
INF421: Data Structures and algorithms

Leo Liberti

LIX, Ecole Polytechnique, 91128 Palaiseau, France

liberti@lix.polytechnique.fr

July 7, 2013

liberti@lix.polytechnique.fr

To1 Much

1Not a spelling mistake.

Chers élèves,

vous avez entre vos mains la première version de mon polycopié pour le cours INF421 (Les bases de
l’algorithmique et de la programmation) de l’Ecole Polytechnique. En tant que première version, ce poly-
copié contiendra sans doute beaucoup d’erreurs: merci de m’envoyer un email à leoliberti@gmail.com

pour m’en faire part, si vous en trouvez.

Je vous rappelle que le website du cours INF421

www.enseignement.polytechnique.fr/informatique/INF421/

contient beaucoup de matériel didactique. Le blog

inf421.wordpress.com

contient du matériel didactique supplémentaire quand le cours est actif. Pour le reste de l’année, j’y
publie n’importe quoi.

Leo Liberti, Paris, Août 2012

leoliberti@gmail.com
www.enseignement.polytechnique.fr/informatique/INF421/
inf421.wordpress.com

4

Contents

I Preliminaries and reminders 15

1 Computation 17

1.1 Computer hardware . 17

1.1.1 Programs . 17

1.2 Computer model . 18

1.2.1 Models of computation . 18

1.2.2 Church’s Thesis . 18

1.3 Languages . 18

1.3.1 Declarative languages . 19

1.3.2 Decidability . 19

1.3.3 Java . 19

1.4 Efficiency . 20

1.4.1 Structuring data . 20

1.4.2 Problems . 21

1.4.3 Algorithms . 21

1.4.3.1 Algorithmic complexity . 22

1.4.3.2 Worst-case time complexity calculations 22

1.4.3.3 Complexity orders . 23

2 Java basics 25

2.1 Development of a Java program . 25

2.1.1 Variables . 26

2.1.1.1 References . 26

5

6 CONTENTS

2.1.2 Comments . 26

2.1.3 Classes . 27

2.1.3.1 The this attribute . 27

2.1.3.2 Inheritance . 28

2.1.3.3 Interfaces . 28

2.1.4 Functions . 29

2.1.4.1 Passing by reference or value . 30

2.1.4.2 The main function . 30

2.1.4.3 Specifiers . 30

2.1.5 Data types . 31

2.1.6 The dot operator . 31

2.1.7 The curly brackets . 31

2.1.8 The semicolon . 32

2.1.9 How code is executed . 32

2.2 Arrays in Java . 32

2.2.1 Dimensions . 32

2.2.2 The square bracket notation . 32

2.3 Example: plotting the graph of a function . 33

2.3.1 A typical output . 33

2.3.2 Comments and imports . 33

2.3.3 The class declaration . 34

2.3.4 The main function . 35

2.3.5 Initialization . 35

2.3.6 Function tabulation . 36

2.3.7 Converting the function table to an array . 36

2.3.8 Printing the screen . 37

2.3.9 Compilation and running . 38

II Data structures 39

3 Graphs 41

3.1 Directed graphs . 41

CONTENTS 7

3.1.1 Directed neighbourhoods . 42

3.2 Undirected graphs . 42

3.2.1 Complement graphs . 42

3.2.2 Neighbourhoods . 43

3.2.3 Graph isomorphism . 43

3.2.4 Line graph . 44

3.3 Subgraphs . 44

3.3.1 Stable and clique subgraphs . 45

3.3.2 Some applications . 45

3.4 Connectivity . 46

3.4.1 Simple paths . 46

3.4.2 An alternative definition of paths and connectivity 47

3.4.3 Paths: not so simple . 47

3.4.4 Strong connectivity . 47

3.4.5 Cycles . 47

3.4.6 An alternative definition of cycles . 48

3.4.7 The cycle space . 48

3.4.7.1 Cycle-edge incidence vectors . 49

3.5 Basic operations on graphs . 49

3.5.1 Addition and removal of vertices and edges . 50

3.5.2 Contraction . 50

4 Linear data structures 53

4.1 Arrays . 53

4.1.1 Jagged arrays . 53

4.1.1.1 Adjacency lists . 54

4.1.2 Array operations . 54

4.1.2.1 Size in O(1) . 55

4.1.2.2 Moving a subsequence . 55

4.1.2.3 Removal and insertion . 56

4.1.3 Complexity of an incomplete loop . 56

4.1.3.1 Worst-case complexity . 56

8 CONTENTS

4.1.3.2 Average-case complexity . 57

4.1.4 Limitations of the array structure . 58

4.2 Lists . 58

4.2.1 Singly-linked lists . 58

4.2.2 Doubly-linked lists . 59

4.2.2.1 The placeholder node . 59

4.2.3 Lists modelled as graphs . 59

4.2.4 List operations . 59

4.2.4.1 Insertion . 60

4.2.4.2 Removal . 60

4.2.4.3 Find . 60

4.2.4.4 Access . 61

4.2.4.5 Other operations . 61

4.2.5 Java implementation . 61

4.2.5.1 The Node class . 62

4.2.5.2 The DLList class . 62

4.2.5.3 The main function . 64

4.3 Queues . 65

4.3.1 Circular arrays . 65

4.3.1.1 Java implementation . 66

4.3.2 What are queues used for? . 67

4.4 Stacks . 67

4.4.1 Using stacks for validating mathematical syntax 68

4.4.1.1 Java implementation . 68

4.4.1.2 The main method for bracketStack . 69

4.4.1.3 Sample output . 70

4.4.2 Calling functions . 71

4.4.2.1 Smashing the stack for fun and profit . 71

4.5 Maps . 71

4.5.1 Maps as parametrized interfaces . 72

4.5.2 Example of map usage in Java . 73

CONTENTS 9

5 Hashing 75

5.1 Do we really need it? . 75

5.1.1 The phonebook example . 76

5.1.2 Formal explanation . 76

5.1.3 Applications of hashing to Java . 77

5.2 The last nagging doubt . 77

5.3 Java implementation . 78

5.3.1 A hash table without collisions . 78

5.3.1.1 Keys and records . 78

5.3.1.2 The main class . 78

5.3.1.3 The hash function . 79

5.3.1.4 Main function . 79

5.3.2 A hash table allowing for collisions . 80

5.3.2.1 A Java implementation of a singly-linked list 80

5.3.2.2 The main class . 82

5.3.2.3 Adding elements to the hash table . 83

5.3.2.4 Finding elements in the hash table . 83

5.3.2.5 Main function . 83

6 Trees 87

6.1 Definitions . 88

6.1.1 Roots and direction . 88

6.1.2 Leafs, depth and height . 88

6.1.3 Spanning tree . 88

6.1.4 Vertex labels . 88

6.2 Basic properties . 89

6.2.1 Number of edges . 89

6.2.2 Connectivity . 90

6.2.3 Acyclicity . 90

6.2.4 Edge swapping operation . 90

6.3 The number of labelled trees . 90

6.3.1 Mapping trees to sequences . 91

10 CONTENTS

6.3.2 Mapping sequences to trees . 91

6.4 Applications . 92

6.4.1 Finding a basis of the cycle space . 92

6.4.2 Chemical trees . 92

6.4.3 Trees and languages . 93

6.4.3.1 Trees and recursion . 93

6.4.3.2 Syntax of formal languages . 94

6.4.3.2.1 Construction of valid sentences 94

6.4.3.2.2 Recognition of valid sentences 94

6.4.3.3 Semantics of formal languages . 95

6.4.3.4 Syntax of natural languages . 95

6.4.3.5 Semantics of natural languages . 96

6.4.4 Trees in networks . 97

6.4.4.1 Commodity networks . 97

6.4.4.2 Distance networks . 97

III Algorithms 99

7 Recursive algorithms 101

7.1 Motivations . 101

7.1.1 Proving program properties . 101

7.1.2 Expressing certain procedures naturally . 101

7.1.2.1 Encoding the tree . 102

7.1.2.2 A code with limited scope . 102

7.1.2.3 Algorithms and problems . 102

7.1.2.4 Recursion saves the day . 103

7.1.2.5 Back to iteration . 103

7.2 Iteration and recursion . 104

7.2.1 Terminating the recursion . 104

7.3 Listing permutations . 105

7.3.1 Some background material on permutations . 105

7.3.1.1 Product of permutations . 106

CONTENTS 11

7.3.1.2 Group structure . 106

7.3.1.3 Cycle notation . 107

7.3.2 The inductive step . 107

7.3.2.1 Generalizing the example to an integer n 108

7.3.2.2 The induction starts at 1 . 108

7.3.3 The algorithm . 108

7.3.3.1 Data structures . 109

7.3.4 Java implementation . 109

7.3.4.1 Class structure . 109

7.3.4.2 The main method . 110

7.3.4.3 The printList method . 111

7.3.4.4 The orders method . 111

7.4 The Hanoi tower . 112

7.4.1 Inductive step . 113

7.4.2 Base case . 113

7.4.3 Java implementation . 113

7.5 Recursion in logic . 114

7.5.1 Definitions . 114

7.5.2 Gödel’s theorem . 114

7.5.3 The beautiful and easy part of the proof . 115

7.5.4 The other part of the proof . 115

7.5.5 A natural language interpretation . 115

8 Graph searching and traversal 117

8.1 Graph scanning . 117

8.1.1 The Graph Scanning algorithm . 117

8.1.1.1 Correctness . 118

8.1.1.2 Complexity . 118

8.1.1.3 Connected components . 118

8.1.1.4 The exploration tree . 119

8.1.1.5 Choosing v ∈ Q . 119

8.2 Breadth-first search . 120

12 CONTENTS

8.2.1 Paths with fewest edges . 120

8.2.2 History of the BFS . 121

8.2.3 Looking for a good route in public transportation 121

8.3 Depth-first search . 123

8.3.1 A recursive version of DFS . 124

8.3.2 History of the DFS . 125

8.3.3 Easy and difficult natural languages . 125

8.4 Finding a spanning tree of minimum cost . 127

8.4.1 Prim’s algorithm: pseudocode . 128

8.4.2 Complexity of Prim’s algorithm . 129

9 Problems and complexity 131

9.1 Decision problems . 131

9.2 Optimization problems . 132

9.2.1 Relationship between decision and optimization . 132

9.3 Algorithms . 132

9.4 Complexity . 132

9.5 Easy and difficult problems . 133

9.5.1 Reductions . 133

9.5.2 The new problem is easy . 134

9.5.3 The new problem is as hard as another problem 134

9.5.4 NP-hardness and NP-completeness . 134

9.5.5 The most celebrated conjecture in computer science 135

9.5.6 The student’s pitfall . 135

9.6 Exact and heuristic algorithms . 135

9.6.1 A heuristic method for Max Stable . 135

10 Sorting 137

10.1 The searching problem . 137

10.2 Searching unsorted and sorted arrays . 137

10.3 The sorting problem . 138

10.3.1 Considerations on the complexity of SP . 138

10.3.1.1 The best algorithm for a problem . 138

CONTENTS 13

10.3.1.2 The Ω(·) and Θ(·) notations . 138

10.3.2 Best-case complexity of SP . 138

10.3.2.1 The sorting tree . 139

10.3.2.2 Formalizing the idea . 139

10.4 Sorting algorithms . 140

10.4.1 Selection sort . 140

10.4.2 Insertion sort . 140

10.4.3 Merge sort . 141

10.4.3.1 Divide and conquer . 141

10.4.3.2 Pseudocode . 141

10.4.3.3 Merging two sorted sequences . 141

10.4.3.4 Worst-case complexity . 142

10.4.4 Quick sort . 142

10.4.4.1 Pseudocode . 142

10.4.4.2 Partition . 143

10.4.4.3 Worst-case complexity . 144

10.4.4.4 Average-case complexity . 144

10.5 Exact complexity of SP . 146

10.6 Two-way partitioning . 147

10.6.1 A paradox? . 147

11 Searching 149

11.1 Notation . 149

11.2 Binary search trees . 150

11.2.1 BST min and max . 150

11.2.2 BST find . 151

11.2.3 BST insert . 152

11.2.4 BST delete . 152

11.2.4.1 Deleting a node with both subnodes . 153

11.2.4.2 Putting it all together . 154

11.2.5 Complexity . 154

11.3 AVL trees . 154

14 CONTENTS

11.3.1 Balance-independent methods . 155

11.3.2 Balance-dependent methods . 155

11.3.2.1 Tree rotation properties . 156

11.3.2.2 The remaining cases . 157

11.4 Heaps . 159

11.4.1 Priority queues . 159

11.4.2 Heap properties . 159

11.4.2.1 Insertion . 160

11.4.2.2 Maximum . 161

11.4.2.3 Popping the maximum . 161

11.4.2.4 Initial heap construction . 161

12 Shortest paths 163

12.1 Basic literature . 163

12.1.1 Problem variants . 163

12.1.2 Algorithms . 164

12.2 Weight functions . 164

12.3 The shortest path tree . 165

12.4 Dijkstra’s algorithm . 166

12.4.1 Data structures . 166

12.4.2 Reach, settle and relax . 166

12.4.3 A simple implementation . 166

12.4.3.1 Complexity . 167

12.4.3.2 Correctness . 167

12.4.4 A more refined implementation . 169

12.4.4.1 Pseudocode . 169

12.4.4.2 Complexity . 169

12.4.5 The point-to-point SPP . 170

12.5 Floyd-Warshall algorithm . 170

12.5.1 Data structures . 170

12.5.2 Pseudocode . 170

12.5.3 Negative cycles . 171

Part I

Preliminaries and reminders

15

Chapter 1

Computation

Abstract. What is a computer and how we represent it formally: what can be computed

and what cannot. Programming languages: what can be expressed and what cannot. Touch-

ing on Java. Efficient computation: problems, data structures, and algorithms. Worst-case

complexity.

This introductory chapter briefly touches on some deep theoretical topics, most of which are presented
in the INF423 course, as well as in many textbooks (e.g. [17]).

1.1 Computer hardware

A computer is a piece of machinery engineered for carrying out computations electronically. Most comput-
ers consist of a Central Processing Unit (CPU), some banks of Random-Access Memory (RAM), several
Input/Output (IO) devices, that allow the communication with the user and the external world, as well as
a motherboard that wires all the components together. At any given instant, the CPU has a state s out
of a possible set S of states. With a given frequency f , the CPU reads and executes a new instruction,
supplied by the user, which changes its state. According to the state it is in, the CPU may perform
arithmetic or logical operations on data, read data from or write it to RAM, send data to or receive it
from IO devices.

1.1.1 Programs

Instructions are normally supplied by the user as an ordered list, also called a program. The “default
behaviour” of the CPU is to execute instructions in the user-provided sequence, unless the instruction
itself explicitly tells the CPU to jump to a given point in the sequence. There are instructions that tell
the CPU to test a given logical condition and act differently according to the results of the test.

We remark that, since a program is defined as an ordered list of instructions, and any sublist of a list
is also a list, any “subprogram” is also a program, i.e. we might use the same term “program” to refer to
certain subsets of instructions of a given program.

17

18 CHAPTER 1. COMPUTATION

1.2 Computer model

The computer, as described in Sect. 1.1, was first conceived by Alan Turing in 1936 [23]. Turing’s
mathematical model of the computer is called Turing Machine (TM). A TM consists of an infinite tape,
divided into a countably infinite number of cells, with a device (called head) that can read or write
symbols out of a given alphabet A on each cell of the tape. According to the state s ∈ S the TM is in, the
head either reads, or writes, or moves its position along the tape. Any TM has a set of instructions that
tell it how to change its state. Turing showed that there exist TMs which can simulate the behaviour of
any other TM: such TMs are called Universal Turing Machines (UTM).

Turing’s work spawned further research, from the 1950s onwards, aimed at simplifying the description
of UTMs, involving scientists of the caliber of Shannon [21] and Minsky [16]. More recently, Rogozhin
[19] described UTMs with low values of (|S|, |A|), e.g. (24, 2), (10, 3), (7, 4), (5, 5), (4, 6), (3, 10), (2, 18).
It appears clear that there is a trade-off between number of states and number of symbols in the alphabet.

1.2.1 Models of computation

UTMs are not the only existing models of computation — several others exist, sometimes very different
from each other (see e.g. the Game of Life, a model for bacteria diffusion [3]). Such models are said to be
Turing-complete if they can simulate a UTM. “Simulating”, in this context, means using a different model
C of computation in order to mimick the behaviour of a UTM. To prove this, it suffices to show that
every instruction, state and symbol of the UTM can be simulated by C. If the UTM can also simulate
C, then C is said to be Turing-equivalent.

1.2.2 Church’s Thesis

Church’s Thesis is the statement that every Turing-complete model of computation is also Turing-
equivalent. So far, no Turing-complete model of computation was found to be more “powerful” than
the UTM.

1.3 Languages

A programming language is a set of rules for formulating instructions of a computer program. A language,
by itself, does not compute. Programs written in a given language do not compute either. The relevant
model of computation is a computer running a program written in a given language. It makes sense,
however, to question the “expression power” of a language, e.g. is it sufficiently expressive that it can
write a program that, executed on a computer, simulates a UTM? If so, then the language is called
universal. It was shown in [5] that, in order to be universal, a given language should be able to express
concatenation, tests and loops.

The concatenation of two instructions I1 and I2 is the program I1; I2. By induction, the concatenation
of two programs P1 and P2 is the program P1;P2. A test instruction modifies the sequence of the
instructions in a program according to whether a given logical condition is true or false. A loop is an
instruction that tells the CPU to repeat the execution of a given program.

It is important to keep in mind the distinction between the language and its underlying computing
model. A computing model with no provision for simulating a memory device (be it a tape or RAM or
otherwise), may very well execute a program written in a universal language, but the resulting computing
model will fail to be Turing-complete.

1.3. LANGUAGES 19

1.3.1 Declarative languages

So far, we made the assumption that programs consist of instructions that tell a computer (be it hardware
or theoretical) to act in certain ways. The class of languages for expressing such programs are called
imperative languages. There is another class of programming languages, called declarative languages,
which are designed to describe sets (e.g., the set of even numbers can be described as {n ∈ N | n mod 2 =
0}). Java, C, C++, Basic, Fortran, Pascal are all imperative languages.

Insofar as a computer acts on input data to produce output data, it can be seen as a function. Since
the formal definition of a function f is a set F of pairs (ι, ω) such that f(ι) = ω, we can describe a
function by means of the set F . In this sense, in order to fully describe f , it would suffice to list a set
of mathematical conditions that hold for any set V if and only if V = F . Declarative programming
languages allow such descriptions. Prolog, LISP, CAML, AMPL are all declarative languages (most also
integrate some imperative instructions, too). An interesting example of a declarative universal language
is given by Diophantine equations, i.e. polynomial equations with integer coefficients, where the solutions
are constrained to be integers [11]: the solution set of certain Diophantine equations define functions that
turn out to describe the input/output pairs of a UTM.

1.3.2 Decidability

Functions N → N represented by TMs are called computable. Sets V ⊆ N that are domains (or co-
domains) of computable functions are called recursively enumerable. If V and NrV are both recursively
enumerable, then they are both also called recursive or decidable. Given a set V ⊆ N and an integer
v ∈ N, one may ask whether v ∈ V or not. This is a fundamental decision problem in number theory.
It turns out that V is recursively enumerable if and only if there is a program that answers YES when
v ∈ V , but may answer wrongly or even fail to terminate when v 6∈ V ; moreover, V is decidable if and
only if there is a program that answers YES when v ∈ V and NO when v 6∈ V . This provides a further
link between imperative and declarative languages.

It should appear clear that recursively enumerable sets are of limited value as far as proving that
an answer to a problem is correct: if the algorithm answers YES, it may be a true positive or a false
negative, and there is no way to tell. Moreover, how is a user supposed to know whether a program fails
to terminate or is simply taking a long time? Accordingly, we try to frame problems so that the solution
set is decidable.

On the other hand, several interesting sets fail to be decidable. Take, for example, Hilbert’s tenth
problem: determine whether or not there exists a mechanical procedure for solving a given Diophantine
equation. Given the extent of work on Diophantine equations carried out ever since Greek civilization,
this is certainly an interesting problem. It remained open until Matyasevič answered in the negative
[11], by proving that there are parametric Diophantine equations whose solution set spans the totality
of recursively enumerable sets. Since decidable sets are a proper subset of recursively enumerable sets,
there clearly are Diophantine equations whose solution set is undecidable.

1.3.3 Java

Our programming language of choice is Java1. In Java, one can:

• initialize a variable:

int i;

1Its basic syntax was provided in previous courses, such as INF311 and INF321.

20 CHAPTER 1. COMPUTATION

• assign a constant value to a variable:

i = 3;

• define a function:

int f(int s) {

s = 1;

return s;

}

e.g. the above defines the trivial function f : N→ {1} that maps every integer to 1

• test a condition:

if (i < 3) {

f(i);

} else {

i = 0;

}

• loop indefinitely over a program:

while(true) {

f(i);

}

The fundamental constructs above can be mixed in a number of syntactically correct ways in order to
produce increasingly complex programs.

1.4 Efficiency

Although the questions “what can you compute with a given computer?” and “what can you write with
a given language?” are certainly the most fundamental — and universality gives a theoretical measure
of how far computers and languages can provide an answer to these questions — there remains the
important question of efficiency. How efficiently can a language express a certain program, and how fast
can a computer execute a given program? The answers to these questions largely define the science (and
art) of algorithmics.

1.4.1 Structuring data

In the vast majority of real computers, RAM is organized as a long but finite list of Binary digITs (bits).
In the jargon of TMs, the underlying alphabet is {0, 1}, and each cell of the tape can hold either symbol.
Although this is sufficient to guarantee universality, it is cumbersome for people to program using only
two symbols.

Accordingly, a data structure is a segmentation of memory that carries a certain meaning to the user.
For example, people noticed that most integers arising in practice are in the range int = {−231, . . . , 231−
1}. Integers in this range can be described by sequences of exactly 32 bits (i.e. 4 bytes2: 31 bits are used
to store the absolute value, and the remaining bit is used for the sign). In TM jargon, this is akin to

2One byte contains 8 bits.

1.4. EFFICIENCY 21

taking 32 binary cells on the tape and declaring them to simply be “one cell” which can hold any integer
in the range int. This, by the way, also provides a very simple example of simulation of a TM with
|A| = 32 by a TM with |A| = 2.

In real computers, we are not bound to segmenting memory using only one data structure: a part
of memory can hold ints, another can hold bits, and yet another can hold doubles (a data structure
for storing a certain subset of rational numbers). Moreover, most programming languages allow users to
declare their own data structures by combining the elementary ones in different ways. In order to make it
even easier to write programs with user-defined data structures, languages usually also allow for pairing
such structures with dedicated user-defined functions that handle them appropriately.

In Java, user-defined data structures are called objects; the formal description of an object in terms of
elementary data structures is a class. The data items occurring in classes are called attributes, and the
functions items are called methods.

1.4.2 Problems

It should be clear that programs take data as input, manipulate these data, and produce data as output.
Not all possible data are valid for input (think of a program that takes a 16-bit integer as input and is
fed a 32-bit one instead — something like this made the Ariane 5 rocket explode!), and the set of output
data is well-defined. A program P therefore defines a set I of possible inputs and a set O of possible
outputs. Do I,O uniquely define the program that produced them? The answer is no: take for example
I = O = {n ∈ int | n mod 2 = 0 ∧ n ∈ [0, 10]}. This can be obtained with either of the following
(different) programs:

/* code 1 */

int i = 0;

while(i < 10) {

i += 2;

System.out.println(i);

}

/* code 2 */

int i = 0;

while(i < 10) {

if (i % 2 == 0) then

System.out.println(j);

}

i++;

}

We formally define a problem to be a set of pairs (ι, ω). A problem is decidable if there is at least a
program (or TM) P with input set I and output set O such that ω = P (ι) for all (ι, ω) ∈ I × O. A
decidable problem can also be seen as the class of all programs that produce the same output ω ∈ O on
a given input ι ∈ I, and reject all input not in I.

