V |. In [22], we showed that, because of steric constraints
due to the particular structure of protein backbones, all distances necessary
to guarantee Discretization can be obtained by NMR. Once the problem
is discretized and solved by the BP algorithm limited to hydrogen atoms, the
remaining backbone atoms, and in particular the sequence of atoms (N,Cα, C)
can be obtained by solving another MDGP. We proved that this MDGP is easy
to solve, because assumptions stronger than the ones needed for the DMDGP
are satisfied [20]. In particular, each other backbone atom N , Cα, C has at least
4 adjacent predecessors. As a consequence, the order is a trilateration order and
the instance can be embedded in polynomial time [8].

6. Implementation and parallelization

MD-jeep is an implementation of Alg. 1 in the C programming language
[35]. It is distributed under the GNU General Public License (v.2) and it can
be downloaded from http://www.antoniomucherino.it/en/mdjeep.php. MD-jeep

accepts as input a list of distances in a text file with a predefined format, and
returns PDB files containing the solutions to the problem as output. The PDB
is a standard format for storing molecular conformations [1], which is compatible
with many other software packages for molecular management and visualization.
For example, two views, obtained using RasMol (http://www.rasmol.org/), of one
of the solutions found by MD-jeep are given in Fig. 4.

Figure 4: Two different graphical representations of the embeddings obtained by MD-jeep.

6.1. Parallel BP

We are also working on parallel implementations of the BP algorithm [33, 34]
for the DMDGP. The basic idea is to exploit the DMDGP order to partition
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the instance graph into subgraphs, whose embeddings can be found indepen-
dently by separate processes and then recombined, similar to “decomposition-
recombination” technique in Computer Aided Design (CAD) [11]. Embedding
each subgraph requires a call to a sequential BP algorithm, and the recombina-
tion is carried out by the master process.

Let us suppose that the number n of vertices related to a given instance graph
is divisible by the number p of processes involved in the parallel computation.
Then p induced subgraphs Gi = G[Vi] can be defined for all i ≤ p by setting:

Vi =

{

1 +
(i− 1)n

p
, . . . , 3 +

in

p

}

.

For all i ≤ p we define Ei = E[Vi] = {{u, v} ∈ E | u, v ∈ Vi}. This partition of
V guarantees that each Gi is a DMDGP instance if and only if G is.

We remark that Ē =
⋃

i≤p Ei does not cover E; in particular, edges {u, v} ∈

E with u ∈ Vi, v ∈ Vj for i 6= j do not belong to Ē. As a consequence, the
corresponding distances duv are not used while the single processes work on the
subgraphs Gi. However, they can be exploited later after the communication
phase, when the local solutions found by the single processes are combined
together in order to find the final set of solutions to the original instance.

The communication phase is implemented by following the classical cascade
schema, so that only log2 p communications are required to make p processes
exchange the partial embeddings found by the sequential calls to BP (we suppose
that p is a power of 2). Each partial embedding is coded by a sequence of
binary variables. In order to reduce the time needed for the communication,
each binary variable is stored in a single bit of an array of integer numbers.
Each set of partial embeddings can be used for defining the local binary tree of
solutions, which can be represented by graphs Tk = (Wk, Hk), where vertices
in Wk represent atomic positions, and edges in Hk connect vertices related to
consecutive atomic positions. We employ the following procedure for combining
the sets of partial embeddings found by two processes k1 and k2 = k1 + 1. Let
Tk1,k2

= (Wk1,k2
, Hk1,k2

) be the graph which is the combination between Tk1

and Tk2
. The vertex set Wk1,k2

is defined so that it contains all the vertices
in Wk1

and Wk2
. The vertices in Wk2

are duplicated as many times as the
number of leaf vertices in Wk1

, and new labels are assigned to them. The edge
set Hk1,k2

is computed similarly, and, for each leaf vertex vl of Wk1
, a new edge

is added between vl and the various copies of the first vertex of Wk2
. If this

procedure is performed recursively considering all the graphs Tk, then the final
tree of solutions, representing the final set of embeddings, can be reconstructed.
Distances related to atoms previously assigned to different processes can be used
for pruning branches of the final tree for removing infeasible solutions.

Computational experiments (refer to [34] for more details) showed the ef-
ficiency of the parallel approach; the CPU time gain ratio between successive
processor configurations (e.g., 1 against 2, 2 against 4 and so on) decreases as p
increases (in a few cases, executions with more processes actually took slightly
longer). This is due to the fact that, as p increases, the subgraphs assigned
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to each process get smaller, whereas the number of edges in E r Ē increases.
As a consequence, the calls to the (sequential) BP process on each subgraph
tend to be less expensive than the master process that builds the BP tree for
the whole graph. Parallel implementations overcoming this issue are currently
under study.

7. Conclusion and future work

This paper gives an overview of the Discretizable Molecular Distance Ge-
ometry Problem, which offers a good model for finding protein structures with
NMR data. We discussed variants, complexity, solution algorithms and exten-
sions to deal with protein-specific features, such as limitations on the type of
atoms that NMR usually provides information on.

On a short term, future work concerns the following topics: treatment of er-
rors in the NMR data; polynomiality of the BP in the average case; exploitation
of the BP tree symmetries. Longer term future work includes: the integration
of the side chain embeddings; discovering unknown protein structures from real
NMR data; synthesizing a BP-based integrated method to solve the PSNMR
problem; looking for more applications (notably in embedding whole molecular
complexes).

One notable open theoretical question is whether the DGPK is in NP for
K > 1. The embedding that certifies a YES instance usually involves real
numbers even though the instance data is rational (or even integer). As the
embeddings solve a system of polynomials of second degree in several variables,
it is easy to show that only algebraic numbers, rather than transcendental ones,
are needed to express the components of each vector in the embedding. Thus,
a finite precise symbolic representation for the embeddings is readily available,
for example as the set of minimal polynomials having all the required algebraic
numbers as roots. Whether all such numbers can be encoded by means of
expressions whose length is polynomial in the instance size is as yet unclear.
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[37] R. Santana, P. Larrañaga, and J.A. Lozano. Combining variable neighbour-
hood search and estimation of distribution algorithms in the protein side
chain placement problem. In Proc. of Mini Euro Conference on Variable
Neighbourhood Search, Tenerife, Spain, 2005.

[38] J.B. Saxe. Embeddability of weighted graphs in k-space is strongly NP-
hard. Proceedings of 17th Allerton Conference in Communications, Control
and Computing, pages 480–489, 1979.

20



[39] T. Schlick. Molecular modelling and simulation: an interdisciplinary guide.
Springer, New York, 2002.

[40] A. Sit, Z. Wu, and Y. Yuan. A geometric build-up algorithm for the solu-
tion of the distance geometry problem using least-squares approximation.
Bulletin of Mathematical Biology, 71:1914–1933, 2009.

[41] D. Wu and Z. Wu. An updated geometric build-up algorithm for solving the
molecular distance geometry problem with sparse distance data. Journal
of Global Optimization, 37:661–673, 2007.

[42] D. Wu, Z. Wu, and Y. Yuan. Rigid versus unique determination of pro-
tein structures with geometric buildup. Optimization Letters, 2(3):319–331,
2008.

21