1.4.3 Algorithms

Loosely speaking, we use “algorithm” and “program” interchangeably; a “program” usually indicates
actual code that can be compiled and executed by a computer, whereas an “algorithm” is an idealized
model of a program. An algorithm might contain a statements in natural (rather than formal, see
Sect. 6.4.3) language, or be written formally but for a machine that does not exist in practice. In general,

22 CHAPTER 1. COMPUTATION

“algorithm” has a theoretical connotation, whereas “program” has a practical one. More formally, an
algorithm is any program solving a decidable problem.

1.4.3.1 Algorithmic complexity

As mentioned in 1.4.2, several algorithms may solve the same problem. This immediately raises an
important question: which one should we use? In the clearest-cut case, there might be an algorithm
which takes less time and memory: it might be difficult to find it, but the question has a well-defined
answer. In most cases, there is a trade-off between time and space: some algorithms may take less time
but more memory, and vice versa. We refer to time measures as time complexity and space complexity.
Since RAM is generally less costly than time, apart from a special cases time complexity is used more often
than space complexity. In the sequel, we almost always mention complexity to mean “time complexity”.

As programs consist of sequences of basic instructions, each of which takes (almost) the same time to
execute on the CPU, time complexity evaluations usually count the number of instructions to be executed
before the program terminates. Space complexity evaluations count the number of bytes of RAM that the
program allocates whilst running. These questions are, unfortunately, ill-defined: programs may behave
well with a given input and badly with another. Accordingly, we consider three possibilities: worst-case
complexity, best-case complexity, and average-case complexity.

Best-case complexity is not often used: an algorithm may be very fast on short or trivial input, but this
says nothing about how the algorithm will perform in general. Worst-case complexity is more informative
(as it gives a guarantee — if an algorithm is fast in the worst case, all the better for the general case!)
and usually not too difficult to evaluate: this is why it is the most studied case. Average-case complexity
is very informative, as it aims at the general case, but it is often difficult to compute. And unless we can
also compute the variance attached to the average, it might be misleading.

Below, we shall therefore mostly concentrate on worst-case time complexity.

1.4.3.2 Worst-case time complexity calculations

We let P be a program, and tP be the number of instructions that are executed in P . Notice that, because
of tests and loops, this is different from the number of instructions actually written in the program. The
following rules-of-thumb hold.

• Basic assignments, arithmetic/logical operations and tests all have tP = 1.

• If P,Q are programs and P ;Q is their concatenation, then

tP ;Q = tP + tQ. (1.1)

• If T is a logical test and P,Q are programs, then

tif(T)P elseQ = tT +max(tP , tQ). (1.2)

Notice that the use of the max operator implements the worst-case policy; average- and best-case
would yield different formulæ.

The case of the loop is more complicated, as it depends on whether the body of the loop is independent
on the termination condition or not. Consider the following algorithm P , where Q is a program.

int i = 0;

while (i < n) {

1.4. EFFICIENCY 23

Q();

i = i + 1;

}

In this algorithm, Q() does not depend on i, and therefore we have tP = ti=0+n(tQ+ ti<n+ ti+1+ ti=·)+
ti<n = 2+n(tQ+3). The last test term refers to the test i < n when i and n have the same value, which
fails and allows the loop to terminate.

1.4.3.3 Complexity orders

Suppose we are able to determine that tQ = 1
2n. Then tP = 1

2n
2 + 3n+ 1. Since we would like to know

the behaviour of this algorithm in the worst-case, it is interesting to look at the asymptotic behaviour of
tP (n) for n→∞. It is clear that the dominating term is 1

2n
2; moreover, asymptotically, the 1

2 constant
is not so important. We simply say that tP asymptotically behaves like n2, and write it as tP ∈ O(n2),
or “tP is O(n2)”.

In general, we say that a function f(n) is order of g(n) (and write it “f(n) is O(g(n))”) if:

∃c > 0 ∃n0 ∈ N ∀n > n0 (f(n) ≤ c g(n)). (1.3)

In words: there are positive real c and integer n0 such that c g(n) dominates f(n) for all n > n0. Table
1.1 lists some complexity orders for various functions of n. Evidently, an effort should be made to find

Functions Order
an+ b with a, b constants O(n)
polynomial of degree d′ in n O(nd) with d ≥ d′
n+ logn O(n)
n+
√
n O(n)

logn+
√
n O(

√
n)

n logn3 O(n log n)
an+b
cn+d

, a, b, c, d constants O(1)

Table 1.1: Complexity orders of some functions of n.

the lowest possible worst-case order, i.e. although the function 2n+1 is certainly O(n4), it is much more
informative to say that it is O(n).

We remark that if tP (n) is a constant (i.e. n does not appear in the expression for tP), then it is O(1);
e.g. looping 10100 times over an O(1) program is itself O(1).

24 CHAPTER 1. COMPUTATION

Chapter 2

Java basics

Abstract. Short introduction to Java. Variables, Objects, Classes, Interfaces, and Data

types. Functions, values and references. An example: plotting the graph of a mathematical

function on the screen.

Each computer brand — or even model — is different. CPU design and capabilities evolve in time,
as does the set of instructions they can understand. On the other hand, programmers spend a long time
learning a programming language, and once they are proficient in one, they are unwilling to spend more
time learning others. Thus, languages should not change even though the underlying computer that
executes them will. This is attained in essentially two ways:

• updating the compiler or interpreter;

• simulating a “software computer” that does not change.

The first paradigm is by far the most common. Since the instructions that a CPU can actually execute are
very different from the constructs of human-employed programming languages, these must be translated
into executable code in order to be run. Compilers or interpreters are used for this task. A compiler
translates a user program at once, and writes a file containing executable code. An interpreter translates
the instructions of a user program one after the other, following the program flow, and executes each one
immediately. Compiled languages are: C, C++, Pascal,, Fortran, (relatively) recent Basic dialects, and
many others. Interpreted languages are: perl, python, early Basic dialects, and many others. Typically,
compiled languages yield code that is faster to execute than interpreted languages; on the other hand,
changing an interpreted program is easier than changing a compiled one.

Java, on the other hand, rests on a piece of software that simulates a virtual computer: in Java terms,
this is a Virtual Machine (VM). The virtual machine can evolve in time to take advantage of technical
progress in computer design, but always offers the same set of primitives to the programs it can execute.
This also makes it easy to port Java applications to different platforms (e.g. Windows, MacOSX, Linux):
it suffices to implement an appropriate VM.

2.1 Development of a Java program

A Java program is encoded in an ASCII text file — better use the first 128 characters and steer clear of
accents. Open your favourite text editor and type:

25

26 CHAPTER 2. JAVA BASICS

/*

Name: helloWorld.java

Purpose: a "hello world" program in Java

Author: Leo Liberti (from an idea by B. Kernighan)

Source: Java

History: 17/10/2011 work started

*/

class helloWorld {

public static void main(String [] args) {

System.out.println("hello world");

}

}

Save as helloWorld.java. Now open a terminal window, and type:

javac helloWorld.java

java helloWorld

The first command calls the Java compiler, which translates the text above into code that can be executed
on the Java VM. The second command tells the Java VM to execute this code. As an effect of the
execution, the computer should print hello world on the same terminal as the commands were issued.

2.1.1 Variables

In Java, variable symbols can store values or addresses. Typically, variables having elementary data types
such as boolean, int, long, float, double, char store values: if int a is a variable, then its value is
stored at a certain address in memory. If myClass is a user-defined class, then the variable myClass C

has a non-elementary data type: in this case, Java stores in C a memory address, which points to a part
of memory which contains the actual value of C.

2.1.1.1 References

Variables containing addresses are also called references. Users need not concern themselves excessively
with storage implementation details, aside for a few (but important) occurrences to do with copying
data from a non-elementary data typed variable to another. Will Java copy the addresses or the values
themselves? Copying addresses is known as shallow copy, whilst copying values is known as deep copy.

Consider a reference a whose value is an address a of a memory cell containing the value b. This is
represented graphically as shown below.

a

a

b

a

2.1.2 Comments

A comment is simply text inserted in a program so as to remind human readers of the meaning of the
surrounding instructions. Natural, rather than formal languages, are usually employed. Comments are
supposed to make code clearer and easier to understand. A program with no comments will probably be
unreadable; on the other hand, users will most likely ignore comments if every single line is commented.

2.1. DEVELOPMENT OF A JAVA PROGRAM 27

In Java, comments can be single line or multi-line. A double slash (“//”) means that the rest of the
line, until its end, will contain a comment. A multi-line comment starts with “/*” and ends with “*/”.
An example of a multi-line comment is given in the helloWorld program.

Comments are ignored by the Java compiler, but some relevant information can be stored in comments,
to be read by an appropriate preprocessor — this is software that interprets the program according to
different rules, and is usually called prior to (or independently of) the compiler. This can be useful to
automatically produce documentation for a given software, for example.

2.1.3 Classes

A class is the Java equivalent of a mathematical set defined by a property P , i.e. {x | P (x)}. In Java,
the property P is a description of the data type of each piece of data x in the class, e.g. x might store an
integer, a float and a string.

In Java, every program must contain at least a class. A class is the formal Java definition of a data
structure. It usually contains a list of variable names (with associated data type) and a list of functions
that determine how the values stored in the variables change. The class in the helloWorld program,
called helloWorld, only contains one function called main.

A class is an entity which resides in the Java program. Once compiled and executed, a class, strictly
speaking, does nothing. The Java VM, however, may create (either by default or because instructed to
do so) objects of any given class. An object is therefore an instance of the class stored in memory. If
we draw a parallel between Java and mathematical language, a class is to a set what an object is to an
element. In other words, a class is a description of the data structure, whereas an object is an actual
piece of data that is structured in memory according to the specification of its class. For example, the
class

class IntPair {

int first;

int second;

}

defines a data structure that holds two integers between −231 and 231 − 1. An object myIntPair of this
class, defined as:

IntPair myIntPair = new IntPair;

holds a pair of integers in memory. The name myIntPair is arbitrary — the fact that it is similar to the
class name is only supposed to help a reader identify the class directly from the object. In general, two
different objects of the same class hold different data.

Class members, be they data (attributes) or functions (methods), can some specifiers, such as public,
static and others. Public class members can be referenced from instructions outside the class. Static
members are stored at a single address in memory, which means that all objects of the same class all
share static data. By default, members are neither public nor static, which means that they can only
be referenced from instructions inside the class, and each object of the class can refer to its own private
copy of the data.

2.1.3.1 The this attribute

Suppose the class myClass has a method myMethod. Within the myMethod code, the Java keyword this

is a reference to the object which will execute myMethod. This means that two objects of the same class

28 CHAPTER 2. JAVA BASICS

have the same attribute this, but this will hold two different memory addresses depending on which
object refers to it.

2.1.3.2 Inheritance

Just as sets can, in mathematics, be subsets of other sets, classes can be subclasses of other classes. A
class C describing each of its objects as storing an integer, a float and a string might well be a subclass
of another class B whose objects only store an integer and a float.

Inheritance is useful for several reasons. For example, if we need both B and C in our code and do not
have inheritance, we must write

public class B {

int i;

float f;

}

public class C {

int i;

float f;

String s;

}

Notice we are duplicating some code. If we need to change the float to a double later on, and still
require B to be a subclass of C, we must remember to change the code in different places: since people
forget such details, it will very likely give rise to a bug. Notice that a similar type of bug destroyed the
Ariane 5 on its maiden flight. Inheritance helps avoid this issue. We define C as follows:

public class C extends B {

String s;

}

In other words, we explicitly tell the compiler that there is a relationship between the two classes. This
not only shortens the code, but decreases the chances of coding mistakes by delegating to the compiler
the responsibility of checking that the relationship C ⊆ B is maintained throughout the code.

2.1.3.3 Interfaces

An interface is a very special kind of class, whose purpose is that of enforcing conformance to a certain
class structure. For example, in a Graphical User Interface (GUI) every window (including full program
windows, dialog boxes and warning boxes) must conform to certain basic notions about windows: e.g.,
they possess a width, a height, a title and a frame, they have some standard buttons for minimizing,
maximizing and closing, they have some standard pull-down menu, and they must remember their con-
tents so that these can be re-drawn if another window is temporarily dragged over it. A programmer
who designs a new type of window might be tempted to design a window of a different kind, say with
no standard buttons. However, all other programs running on the GUI automatically assume that all
windows have standard buttons, so they are free to call the associated code: in the long run, this might
cause bugs and unforeseen behaviour. To avoid this, the compiler itself enforces conformance with a
standard idea of window in the GUI by means of an interface: all classes defining a window must inherit
from the window interface, and implement its functions as they see fit.

2.1. DEVELOPMENT OF A JAVA PROGRAM 29

Remark that interfaces have no data and only contain the names, argument types and return types
of the member functions. No object can be defined as member of an interface class only. By contrast,
objects of different classes that both implement (i.e., inherit from) the same interface class can both be
attributed the interface data type. Let us consider the example of a normal window and of a special type
of window whose aspect ratio is always 3:2.

interface Window {

int getWidth();

int getHeight();

}

class MainWindow implements Window {

int width;

int height;

public int getWidth() {

return width;

}

public int getHeight() {

return height;

}

}

class FixedRatioWindow implements Window {

int size;

public int getWidth() {

return 3*size;

}

public int getHeight() {

return 2*size;

}

}

In subsequent code, we might wish to loop over all windows. This is possible thanks to inheritance from
the Window array.

MainWindow mw = new MainWindow();

FixedRatioWindow frw = new FixedRatioWindow();

ArrayList<Window> a;

// ...

a.add(mw);

a.add(frw);

// now we can loop over the elements of a

Notice that ArrayList<Window> implements an array of interfaces (we shall discuss the funny angular
brackets later, see Sect. 4.5.1).

2.1.4 Functions

In general, functions may take a list of arguments of given type, implement an algorithm with such
arguments as input, and then optionally return a value of given type to the calling function. For example,
the Java function f taking an integer input and returning its square is implemented as follows.

30 CHAPTER 2. JAVA BASICS

int f(int x) {

return x*x;

}

2.1.4.1 Passing by reference or value

Consider the mathematical function f(x) = x2, and the possible C++ implementation:

dataType f(dataType x) {

x *= x;

return x;

}

(we remark this is a valid construct in Java too, but we refer to C++ here for technical reasons). The
dataType keyword is simply the data type of the argument x and of the return value of f. It might
describe an integer or a floating-point number.

Now consider a calling function:

void g() {

dataType x = 2;

dataType y = f(x);

cout << x << " + **2 = " << y << endl; // print string on screen

}

and try and imagine what the printed output will be like. Obviously, y will take value 4. But what value
will x take? The definition of f changes the value of x, but will this change be remembered in the calling
function?

The answer depends on whether f has access to the value of x, or to the address where x is stored in
memory. In the first case, this value will be stored by f in a new memory area: the x in g and the x in f

are stored in two distinct memory cells, whose values can be changed independently. in the second case,
if f changes the value of x, g will retrieve the changed value, because x in f and x in g are stored at the
same memory address. In the first case, x is passed by value, and in the second, x is passed by reference.

In Java, passing by value or by reference is not a user choice. Elementary data types (boolean, int,
long, float, double, char) are passed by value, and all other data types (including user-defined classes)
are passed by reference.

2.1.4.2 The main function

The function main takes as argument an array called args, and returns no data — this is the meaning
of the void right before the function declaration. In the case of the helloWorld program, all it does is
to print out to the system screen the string “hello world”.

2.1.4.3 Specifiers

Some details about how functions are translated to executable code by the Java compiler can be influenced
by code specifiers.

The main function of the helloWorld program, for example, is specified to be public and static.
The first specifier, public, states that this function can be called from other functions, even outside the

2.1. DEVELOPMENT OF A JAVA PROGRAM 31

class (normally, functions in a class can only be called by other functions in the same class). The second
specifier, static, tells the compiler that any object of the class helloWorld will share a single copy of
the main function: the function code will be stored at a precise address in memory, and this address
will be stored in every object of the class helloWorld. Functions and variables that are declared static

serve a purpose of sharing data between different objects of the same class.

2.1.5 Data types

A class defines the type of data it encodes: if an object is a piece of data, the class it belongs to is the
data type. In Java, we distinguish a small set of data types, which includes boolean, int, long, float,
double and char: these are called elementary. Elementary data types do not correspond to any defined
class — rather, these types are hard-coded in the compiler. This makes a difference as far as functions
are concerned. The instruction

void f(int a);

will define a function called f which takes as input an int called a. If the function f changes the value
stored in a, this has no effect on a outside the function:

int a = 2;

f(a);

System.out.println(a);

// ...

void f(int a) {

a = 1;

}

2.1.6 The dot operator

For Java instructions to refer to the member first of the object myIntPair, the dot operator is used,
e.g.:

myIntPair.first = 1;

With this in mind, it is easy to interpret the instruction

System.out.println("hello world");

as a chain of embedded objects: it is a call to the function println, which is in the object out, which is
itself one of the data in the object System.

2.1.7 The curly brackets

In Java (and also in C and C++), curly brackets, (also known as braces), are used to delimit the scope
of a set of instructions. Accordingly, they mark the beginning and end of a class, function, but also of
if blocks, and while and for loops.

32 CHAPTER 2. JAVA BASICS

2.1.8 The semicolon

Every basic instruction in Java is terminated by a semicolon. Notice that a basic instruction does not
necessarily correspond to a line. Class or function definitions are not considered basic instructions, insofar
as they are delimited by braces rather than ended by a semicolon.

2.1.9 How code is executed

A program can include several classes, defined in different files. However, for a program to yield executable
code, there must be a point of entry, i.e. a first function that the Operating System (OS) knows it can
call. This function can then call all the other functions in the program. In Java, this first function is
called main, it must be defined as static and void, it takes as input the list of command line arguments
passed by the user to the program via the shell prompt, and must be a public class member. Moreover,
the name of the class containing main should have the same name as the Java file it is stored in (see the
helloWorld example).

2.2 Arrays in Java

An array represents a list of objects of the same class. An example of an array of three int having value
2, 1,−1 is shown below.

2 1 -1

The fact that the objects come one after the other is meant to suggest that they are stored in memory
at contiguous addresses. This may be true or not, depending on the actual array implementation. It is
usually true to a degree: an array might well be implemented as a set of distinct memory segments, each
of which consists of contiguous addresses.

2.2.1 Dimensions

Arrays can be linear or multidimensional. Mathematically speaking, a linear array is similar to a vector,
a two-dimensional array to a matrix, and a multidimensional array to a tensor.

2.2.2 The square bracket notation

In Java, arrays are declared using square brackets, in one of the two ways below.

int[] myArray;

int myArray[];

Declaring an array does not make it usable: first, we must allocate some memory to it.

myArray = new int[4]; // reserves enough memory to hold 4 int

It is common to combine the declaration and the memory allocation in the same instruction (both
alternatives will work).

2.3. EXAMPLE: PLOTTING THE GRAPH OF A FUNCTION 33

int[] myArray = new int[4];

int myArray[] = new int[4];

Multidimentional arrays get as many square bracket pairs as there are dimensions. The following defines
a (4 × 3× 2) 3-dimensional array of int.

int[][] x = new int[4][3][2];

In Java, the number of components in each dimension need not be a constant.

int n = 2;

int m = 3;

int[][][] x = new int[4][m][n];

2.3 Example: plotting the graph of a function

In this section we shall present a simple worked-out Java example, consisting entirely of static data, that
plots a function y = f(x) of one variable on a text console screen. This program consists of a single class,
called functionPlot, and resides in a single file called functionPlot.java. The class is declared static
and contains a main function, as detailed above. The main function performs the following tasks:

1. initialize some data, such as the ranges [xL, xU] where we wish to tabulate f(x), the number n of
function table entries, as well as the size of the “text screen” (number of rows and columns);

2. compute two vectors: (x1, . . . , xn) such that xk ∈ [xL, xU] for all k ≤ n, and (y1, . . . , yn) such that
yk = f(xk) for all k ≤ n;

3. fill an integer array screen with zeroes, apart from those entries (i, j) (set to 1) that best approxi-
mate the pairs (xk, yk);

4. print the array screen on the text console.

2.3.1 A typical output

A typical output with 20 rows, 75 columns, and f(x) = 1
4x + sin(x) in the range [−10, 10] is shown in

Fig. 2.1.

2.3.2 Comments and imports

The filePlot.java file starts with the usual comments bearing some minimal information about the
program.

/*

Name: functionPlot.java

Purpose: plotting functions in ASCII

Author: Leo Liberti

Source: Java

History: 120615 work started

*/

34 CHAPTER 2. JAVA BASICS

liberti@styx$ java functionPlot

** **

* **

* *

*

**** *

** *** *

** ** *

** ** *

** ******

* * **

*** *** *

** *** *

** ** **

* ** **

* ***

*

** *

** *

** **

Figure 2.1: A typical output from functionPlot.

Next, we import some standard Java classes.

import java.io.*;

import java.util.*;

import java.lang.*;

The import command tells the compiler to read some other Java code, which might include declara-
tions and definitions of names occurring in the program. For example, we shall make use of math-
ematical functions Math.sin and Math.rint, as well as the print functions System.out.print and
System.out.println. We shall not explicitly declare these functions, but rather instruct the compiler
to look for them in some standard libraries.

2.3.3 The class declaration

We present the class structure next. We remark that the following class contains some function declara-
tions (specifiers, return type, name, argument types) without the corresponding definition (the function
code, contained in braces); accordingly, the following code cannot be compiled “as is”: all function
declarations need to be followed by the corresponding definitions.

class functionPlot {

//// Private data

static int steps; // number of function evaluations

static double [] x; // x coordinate values

static double xL; // lower bound for x coordinate values

static double xU; // upper bound for x coordinate values

static double [] y; // y coordinate values

static double yL; // lower bound for y coordinate values

static double yU; // upper bound for y coordinate values

static int rows; // number of text rows taken by plot

2.3. EXAMPLE: PLOTTING THE GRAPH OF A FUNCTION 35

static int columns; // number of text columns taken by plot

static int[][] screen;

//// Public functions

// this defines the function to be plotted

public static double theFunction(double z);

// initialize some values

public static void initialize();

// compute the x-y table

public static void functionTable();

// compute the minimum value of the y range

public static double yMin();

// compute the maximum value of the y range

public static double yMax();

// fill the screen array cells corresponding to x/y pairs with 1’s

public static void tableScreen();

// loop over the screen array and either print a ’*’ (1) or a space (0)

public static void printScreen();

// this is the program’s point of entry

public static void main(String [] args);

}

All the data in the functionPlot class is declared static. This implies that all data is shared among
all functions in the class. The first section of the class declares a set of (private) attributes which can only
be accessed by functions within the class. There follows a section containing the (public) declarations of
all class functions. Notice that the last function main is the point of entry of the VM when it executes
the code. Every line is commented for clarity.

2.3.4 The main function

The main function simply calls four other functions in order: data initialization, function tabulation,
filling of the screen array, and printing of the screen array on the console screen.

public static void main(String [] args) {

initialize();

functionTable();

tableScreen();

printScreen();

}

2.3.5 Initialization

The initialize function simply assigns some user-defined constants to some parameter variables. Users
can change the behaviour of the program in certain ways by changing these parameters, re-compiling and
re-executing the program.

public static void initialize() {

// user: set values for steps, x range, rows/columns for plot

steps = 150; // 150 entries in function table

xL = -10; // lower bound for x range

xU = 10; // upper bound for x range

columns = 75; // number of columns on the console screen

rows = 20; // number of rows on the console screen

// user: do not change anything beyond this point

36 CHAPTER 2. JAVA BASICS

x = new double[steps]; // the x vector

y = new double[steps]; // the y vector

}

2.3.6 Function tabulation

Tabulating a function f of one variable means computing a set of pairs (xk, yk) such that yi = f(xk), for
k ≤ n where n ∈ N is given. Accordingly, we set up two linear arrays x, y to hold steps values each.

public static void functionTable() {

double theStep = (xU - xL) / steps;

x[0] = xL;

for(int k = 1; k < steps; k++) {

x[k] = x[k-1] + theStep;

y[k] = theFunction(x[k]);

}

}

The function functionTable calls another function, theFunction, which is simply a user-changeable
implementation of the mathematical function f(x). For example, if f(x) = 1

4x+ sinx, we have

public static double theFunction(double z) {

// user: change the mathematical function here at leisure

return 0.25*z + Math.sin(z);

}

Notice here that we use the symbol z instead of x because we already used a static variable x to denote
the array storing the first components of the function table pairs. Since x is a static variable, every
function in the class (including theFunction can read it and change it. Had we used double x instead
of double z here, we would have shadowed the symbol x that denotes the array, rendering it inaccessible
within this function. Also notice the library function sin, which is a member function of the class Math.

2.3.7 Converting the function table to an array

We pave the way for printing to the console screen. We model this screen by means of a two-dimensional
array screen, indexed on rows and columns. Initially, we fill screen with zeroes. Later on, we loop over
the function table pairs, and we change screen’s (i, j)-th entry to a one whenever there is a pair (xk, yk)
such that (i, j) is the best integer approximation of (xk, yk) (after appropriate translation and scaling).
More precisely, we let:

j =

⌊
xk − xL
xU − xL σ +

1

2

⌋

i =

⌊
yk − yL
yU − yL ρ+

1

2

⌋

,

where σ is the number of columns (columns in the code) and ρ the number of rows (rows in the code.
Adding 1

2 to a real number and taking its floor is the same as rounding it to the closest integer.

public static void tableScreen() {

int i;

2.3. EXAMPLE: PLOTTING THE GRAPH OF A FUNCTION 37

int j;

screen = new int [rows][columns];

for(i = 0; i < rows; i++) {

for(j = 0; j < columns; j++) {

screen[i][j] = 0;

}

}

yL = yMin();

yU = yMax();

for(int k = 0; k < steps; k++) {

j = (int) Math.rint(((x[k] - xL) / (xU - xL)) * columns);

i = (int) Math.rint(((y[k] - yL) / (yU - yL)) * rows);

if (i < rows && j < columns) {

screen[rows - (i + 1)][j] = 1;

}

}

}

The above function calls two other functions, yMin and yMax, that compute the minimum and maximum
of the y range, and are defined as follows.

public static double yMin() {

double theMin = 1e30; // infinity

for(int k = 0; k < steps; k++) {

if (y[k] < theMin) {

theMin = y[k];

}

}

return theMin;

}

public static double yMax() {

double theMax = -1e30; // -infinity

for(int k = 0; k < steps; k++) {

if (y[k] > theMax) {

theMax = y[k];

}

}

return theMax;

}

2.3.8 Printing the screen

We now come to the function that copies the arrays screen onto the console screen. We interpret it so
that every time screen contains a 1, a ‘*’ is printed on the screen, while all zeroes are printed as spaces.

public static void printScreen() {

for(int i = 0; i < rows; i++) {

for(int j = 0; j < columns; j++) {

if (screen[i][j] == 1) {

System.out.print("*");

} else {

System.out.print(" ");

38 CHAPTER 2. JAVA BASICS

}

}

System.out.print("\n");

}

}

2.3.9 Compilation and running

As for helloWorld, the program functionPlot can be compiled and executed very simply as follows.

javac functionPlot.java

java functionPlot

The output of functionPlot with the user-defined parameters is given in Sect. 2.3.1

2.3.1 Exercise

Extend the functionPlot class so that it also prints the x and y axes.

Part II

Data structures

39

Chapter 3

Graphs

Abstract. Directed and undirected graphs, neighbourhoods, complements, line graphs,

graph isomorphism. Subgraphs, stables and cliques. Connectivity: paths and cycles. Basic

operations on graphs.

Data structures consist of pieces of data as well as relations between and among them. We are going to
formalize this concept mathematically by means of graphs. Graphs are also the appropriate mathematical
model for networks, be they transportation, communication, power, social or other types of networks.
Learning the ropes of graph theory will therefore serve a double purpose.

3.1 Directed graphs

Formally, a relation on a set V is a subset of the Cartesian product V ×V of all ordered pairs of elements
of V . Accordingly, we define a directed graph (or digraph) as a pair G = (V,A) where V is the set of nodes
(or vertices) and A, a subset of V × V , is the set of arcs of the graph. Given a digraph G, we sometimes
denote its node set by V (G) and arc set by A(G). A reflexive relation pair (v, v) is a special type of

1 2 1

2
3

4
5

1

2

3

4

5

6

1

2

3

Figure 3.1: Examples of digraphs.

arc called a loop, see e.g. the loops (1, 1) and (2, 2) in the leftmost graph of Fig. 3.1. A multidigraph
associates a positive integer to each arc called its multiplicity. An arc with multiplicity higher than one
is a multiple arc. A digraph is simple if it has no loops or multiple arcs. A digraph is empty if its arc set
is empty (e.g. second digraph from the left in Fig. 3.1). A digraph is bipartite if its node set V can be
partitioned in two sets U,W such that every arc (u,w) ∈ A has u ∈ U and w ∈ W (e.g. third digraph
from the left in Fig. 3.1). A digraph is complete if its arc set is V × V (e.g. last digraph from the left in
Fig. 3.1). Complete digraphs are also called directed cliques.

41

42 CHAPTER 3. GRAPHS

3.1.1 Directed neighbourhoods

Given a digraph G = (V,A) and a node u ∈ V , the node set N+
G (u) = {v ∈ V | (u, v) ∈ A} is called the

outgoing neighbourhood of u with respect to G. The node set N−
G (u) = {v ∈ V | (v, u) ∈ A} is called

the incoming neighbourhood of u with respect to G (see Fig. 3.2). The outdegree of a node v ∈ V is the

4

5

6

1

2

3

7

N−(7) N+(7)

Figure 3.2: Incoming and outgoing neighbourhoods of node 7: N−(7) = {1, 2, 3} and N+(7) = {4, 5, 6}.

cardinality of its outgoing neighbourhood, and similarly, the indegree of v ∈ V is the cardinality of its
incoming neighbourhood. In Fig 3.2, both the indegree and the outdegree of node 7 are equal to 3. For
u ∈ V , the arc set δ+G(u) = {(v, w) ∈ A | u = v} is called outgoing star (or outstar) of u with respect to
G, and the arc set δ−G(u) = {(w, v) ∈ A | u = v} is called incoming star (or instar) of u with respect to
G. If there is no ambiguity we dispense with the index G.

3.2 Undirected graphs

Essentially, a graph is like a digraph where all arrows are replaced by segments. More formally, a graph
is a pair G = (V,E) where V is a set of vertices and E is a set of edges {u, v} where u, v ∈ V . As for
digraphs, for a graph G we sometimes denote by V (G) its vertex set and by E(G) its edge set. Whenever
u = v then {u, v} = {u} = {v} is called a loop. In multigraphs, a positive integer called multiplicity is
assigned to each edge; edges with multiplicity higher than one are called multiple (or parallel) edges (see
Fig. 3.3). A graph without loops or multiple edges is called simple. Given a digraph, its underlying graph

1 2

Figure 3.3: A multigraph with two parallel edges.

replaces every arc (u, v) with the corresponding edge {u, v} (see Fig. 3.4). A graph is empty if its edge
set is empty. A graph is complete (or a clique) if every possible edge {u, v} is in E for all u 6= v ∈ V .
Notice that complete graphs are simple. A graph G = (V,E) is bipartite if V can be partitioned in two
sets U,W such that every edge {u,w} ∈ E has u ∈ U and w ∈W .

3.2.1 Complement graphs

Given a graph G = (V,E), consider the clique K(V) on V with edge set EK consisting of all possible
vertex pairs. The graph Ḡ = (V, Ē), where Ē = EK r E is the complement graph of G (Fig. 3.5).

3.2. UNDIRECTED GRAPHS 43

1

2

3

4

1

2

3

4

Figure 3.4: A digraph and its underlying graph.

1 2

3

45

6

7

1 2

3

45

6

7

Figure 3.5: A graph and its complement.

3.2.1 Exercise

Propose an O(n+m) algorithm for constructing the complement graph of a given graph.

3.2.2 Neighbourhoods

Given a graph G = (V,E) and a vertex v ∈ V , we let NG(v) = {u ∈ V | {u, v} ∈ E} be the neighbourhood
of v and δG(v) = {{u,w} ∈ E | u = v} be the star of v in G. If there is no ambiguity, we dispense with
the index G.

3.2.3 Graph isomorphism

Two graphs G = (V,E) and G′ = (V,E′) on the same vertex set V are isomorphic if there is a bijection
π : V → V (also called an automorphism on V) such that:

∀{u, v} ∈ E ({π(u), π(v)} ∈ E′).

In other words, changing the vertex labels does not change the graph structure (see Fig. 3.6). Since V is
taken to be finite, π is also a permutation of V (see Sect. 7.3). We denote the application of π to G by
πG. If πG = G, then π is an graph automorphism of G.

3.2.2 Exercise

Verify that π = (1→ 2→ 3→ 4→ 5→ 6→ 7→ 1) is not an automorphism on the graph on the left of
Fig. 3.6.

The set of all graph automorphisms of a graph G forms a group with respect to the composition of
bijections.

3.2.3 Exercise

Verify that both (1 → 5) is a graph automorphism of the graph on the left of Fig. 3.6. Show that this

44 CHAPTER 3. GRAPHS

1 2

3

45

6

7

π=(1→2→3→4→5→6→7→1)−→ 2 3

4

56

7

1

Figure 3.6: The left graph is isomorphic to the right graph.

graph has four automorphisms (including the identity, which fixes every v ∈ V), and, if you know what
it means, that the structure of its group is C2 × C2.

3.2.4 Line graph

Given a graph G = (V,E) where E = {e1, . . . , em}, the line graph of G is the graph

L(G) = (E, {{ei, ej} | ei ∩ ej 6= ∅})

where each edge of G is a vertex in L(G), and edges of L(G) are pairs of edges of G incident to the same
vertex (see Fig. 3.7).

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

��������
��
��
��

��
��
��
����
��
��
��
��

��
��
��
��
��

��������
��������
��������

��������
��������
��������

��
��
��

��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������

������
������
������
������

��
��
��
��

��
��
��
��

Figure 3.7: A graph G and its line graph L(G) (thick lines).

3.2.4 Exercise

Prove that the degree |NL(G)(e)| of a vertex e = {u, v} of L(G) is |NG(u)|+ |NG(v)| − 2.

3.2.5 Exercise

Give an algorithm for constructing L(G) given G.

3.3 Subgraphs

Given a graph (or digraph) G = (V,E), a subgraph is a graph H = (U, F) such that U ⊆ V and F ⊆ E. A
subgraph H is induced if, for all u, v ∈ U such that {u, v} ∈ E, we have {u, v} ∈ F as well (see Fig. 3.8).
If G = (V,E) is a given graph (or digraph) and U ⊆ V , we denote by E[U] the subset of edges induced
by U , i.e. the set of all edges in E between vertices in U . Thus, if H = (U, F) is an induced subgraph
of G, we can also denote F by E[U]. This notation is also extended to the whole subgraph: H can be
denoted by G[U].

3.3. SUBGRAPHS 45

1

2

3

4

1

2

3 1

2

3

Figure 3.8: A graph, a (non-induced) subgraph and an induced subgraph.

3.3.1 Stable and clique subgraphs

An induced subgraph H = (U, F) of G is a clique if it is complete, and a stable if it its edge set is empty
(see Fig. 3.9). We also indicate stables by their vertex set only, since their edge set is empty, thus U is a

1 2

3

45

6

7

1 2

3

45

6

7

Figure 3.9: A clique (left) and a stable (right) in G.

stable (or stable set, or independent set) if G[U] is a stable.

3.3.2 Some applications

Many combinatorial problems consist of looking for a subgraph (be it induced or not) of a given graph
with certain properties. The Subgraph Isomorphism Problem (SIP), for example, is as follows. Given
two graphs G,H , does G contain a subgraph which is isomorphic to H (see Fig. 3.10)? The SIP has
applications in mining molecule databases, e.g. when trying to determine whether a given protein has a
side-chain with a particular shape but possibly different atoms.

G H K

Figure 3.10: H is isomorphic to no subgraph of G, but K obviously is.

The Densest Subgraph Problem (DSP) looks for a subgraph of maximum density in a given

graph (see Fig. 3.11); the density of a graph G = (V,E) is defined as |E|
|V | . The DSP has applications in

clustering.

46 CHAPTER 3. GRAPHS

1 2

345

6

7 8 9

Figure 3.11: The densest subgraph of this graph is induced by {1, 2, 3, 4}.

3.4 Connectivity

We can extend the concept of neighbourhood to sets of vertices: let G = (V,E) be a graph, and U ⊆ V .
Then the neighbourhood of U in G is

NG(U) =
⋃

u∈U

NG(u)r U,

i.e. the set of vertices in V r U adjacent to vertices in U . The cutset of U in G is

δG(U) =
⋃

u∈U

δG(u)r E[U],

i.e. the set of edges adjacent to exactly one vertex in U . A cutset is trivial if U = ∅ or U = V . These
definitions all extend to the case of digraph in a natural way. Cutsets allow us to explain connectivity in
purely topological terms: a graph G = (V,E) is connected if no nontrivial cutset is empty (see Fig. 3.12).

G

1

23

4

5 6

1

23

4

5 6
H

Figure 3.12: G is not connected: the cutset defined by {1, 2, 3} is nontrivial and empty; H , on the other
hand, is connected.

A digraph is connected if its underlying graph is; however, this notion of connectivity is not often
used for digraphs. The appropriate connectivity notion in digraphs is called “strong connectivity” and
will be discussed later.

The concept of connectivity arises in networks. In power networks, for example, blackouts may arise
in large geographical areas when a part of the network is disconnected. Power networks are robust to
such events when all cutsets have large cardinality.

3.4.1 Simple paths

A graph G = (V,E) is a simple path if is it connected and each vertex has degree at most 2 (see Fig. 3.13).

Paths have multiple applications in any number of engineering, scientific and even mathematical
problems. Shortest paths are often used in routing materials in transportation networks; robust paths

3.4. CONNECTIVITY 47

1 2 3 4 5

Figure 3.13: A simple path. Vertices 1,5 have unit degrees, while 2,3,4 have degree two.

are used in communication or power networks. The Shortest Path Problem (SPP) (see Chapter 12)
often arises as a sub-problem in more complicated problems.

3.4.2 An alternative definition of paths and connectivity

Most textbooks on graph theory introduce paths before connectivity, defining the latter in terms of the
former: a path with endpoints v1, vn is a graph G = (V,E), where V is ordered as (v1, v2, . . . , vn), such
that for all i < n, {vi, vi+1} ∈ E. Moreover, a graph H is connected if for all u 6= v in V (H) there is
a path in H with endpoints u, v. This, however, requires the concept of order to be used to introduce
connectivity. Employing cutsets defines connectivity in a purely graph-theoretical way.

3.4.1 Exercise

Prove that the two definitions of graph connectivity are equivalent.

3.4.3 Paths: not so simple

In the previous sections we defined “simple paths” as well as “paths”. What is the difference? A simple
path is certainly a path (prove this), but the converse may not hold. Consider the path (v1, v2, v3, v4, v5, v3)
shown in Fig. 3.14. This graph is certainly a path, since it is defined by the order v1, v2, v3, v4, v5, v3, but

1 2 3 4 5

Figure 3.14: A non-simple path.

since v3 is repeated in the order, the path fails to be simple, as vertex 3 has degree three. In general,
paths that “cross themselves” or have loops or traverse edges more than once (thus yielding a multigraph
— can you see why this is so?) are not simple. Paths are also known as walks, or trails if all traversed
edges are distinct.

3.4.4 Strong connectivity

Walks (or trails) can be easily adapted to the case of digraphs: in this setting, a walk is an alternating
sequence of nodes and arcs, beginning and ending with a node. A digraph G is strongly connected if for
each ordered pair (u, v) of distinct nodes of V (G) there is a walk in G starting at u and ending at v (see
Fig. 3.15).

3.4.5 Cycles

A simple cycle in a graph is a path where all vertices have degree 2. A cycle in a graph is a subgraph
where all vertices have even degree (see Fig. 3.16).

48 CHAPTER 3. GRAPHS

1

2

3

1

2

3

Figure 3.15: On the left, a strongly connected digraph. The graph on the right is not strongly connected,
as there is no walk from vertex 3 to vertex 1.

G

1

2

3 H

1 2

34

6

7 8
K

1

23

4

5 6

Figure 3.16: G is a simple cycle, H,K are cycles that are not simple.

Computations concerning cycles in graphs often arise as sub-steps of certain graph-related algorithms
(see e.g. Sect. 12.5.3). Cycles are often used as a proof that networks are robust to failures: if two nodes
u, v of a network are involved in a cycle, then there must be two different paths from u to v: in case one
fails, the other provides connectivity.

3.4.6 An alternative definition of cycles

Again, most graph theory textbooks define cycles in a different way, notably as closed walks, which are
walks whose endpoints coincide (e.g. G,H in Fig. 3.16 are closed walks). Moreover, if the walk is a trail,
i.e. no edge is traversed more than once, then the corresponding closed trail is called a tour or circuit.
These definitions would prevent the graph K in Fig. 3.16 to be called “cycle”, evidently, as it is not
connected, whereas any walk or trail is connected by definition. And, to be fair, intuitively speaking the
graph K looks like two cycles rather than just one. We justify our choice below.

3.4.7 The cycle space

We have two reasons for defining a cycle as a subgraph of even degree. The first is its simplicity. The
second is that, under this definition, the set C(G) of all cycles of a graph forms a vector space (C(G),⊕)
over the finite field F2 = {0, 1}, called the cycle space. The rules for adding two cycles in this vector

3.5. BASIC OPERATIONS ON GRAPHS 49

space can be deduced from the following examples.

1

2

3

⊕ 4

5

6

= 1

23

4

5 6

(3.1)

1 2

34
⊕

16

7 8
= 1 2

34

6

7 8

(3.2)

1

45

6
⊕

1 2

34
=

1 2

345

6
(3.3)

More precisely, let γ1, γ2 be two cycles in the graph G. If V (γ1) ∩ V (γ2) = ∅, i.e. the two cycles have no
common vertex (and hence no common edge either — why?), then the resulting cycle is simply the union
of the two graphs γ1 and γ2, as shown in Eq. (3.1). If γ1, γ2 have a common vertex, again the resulting
cycle is the union of γ1, γ2, as shown in Eq. (3.2). If the intersection of γ1, γ2 contains some edges, then
the resulting cycle will contain edges in γ1 or γ2 but not both:

E(γ1 ⊕ γ2) = E(γ1)△E(γ2) = (E(γ1) ∪ E(γ2))r (E(γ1) ∩ E(γ2)).

Like any vector space, the cycle space has a dimension and bases. We state the next result without
proof (see e.g. [20] for a proof).

3.4.2 Theorem

The cycle space has dimension |E| − |V |+ 1.

Bases of the cycle space allow a compact (linear) description of the (exponentially large) cycle space of
a graph — this comes in handy in the classification of ring compounds in molecular chemistry, in the
analysis and simulation of electrical circuits, and in the synthesis of public transportation timetables.
Although extensions of these concepts to digraphs exist in the graph theory literature, they are are not
sufficiently mainstream to introduce them in this course.

3.4.7.1 Cycle-edge incidence vectors

The cycle-edge incidence vector of a cycle γ is a binary vector with m = |E| columns, that has a 1 in
component e ∈ E if and only if e is an edge in γ. For a cycle γ, let inc(γ) be the incidence vector of γ.
We define a XOR operation on two binary vectors u, v of the same length as follows: for any component
index i, the i-th component of uXOR v is ui XOR vi.

3.4.3 Exercise

For any two cycles γ, γ′ of the same graph G, prove that inc(γ ⊕ γ′) = inc(γ)XOR inc(γ′).

3.5 Basic operations on graphs

In later chapters, we are going to employ graphs to discuss some data structures. We are going to need
mechanisms for modifying graphs as a result of the CPU modifying the data and the relations between
data.

50 CHAPTER 3. GRAPHS

3.5.1 Addition and removal of vertices and edges

The easiest operations on a graph G = (V,E) are the addition and removal of vertices and edges. We
suppose that V ⊆ N. To add a vertex to V , we pick an integer v which is not already in V and we set
V ← V ∪ {v}. To add an edge {u, v} to E, we first verify whether {u, v} is already in E or not. If it is,
then we increase its multiplicity by one, obtaining a multigraph. Otherwise, we set E ← E ∪ {{u, v}}.

To remove an edge {u, v} ∈ E from E, we simply set E ← E r {{u, v}}. Removing a vertex v from
V is slightly more involved, as we have to remove v and all edges incident to v:

V ← V r {v}
E ← E r δ(v).

3.5.1 Example

To turn the graph 1 2 into the graph 1 3 2 , perform the following operations:

1. add vertex 3

2. add edges {1, 3}, {2, 3}

3. remove edge {1, 2}.

Conversely, to turn the latter into the former:

1. remove vertex 3

2. add edge {1, 2}.

3.5.2 Contraction

Contracting an edge {u, v} ∈ E essentially means “replace an edge with a vertex”. More precisely, it
consists of the following basic steps (see Fig. 3.17):

1. add a vertex z

2. for each w ∈ N(u) ∪N(v) add the edge {w, z}

3. remove the vertices u and v.

u v z

Figure 3.17: Edge contraction operation.

Contracting a whole subgraph H in a graph G means contracting each edge in E(H) to the same vertex
vH (Fig. 3.18). Contracting an unlabeled subgraph H is a way to look at a complex graph “modulo
H”; intuitively, it looks like zooming out of a complicated-looking graph to try and ascertain the core
topological characteristics (Fig. 3.19). The graph G′ obtained from G through a sequence of contractions
is called a minor of G.

3.5. BASIC OPERATIONS ON GRAPHS 51

���
���
���
���

���
���
���
���

H
vH

Figure 3.18: Subgraph contraction operation.

contraction

Figure 3.19: Contraction: zooming out of a complicated graph.

52 CHAPTER 3. GRAPHS

Chapter 4

Linear data structures

Abstract. Arrays: jagged arrays and adjacency lists, array operations, worst-case and aver-

age complexity of an incomplete loop. Lists and list operations, with a Java implementation.

Queues, implemented as circular arrays. Stacks, with an example and an implementation.

Maps. Use of parametrized classes.

We saw how data can be structured according to a class description, and also how arrays can contain
several objects of the same class. In this context, arrays are one of many existing types of data structures
(or data containers). The objects held in a data structure, such as an array, list, queue, tree or other, are
called entries, or elements.

4.1 Arrays

Arrays were introduced in Sect. 2.2. Arrays implement a vector, a matrix or a tensor in mathematics.
They model a contiguous, possibly multi-dimensional block of memory. Accordingly, we shall represent
a linear array as a vector x = (x0, . . . , xn−1), where n is the size of the array; for multi-dimensional
arrays, each element xi might itself be an array. This nesting is repeated as many times as the array has
dimensions. The memory allocated to the array must be enough to hold at least n objects. Normally, the
memory size does not change throughout the program, which implies that there is a limit to the number
of objects we can insert into an array. Bypassing this limit is technically possible, but it involves resizing
the array, which is an expensive operation in terms of CPU time.

We remark that indexing starts from zero1 in Java, C and C++. The fact that the array elements
are contiguous makes memory access very efficient. Reading or writing the i-th element of the array,
given the memory address for x[0], simply requires adding i× (length of the stored objects) bytes to it.
This type of index arithmetic is carried out automatically by the Java compiler.

4.1.1 Jagged arrays

A jagged array is simply a multi-dimensional array in its most general configuration, i.e. where sub-arrays
might have different sizes (see Fig. 4.1).

1In later chapters, when we pass from a code-oriented practical approach to a more theoretical setting, we shall employ
arrays without necessarily assuming they are indexed starting from zero.

53

54 CHAPTER 4. LINEAR DATA STRUCTURES

x
x0 x00 x01
x1 x10 x11 x12

Figure 4.1: A jagged array structure.

4.1.1.1 Adjacency lists

Jagged arrays are useful to represent a graph G = (V,E): rows are indexed by v ∈ V , and each row
contains the elements of the star δ(v) in some order, arbitrary or otherwise. The generalization to
digraphs is easy: each row only contains δ+(v) or δ−(v) depending on the context (we might even store
both incoming and outgoing stars if need be).

4.1.1 Example

Let V = {1, 2, 3} and E = {(1, 1), (1, 2), (2, 3), (3, 1), (3, 2), (3, 3)}; the corresponding digraph can be
represented in memory by means of a jagged array structure as follows.

1 1 2
2 3
3 1 2 3

This graph representation is called adjacency list. Another common graph representation is by an
edge array, or edge list (arc array or list in the case of digraphs). The two representations are useful in
different contexts.

4.1.2 Array operations

The usual operations an array can carry out on the objects it stores are:

• read the value of the i-th component (worst-case complexity O(1))

• write the value of the i-th component (worst-case complexity O(1))

• return the size n of the array (worst-case complexity O(n) or O(1), depending on the implementa-
tion2)

• remove the i-th element (worst-case complexity O(n))

• insert an element at the i-th position (worst-case complexity O(n))

• move a subsequence (contiguous set) of entries just after position i (worst-case complexity O(n)).

In summary, arrays are efficient when a lot of read/write accesses are needed at random positions, and
the positions of the entries does not change.

4.1.2 Exercise

Show how the read and write array operations can be implemented in O(1).

2With a Java array a, a.length returns its size in O(1).

4.1. ARRAYS 55

4.1.2.1 Size in O(1)

The array size is defined as the number of elements of the array, which is at most the amount of memory
required to hold them: we call the latter quantity array memory size. The array memory size can be
returned by asking the operating system how much memory was allocated starting to a given address.

In order to determine the array size, some array implementations employ a delimiter, stored as a
“special character” (such as the ASCII 0 code) at the array element after the last. Finding the size can
then be an O(n) operation: starting with i = 0, increase i until xi becomes the delimiter value, as in the
pseudocode below.

i← 0;
while xi 6= delimiter do
i← i+ 1;

end while

n← i+ 1;
return n

This can be improved to O(1) if we simply store the array size within the array itself. An array of
integers could then be conceived as an object of the following class:

class Array {

public int size;

public int[] theArray;

}

Any array operation changing the size must then update the size attribute accordingly. Asking for the
size then becomes a simple matter of returning size, which is an O(1) operation.

We remark that Java’s standard array implementation is already O(1), without you needing to re-code
a new array structure with this property. This section is simply meant to tell you that this is not a trivial
array property.

4.1.2.2 Moving a subsequence

Let x be a given array of size n, i ∈ {0, . . . , n− 1}, and L = (xℓ, . . . , xℓ+h) be the subsequence we want
to move to the position right after i. This can be attained by means of h swaps. A swap (j, k) consists
in the following instructions:

1. store the value xj in a temporary variable t

2. copy the value xk in the array entry indexed by j

3. copy the value of t in the array entry indexed by k.

After the swap (j, k), the effect on x is that xj and xk have swapped their values.

The following pseudocode moves the subsequence L to the position i + 1 in x (as long as i < ℓ or
i > ℓ + h), automatically re-positioning the elements that are currently stored at position i + 1 and
following (see Fig. 4.2).

for j ∈ {0, . . . , h} do
swap (ℓ+ j, i+ j + 1)

end for

56 CHAPTER 4. LINEAR DATA STRUCTURES

This operation, which is also called splice, has worst-case complexity O(n). The worst case occurs when
the subsequence (x2, . . . , xn) must be moved to position 1.

?? ?i i ixℓ xℓ xℓ xℓ+1xℓ+1 xℓ+1

Figure 4.2: Array splicing.

4.1.3 Exercise

Adapt the splicing algorithm to all i, removing the assumption that i < ℓ or i > ℓ+ h.

4.1.2.3 Removal and insertion

Both removal and insertion operations can be carried out by splicing the array (see Sect. 4.1.2.2). To
remove element xi, we move (xi+1, . . . , xn) to position i (so that xi+1 overwrites xi, and so on). To insert
a new element a at position i, we move (xi, . . . , xn) to position i + 1 (this is only possible if memory
enough to hold n+ 1 objects was initially allocated to x), then set xi = a.

4.1.4 Exercise

Show that both removal and insertion have O(n) worst-case complexity.

4.1.3 Complexity of an incomplete loop

In Sect. 1.4.3.2 we analyzed the worst-case complexity of a simple loop, i.e. a loop where the termination
condition is constant over the whole loop execution. Here we analyze the average-case complexity of a spe-
cific instance of a non-simple loop. Consider the following loop.

1: input x ∈ {0, 1}n;
2: int i = 0;
3: while (i < n ∧ xi = 1) do
4: xi = 0;
5: i = i+ 1;
6: end while

7: if (i < n) then
8: xi = 1;
9: end if

10: output x;

The components of the input array x can only be zeroes or ones. The program asks the user to input an
array x, then scans the loop while the current value is one, changing it to a zero. The loop terminates as
soon as xi = 0 for some i.

4.1.3.1 Worst-case complexity

Among all possible inputs of the algorithm, we have to identify the one leading to the longest execution
time. From the condition i < n∧xi = 1, either we continue until the end of the array, or we stop whenever
the i-th component holds the zero value: this means that the longest loop execution occurs whenever all
components of x are ones. We formalize this statement in the following proposition.

4.1. ARRAYS 57

4.1.5 Proposition

The input yielding the worst complexity is x = (1, 1 . . . , 1).

Proof. Suppose the claim false, then there is a vector x 6= (1, . . . , 1) yielding a complexity t(n) > n.
Since x 6= (1, . . . , 1), x contains at least one 0 component. Let j < n be the smallest index such that
xj = 0: at iteration j the loop terminates, and the complexity is t(n) = j, which is smaller than n: this
is a contradiction. ✷

Notice that all other operations, aside from the loop, have O(1) complexity. Therefore the overall worst-
case complexity is O(n).

4.1.3.2 Average-case complexity

In order to perform an average-case complexity analysis, we need to assume a probability distribution on
random events. As far as the incomplete loop in Sect. 4.1.3 is concerned, the only random event is the
input array x at Line 1. We assume that:

• for b, c ∈ {0, 1}, the event xi = b is independent from xj = c for all i 6= j < n;

• the events xi = b and xi = 1− b are equally likely for each i < n.

From the code in Sect. 4.1.3, we derive the followith facts:

1. for any vector having first k + 1 components (1, . . . , 1
︸ ︷︷ ︸

k

, 0), the loop is executed k times (for all

0 ≤ k < n);

2. for the vector (1, . . . , 1
︸ ︷︷ ︸

n

), the loop is executed n times.

By the independence of events, the event that any random vector of k+1 components has a specific given
value (b0, . . . , bk) has probability (12)

k+1 (which is therefore the probability of the first k+1 components
of k being (1, . . . , 1

︸ ︷︷ ︸

k

, 0)). When k = n− 1, we derive that the probability of x being the all-one n-vector

is (12)
n. In other words:

• the loop is executed k times with probability (12)
k+1 for k < n;

• the loop is executed n times with probability (12)
n.

The average number of iterations in the loop is therefore:

n−1∑

k=0

k2−(k+1) + n2−n.

Because 2−(k+1) < 2−k, this quantity is bounded above by
n−1∑

k=0

k2−k + n2−n, which is itself equal to

n∑

k=0

k2−k.

We now find the limit of this sum as n tends to infinity: this gives the asymptotic average complexity of
the incomplete loop.

58 CHAPTER 4. LINEAR DATA STRUCTURES

4.1.6 Lemma

lim
n→∞

n∑

k=0

k2−k = 2

Proof. Consider the geometric series
∑

k≥0 q
k = 1

1−q
for q ∈ [0, 1). Differentiate it w.r.t. q, to get

∑

k≥0 kq
k−1 = 1

(1−q)2 . Multiply this by q, to get
∑

k≥0 kq
k = q

(1−q)2 . For q = 1
2 , we get

∑

k≥0 k2
−k =

(1/2)/(1/4) = 2. ✷

It follows that the average complexity of this particular incomplete loop is O(1). This marks a striking
difference with the worst-case complexity of O(n).

4.1.4 Limitations of the array structure

Although the array is perhaps the best known data container, and the easiest to understand, it has some
drawbacks, which concern the evolution of the container size during the execution of the program.

Suppose we allocate enough memory to store, say, five integers, but along the execution some user
input or other occurrence changes the initial assumptions, and six integers must be stored. We might
allocate a new array, large enough to hold six integers, then copy the five integers from the old array to the
new, then append the new integer in the last position of the new array. But this is very time-consuming
(memory allocation is a relatively expensive operation, and if the old array contains many elements, the
copy operation takes a time proportional to the length of the array), so it should be a last resort. Other
costly copy operations may arise when a new element should be put at a position i in the middle of the
array: all the elements from the (i+1)-st to the last should be shifted to make space for the new element.
These limitations are addressed by lists, presented below.

4.2 Lists

A list is a linear data structure that models a sequence. Most of the common subsequence operations
can be implemented efficiently.

4.2.1 Singly-linked lists

Lists work by abstracting contiguity: whereas arrays components are usually stored in contiguous memory
cells, the entries x0, . . . , xn−1 of a singly-linked list x are actually pairs xi = (x′i, νi), where x

′
i is the value

stored at xi, and νi is a reference variable holding the memory address of the next list entry xi+1. The
reference νn−1 of the last list element holds the null (invalid) address (see Fig. 4.3).

x0 ν0 x1 null

Figure 4.3: A singly-linked list representation of (x0, x1).

A simple Java implementation of a singly-linked list is given in Sect. 5.3.2.1.

4.2. LISTS 59

4.2.2 Doubly-linked lists

Doubly-linked lists are similar, but each entry is a triplet (πi, x
′
i, νi), where x

′
i, νi are as in the singly-

linked case, and πi is a reference to the previous list entry xi−1. The reference π0 of the first list element
holds the null address (see Fig. 4.4).

null x0 ν0 π1 x1 null

Figure 4.4: A doubly-linked list representation of (x0, x1).

4.2.2.1 The placeholder node

In doubly-linked lists implementations, it is common to replace the two null references at the beginning
and end of the list with a placeholder entry denoted by ⊥. The placeholder holds a selected value whose
meaning is understood by the program to mean “first” or “last” according as to whether it precedes the
first entry or succeeds the last entry, as shown in Fig. 4.5.

⊥ x0 x1 x2

Figure 4.5: The placeholder node (leftmost) in a doubly-linked list representation of (x0, x1, x2).

4.2.3 Lists modelled as graphs

It should appear clear from the pictures that we can draw a parallel between lists and graphs: list entries
are nodes or vertices, and the reference relation (the arrow) is represented by an arc or edge. More
precisely, a singly-linked list can be represented by a simple directed path (Fig. 4.6, left), and a doubly-
linked list can be represented by a simple (undirected) path; if a placeholder is used, the doubly-linked
list is represented by a simple cycle (Fig. 4.6, right).

x0 x1 x2

⊥

x0 x1 x2

Figure 4.6: Singly-linked and doubly-linked lists for (x0, x1, x2) in the graph representation.

4.2.4 List operations

In this section we describe the basic operations of doubly-linked lists with a placeholder.

60 CHAPTER 4. LINEAR DATA STRUCTURES

4.2.4.1 Insertion

Consider a doubly-linked list storing (x0, x1, x2) and represented as the simple cycle shown below.

⊥

x0 x1 x2

In order to insert an element y at position 1, we proceed as follows: we remove the edge {x0, x1}, we add
a new vertex y, then add edges {x0, y} and {y, x1}.

⊥

x0 y x1 x2

This can be generalized. Given a doubly-linked list x = (x0, . . . , xn−1) and new element y to be
inserted at position i ∈ {0, . . . , n− 1}, we proceed as follows:

1. remove edge {xi−1, xi}

2. add vertex y

3. add edges {xi−1, y} and {y, xi}.

This involves 4 elementary operations on the graph, yielding an O(1) method in the worst case.

4.2.4.2 Removal

Given a doubly-linked list x = (x0, . . . , xn−1) and an index i ∈ {0, . . . , n − 1}, removing the element xi
is as follows:

1. remove vertex xi (recall from Sect. 3.5.1 that removing a vertex also removes its associated cutset)

2. add the edge {xi−1, xi+1}.

4.2.1 Exercise

Show that removal is O(1) in the worst case. What is the average case complexity?

4.2.4.3 Find

Given a doubly-linked list x = (x0, . . . , xn−1) with placeholder ⊥ stored both before x0 and after xn−1,
an index i ∈ {0, . . . , n−1}, and a value b of the same data type as the list, the find operation is as follows:
if b ∈ x then return xj such that xj = b, else return ⊥. This can be implemented by travelling along the
cycle, starting at vertex xi, traversing vertices xi+1, xi+2, . . . until either xj = b for some j, or xj = ⊥.
We then return xj .

4.2.2 Exercise

Show that find is an O(n) method in the worst case. Compute the average case complexity assuming x
is an array holding binary values.

4.2. LISTS 61

4.2.4.4 Access

Accessing list element i means reading it or changing its value. Since list entries are non-contiguous,
index arithmetic is meaningless. Accordingly, we must start at the vertex labelled x0 and travel along
the cycle in the direction of increasing indices, counting the vertices and stopping at the i-th one, then
perform the read or write operation. The worst-case is whenever i = n− 1, which yields O(n) methods
for both reading and writing.

4.2.3 Exercise

Show that a simple implementation of a method for computing the list size hasO(n) worst case complexity;
point out how to implement an O(1) size operation.

4.2.4.5 Other operations

The following table details list operations with the corresponding worst-case complexity.

Operation Complexity
Access i-th entry O(n)
Find next node having given value O(n)
Size O(n) or O(1)
Is the list empty? O(1)
Access first/last node O(1)
Remove element at given position O(1)
Insert element at given position O(1)
Move subsequence to given position O(1)
Pop from front/back O(1)
Push to front/back O(1)
Concatenate O(1)

Three operations, push, pop and concatenate, have never been introduced before. Pushing and popping
are terms connected with stacks, which we shall discuss in Sect. 4.4. In the context of lists, pushing an
element at the front or back of a list means to add an element at the first or last position; popping
means removing. Concatenating a list x = (x0, . . . , xn−1) and a list y = (y0, . . . , ym−1) yields the list
(x0, . . . , xn−1, y0, . . . , ym−1).

4.2.5 Java implementation

We propose a very simple doubly-linked list implementation, stored in the text file DLList.java, struc-
tured in two classes: Node and DLList. The latter, since it has the same name as the file that stores it,
also has the point of entry main. We remark that neither class is declared static; consequently, objects
of these classes are not automatically allocated in memory: they must be allocated manually using the
new operator.

In our implementation, every DLList element is a Node object. Each Node has references to previous
and next nodes in the list, and has methods for inserting other nodes after itself, removing itself from
the list, as well as printing its own data contents. The DLList stores a reference to the ⊥ node, and
implements all other list methods. We emphasize that leaner implementations of a doubly-linked list are
possible: specifically, it is possible (and also desirable3) to implement a list using only one class, such as
the singly-linked list implementation given in Sect. 5.3.2.1. We hope our implementation will also give
readers an idea of the interplay between two different classes in the same program.

3If you, as a student, are required in an exam to propose a linked list implementation, it is safe to assume that you
should target a one-class implementation.

62 CHAPTER 4. LINEAR DATA STRUCTURES

The main method is not strictly necessary: data structure implementations usually provide libraries,
employed by users within other programs.

4.2.5.1 The Node class

As usual, we begin the file DLList.java by writing appropriate header comments and declaring useful
imports.

class Node {

public Node prev;

public Node next;

public int datum;

public void remove() {

this.prev.next = this.next;

this.next.prev = this.prev;

}

public void insert(Node M) {

this.prev = M;

this.next = M.next;

M.next = this;

this.next.prev = this;

}

public void print() {

System.out.print(this.datum + " ");

}

}

As previously mentioned, a Node stores a reference to previous and next elements in the list, as well as
a piece of data (the datum, which in this case has int type). The this keyword may help disambiguate
equally named attributes of different objects of the same class. The piece of code that executes this

belongs to a specific object in memory: this contains the address where this object is stored.

Removal of a node works by setting its previous node’s next attribute to its next node’s previous

attribute, and vice-versa, as shown in Fig. 4.7.

prev this next −−−−−−→
remove this prev this next

Figure 4.7: Implementing a Node’s removal.

Insertion is similar to removal, but the point of view of the code changes: this becomes the previous
node of the new node being inserted (called M in the code above).

4.2.5.2 The DLList class

As for the functionPlot example, we give the DLList class structure first: this code will not be functional
until all the class method implementations have been filled in.

class DLList {

4.2. LISTS 63

public Node bot; // the beginning/end-of-list placeholder

public DLList(); // class constructor

public Node first(); // return the first element

public Node last(); // return the last element

public void pushBack(int t); // insert a new element t after the last one

public int popBack(); // return last element’s datum and remove from list

public int size(); // return the list size

public void print(); // print the whole list

public Node find(int b); // return the first node containing datum b

public Node findNext(Node x, int b); // start looking from Node x

public static void main(String[] args); // the point-of-entry

}

The only attribute of the DLList class is the bot node, which implements the ⊥ placeholder. The
other class members are all methods. All members are public. (this decision is somewhat arbitrary, and
dictated by simplicity: usually, attributes are private and methods are public).

The first method, which has the same name as the class and has no return type, is known as the
constructor of the class. It is called whenever a program issues the instruction

DLList myList = new DLList();

in order to manually allocate some memory to the reference myList. Constructors are mostly used to
allocate memory and/or initialize some variables with default values

public DLList() {

this.bot = new Node();

this.bot.prev = bot;

this.bot.next = bot;

this.bot.datum = 0;

}

The first and last methods return the first and last elements of the list respectively.

public Node first() {

return bot.next;

}

public Node last() {

return bot.prev;

}

The pushBack method inserts a new list element after the last, and popBack returns the last element,
then removes it.

public void pushBack(int t) {

Node N = new Node();

N.datum = t;

N.insert(this.last());

}

public int popBack() {

int t = this.last().datum;

this.last().remove();

return t;

}

Our implementation of the size method is not efficient, as it takes O(n) in the worst case.

64 CHAPTER 4. LINEAR DATA STRUCTURES

public int size() {

int t = 0;

Node x = first();

while(x != bot) {

t++;

x = x.next;

}

return t;

}

The print method prints the whole list

public void print() {

Node x = first();

while(x != bot) {

x.print();

x = x.next;

}

System.out.println();

}

The findmethod looks for a node containing the given argument in its datum attribute. The findNext
method does the same but starts looking from a given node x.

public Node find(int b) {

return findNext(bot.next, b);

}

public Node findNext(Node x, int b) {

bot.datum = b;

while(x.datum != b) {

x = x.next;

}

return x;

}

4.2.5.3 The main function

We give below a possible main function, just for validation purposes.

public static void main(String[] args) {

// in order to call those attributes/methods which are NOT

// static, you need to first instantiate a dynamic object

// of the class

DLList dl = new DLList();

System.out.println("size=" + dl.size());

dl.pushBack(4);

dl.pushBack(3);

dl.pushBack(7);

System.out.print("list is now ");

dl.print();

System.out.println("popping last element: " + dl.popBack());

System.out.print("list is now ");

dl.print();

dl.pushBack(5);

dl.pushBack(9);

4.3. QUEUES 65

dl.pushBack(4);

System.out.print("list is now ");

dl.print();

System.out.println("finding node containing 9");

Node N = dl.find(9);

if (N != dl.bot) {

System.out.println("deleting node containing 9");

N.remove();

}

System.out.print("list is now ");

dl.print();

}

4.3 Queues

A queue is a linear data structure with four important operations:

• insert a new element at the end of the queue

• retrieve and delete the element at the beginning of the queue

• test whether the queue is empty or not

• find the size of the queue.

These operations need to be performed fast: ideally, they should be worst-case O(1). Although queues
can be simulated using arrays or lists, we are going to describe a queue implementation using circular
arrays. In queues, the first element to go in is also the first to come out. This is known as “first in, first
out” (FIFO).

The need for a specific implementation for queues arises because queues grow at the end and shrink
at the beginning. Imagine storing a queue in an array: after any given number of insert operations
followed by a corresponding retrieve/delete, the queue has the same length but has “moved” somewhere
else in memory. Eventually the array will exhaust its allocated space, even though the number of stored
elements may be constant (see Fig. 4.8).

delete insert

delete insert

Figure 4.8: A queue worms its way along the array, exhausting and wasting space.

4.3.1 Circular arrays

The appropriate graph model for a circular array of size n is a cycle with n+ 1 vertices (see Fig. 4.9).

Let C = (V,E) be a cycle: we define V = {q0, . . . , qn} and E = {{qi, qi+1} | i ∈ {0, . . . , n − 1}}. At
each vertex of V we store the address of an object of the same class, or a null address denoted by ⊥.
We want to store a queue d = (d0, . . . , dt) in C, in such a way that whenever the queue “advances” in
memory, by means of repeated insertions at one end and removals at the other end (but keeping its size
constant), the storage will “cycle” through C, re-occupying the same memory cells whenever these are

66 CHAPTER 4. LINEAR DATA STRUCTURES

Figure 4.9: The graph representation of a circular array: a cycle.

empty (see Fig. 4.10). Obviously, we have to make the assumption that the size t of the queue will never
exceed the size n of the circular array. If vertex qk contains the last queue element dt at any time, then

q0
q1

d0
q2

d1 q3

d2
q4d3

q5

⊥

q6

q7

q8

q9

−−−−−→
insert d4

q0
q1

d0
q2

d1 q3

d2
q4d3

q5

d4
q6

⊥q7

q8

q9

−−−−−−−→
remove d0

q0
q1

q2

d1 q3

d2
q4d3

q5

d4
q6

⊥q7

q8

q9

Figure 4.10: The queue “advances” in the memory cells of the circular array.

we store an end-of-queue placeholder ⊥ at vertex qk+1. In order for vertex indices never to exceed n, we
employ arithmetic modulo n on indices (so that, e.g., qk+1 is in fact qk+1 (mod n)).

4.3.1.1 Java implementation

The implementation of a circular array is very simple; it is based on a linear array of fixed length. All
index arithmetic is carried out modulo that length.

public class circularArray {

// attributes (private)

int[] q;// the array

int n; // array size

int h; // index of head element (first data element stored at q[h])

int t; // index of tail element (last data element stored at q[t-1])

// methods (public)

public circularArray(int qlen) { // class constructor

n = qlen;

q = new int[n];

h = 0;

t = 0;

}

public boolean isEmpty() { // test whether array is empty

if (h == t) {

return true;

4.4. STACKS 67

} else {

return false;

}

}

public int first() { // return first element

assert(!isEmpty()) : "error: queue is empty, cannot read first element";

return q[h];

}

public int popFront() { // read and remove the first element

int p = this.first();

h = (h+1) % n;

return p;

}

public int size() { // return the size

int theSize = (t - h + n) % n;

return theSize;

}

public void pushBack(int d) { // insert new element at array end

assert(this.size() < n) :

"error: queue is full: cannot push elements on its back";

q[t] = d;

t = (t+1) % n;

}

}

Notice that, even though any array element can be accessed in O(1), the circularArray class offers
a limited interface, functional to a queue: it is only possible to push new elements on the back of the
array and pop elements from the front.

Notice also that the class constructor takes an argument as input, i.e. the array length. Constructors
can take arguments as any other function, but their return type is not declared, since it is defined to be
the same class as they belong to.

The assert is used for error detection: if the test passed to assert as an argument is false, execution
stops with the given error message.

4.3.1 Exercise

Show that every method of the circularArray class is O(1).

4.3.2 What are queues used for?

Queues are handy when simulating the behaviour of queues in the physical world, be they human, car,
packet or other type of queues. Secondly, they are essential in the implementation of a well-known
algorithm for graph exploration, namely breadth-first search (BFS). We shall discuss BFS in Sect. 8.2.
Lastly, a queue variant called priority queue (see Sect. 11.4.1) is essential to the implementation of most
algorithms for computing shortest paths in graphs (see Chapter 12).

4.4 Stacks

A stack is similar to a queue, but instead of pushing at the back and popping from the front, we push
and pop from the back. A stack data structure is appropriate in situations where the last element to be
stored is the first to be retrieved. This is known as “last in, first out” (LIFO).

68 CHAPTER 4. LINEAR DATA STRUCTURES

4.4.1 Using stacks for validating mathematical syntax

At a glance, are you able to state whether the following mathematical expression has a balanced number
of brackets? 

(((x + y)z − 2 sin(x)) +
1

2




∑

i≤3

p2i



)/ log((p1(p2 − p(cos(tan(x)))3)))





One way to go about this task is to keep a counter, initially set at zero: scanning the expression, increase
the counter by one unit every time you read an open bracket, and decrease it by one unit every time you
read a closed bracket. If the counter is always ≥ 0 and gets to zero by the time the scanning is over, then
the brackets are balanced.

What if you had square brackets as well, however? A situation like ([1 + 2)] would result in a correct
balancing, but would miss the incorrect embedding. To overcome this problem, we can use a stack: every
time an open bracket is read, push the closing corresponding bracket on the stack. Every time a closing
bracket is read, pop the last element off the stack, and verify it is the same. If we get to the end of the
stack at the same time the scanning ends, then the brackets are well-balanced, otherwise the expression
is wrong.

4.4.1 Exercise

Prove the last assertion formally.

4.4.1.1 Java implementation

We implement the above idea, and the associated stack, in a class called bracketStack. The implemen-
tation of the main function is given later.

class bracketStack {

// attributes (private)

int [] theStack; // the stack is implemented as an array

int pos; // the current stack size is stored in pos

// methods (public)

public bracketStack(int maxSize) { // class constructor

theStack = new int[maxSize];

pos = 0;

}

public Boolean isEmpty() { // is the stack empty?

Boolean t = Boolean.TRUE;

if (pos > 0) {

t = Boolean.FALSE;

}

return t;

}

public void push(int element) { // push an element on the stack

assert(pos < theStack.length) : "no more memory for growing stack";

theStack[pos] = element;

pos++;

}

public int pop() { // pop an element from the stack

assert(!isEmpty());

pos--;

return theStack[pos];

}

// the main method

4.4. STACKS 69

public static void main(String[] args);

}

4.4.2 Exercise

Show that every method in this stack implementation is O(1)

4.4.1.2 The main method for bracketStack

Find below the implementation of bracket-checking algorithm discussed above.

Notice that this code reads the mathematical expression from the command line: it is an example of
how to use the String[] args array. String is a standard library class for storing strings. When a shell
command such as:

java bracketStack "((([])))"

is given, the Java compiler makes all arguments after the name of the program (in this case, bracketStack)
available to the program itself within the array of strings args. More precisely, args[0] contains the first
command, args[1] contains the second, and so on. Since args is declared as String[], every element
is a string; we can therefore args[0].length() to find the length of the string stored in args[0].

public static void main(String[] args) {

// read bracketed sentence from cmd line

int argSize = args[0].length();

String theArg = args[0];

// initialize dynamic object of this class

bracketStack brackStack = new bracketStack(argSize);

// counter is the current character index in the input sentence

int counter = 0;

// character popped off the stack

int elt;

// error status:

// 0 is "valid sentence"

// 1 is "wrong closing bracket"

// 2 is "too many closing brackets"

// 3 is "not enough closing brackets"

int err = 0;

// look at every character of the input sentence

while(counter < argSize) {

if (theArg.charAt(counter) == ’(’) {

// whenever an open round bracket is found,

// push the closing one on the stack

brackStack.push(’)’);

} else if (theArg.charAt(counter) == ’[’) {

// whenever an open square bracket is found,

// push the closing one on the stack

brackStack.push(’]’);

70 CHAPTER 4. LINEAR DATA STRUCTURES

} else if (theArg.charAt(counter) == ’)’ ||

theArg.charAt(counter) == ’]’) {

// if any type of closing bracket is found

if (brackStack.isEmpty()) {

// ...and the stack is empty, it means there are more

// closing brackets than open ones

err = 2;

break;

} else {

// ...pop an element off the stack

elt = brackStack.pop();

if (elt != theArg.charAt(counter)) {

// if this is different from the closing bracket,

// it means that either an open round bracket was

// closed by a square one, or vice versa

err = 1;

break;

}

}

}

// increase the character counter

counter++;

}

if (err == 0 && !brackStack.isEmpty()) {

// if no error of type 1 or 2 were reported, but the stack is not

// empty yet, it means that there were more open than closed

// brackets

err = 3;

}

// report status message

if (err == 1) {

System.out.println("wrong closing bracket at pos " + (counter+1));

} else if (err == 2) {

System.out.println("too many closing brackets");

} else if (err == 3) {

System.out.println("not enough closing brackets");

} else {

System.out.println("valid sentence");

}

}

4.4.1.3 Sample output

Here’s some sample output from the bracketStack program, when called from the command line.

$ java bracketStack "((]]"

wrong closing bracket at pos 3

$ java bracketStack "(())"

valid sentence

$ java bracketStack "(())]"

too many closing brackets

$ java bracketStack "[(())]"

valid sentence

$ java bracketStack "([1+2)]"

wrong closing bracket at pos 6

4.5. MAPS 71

$ java bracketStack "[(1+2)]"

valid sentence

4.4.2 Calling functions

The main use of stacks within an operating system (OS) is to simulate the function call mechanism.
In fact, classic CPUs have native instructions for transferring control to the code instruction stored at
a given memory address (the so-called “GOTO” statement, also called jmp in assembly language), but
not necessarily a return statement. This, however, is easily implemented by simply storing the calling
address before jmping to the new one, and then re-jmping to the stored calling address whenever a return
is issued.

Recall that a return statement issued from a function h can only return control to the function g that
directly called h, but not to the function f that called g (see Fig. 4.11). Therefore, when nested calling

f

g

h

Figure 4.11: The function h cannot return control to f : it must return it to its direct calling function g.

occurs, the addresses of the calling functions can be pushed on a stack, and popped at each successive
return statement (see Fig. 4.12).

4.4.2.1 Smashing the stack for fun and profit

The first serious breaches into interconnected computer systems was carried out by a technique called
“smashing the stack”. It was based on a poor implementation of some string input functions, where a
string was simply a fixed-length array of characters. These input functions did not check that the length
of the user input was actually smaller than the allocated array memory, and hence a long input would
overwrite memory past the array bounds. If the array was allocated on the same stack used for the
function calls, then a hacker would translate some particularly nasty code into ASCII and pass it to the
string input function. On returning from the string input function, the return address was overwritten
with the nasty code, which got executed and spawned all sorts of actions, such as opening a root shell on
the hacker’s terminal (see Fig. 4.13).

4.5 Maps

Maps are representations of functions. In mathematics, a function f from a set X to a set Y as is defined
as a set F of pairs (x, y), with x ∈ X and y ∈ Y , and such that if y = f(x) and y′ = f(x) then y = y′.
This property is known as well-definedness of the function. Correspondingly, a map is a data structure
defined over two non-elementary data types, that play the role of X and Y , for storing well-defined pairs
(x, y). In Java, a map where X,Y are both integers is defined as:

Map<Integer,Integer> theMap;

72 CHAPTER 4. LINEAR DATA STRUCTURES

Memory

CPU is

executing

f top

Memory

CPU is

executing

current state of ff ::call g push

top

Memory

CPU is

executing

current state of f

current state of g

g::call h

push

top

Memory

CPU is

executing

current state of f

current state of g

h::return

pop

top

Memory

CPU is

executing

current state of fg::return pop

top

Memory

CPU is

executing

f top

Figure 4.12: What happens to the OS stack as f calls g which calls h.

4.5.1 Maps as parametrized interfaces

Two remarks are in order. First, a Map is an interface (see Sect. 2.1.3.3) rather than a class — Java offers
different implementations of a map.

Second, a Java Map is parametrized over two other classes. This is common in generic containers:
these are data containers, such as arrays, lists, maps and so on, whose code is object-independent: in
other words, objects of any class can be stored in such containers, it suffices that the “parameter class”
be declared in the program by using the angle bracket notation <>. A requirement for the parameter
class is that it should be a non-elementary data type. In our case, since int is an elementary data type,
we use the non-elementary equivalent Integer.

We remark that classes can also be parametrized (as well as interfaces), and that a common name in
the literature for parametrizing a type with another type is template.

4.5. MAPS 73

Figure 4.13: The Phrack issue that made stack smashing famous.

4.5.2 Example of map usage in Java

See the following example of the use of a Java map, implemented as a HashMap (see Ch. 5 for details
about hashing).

Map<String,Integer> phonebook = new HashMap<String,Integer>();

phonebook.put("Leo", 169334138);

phonebook.put("Tom", 169334425);

System.out.println("Leo’s phone number is 0" + phonebook.get("Leo"));

74 CHAPTER 4. LINEAR DATA STRUCTURES

Chapter 5

Hashing

Abstract. Hashing: efficiently finding items in a large-sized array. Motivation, example,

Java implementations.

A hash table is a data structure for storing a function τ : K → U , where K is a set of keys and U is a
set of records, so that τ(k) can be retrieved efficiently from memory.

5.1 Do we really need it?

The definition of a hash table might appear puzzling at first sight: why not store functions by means of
lists or arrays? We saw in Sect. 4.2.4.3 that retrieving a specific element of a list takes time proportional
to the list length. Hence, storing the pairs (key, record) in a list will not yield a retrieval-efficient data
structure. What about an array, however? After all, if a is an array of records, and i is an int, then
a[i] is retrieved in constant time by simply looking up the value stored at the memory address indexed
by the base address of a plus i times the number of bytes taken to store an int. If, however, the function
a were to map integers from the set K = {1, 16, 1643, 1094382}, using an array would require allocating
space for 1094382 elements, although we would only use four of them: definitely too wasteful.

What if our keys are names, as might happen in a telephone directory? We could address this issue
by listing all possible names in an order, and then remember the order rank of each name. This has
drawbacks. Storing the assignment (name, rank) would take a huge amount of memory if we wanted to
do this for every possible name in existence: and besides, we would have simply shifted the problem to
efficiently scan this assignment between names and ranks. Suppose now we choose an alphabetical order,
and only limit the assignment to a given subset of names (for example, those names corresponding to
people we know). As we get to meet new people, we need to store their names in the subset. Thus, we
have to insert new elements in the assignment: if this is stored as an array, we know from Sect. 4.1.2
that insertion takes time proportional to the array length, which may turn out to be too slow if the array
grows considerably.

In summary, neither lists nor arrays provide the efficient data structure we are looking for: and this
motivates the definition of a hash table.

75

76 CHAPTER 5. HASHING

5.1.1 The phonebook example

The solution is given by a phonebook. This consists of a notebook whose pages are indexed with letters:
A, B, . . . , Z. One writes a name and the corresponding telephone number (say “Leo Liberti, 0169334138”)
into the page indexed by the initial letter of the surname (‘L’ in this case). Every page has a finite length,
but we assume the mechanism is unlikely to fail because most people have fewer acquaintances whose
names begin with a specific letter than can be written in a page. Thus, in order to find the key “Leo
Liberti” in the phonebook and retrieve the record “0169334138”, it suffices to identify the correct page,
and then to scan the whole page for the correct key. Identifying the correct page is an operation that
requires constant time, since the page position from the beginning is proportional to the position of the
corresponding letter with respect to the first alphabet letter ‘A’, and the size of the alphabet is a constant.
The time taken by scanning each page is at worst proportional to the page length, which is constant over
the whole notebook — hence this time is also constant. Overall, then, a phonebook allows you to find a
pair (key, record) in constant time, independently of the actual number of phonebook entries, as long as
they fit in the phonebook.

Here is some good news: if you understood this phonebook example, you understood the idea of
hashing.

5.1.2 Formal explanation

Now keep the phonebook of Sect. 5.1.1 in mind and let K be a set of keys, U be a set of records, and τ
be a table mapping a subset of K to U . We denote by dom τ the domain of τ , and assume that dom τ is
“small” with respect to K. Using the phonebook example metaphor: there are many millions, perhaps
billions of names in the world, but the set of your acquaintances counts dozens, hundreds or in the most
extreme case thousands, of names.

Consider a set I of indices, which we shall assume for simplicity to be {0, 1, . . . , p− 1}, of cardinality
“more or less” like that of U . By “more or less” we mean that |I| is O(|U |). Also consider a hash function
h : K → I that maps keys to indices. Finally, consider an array σ, indexed by I, whose elements are linear
data structures of some type (e.g. arrays or lists), all having the same fixed size α. For any k ∈ dom τ , we
store τ(k) in the hash table σ, within the fixed size linear data structure σ(h(k)) (see Fig. 5.1). Should

K

U

dom τ

σ

h

I

Figure 5.1: Hashing.

two distinct keys k, k′ be mapped by h to the same index i, then the corresponding records τ(k), τ(k′)

5.2. THE LAST NAGGING DOUBT 77

would both be stored in the fixed size linear data structure σ(i). This assumes that no more than α keys
are mapped by h to the same index.

In the phonebook metaphor, h maps names to their initials, we assume that no phonebook user has
more similarly-initialled acquaintances than the α lines in each page of the phonebook τ , and if we have
a name k with initial h(k), we write the corresponding record on the page indexed by h(k).

5.1.3 Applications of hashing to Java

Aside from the phonebook, hash tables are often used for storing maps (see the HashMap class used in
Sect. 4.5).

Hash functions (the function h mapping keys to indices) also have very useful applications of their
own. In Java programming, for example, objects often occupy sizable chunks of memory; if we need to
know whether two separate objects a, b of the same class C, stored at different addresses, contain the
same data, we have to run a byte comparison on the memory occupied by a and b. This will run in time
O(max(|a|, |b|)), where |a|, |b| are the memory sizes of a, b respectively. The way this can be done in O(1)
is by devising an injective hash function h : C → int that computes an integer code for unique to each
object in the class C. This way, a = b if and only if h(a) = h(b) (the latter test can be done in constant
time).

Although it is very difficult to construct a hash function that is guaranteed to be injective, it is not
too hard to only require h to be injective with high probability (i.e. minimizing the occurrences that
a 6= b even though h(a) = h(b)). Java offers a default hash function, called hashCode(), that applies to
every class:

public class C { ... };

// ...

C a = new C();

C b = new C();

// ...

if (a.hashCode() == b.hashCode()) {

System.out.println("a = b");

}

Since the Java developers recognize that more efficient hash functions can be developed by the pro-
grammers in certain instances, the hashCode function can be overloaded (i.e., replaced by a user-defined
function with the same name and taking the same number and type of arguments).

5.2 The last nagging doubt

Perhaps some readers are still doubtful of hash functions. After all, they will argue, we need to store the
map h : K → I somewhere, and we are just shifting the problem again. We cannot use a list because
searching is inefficient, and we cannot use an array because it would either take too much memory to
store, or too long to insert new pairs (key, index), just as it happened in Sect. 5.1

Here is where the magic lies: we do not need to store h explicitly. The hash function h is computed
directly by the data representation of k. If k is a name, for example, it is encoded as a string of characters;
each character corresponds to an integer between 0 and 255 called its ASCII code: hence a name of n
letters is simply a sequence in {0, . . . , 255}n. Any algorithm that takes such a sequence k as input and
outputs a single integer i ∈ I defines a hash function h : K → I. In order for the whole scheme to
work, however, we need h to be computed in constant time. This is obtained by: coding efficiently and

78 CHAPTER 5. HASHING

carefully, and setting a fixed limit to the key lengths (or only considering a fixed amount of information
in each key) when computing h.

For example, a very simple (certainly not injective) hash function between names and integers would
associate to a character string the sum of the ASCII character codes, modulo the largest possible repre-
sentable integer. The name “Leo” would be hashed to 76+ 101+ 111 = 288, because the ASCII codes of
‘L’, ‘e’, ‘o’ are 76, 101, 111. Thus we could store the record for the key “Leo” in a linear data structure
stored at σ(288).

5.3 Java implementation

We are going to present two different implementations of a hash table σ. The first one is simpler, and
assumes the hash function h is injective. As a consequence, each linear data structure in σ(h(k)) only ever
holds one record (why?): in other words, σ need not be an array of linear data structures that contain
records, but only an array that directly contains records. The second implementation does not assume h
to be injective, allows collisions (i.e. more keys mapped to the same index), and uses singly-linked lists
as linear data structures to be stored in the array σ.

5.3.1 A hash table without collisions

We store the Java program in this section within the file hashingSimple.java. It contains two classes:
the definition of key and record pairs, and the main class. Within the main class hashingSimple, we
only need two methods: one called hash() that defines the hash function h, and main function.

5.3.1.1 Keys and records

After the usual initial comment header and the import declaration, we define a pair (key, record), of type
String2 and named stringPair, by means of the following class.

class stringPair {

public String key;

public String record;

stringPair(String k, String r) {

key = k;

record = r;

}

}

5.3.1.2 The main class

The class description is as follows.

public class hashingSimple {

public static int hash(stringPair s, int p);

public static void main(String[] args);

}

Since all methods are static, there is a global object called hashingSimple.

5.3. JAVA IMPLEMENTATION 79

5.3.1.3 The hash function

The hash() function takes a stringPair s and an integer prime p and computes the hash function by
means of summing the ASCII codes of all characters of s, then reducing the total modulo p.

public static int hash(stringPair s, int p) {

int h = 0;

for(int i = 0; i < s.key.length(); i++) {

h += (int) s.key.charAt(i); // the i-th character of s.key

}

return h % p;

}

This hash function is a special case of the hash function family in Eq. (5.1). Let the key set K be a
large set of integer sequences (k1, . . . , kℓ) having the same length ℓ (pad shorter sequences with zeroes
otherwise). Let p be a prime with p > |U |. The index set I can be defined as {0, . . . , p− 1}. It turns out
that, for each integer sequence (a1, . . . , aℓ) ∈ Iℓ,

ha(k) =
∑

j≤ℓ

ajkj (mod p) (5.1)

is a valid hash function. Notice that computing ha(k) is O(ℓ), in the worst case, with ℓ a fixed constant.
In practice, computing ha(k) is very fast. The hash() function above is Eq. (5.1) with a = (1, . . . , 1).

5.3.1.4 Main function

The main function defines sigma then “plays around” with the hash table and function. First, we define
a linked list (the pre-confectioned Java parametrizable class LinkedList) containing a set of pairs (key,
record).

public static void main(String[] args) {

LinkedList<stringPair> KU = new LinkedList<stringPair>();

KU.add(new stringPair("Leo", "PCC"));

KU.add(new stringPair("Pierre", "CR2 CNRS"));

KU.add(new stringPair("Annick", "Prof (Belgium)"));

KU.add(new stringPair("Andy", "Prof 2eme classe"));

KU.add(new stringPair("David", "IR2 CNRS"));

KU.add(new stringPair("Vincent", "CR2 CNRS"));

KU.add(new stringPair("Nora", "postdoc"));

KU.add(new stringPair("Hassan", "postdoc"));

KU.add(new stringPair("Olivier", "Prof"));

KU.add(new stringPair("Benjamin", "PA"));

Next, we initialize an appropriate prime for the hash function.

int p = 13; // a prime >= KU.length

Next, we allocate enough memory to the hash table (defined as the array sigma).

// hash table: map I->U

stringPair[] sigma = new stringPair[p];

80 CHAPTER 5. HASHING

Observe the following Java shorthand syntax for looping over all members of the LinkedList. This loop
fills the hash table, storing each element hp in σ(h1(hp)). Since we are assuming h1 to be injective, we
need not concern ourselves with the case where σ(h1(hp)) = σ(h1(hp

′)) for hp′ 6= hp.

for(stringPair hp : KU) {

sigma[hash(hp,p)] = hp;

}

Finally, we test the hash table by querying it in several ways.

stringPair inhp = new stringPair("Annick", "");

stringPair outhp = null;

inhp.key = "Pierre";

outhp = sigma[hash(inhp,p)];

System.out.println("find " + inhp.key + ": " +

outhp.key + " is a " + outhp.record);

inhp.key = "Andy";

outhp = sigma[hash(inhp,p)];

System.out.println("find " + inhp.key + ": " +

outhp.key + " is a " + outhp.record);

// Leo collides with Olivier

inhp.key = "Leo";

outhp = sigma[hash(inhp,p)];

System.out.println("find " + inhp.key + ": " +

outhp.key + " is a " + outhp.record);

inhp.key = "Olivier";

outhp = sigma[hash(inhp,p)];

System.out.println("find " + inhp.key + ": " +

outhp.key + " is a " + outhp.record);

// Annick collides with Benjamin

inhp.key = "Annick";

outhp = sigma[hash(inhp,p)];

System.out.println("find " + inhp.key + ": " +

outhp.key + " is a " + outhp.record);

inhp.key = "Benjamin";

outhp = sigma[hash(inhp,p)];

System.out.println("find " + inhp.key + ": " +

outhp.key + " is a " + outhp.record);

}

5.3.2 A hash table allowing for collisions

We store the Java program in this section within the file hashingChaining.java. It contains three
classes: the definition of key and record pairs (the same given in Sect. 5.3.1.1), a class implementing a
singly-linked list, and the main class.

5.3.2.1 A Java implementation of a singly-linked list

For a theoretical description of a singly-linked list, see Sect. 4.2.1. We first give the class description.

5.3. JAVA IMPLEMENTATION 81

class singlyLinkedList {

// each element of the list is a pair of strings

public stringPair datum;

// pointer to the next element of the list

public singlyLinkedList next;

// default constructor

public singlyLinkedList();

// constructor that also initializes the first element

public singlyLinkedList(stringPair sp);

// add an element

public void add(stringPair sp);

// find the first element whose first string is equal to key

// (assumes keys are not duplicated, so at most one element of the list

// has a given key)

public stringPair find(String key);

// print the list out

public void print();

}

Observe that the class has two constructors, one of which also initializes the first element (this is an
example of function overloading). As mentioned above, stringPair is defined in Sect. 5.3.1.1.

The default constructor simply sets both attributes datum and next to null

public singlyLinkedList() {

datum = null;

next = null;

}

The initializing constructor stores the address of the argument sp to datum.

public singlyLinkedList(stringPair sp) {

datum = sp;

next = null;

}

The following recursive algorithm adds an element to the list. Recursion is used to loop over the list
elements to get to the end before adding the new element.

public void add(stringPair sp) {

if (next == null) {

// this is the last list element, add a new one

next = new singlyLinkedList(sp);

} else {

// there’s a next one, add to that

next.add(sp);

}

}

Here follows the method for finding an element in the list.

public stringPair find(String key) {

82 CHAPTER 5. HASHING

stringPair ret = null;

if (datum != null && datum.key.equals(key)) {

// we found the correct list element

ret = datum;

} else if (next != null) {

// up to here the key wasn’t found, try the next list element

ret = next.find(key);

}

return ret;

}

5.3.1 Exercise

Propose an implementation for the print method in the singlyLinkedList class.

5.3.2.2 The main class

The class description is as follows. With respect to hashingSimple, notice not every class member is
static. We therefore also include a constructor.

public class hashingChaining {

// data attributes

public int thePrime; // prime used for hash function

singlyLinkedList[] sigma; // the hash table

// constructors

public hashingChaining(); // class constructor #1

public hashingChaining(int p); // class constructor #2

// hash function

public static int hash(stringPair s, int p);

// data structure methods

public void add(stringPair kr); // add method

public stringPair find(String key); // find method

// main function

public static void main(String[] args);

}

We remark that hashingChaining includes add and findmethods, which were not there in hashingSimple.
This is because, if the hash function is injective, then the hash table is a simple array. Accordingly, add
and find are simply the array’s own add and find methods. If the hash table sigma is an array of singly
linked lists, one must first check whether sigma[i] is null or allocated, and act accordingly.

The constructors are as follows.

public hashingChaining() {

// a default, largish prime

// (catastrophe if the table has more elements!)

thePrime = 5519; // this is a largish prime

}

public hashingChaining(int p) {

thePrime = p;

}

5.3. JAVA IMPLEMENTATION 83

The hash function is the same as in Sect. 5.3.1.3, aside from the implementation detail that the prime is
stored as the class attribute thePrime instead of being passed to the hash() function.

5.3.2 Exercise

Propose a hash() function updated as explained above.

5.3.2.3 Adding elements to the hash table

Adding an element to the hash table first requires checking whether σ(h(k)) is allocated or not. If not,
a new singly-linked list is stored at σ(h(k)). Then the record corresponding to k is stored in the list at
σ(h(k)).

public void add(stringPair kr) {

int hval = hash(kr.key, thePrime);

if (sigma[hval] == null) {

// hash table’s corresponding entry is empty

// initialize it with a new one-element list

sigma[hval] = new singlyLinkedList(kr);

} else {

// hash table’s corresp. entry already has a list, add to it

sigma[hval].add(kr);

}

}

5.3.2.4 Finding elements in the hash table

Finding an element k in the hash table σ simply consists in calling the find method of the singly-linked
list σ(h(k)).

public stringPair find(String k) {

singlyLinkedList hashList = sigma[hash(k, thePrime)];

return hashList.find(k);

}

5.3.2.5 Main function

The main function of the hashingChaining class has a similar structure to the one given for hashingSimple
(Sect. 5.3.1.4), but the technical details are different. We use our own singlyLinkedList to store the
stringPairs initially, we dynamically create an object of the hashingChaining class, we cannot use the
shorthand method to loop over the singlyLinkedList object in order to fill the hash table, but have to
resort to a longer construct.

public static void main(String[] args) {

// create a new list with some names and qualifications

singlyLinkedList KU=new singlyLinkedList(new stringPair("Leo", "PCC"));

KU.add(new stringPair("Pierre", "CR2 CNRS"));

KU.add(new stringPair("Annick", "Prof"));

KU.add(new stringPair("Andy", "Prof 2eme classe"));

KU.add(new stringPair("David", "IR2 CNRS"));

KU.add(new stringPair("Vincent", "CR2 CNRS"));

KU.add(new stringPair("Nora", "postdoc"));

84 CHAPTER 5. HASHING

KU.add(new stringPair("Hassan", "postdoc"));

KU.add(new stringPair("Olivier", "Prof"));

KU.add(new stringPair("Benjamin", "PA"));

System.out.println("The original data list:");

KU.print();

// the prime should be larger than this list’s length

int p = 13;

hashingChaining h = new hashingChaining(p);

// initialize and fill the hash table

System.out.println("Scanning the list and filling hash table...");

h.sigma = new singlyLinkedList[p];

singlyLinkedList current = KU;

int hval = 0;

while(current != null) {

// scan the list

h.add(current.datum);

current = current.next;

}

// verification of the hash table contents

System.out.println("-----------------------------");

System.out.println("Verifying hash table:");

for(int i = 0; i < p; i++) {

if (h.sigma[i] == null) {

System.out.println("hashTable[" + i + "] = _|_");

} else {

System.out.print("hashTable[" + i + "] = ");

h.sigma[i].print();

}

}

System.out.println("-----------------------------");

// query the hash table

System.out.println("Querying hash table:");

// Pierre has no collisions

String theKey = "Pierre";

stringPair theElement = h.find(theKey);

System.out.println("find " + theKey + ": " +

theElement.key + " is a " + theElement.record);

// Andy has no collisions either

theKey = "Andy";

theElement = h.find(theKey);

System.out.println("find " + theKey + ": " +

theElement.key + " is a " + theElement.record);

// Leo collides with Olivier

theKey = "Leo";

theElement = h.find(theKey);

System.out.println("find " + theKey + ": " +

theElement.key + " is a " + theElement.record);

theKey = "Olivier";

theElement = h.find(theKey);

System.out.println("find " + theKey + ": " +

theElement.key + " is a " + theElement.record);

5.3. JAVA IMPLEMENTATION 85

// Annick collides with Benjamin

theKey = "Annick";

theElement = h.find(theKey);

System.out.println("find " + theKey + ": " +

theElement.key + " is a " + theElement.record);

theKey = "Benjamin";

theElement = h.find(theKey);

System.out.println("find " + theKey + ": " +

theElement.key + " is a " + theElement.record);

}

86 CHAPTER 5. HASHING

Chapter 6

Trees

Abstract. Root, leaf, direction, depth. Spanning trees. Some mathematical properties of

trees. There are 2n−2 labelled trees on n vertices. Applications to algebraic graph theory,

chemistry, languages and networks.

Mathematically speaking, a tree is a connected graph without cycles (see Fig. 6.1).

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Figure 6.1: A tree (left), a graph which fails to be a tree because disconnected (middle), and a graph
which fails to be a tree because of the presence of cycles (right).

6.0.3 Exercise

Compute the dimension of the cycle spaces of the three graphs in Fig. 6.1.

Trees are useful in computer science because they model tree data structures. Whenever we refer to
a tree data structure, we call vertices nodes. Among other things, tree structures are used to implement
efficient general-purpose algorithms for searching and sorting sets. The fundamental reason why tree
structures may give rise to more efficient algorithms with respect to linear structures is that they encode
more relationship information. Whereas a linear data structure only encodes previous and next elements,
a tree node might be adjacent to several other nodes. This wealth of information can be used to look for
different node iteration orders, giving rise to more efficient ways to structure computing operations.

87

88 CHAPTER 6. TREES

6.1 Definitions

6.1.1 Roots and direction

A rooted tree is a tree with a distinguished vertex, called the root. A rooted tree is directed if it is a
rooted tree that is also a directed graph, and such that arcs are either all directed towards the root, or
all directed away from it (see Fig. 6.2).

1

2 3 4

5 6 7

8

1

2 3 4

5 6 7

8

1

2 3 4

5 6 7

8

Figure 6.2: A rooted tree (left) and two directed rooted trees (middle, right).

6.1.2 Leafs, depth and height

In a tree, any non-root vertex with degree 1 is called a leaf. The height or depth of a rooted tree is the
number of edges in the longest path from a leaf to the root (or from the root to a leaf if the arcs are
directed away from the root). For example, the height of the trees in Fig. 6.2 is 3. The level of a vertex
in a rooted tree is the length of the path from that vertex to the root, plus 1. E.g. vertex 7 in Fig. 6.2 is
at level 3.

For a tree T , we denote by L(T) the set of its leaf vertices.

6.1.3 Spanning tree

If G = (V,E) is a graph and H = (V, F) is a connected subgraph of G with edges adjacent to each v ∈ V ,
H is a spanning subgraph of G. If T = (V, F) is a tree on the same vertices as V , T is called a spanning
tree of G. We shall see in Sect. 6.2 below that a spanning tree of G is a minimally connected spanning
subgraph of G.

6.1.4 Vertex labels

Since a tree is just a graph of special type, it has a set of vertices and one of edges, just like all graphs
do. Consider the set V of vertices: each vertex has a name, also called label in this context. Thus, for
example, we might write V = {1, 2, . . . , n} or V = {v1, v2, . . . , vn} or even V = {u, v, w} if V only has
three vertices. The point is that every vertex can be distinguished by any other. This means, for example,
that the two trees below are different mathematical entities.

6.2. BASIC PROPERTIES 89

1

2 3 5

4

3

4 1 5

2

In the three on the left, for example, vertex 1 is adjacent to vertex 4, whereas in the tree of the right this
is false. However, if we ignore the vertex labels, we obtain two trees that look exactly the same.

This is not to say that every two trees only differ because of the vertex labels. The two trees below are
decidedly different, although they have no labels.

In the tree on the left, there is one vertex with degree 3. In the tree on the right, all vertices have degree
2.

What should be clear from these examples is that differences may have to do with the graph structural
properties, such as the vertex degree, or simply because the vertex labels are assigned differently. In the
first case, we speak of unlabelled trees, in the second of labelled trees. Mathematically speaking, an
unlabelled tree can be defined as a chosen representative of an equivalence class containing all trees that
are “structurally the same”.

6.2 Basic properties

6.2.1 Number of edges

6.2.1 Proposition

A tree on n vertices has n− 1 edges.

Proof. By induction: the case with 1 vertex is trivial (there can be no edge). Now take a tree with n− 1
vertices and assume it has n − 2 edges. Add an n-th disconnected vertex v to the graph, and consider
how it can be connected to the tree. Either it is connected to only one vertex u in the tree, or to more
than one. In the former case the new edge does not belong to any new cycle, since the degree of u is one.

90 CHAPTER 6. TREES

Hence the new graph is connected and without cycles: in short, it is a tree with n vertices and n − 1
edges. In the latter case, u must be connected to at least two vertices u 6= w in the tree. Since the tree is
connected, there is a path p with source u and destination w. But then the two edges {u, v} and {v, w}
and p form a cycle. So the new graph cannot be a tree. ✷

6.2.2 Connectivity

6.2.2 Corollary

Removing an edge from a tree disconnects the graph.

The proof should be obvious.

6.2.3 Acyclicity

6.2.3 Corollary

Adding an edge to a spanning tree of a graph G determines a unique cycle in G.

6.2.4 Exercise

Prove Cor. 6.2.3.

6.2.4 Edge swapping operation

6.2.5 Corollary

Given a graph G and a spanning tree T , if we add an edge e not in the tree to T then remove an edge f
in the unique cycle determined by e, we obtain a different spanning tree of G.

This corollary is the basis for many algorithms that search within the set of all spanning trees of a graph:
pick an edge e of the graph which is not already in the tree, add it to the tree, identify the unique cycle,
pick an edge f 6= e in the cycle, remove it from the tree, and you get a different spanning tree of the
graph.

6.2.6 Exercise

Prove that all spanning trees of G can be constructed by means of “edge swaps” as described above,
starting from any spanning tree.

6.3 The number of labelled trees

A very famous result of A. Cayley states that there are nn−2 possible different labelled trees having n
vertices. We are going to prove this result using a method first proposed by Prüfer: we shall consider
the set of all trees on a set V of n vertices and construct a bijection on the set of all sequences of n− 2
elements of V . Since the latter has nn−2 elements (why?), the result will be proved. The bijection is
constructed explicitly: we provide two algorithms, one for mapping trees into (n− 2)-sequences, and one
for mapping (n− 2)-sequences into trees. These sequences are called Prüfer sequences.

6.3. THE NUMBER OF LABELLED TREES 91

6.3.1 Mapping trees to sequences

The first algorithm works by progressively removing leaf vertices of the given tree T and storing their
parents; naturally, when a “layer” of leaves attached to a vertex v is removed, then v becomes a leaf
itself, and so it will be dealt with successively. The leaf vertices are removed in a certain order (i.e. the
minimum leaf vertex label is chosen for removal): this induces an order on the sequence of stored par-
ents. At all times, we denote by L(T) the set of leaf vertices of T (of course, as T is updated, L(T)
changes).

for k ∈ {1, . . . , |V | − 2} do
v = minL(T);
let e be the only edge incident to v;
let tk 6= v be the other node incident to e;
T ← T r {v};

end for

return t = (t1, . . . , t|V |−2)

6.3.1 Example

For the tree below:

1

4

87

6

9

3

2

5

the Prüfer sequence is (6, 9, 1, 4, 4, 1, 6).

6.3.2 Mapping sequences to trees

In order to map a Prüfer sequence t = (t1, . . . , tn−2) back to its corresponding tree, we scan V r t from
smallest to largest vertex label ℓ, we pair vertex ℓ with the first component t1 of t, add {t1, ℓ} as an edge to
the tree, and we remove t1 from t and ℓ from V . Two remarks: as we remove t1 from t, the next component
will be called t1 at the successive iteration; and V r t might also acquire further elements during the
algorithm, namely those that no longer appear in t. When t is the empty sequence, it can be proved that
V r t is the last edge to be added to the tree.

let T = ∅ be the empty tree;
while t 6= ∅ do

let ℓ = min V r t;
add the edge {ℓ, t1} to T ;
remove t1 from t, and renumber the remaining elements so that the first is still called t1;
remove ℓ from V ;

end while

at this point, V r t = {u, v}: add it as an edge to T .

By the two algorithms above, there are as many trees as there are (n − 2)-sequences with entries in
{1, . . . , n}. Since the number of such sequences is nn−2, we have the following result.

6.3.2 Theorem

There are nn−2 different labelled trees with n vertices.

92 CHAPTER 6. TREES

6.3.3 Exercise

Implement the two algorithms in this section using Java.

6.4 Applications

Trees have several applications as data structures in computer science: we shall see the main ones in Part
III. Here we list some direct applications of trees to graph theory, chemistry, linguistics and networks.

6.4.1 Finding a basis of the cycle space

In Sect. 3.4.7 we introduced the concept of the cycle space, i.e. the vector space of all the cycles of a
graph over the finite field F2. The sum of two cycles is defined as the XOR operation over the cycle-edge
incidence vectors corresponding to the two cycles, and denoted by the binary operator ⊕.

Here we show that any spanning tree of a graph induces a basis for the cycle space. Let T = (R,F)
be a spanning tree of a connected graph G = (V,E). This partitions E into tree edges F and non-tree
edges E r F . The latter are also called chords. By Cor. 6.2.3, every chord determines a unique cycle of
G, namely the chord {u, v} union the unique path on T from u to v. Incidentally, since there are m = |E|
edges, n− 1 tree edges (by Prop. 6.2.1), every spanning tree induces exactly m− n+ 1 cycles.

6.4.1 Lemma

Let Γ = {γ1, . . . , γm−n+1} be the cycles induces by a spanning tree T . Then Γ is linearly independent
over F2.

Proof. Let a1, . . . , am−n+1 ∈ {0, 1} such that:

m−n+1⊕

i=1

aiγi = 0, (6.1)

where 0 stands for the empty cycle. If any ai = 1, then the incidence vector of the cycle γi has a 1 in
the edge column corresponding to the chord that determines γi. In order for this 1 to become a 0 in
Eq. (6.1), we need at least another cycle spanned by Γ to have a 1 in that edge column, for b = 1 is the
only element of F2 that satisfies 1⊕ b = 0. However, γi is by definition the only cycle in Γ that has a 1 in
the edge column corresponding to that chord. Hence ai = 0 for every i ≤ m− n+ 1, which implies that
Γ is a linearly independent set. ✷

By Lemma 6.4.1 and Thm. 3.4.2, we conclude that the set of cycles determined by the chords of any
spanning tree form a basis of the cycle space. Cycle bases corresponding to a spanning tree are called
fundamental.

6.4.2 Chemical trees

Until the mid-19th century, scientists thought molecules were completely defined by their atomic formula,
e.g. paraffins would be CkH2k+2. It was then noticed that different bond relations between atoms gave
rise to substances having different properties. Different substances with the same atomic formulæ are
called isomers (see Fig. 6.3). We remark that different atoms have different properties: carbons, for
example, can be incident to exactly 4 edges, whilst hydrogens, can only be incident to exactly 1 edge (we
also say that carbons have valence 4 and hydrogens have valence 1).

6.4. APPLICATIONS 93

Figure 6.3: Butane (on the left) and isobutane (on the right).

Some graph structures of specific properties are also known, e.g. paraffins are known to have tree-like
bond relations. Thus, a natural question arose: how many different isomers with certain graph properties
shared a same chemical formula? From a purely formal (rather than chemical) point of view, listing all
paraffins is equivalent to listing all trees with a given number n of vertices. This can be done by listing
all Prüfer sequences and transforming them to the corresponding trees (see Sect. 6.3.2).

6.4.2 Exercise

Devise and implement an algorithm for listing all trees of n carbons and hydrogens. Make sure the
corresponding valences are respected. List all trees of carbons and hydrogens have 4,5 and 6 vertices.

6.4.3 Trees and languages

A language can be either formal or natural. Formal languages follow a well-defined set of precise syntac-
tical rules for producing valid sentences. Programming languages, for example, are formal languages (see
Sect. 1.3). Moreover, in a formal language each valid sentence can have at most one meaning.

Languages that are not formal are called natural, e.g. English and French are natural languages. The
validity of a sentence in a natural language is a fuzzy notion. It is clear that certain sentences are invalid
(e.g. “me you drink I dog”), and it is also clear that certain sentences are valid (e.g. “my name is Leo”),
but there are sentences that may be valid or invalid depending on a context which goes beyond the
language itself (e.g. “would you please. . . no, leave it” has an auxiliary verb — “would” — that lacks a
main verb; and yet, in a context of hesitation, it makes sense), or other sentences that are syntactically
ambiguous (e.g. “Ibis redibis non morieris in bellum”, which can be translated as “you will go and come
back, you won’t die in war” as well as “you will go but not come back, and die in war”).

6.4.3.1 Trees and recursion

Trees are the best type of structure to model a recursive behaviour. Each recursive action will refer to
itself (or variations of itself) one or more times during its existence. This creates a hierarchy of actions,
related by reference, which is best represented as a tree.

6.4.3 Example

In the example below, an action A is declined into five variants A1, . . . , A5: A1 refers to A3 and A2,
which itself refers to A4 and A5.

94 CHAPTER 6. TREES

A1

A3A2

A5A4

6.4.3.2 Syntax of formal languages

A sentence of a formal language is defined to be valid in a constructive way. Consider for example the
formal language of all mathematical expressions consisting of constants c ∈ R, variable symbols xi for
any i ∈ N, the binary operators sum, difference, multiplication, division, power, and the unary operators
unary minus, logarithm and exponential. Valid sentences in this language are called expressions.

6.4.3.2.1 Construction of valid sentences We define expressions as follows:

• constants and variable symbols are expressions,

• for any two expressions f and g, f + g, f − g, fg, f/g, fg are expressions,

• for any expression f , −f, log(f), exp(f) are expressions,

• no other sentence, aside from those obtained by the rules above, is an expression.

The concept of expression is used recursively to construct ever more complicated expressions. The last
rule bars any other sentence from being valid.

6.4.3.2.2 Recognition of valid sentences Now suppose we are given a sentence, and we have to
decide whether it is an expression or not. If we are able to “break it down” into sub-expressions so as
to obtain the recursive process that led to its construction, then it is valid, otherwise, because formal
languages are not ambiguous, it is not. Accordingly, we write the rules above in a slightly different form.

• an expression is either a term, or a sum of an expression with a term, or a difference of terms

• a term is either a power, or a multiplication of a term by a power, or a division of powers

• a power is either a function, or a function to the power of a function

• a function is either a leaf, or the negative of an expression, or the logarithm or exponential of an
expression, or simply an expression within brackets

• a leaf is either a constant or a variable symbol.

Here, the names term, power, function, leaf denote a hierarchy level in the recursive application of our
validity verification method. Given a character string containing a sentence, we try and match the rules
above, starting from operators of lowest precedence (sums and differences), to those of highest precedence
(unary operators). The set of rules above are the grammar of the formal language of mathematical
expressions. It is written succinctly as follows:

e : t | e+ t | t− t

t : p | t× p | p÷ p

p : f | f ↑ f
f : l | − (e) | log(e) | exp(e) | (e)
l : xi (1 ≤ i ≤ n) | c (c ∈ R).







(6.2)

6.4. APPLICATIONS 95

where the grammar labels e, t, p, f, l obviously denote expression, term, power, function and leaf.

The process of recognizing the validity of a given sentence, also called parsing, naturally yields a
tree (called the derivation tree or parse tree), whose vertices are labelled by the grammar labels. The
derivation tree subsumes the so-called expression tree, which relates operators and operands, as shown in
Example 6.4.4.

6.4.4 Example

Consider the expression x1(x1 + x2). The whole expression is initially parsed as a term, which is parsed
as a multiplication of two terms: the first, x1, is parsed as a term, then as a power, then as a function,
and finally as a leaf. The second, (x1 + x2), is parsed as a power, then as a function, then, shedding
its brackets, as an expression, which is itself parsed as a sum of an expression and a term, and so on.
The derivation tree is shown below as a directed tree with dashed arcs. The subsumed expression tree is
shown as a directed tree with whole arcs.

()

e

e

e

t

t

t
t

p

p

p

p

f

f

f
f

l

l

l

x1

x1

x2

×

+

We remark that the name “leaf” assigned to the grammar label l now makes sense, insofar as leaves
label the leaf vertices of the derivation tree.

6.4.3.3 Semantics of formal languages

Although this fails to even begin to skim the surface of a very complicated story, the semantics (read:
“meaning”) of a formal (valid) sentence is an assignment of certain entities to the variable symbols.
The entities are usually sets, or numbers, or other mathematical abstractions. But this need not be so.
Rudolf Carnap defined formal languages in several scientific fields, including physics and chemistry. In
fact, alternative semantics allow a formal system to describe a reality other than mathematical.

6.4.3.4 Syntax of natural languages

Noam Chomsky, in [7], attempted to extend the use of derivation trees to parse natural language sentences,
as shown in Fig. 6.4.

6.4.5 Example

The sentence (S) “sincerity may frighten the boy” in Fig. 6.4 is parsed in the noun phrase (NP), the
auxiliary (Aux) and the verb phrase (VP). Recursively, NP is simply parsed into a noun (N); Aux into a
modal (M), and VP into a verb (V) and a new noun phrase (VP), which is itself parsed into a determiative
article (Det) and a noun (N).

96 CHAPTER 6. TREES

Figure 6.4: A derivation tree proposed by Chomsky [7, p. 65] for the sentence “sincerity may frighten the
boy”.

6.4.6 Exercise

Try writing a natural language grammar for a subset of a natural language of your choice.

6.4.3.5 Semantics of natural languages

Richard Montague, a student of Alfred Tarski’s, borrowed the tools of axiomatic set theory, especially
recursion, to address the problem of ambiguity in natural languages [18]. An ambiguous sentence is one
that has multiple derivation trees, see Example 6.4.7.

6.4.7 Example

Consider the latin sentence ibis redibis non morieris in bellum cited at the beginning of Sect. 6.4.3. It
has two different parse trees:

S

VP

Place

bellumin

V

morieris

Neg

non

VP

V

redibis

VP

V

ibis

S

VP

Place

bellumin

V

morieris

VP

Neg

non

V

redibis

VP

V

ibis

By assigning the common latin meanings to the leaves ibis, redibis, non, morieris, in, bellum, there follow
two different interpretations of these two trees. We remark that the Latin syntax makes the tu (you)
noun phrase implicit in the verb phrases; and each VP in a single sentence is linked by the other by an
implicit et (and).

From a syntactical point of view, Montague devised ways to modify natural grammars so that ambiguities
would be restricted to leaves. He obtained this by allowing leaves to stand for whole sets of (ambigu-
ous) subtrees. For a given ambiguous sentence, this somehow yielded unique grammar trees “modulo
ambiguity”.

Some ambiguous sentences resisted this approach. To deal with them, Montague postulated the
existence of appropriate semantics, so that the meaning assigned to the leaves would make at most one
derivation tree true, and all the other ambiguous ones false. This is similar to the Sybilla telling the
soldier “ibis redibis non morieris in bello” after the soldier was safely back from the war, rather than

6.4. APPLICATIONS 97

before: by its very presence, the soldier made one of the two ambiguous trees yield a false sentence, and
the other a true one. In very poor words, this amounts to the mathematical formalization of the concept
of understanding a potentially ambiguous sentence by a given context.

6.4.4 Trees in networks

A network is simply another name for “graph”, used in certain engineering and scientific communities.

6.4.4.1 Commodity networks

Consider a set of geographical sites that need to be connected in order to exchange information, or
electrical power, or any other commodity. Any site can serve as proxy to route the commodity between
any site pair. Laying a connection infrastructure, be it eletrical or optical wires, or pipes, incurs a cost:
this could be unitary (each communication link has a fixed cost), or proportional to the length of each
pairwise segment. We initially consider the set of potential links between pairs of sites that can be
geographically linked, and model this as a graph G = (V,E), where V is the set of sites and E the set of
potential links (such a graph is also known as a network). We want to find a subgraph of G that offers
point-to-point connectivity at minimum cost, while serving all sites. Since all costs are nonnegative, this
is a minimally connected subgraph of G, which, by Sections 6.1.3 and 6.2, corresponds to a spanning tree
of G of minimum cost (see Fig. 6.5).

1

2

v1

v2

v3v4

1.3

1.3

1.4
1

2

v1

v2

v3v4

1.3

1.3

1.4

Figure 6.5: A graph with its minimum spanning tree.

6.4.4.2 Distance networks

Spanning trees are also useful for storing compact encodings of massive data sets. Consider for example
a long list V = (v1, . . . , vn) of long binary sequences vi = (vi1, . . . , vim) of the same length m.

First, we compute all Hamming distances hij between every pair {vi, vj}, which we use to label the
edges of a complete graph on V , also known as distance network. We remark that the Hamming distance
between two bit sequences of the same length is the number of flips necessary to transform a sequence
into the other, e.g. 01100 and 00110 have Hamming distance 2, since we must flip the second and fourth
bits to obtain a sequence from the other.

Netx, we find the minimum cost spanning tree T in the distance network, and enrich each edge
{vi, vj} in T with the sequence Kij = (k1, . . . , khij

) of element indices such that flipping all vikℓ
, for

ℓ ∈ {1, . . . , hij}, yields vj (and vice versa: why?). This means that, if we store vi, we only need to store
the sequence Kij in order to retrieve vj . Since Kij is shorter than vj , we gain in storage space.

Finally, we store the following information:

• any v0 ∈ V ;

• the tree T with the edge information (hij ,Kij) for each edge {vi, vj}.

98 CHAPTER 6. TREES

This guarantees that every v ∈ V can be reconstructed using v0 and the information in T . Since T has
minimum cost,

∑

i,j |Kij | is minimum, which means that this is the most compact possible encoding of
V .

6.4.8 Example

Consider the following set V of bit sequences:

1. 011100011101

2. 101101011001

3. 110100111001

4. 101001111101

5. 100100111101

6. 010101011100,

with pairwise Hamming distance given by the following matrix (we only report the upper right triangle,
since the lower left is symmetric (why?)

1 2 3 4 5 6
1 0 4 4 5 4 3
2 - 0 4 3 4 5
3 - - 0 5 2 5
4 - - - 0 3 6
5 - - - - 0 5
6 - - - - - 0.

The minimum spanning tree has cost 5:

1

2

4

3

4

4

5

5

4

6

3

4

3

4

5

5
2

5

3

6

5

Part III

Algorithms

99

Chapter 7

Recursive algorithms

Abstract. Motivations for using recursion. Recursion as a loop. Examples of recursive

algorithms (with some Java implementations): enumerating permutations and the Hanoi

tower. Recursion in logic: Gödel’s incompleteness theorem.

A recursive algorithm is one that includes one or more recursive procedures. A procedure is recursive
if one of its instructions is a call to itself. This may not sound so convincing, except that procedures
are implemented as functions in a programming language, and hence take input arguments: a recursive
function call will almost certainly take a different set of argument values than the calling function took.

7.1 Motivations

7.1.1 Proving program properties

One of the main points in favour of using recursion is that it usually makes it easy to prove that a
recursive function actually does what it is supposed to do. This is related to mathematical induction: it
suffices to check that an induction start and an induction step hold, and the property is proved for all
values of a certain discretely changing argument.

7.1.1 Exercise

Using mathematical induction, prove that the following recursive program computes n!.
function f(n) {
if (n = 0) then
return 1

end if

return n× f(n− 1)

}

7.1.2 Expressing certain procedures naturally

Another strong point for recursion is that it allows to write certain programs more “naturally”. Try
programming a computer to explore the tree below so that it follows the vertices in the natural order
1, 2, 3, 4, 5, 6.

101

102 CHAPTER 7. RECURSIVE ALGORITHMS

1

5

6

2

43

Notice that in this case the natural order arises from exploring the tree depth-first, starting from vertex
1. This is called depth-first search (DFS) and will be discussed in later chapters.

7.1.2.1 Encoding the tree

Since a tree is a graph, we encode it using an adjacency list (see Sect. 4.1.1.1) A, defined as follows:

A1: A11 = 2, A12 = 5
A2: A21 = 3, A22 = 4
A3: ∅
A4: ∅
A5: A51 = 6
A6: ∅,

so that Aij is the vertex label of the j-th child of vertex i of the tree.

7.1.2.2 A code with limited scope

A näıf student might initially code something like:

int a = 1;
print a;
for (int z = 1 to |Aa|) do
int b = Aaz ;
print b;
for (int y = 1 to |Ab|) do
int c = Aby;
print c;
. . .

end for

end for

For the given tree, this might work. But change the tree, and the code stops working: the number of
loops depends on the number of vertices, and it is “hard-coded” in the pseudocode. Ideally, our codes
should work for all similarly structured inputs, in this case all trees.

7.1.2.3 Algorithms and problems

More formally, we recall that a problem is a set of inputs with relative answers (see Sect. 1.4.2); here,
the relevant decision problem is “given a tree on n vertices numbered 1 to n, does DFS exploration yield
the order 1, . . . , n?” The possible inputs (also called instances of the problem) are the pairs (n, T) where
n ∈ N and T is a tree on n vertices. As was said in Sect. 1.4.3, an algorithm is supposed to be able to
solve a problem (i.e. a whole infinite set of instances) rather than a single instance, or a handful thereof,
taking each individual instance as input. So the code in Sect. 7.1.2.2 is no good.

7.1. MOTIVATIONS 103

7.1.2.4 Recursion saves the day

We can very naturally model the depth-first nature of the tree exploration using recursion, by calling
f(1) where f is the function below.

function f(int ℓ) {
print ℓ;
for (int i = 1 to |Aℓ|) do
f(Aℓi);

end for

}

If we trace the input argument ℓ to the function f below, we obtain the following function call tree:

1

A12 = 5

A51 = 6

A11 = 2

A22 = 4A21 = 3

which, we remark in order to emphasize how naturally recursion can model a DFS, is the same as the
original input tree.

7.1.2.5 Back to iteration

To those students who might think that recursion is necessary to express certain types of programs, we
explicitly say this is not the case! It suffices to introduce a stack and change recursive calls back to
their internal form (pushing addresses on the stack, and then popping them in order to jump back to
the calling functions, see Sect. 4.4.2). Here are the actions that the recursive algorithm of Sect. 7.1.2.4
performs on the given tree.

1. ℓ = 1; print 1
2. |A1| = 2; i = 1
3. call f(A11 = 2) [push ℓ = 1]
4. ℓ = 2; print 2
5. |A2| = 2; i = 1
6. call f(A21 = 3) [push ℓ = 2]
7. ℓ = 3; print 3
8. A3 = ∅
9. return [pop ℓ = 2]

10. |A2| = 2; i = 2
11. call f(A22 = 4) [push ℓ = 2]
12. ℓ = 4; print 4
13. A4 = ∅
14. return [pop ℓ = 2]
15. return [pop ℓ = 1]
16. |A1| = 2; i = 2
17. call f(A12 = 5) [push ℓ = 1]

104 CHAPTER 7. RECURSIVE ALGORITHMS

18. ℓ = 5; print 5
19. |A5| = 1; i = 1
20. call f(A51 = 6) [push ℓ = 5]
21. ℓ = 6; print 6
22. A6 = ∅
23. return [pop ℓ = 5]
24. return [pop ℓ = 1]
25. return; end

7.1.2 Exercise

Write an iterative version of the recursive algorithm in Sect. 7.1.2.4. Make sure it works on every possible
input.

7.2 Iteration and recursion

Compare the following two codes:

while (true) do
print "Leo";

end while

function f() {
print "Leo";
f();

}
f();

Both programs yield the same infinite loop that prints “Leo” on the screen without ever ending. The
important point is that recursion is a form of loop. Consider the following iterative code for computing
factorials:

input n;
r = 1
for (i = 1 to n) do
r = r × i

end for

output r

and compare it with the recursive code in Exercise 7.1.1. Whereas the iterative code uses a loop and
assignments, the recursive version only uses recursion and nothing else. It might appear strange at first
sight: assignments are the way computers have to write to memory — can recursion stand in for memory?
Not quite: the subtle point is that recursion needs the OS to implement function calls, and that these,
in turn, need a stack to work (see Sect. 4.4.2). Recursion is implicitly making use of the stack memory
during the return call: the returned values are stored on the stack, where the calling function can access
them. Insofar as universality is concerned, machines with two stacks and an alphabet of only one symbol
are known to be UTMs.

7.2.1 Terminating the recursion

The recursive procedure in the previous section did not terminate, as the recursive function f() called
itself without arguments and returned no value: all things being equal, there was no reason why the next
call should be any different from the previous.

7.2.1 Exercise

Prove formally, using mathematical induction, that a function f() without input arguments and return
values, that just calls itself without doing anything else, generates an infinite loop.

7.3. LISTING PERMUTATIONS 105

Now consider a function f(n), where n ∈ N, and suppose that the implementation of f calls itself
over a different argument value, say n − 1. Suppose also that, before calling itself, f implements a test
to ascertain that n > 0, whereas f terminates without recursion if n = 0. Then we can conclude that f
does not yield an infinite loop.

7.2.2 Exercise

Prove the last assertion formally.

Typically, a general schema for recursive function implementations is the following.

if n is a “base case” then

compute f(n) directly, do not recurse
else

recurse on f(i) with some i < n
end if

If we plot the values taken by n against the level of recursion (this can be seen as stack size), in order
for f to terminate we need a graph like the one in Fig. 7.1 (left). Actually, it can be much crazier, it just

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10

10/x-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7

10/x-1+0.5*sin(5*x)

Figure 7.1: Input argument n of a recursive procedure in function of recursion level.

suffices that it hits the “base case” in finite time (Fig. 7.1, right).

7.3 Listing permutations

A permutation of n elements is a function that maps an n-element sequence to another n-element sequence
having the same elements as the first, but in a different order. More formally, a permutation is a bijection
from a finite set V to itself, i.e. an automorphism on V .

In this section we show how recursion can help us list all possible permutations of n elements (for any
given n).

7.3.1 Some background material on permutations

We denote a permutation π on the set [n] = {1, . . . , n} by listing the action of the permutation on each
element on [n], for example:

π =

(
1 2 3 4
2 3 4 1

)

sends 1→ 2, 2→ 3, 3→ 4 and 4→ 1.

106 CHAPTER 7. RECURSIVE ALGORITHMS

Sometimes the first line of the permutation representation above is skipped, and we only denote π by
the second line.

7.3.1.1 Product of permutations

The product of π by the permutation σ =
(

1 2 3 4
4 3 2 1

)

, defined by applying σ first and π later, and

denoted as πσ, has the following effect:

1
σ−→ 4

π−→ 1

2
σ−→ 3

π−→ 4

3
σ−→ 2

π−→ 3

4
σ−→ 1

π−→ 2,

i.e. it is the permutation:

πσ =

(
1 2 3 4
1 4 3 2

)

.

We remark that the product of permutations is a composition of bijections. Since the composition of
two bijections on the same set is another bijection on that set, the product of two permutations is still a
permutation.

7.3.1 Exercise

Prove that the compositions of two bijections on V is another bijection on V .

7.3.1.2 Group structure

We now take a more abstract look at the permutation product. This product is a binary operator
between permutations: mathematically speaking, it maps pairs of permutations into another permutation.
Whenever a k-ary operator maps V k to a set U ⊆ V , we say that the operator is closed or that the set
V is closed with respect to that operator.

7.3.2 Exercise

Proving that the product of permutations is associative is easy but long (and, for me, also tedious, since
I already did this when I was a student): amuse yourself and do it as an exercise.

The identity of the permutation product is the permutation e =
(

1 2 3 4
1 2 3 4

)

, and the inverse of

each permutation is obtained by simply “reversing the arrows”: if a permutation π sends i to j, then
π−1 sends j to i. In other words, this means that π−1 sends π(i) to i, and therefore that π−1(π(i)) = i
for all i ∈ [n], which implies that (π−1π)(i) = i, i.e. that π−1π = e. Thus, the set of permutations of n
elements form a group under the permutation product. This group, called the symmetric group of order
n, is denoted by Sn.

7.3.3 Exercise

Prove that |Sn| = n!.

We remark that, by a theorem of Cayley’s, any finite group is isomorphic to a subgroup of Sn for
some n.

7.3. LISTING PERMUTATIONS 107

7.3.1.3 Cycle notation

A cycle permutation (or simply a cycle) is a permutation π ∈ Sn with a sequence (v1, . . . , vℓ) such that
π(vi) = vi+1 for all i < ell and π(vℓ) = v1, and π(v) = v for all other elements v ∈ V r {v1, . . . , vℓ}.
Informally, the action of π on V is described graphically in Fig. 7.2 for a case where ℓ = 6.

v1

v2v3

v4

v5 v6

Figure 7.2: The action of a cycle permutation.

Cycles allow a more compact way of writing permutations. The permutation

π =

(
1 2 3 4 5 6 7 8 9
2 1 3 4 5 6 7 8 9

)

,

for example, only swaps 1 and 2 but still takes 9 pairs of integers to write down: this is wasteful. But
we can easily recognize that π is the cycle of length 2 sending 1 → 2 and 2→ 1 and fixing all the other
integers. We therefore write π more simply as (1, 2). In general, a cycle permutation sending π(vi) to
vi+1 for all i < ℓ and π(vℓ) to v1 is denoted by its defining sequence (v1, . . . , vℓ).

Let π = (v1, . . . , vh) and σ = (u1, . . . , uk) be two cycles. If these two cycles have no common elements,
then their product πσ simply sends vi → vi+1 for i < h, ui → ui+1 for i < k, vh → v1 and uk → u1. In
other words, the actions of π and σ are disjoint.

7.3.4 Exercise

Prove that, if π, σ are two disjoint cycles, then πσ = σπ. Show that this property is lost in general if the
two cycles are not disjoint.

We write the product of two disjoint cycles by simply juxtaposing the two cycles, namely:

(v1, . . . , vh)(u1 . . . , uk).

If the cycles π, σ have some common elements, this analysis no longer holds. For example, if π =
(1, 2, 3) and σ = (1, 2), πσ has the following effect (we apply σ first and π later): 1→ 2→ 3, 2→ 1→ 2,
3→ 3→ 1, which we can write as (1, 3). What is true, however, is that any product of non-disjoint cycles
can be written as a product of (possibly different) disjoint cycles, and moreover that any permutation
can be written as a product of disjoint cycles in a unique way apart from the order of the factors (see [8],
p. 59).

7.3.2 The inductive step

We represent permutations by means of the second row of the 2 × n matrix notation introduced in
Sect. 7.3.1.

108 CHAPTER 7. RECURSIVE ALGORITHMS

The inductive step of our reasoning can be explained by means of an example. Suppose n = 4 and we
are able to produce a complete list of all permutations of 3 elements:

(1, 2, 3), (1, 3, 2), (3, 1, 2), (3, 2, 1), (2, 3, 1), (2, 1, 3).

We write each of these permutations four times, and write the number 4 in every possible position, as
follows.

1 2 3 4

1 2 4 3
1 4 2 3
4 1 2 3

1 3 2 4

1 3 4 2
1 4 3 2
4 1 3 2

3 1 2 4

3 1 4 2
3 4 1 2
4 3 1 2

3 2 1 4

3 2 4 1
3 4 2 1
4 3 2 1

2 3 1 4

2 3 4 1
2 4 3 1
4 2 3 1

2 1 3 4

2 1 4 3
2 4 1 3
4 2 1 3

We just obtained a complete list of all permutations of 4 elements.

7.3.2.1 Generalizing the example to an integer n

For a general n, if we have a complete list of permutations of n − 1 elements, we have to write each of
them n times, then insert the number n at ever possible position (there are n such positions) in each
block of n equal permutations of n− 1 elements. This exhausts all the possibilities.

7.3.5 Exercise

Reasoning by contradiction, prove the last statement formally.

7.3.2.2 The induction starts at 1

Can we list all permutations of one element? Sure, here it goes: (1). This will be the base case of our
recursive method.

7.3.3 The algorithm

The recursive function permutations, given below, takes an integer n as input, and returns a set L of
all permutations of n elements. It makes use of a temporary set L′ containing all permutations of n− 1
elements, which is obtained by a recursive call to permutations with the argument set at n − 1. The
permutation π is represented, as in Sect. 7.3.1, as a sequence of integers (π1, . . . , πn−1).

7.3. LISTING PERMUTATIONS 109

function permutations(n) {
1: if (n = 1) then
2: L = {(1)};
3: else

4: L′ = permutations(n− 1);
5: L = ∅;
6: for ((π1, . . . , πn−1) ∈ L′) do
7: for (i ∈ {1, . . . , n}) do
8: L← L ∪ {(π1, . . . , πi−1, n, πi, . . . , πn−1)};
9: end for

10: end for

11: end if

12: return L;
}

7.3.3.1 Data structures

Since the number n needs to be inserted at every possible position in the sequence π = (π1, . . . , πn−1),
we choose a list for storing π. As for the sets L,L′, since we know their sizes a priori (they have n! and,
respectively, (n− 1)! elements, by Exercise 7.3.3), arrays will suffice. For π, on the other hand, since we
need to add the element n at every possible position, we need linked lists.

7.3.4 Java implementation

Since permutations are in fact orders on sets with elements in {1, . . . , n}, the Java implementation of the
permutation listing algorithm is stored in the file Orders.java, containing only the class Orders, which
also contains the main method.

The file starts as usual, with comments and imports.

/*

Name: Orders.java

Purpose: list all permutations of n symbols

Author: Leo Liberti

Source: Java

History: 28/8/11 work started

*/

import java.io.*;

import java.util.*;

import java.lang.*;

7.3.4.1 Class structure

Here is the structure of the Java class: it consists of just three static methods. As mentioned above, we
represent permutations as linked lists and sets of permutations as arrays.

class Orders {

// used to print a list of integers in permutation format

public static void printList(LinkedList<Integer> tl);

110 CHAPTER 7. RECURSIVE ALGORITHMS

// find all permutations (or orders) on n symbols

public static ArrayList<LinkedList<Integer> > orders(int n);

// the main method

public static void main(String[] args);

}

The printList method simply prints out a linked list of integers: this is the representation of a
permutation, so this method actually prints a permutation to the screen.

The orders method implements the recursive algorithm, and returns a set L of all permutations of n
elements. We need to spend a paragraph about the difficult-looking type

ArrayList<LinkedList<Integer> >.

The ArrayList type is a parametrizable class that implements an array whose elements contain whatever
parameter type is given between angular brackets. In this case, the parameter type is LinkedList<Integer>,
which is the same type taken by printList to print out permutations. So, all in all,

ArrayList<LinkedList<Integer> >

is the type of L and L′ in the algorithm.

By the way, we are using Integers rather than ints because the former are passed by reference whilst
the latter are passed by value, and you should always use “reference classes” (rather than elementary
data types) as parameter types to parametrizable classes.

7.3.4.2 The main method

The point of entry reads an integer n from the first argument of the command line, then calls the
recursive function orders(n), storing the resulting set in the ArrayList L of LinkedLists of Integers,
then declares an Iterator object to L.

Iterators behave like pointers, insofar as their next() method will return the next object stored in
the linear data structure. Their hasNext() method allows testing whether the current reference being
held in the Iterator points to the dummy object signaling the end of data structure. If this is not the
case, then the next reference is printed on the screen.

public static void main(String[] args) {

// read n from cmd line

int n = Integer.parseInt(args[0]);

// first call to recursive function

ArrayList<LinkedList<Integer> > L = orders(n);

// loop on permutation list and print them all out

Iterator<LinkedList<Integer> > ait = L.iterator();

while(ait.hasNext()) {

printList(ait.next());

System.out.println();

}

}

7.3. LISTING PERMUTATIONS 111

7.3.4.3 The printList method

The printList method also makes use of Iterators to print on the screen the list representation of the
permutations.

public static void printList(LinkedList<Integer> tl) {

Iterator<Integer> lit = tl.iterator();

System.out.print("(");

while(lit.hasNext()) {

System.out.print(lit.next() + " ");

}

System.out.print(")");

}

7.3.4.4 The orders method

This is the implementation of the main recursive function. The comments are in the code.

public static ArrayList<LinkedList<Integer> > orders(int n) {

// an array whose components are lists of integers

// the i-th component of the array contains the i-th permutation

ArrayList<LinkedList<Integer> > L =

new ArrayList<LinkedList<Integer> >();

if (n == 1) {

// base case for recursion

// when n=1, there is only one permutation: the identity (1)

LinkedList<Integer> identity = new LinkedList<Integer>();

identity.add(1);

L.add(identity);

} else {

// recursive step

// L’ is the list of permutations on n-1 symbols

ArrayList<LinkedList<Integer> > Lprime = orders(n-1);

// loop on permutations of n-1 symbols

Iterator<LinkedList<Integer> > ait = Lprime.iterator();

while(ait.hasNext()) {

// smallOrder is the next permutation in L’

LinkedList<Integer> smallOrder = ait.next();

// loop on permutation vector indices from last to first

for(int i = n-1; i >= 0; i--) {

// insert symbol n at the i-th position in the smaller perm

smallOrder.add(i, (Integer) n);

// produce a new permutation as a copy of the old one

112 CHAPTER 7. RECURSIVE ALGORITHMS

LinkedList<Integer> newOrder =

new LinkedList<Integer>(smallOrder);

// add this new permutation to the list L

L.add(newOrder);

// remove symbol n from smaller permutation

smallOrder.remove(i);

}

}

}

return L;

}

7.4 The Hanoi tower

This is a great classic in the didactics of recursion; you’ll find hundreds, if not thousands, of different
treatments either in print or online, so we’ll skim over this quickly.

The Hanoi towers is a game which consists of three poles, one of which holds a stack of k concentric
flat cylinders with increasing radii (disks at the bottom of the stack have higher radius). The (unique)
player is challenged to move the stack, one cylinder at a time, from one pole to another without ever
changing the radius order (larger cylinders below smaller ones) — see Fig. 7.3.

Figure 7.3: The moves of the Hanoi towers game (picture taken online some time ago on Wikipedia — I
think).

7.4. THE HANOI TOWER 113

7.4.1 Inductive step

We shall number the poles from 1 to 3. In order to move k cylinders from pole 1 to pole 3, this is what
we do:

1. move the topmost k − 1 cylinders from pole 1 to pole 2

2. move the largest (bottom) cylinder from pole 1 to pole 3

3. move the k − 1 discs from pole 2 to pole 3.

Notice that in order to move k cylinders, we move k − 1 cylinders twice, and move just one (the largest)
cylinder from a pole to another (free) pole. This solution seems to be good, as long as we know how to
move k − 1 cylinders.

We also remark that the steps involving the movement of k − 1 cylinders present no fundamental
difference, aside from size, with moving k cylinders. Since we are leaving the largest cylinder fixed, it is
never problematic: it is the largest, and it is at the bottom.

7.4.2 Base case

Our recursion base case is to deal with the case where k = 1, i.e. the stack only consists of one cylinder.
This is easy: simply move it from pole 1 to pole 3, since there are no other complicating cylinders.

7.4.1 Exercise

Is the Hanoi tower game harder or easier if we add poles?

7.4.3 Java implementation

The Java implementation of the Hanoi tower game is really simple. We hold a single Hanoi class in the
file Hanoi.java, which starts with the usual comments and imports. The Hanoi class only consists of
two static methods: move(int from, int to, int k), which moves k cylinders from pole from to pole
to; and main.

// move "cylinders" cylinders from stack "from" to stack "to"

public static void move(int from, int to, int k) {

if (k == 1) {

// base case for recursion

System.out.println("move upper cyl. on stack "+from+" to stack "+to);

} else {

// recursive step

// computing the index of the other stack

// (which is neither "from" nor "to")

int other = 6 - (from + to);

// first move k-1 cylinders from "from" to "other"

move(from, other, k-1);

// now move one cylinder from "from" to "to"

move(from, to, 1);

114 CHAPTER 7. RECURSIVE ALGORITHMS

// finally move k-1 cylinders from "other" to "to"

move(other, to, k-1);

}

}

7.4.2 Exercise

Prove that if i 6= j ∈ {1, 2, 3}, then h = 6− (i+ j) is such that {i, j, h} = {1, 2, 3}.

The main method reads the number of cylinders in the initial stack from the command line.

public static void main(String[] args) {

// read number of cylinders to move from cmd line

String theArg = args[0];

int cylinders = Integer.parseInt(theArg);

// move these cylinders from stack 1 to stack 3

move(1,3,cylinders);

}

7.5 Recursion in logic

Most of axiomatic set theory is built on recursive principles. One starts with very elementary notions,
such as the empty set, and recursively applies simple operators and modifiers, to build ever more complex
structures. Infinities of different ordinality and cardinality are treated using transfinite recursion [14].

In this section, I shall try to give you a very simplified, schematic and partial view of what is possibly
the most famous theorem in mathematics: Gödel’s incompleteness theorem.

7.5.1 Definitions

Axioms are given sentences (of a formal language) that define certain abstract entities (in our case, we
require axioms to describe at least the nonnegative integers). Axioms are true by definition. The notation
Φ ⊢ ψ indicates that sentence ψ is a logical consequence of sentences in set Φ. The logical rules implicated
in Φ ⊢ ψ are required to be carried out by a computer. Let A be a set of axioms sufficient to define
integer arithmetic (e.g. Peano’s Axioms). A theory is a set T ⊇ A of sentences such that A ⊢ φ for each
φ ∈ T .

• A theory is consistent when it does not contain pairs of contradictory sentences φ,¬φ.
• A theory is complete when every true statement expressible in the language is also in the theory.

Notice that there is a distinction between truth and logical consequence: a sentence might be true although
we may not be able to prove it. This was the situation with Fermat’s last theorem until A. Wiles found
a proof. Completeness essentially asks a theory that it should prove every true statement.

7.5.2 Gödel’s theorem

It was Hilbert’s dream to prove that a set of axioms powerful enough to do integer arithmetic in would
be both consistent and complete, i.e. all proofs could be derived computationally for all and only for true
sentences. Gödel shattered Hilbert’s dream, showing that no axiomatic system for integer arithmetic can
ever be both consistent and complete.

7.5. RECURSION IN LOGIC 115

7.5.3 The beautiful and easy part of the proof

If T is inconsistent, then every valid sentence of the language, be it true or false, can be proved (can
you show this to be the case?). So we assume T is consistent and aim to show that there exists a true
sentence not in T . Consider the sentence γ, defined recursively as T¬ ⊢ γ. In natural language, γ states
“I cannot be proved in T ”.

By the law of the excluded middle, exactly one sentence in the set {γ,¬γ} is true, and the other is
false. We aim to prove that neither is in T : this way it does not matter which is true and which is false,
at least one true sentence of the language will fail to be in T .

We ask the following questions.

• Is γ ∈ T ? If so, then T ⊢ γ, which means that T ⊢ (T 6⊢ γ), i.e. T 6⊢ γ, i.e. γ 6∈ T . This is a
contradiction.

• Is (¬γ) ∈ T ? If so, then T ⊢ ¬γ, i.e. T ⊢ ¬(T 6⊢ γ), that is T ⊢ (T ⊢ γ), thus T ⊢ γ. In other words,
assuming T ⊢ ¬γ leads to T ⊢ γ, which implies that T is inconsistent. This is a contradiction, as
we had assumed T to be consistent.

We can only conclude that T must be incomplete.

7.5.4 The other part of the proof

It is not immediately evident that the recursive definition T¬ ⊢ γ has a “base case”. The most difficult
part of Gödel’s proof is to encode all the logic he needed for his argument within nonnegative integers. In
particular, he was able to provide a “finiteness proof” for his recursive definition. This is very technical,
and we shall cowardly eschew it here. However, if you feel up to a really hard task,

7.5.1 Exercise

Provide a formal proof of Gödel’s theorem.

This has something to do with mapping all valid sentences to nonnegative integers bijectively, and showing
that there exists an integer that maps back to γ. Of course you are free to read Gödel’s original proof
(bordering on the incomprehensible) as well as any of the dozens of books (technical and otherwise)
published about this matter.

7.5.5 A natural language interpretation

Let us go back to γ, which was translated above to the natural language sentence “I cannot be proved in
T ”. The easy part of Gödel’s proof is as follows. Prove “I cannot be proved”: if you can, what cannot be
proved is proved, which is a contradiction. So prove “it is not true that I cannot be proved”. If you can,
then “I” can be replaced by what it stands for, i.e. “I cannot be proved”: you then just proved that “it is
not true that ‘I cannot be proved’ cannot be proved”, which is the same as “it is true that ‘I cannot be
proved’ can be proved” (we removed the double negation), i.e. ‘I cannot be proved’ can be proved, which
is again a contradiction. This is why neither γ nor its converse can be proved in T , which is the reason
why T must be incomplete.

116 CHAPTER 7. RECURSIVE ALGORITHMS

Chapter 8

Graph searching and traversal

Abstract. How to efficiently visit all vertices in a graph: breadth-first search, depth-first

search, and Prim’s algorithm (with applications).

In this chapter we shall present and discuss some basic (and efficient) algorithms that explore, search
and examine vertices and edges in graphs.

8.1 Graph scanning

A common task when solving problems on graphs is to visit all the vertices: this may be a precondition
for verifying some claim over the graph vertices, or spawn actions on every vertex. The technical term is
scanning the vertices of a graph (or the nodes of a digraph), starting from a given vertex (or node) s.

8.1.1 The Graph Scanning algorithm

Consider the following Graph Scanning algorithm. It scans vertices (then puts them in a set R), and
examines vertices from a set Q.

Require: G = (V,E), s ∈ V , R = {s}, Q = {s}
1: while Q 6= ∅ do

2: choose v ∈ Q // v is scanned

3: Q← Qr {v}
4: for w ∈ N(v)rR do

5: R← R ∪ {w}
6: Q← Q ∪ {w}
7: end for

8: end while

While there remain vertices in Q, we pick one, say v, and explore the vertices of its star N(v) (or outgoing
star N+(v) in case of a digraph) that are still unscanned. We mark these as “scanned” by putting them
in R, and also put them in Q to be examined later. The algorithm ends when there are no more vertices
in Q.

117

118 CHAPTER 8. GRAPH SEARCHING AND TRAVERSAL

8.1.1.1 Correctness

The Graph Scanning algorithm scans all vertices connected to s, by the following theorem.

8.1.1 Theorem

If there is a path P from s to z ∈ V , then Graph Scanning scans z.

Proof. Suppose the claim is false, then there must exist an edge {x, y} in P such that, after the ter-
mination of Graph Scanning, x ∈ R and y 6∈ R, since R is the set of scanned vertices. The previous
statement holds by induction: it if were false, then by induction on the path length you would immedi-
ately conclude that z ∈ R, but we are supposing the claim false now. By Steps 5-6, x is added to Q at
the same time it is added to R. Also, the algorithm will not stop until Q is empty, so at a certain point x
is chosen from Q at Step 2. Immediately afterwards, all vertices in N(v)rR are examined and scanned
— in particular, since {x, y} is in P and P is a path in G, then y ∈ N(v) and y 6∈ R means that y is
added to R, which is a contradiction — hence the claim must be true. ✷

8.1.2 Exercise

Adapt Thm. 8.1.1 to digraphs.

8.1.1.2 Complexity

The Graph Scanning algorithm takes time O(n +m), where n = |V | and m = |E|.

8.1.3 Theorem

If the graph is encoded as adjacency lists, Graph Scanning takes O(n+m) in the worst case.

Proof. By Thm. 8.1.1, each vertex enters R at least once. By Step. 4, it enters R only once. Moreover,
no vertex enters Q without entering R (Steps 5-6), so each vertex enters Q at most once. This accounts
for the O(n) part. Now we claim that each edge {x, y} is only considered twice. When x = v in Step
2, then y ∈ N(x), so either y = w in Step 5-6 or y ∈ R in the test at Step 4. In both cases, the pair
{x, y} is considered once. It is considered a second time when y = v, since x ∈ N(y). This accounts for
the O(m) part. The choice of v at Step 2, the removal at Step 3, and the insertion of w at Step 6 can
be done in constant time if Q is a linked list. The verification that w 6∈ R at Step 4 and the insertion at
Step 5 can be done in constant time if R is a binary array of n bits, with the v-th bit set to 1 if v ∈ R
and to 0 otherwise. Thus the total running time in the worst case is O(n +m). ✷

8.1.4 Exercise

Adapt Thm. 8.1.3 to digraphs.

8.1.5 Exercise

Implement the Graph Scanning algorithm in Java.

8.1.1.3 Connected components

Notice that Graph Scanning identifies a connected component of the graph G containing the source
vertex s. This follows by Thm. 8.1.1: if there is a path from s to z, then the algorithm scans z.

8.1.6 Exercise

Prove that if there is no path from s to z, then Graph Scanning starting from s does not scan z.

8.1. GRAPH SCANNING 119

This can be used to identify all connected components of a graph: let a be an integer array indexed
by V , which associates to v ∈ V the index of the connected component it belongs to. Initially, a(v) = 0
for all v ∈ V . Now let i = 1, pick any v ∈ V and run Graph Scanning, setting a(w) = i whenever w
is scanned. When the algorithm terminates, increase i, pick any other v ∈ V with a(v) = 0, and repeat,
until no more v have a(v) = 0.

8.1.7 Exercise

Implement a Java algorithm for identifying all connected components in a graph.

8.1.1.4 The exploration tree

Consider the following modification of Graph Scanning algorithm: we initialize an edge set F = ∅ at
the beginning, and then insert the instruction F ← F ∪ {v, w} between Step 4 and 5.

8.1.8 Theorem

At the end of the Graph Scanning algorithm, the graph T = (R,F) is a tree.

Proof. That T is connected follows from Thm. 8.1.1. Suppose now, to arrive at a contradiction, that
T has a cycle C. Let x, y be two vertices in C. Since C is a cycle, there are two paths P1, P2 with
P1∪P2 = C, both from x to y, that have no vertex in common aside from x and y (see Fig. 8.1). Assume,

x

v1 v2

yv3 v4

P1

P2

Figure 8.1: A cycle C can be partitioned in two paths P1, P2 from x to y.

without loss of generality, that x is scanned before y. Since we assumed C to be a subset of T , two edges,
{v2, y} in P1 and {v4, y} in P2 will be added to F . Assume that {v2, y} is added first; then y becomes
scanned and enters R. But then when v4 is chosen from Q at a later iteration, because y ∈ R, {v4, y}
cannot be added to F , hence nor to P2 and nor to C, which provides us with a contradiction. Hence T
cannot contain cycles, which concludes the argument. ✷

Thus, Graph Scanning identifies a tree T in G.

8.1.9 Exercise

Prove that, if G is connected, then the tree T is spanning.

8.1.1.5 Choosing v ∈ Q

The choice of v ∈ Q at Step 2 determines the order in which the nodes are scanned. This order can be
changed using different data structures to implement the set Q. The two most commonly used ones are
stacks and queues.

120 CHAPTER 8. GRAPH SEARCHING AND TRAVERSAL

8.2 Breadth-first search

Let Q be a queue in the Graph Scanning algorithm. We can only remove elements from one end using
the popFront() method, which removes the first element of the queue and returns. And we can only
insert elements at the other end using the pushBack() method, which simply inserts a new element as
the last in the queue.

The corresponding implementation of the Graph Scanning algorithm has a remarkable property:
it ranks vertices according to how far they are from the given source vertex s (the distance of v from s
being the number of edges on the shortest path from s to v). We enrich the Graph Scanning algorithm
with a vertex ranking function α such that α(s) = 0 at the outset, and α(w) = α(v) + 1 if w ∈ N(v) at
Steps 5-6.

Here is theBreadth-First Search (BFS) algorithm.

Require: G = (V,E), s ∈ V , R = {s}, Q = {s} is a queue
1: α(s) = 0
2: while Q 6= ∅ do

3: pop v from the front of the queue Q
4: for w ∈ N(v)rR do

5: α(w) = α(v) + 1
6: R← R ∪ {w}
7: push w on the back of the queue Q
8: end for

9: end while

8.2.1 Paths with fewest edges

What kind of paths does BFS determine? Recall by Sect. 8.1.1.4 that Graph Scanning (and hence
BFS) identifies a tree T within the given graph G = (V,E); if the graph is connected, the tree is spanning.

8.2.1 Exercise

Prove that, given any graph G, any spanning tree T of G, and any pair of distinct vertices x, y of G,
there is a unique path from x to y using edges of T .

The spanning tree identified by the BFS is also called the BFS tree. We are now going to show that the
BFS tree is also a shortest path tree for G, as long as the length of a path is counted as the number of
its edges.

8.2.2 Lemma

Let (s, v1, . . . , vk) be any path in the BFS tree. Then α(vk) = k.

Proof. By induction on k. When k = 1 this holds because at Step 5 α is set to 1 for all vertices in
N(s)rR, which includes v1. Assume the result holds for k− 1. Consider the iteration of the BFS when
vk−1 is extracted from Q at Step 3: by the induction hypothesis, α(vk−1) = k − 1. Since {vk−1, vk} is
in the path, which is itself in the BFS tree, vk is not yet in R when vk−1 is extracted from Q: so BFS
performs step 5 with w = vk, which implies that α(vk) = k, as claimed. ✷

The BFS rank of a vertex v ∈ V is the number of edges in the unique path from s to v in the BFS
tree.

8.2.3 Lemma

For any k, all vertices of BFS rank k are adjacent in Q.

8.2. BREADTH-FIRST SEARCH 121

Proof. By induction on k. When k = 0, this is obvious as there is only one vertex with this BFS rank,
namely s. Assume the property holds for k− 1, then all the vertices u with α(u) = k− 1 enter the queue
Q one after the other. Now because of Step 5, all vertices v with α(v) = k enter the queue because they
are adjacent to a vertex u with α(u) = k − 1. Since all such vertices are adjacent in Q, and vertices are
extracted from Q consecutively, result follows. ✷

8.2.4 Corollary

If α(u) < α(v), u enters Q before v does.

8.2.5 Exercise

Prove Cor. 8.2.4.

8.2.6 Exercise

Prove that α is a well-defined function, i.e. no vertex v is assigned two different values of α.

8.2.7 Theorem

Given a graph G = (V,E) with unit edge costs, a BFS on G from a vertex s ∈ V determines a shortest
path tree rooted at s.

Proof. Let t 6= s be a vertex in V , and consider a path P = (s, v1, . . . , vk = t) on the BFS tree T .
Suppose, to get a contradiction, that the path P is not shortest from s to t. Since subpaths of a shortest
path are also shortest (see Thm. 12.3.1 below), there must exist a sub-path of P ′ = (s, v1, . . . , vh) of P ,
with h < k, such that R′ is not shortest from s to vh. By Lem. 8.2.2, α(vh) = h. Since P ′ is not shortest,
there must be a different path P ′′ = (s, u1, . . . , uℓ, vh) which is shortest from s to vh: necessarily we have
ℓ + 1 < h. Again by Lem. 8.2.2 we have α(uℓ) = ℓ. Moreover, by Cor. 8.2.4, uℓ enters Q before vh,
so the BFS finds P ′′ before P ′. Because uℓ, vh are consecutive vertices on the path P ′′, there must be
an edge {uℓ, vh} ∈ E, and since P ′′ is found before P ′, we have α(vh) = ℓ + 1 (by Step 5); and since
ℓ+ 1 < h = α(vh), we obtain α(vh) < α(vh), a contradiction. ✷

Algorithmically, we can get rid of the data structure for storing the set R and only use the storage
for α, as follows. We allocate an integer array α indexed on V , and initialize it at α(v) = |V |+ 1 for all
v ∈ V . We replace the test w ∈ N(v)rR at Step 4 with

w ∈ {N(v) | α(v) = |V |+ 1},

and eliminate Step 6 and all other references to R. This works because α(v) = |V |+ 1 if and only if v is
unscanned: whenever a vertex is scanned, its α value is assigned by Step 5 to a value < |V |.

8.2.2 History of the BFS

BFS was independently discovered by several people, and no-one quite knows who was first. The first
publication I could find is Claude Berge’s book [2], published in 1958. The description is shown in Fig. 8.2.

8.2.3 Looking for a good route in public transportation

Consider a bus network with the following timetables:

A
1 h:00
2 h:10
3 h:30

B
1 h:00
4 h:20
5 h:40

C
2 h:10
3 h:20
5 h:30

D
4 h:20
5 h:40
6 h:50

E
2 h:05
5 h:10
6 h:30

F
3 h:25
4 h:30
6 h:40

122 CHAPTER 8. GRAPH SEARCHING AND TRAVERSAL

Figure 8.2: The original description of the BFS algorithm in [2].

How do we find a convenient itinerary from bus stop 1 to bus stop 6, leaving at h:00?

We model the problem by means of an event network: the nodes are labelled by pairs (bus stop, minutes
after the hour), and an arc ((b1,m1), (b2,m2)) denotes: (i) a bus going from stop b1 at h:m1 to stop b2
at h:m2, if b1 6= b2; (ii) waiting at stop b1 from h:m1 to h:m2 if b1 = b2. Each arc ((b1,m1), (b2,m2)) is
labelled by the length of time that separates the events (b1,m1) and (b2,m2). For the timetables above,
the event network is given in Fig. 8.3.

1 / 0 0

2 / 1 0

A / 1 0

4 / 2 0

B / 2 0

2 / 0 5

5

5 / 1 0
E / 5

3 / 2 0
C / 1 0

3 / 3 0

A / 2 0 3 / 2 5

5

5 / 3 0

C / 1 0

5

4 / 3 0

F / 5

1 0

5 / 4 0

B / 2 0

D / 2 0

6 / 4 0

F / 1 0

2 0

6 / 3 0

E / 2 0

1 0

6 / 5 0

D / 1 0

1 0

1 0

Figure 8.3: An event network.

8.3. DEPTH-FIRST SEARCH 123

We apply BFS to the event network of Fig. 8.3, with s = (1, 00). Here is the evolution of the queue
Q:

1. Q = {(1, 00)} (initialization)
2. Q = ∅ (Step 3)

3. Q = {(2, 10), (4, 20)} (Step 7)

4. Q = {(4, 20)} (Step 3)

5. Q = {(4, 20), (3, 20), (3, 30)} (Step 7)

6. Q = {(3, 20), (3, 30)} (Step 3)

7. Q = {(3, 20), (3, 30), (4, 30), (5, 40)} (Step 7)

8. Q = {(3, 30), (4, 30), (5, 40)} (Step 3)

9. Q = {(3, 30), (4, 30), (5, 40), (3, 25), (5, 30)} (Step 7)

10. Q = {(4, 30), (5, 40), (3, 25), (5, 30)} (Step 3)

11. Q = {(5, 40), (3, 25), (5, 30)} (Step 3)

12. Q = {(5, 40), (3, 25), (5, 30), (6, 40)} (Step 7)
At this point, we know we can get to bus stop 6 at h:40, but since there are other nodes labelled
with bus stop 6 (one of which has a time label h:30), we have to continue and see if there are some
other paths leading to a better time.

13. Q = {(3, 25), (5, 30), (6, 40)} (Step 3)

14. Q = {(3, 25), (5, 30), (6, 40), (6, 50)} (Step 7)
So we can also get to bus stop 6 at h:50.

15. Q = {(5, 30), (6, 40), (6, 50)} (Step 3)

16. Q = {(6, 40), (6, 50)} (Step 3)

17. Q = {(6, 50)} (Step 3)

18. Q = ∅ (Step 3).

Thus we conclude that the most convenient itinerary from stop 1 to stop 6 arrives at 6 at h:40. On
the other hand, we never specified what “convenient” really meant. We automatically assumed it meant
“fast”, but, as we said before, the BFS finds shortest paths to all nodes only in terms of number of edges.
Since each edge in the event network represents a change of mode of transportation (there are seven such
modes: waiting, bus A, . . . , bus F), the BFS identifies paths that minimize the number of changes. Since
(6, 40) is the first node for bus stop 6 that entered the queue, in view of Cor. 8.2.4 the (directed) path
((1, 00), (4, 20), (4, 30), (6, 40)) is the shortest in terms of number of changes. It suffices to change three
times: bus B from stop 1 to stop 4, then wait for 10 minutes at stop 4, then bus F from stop 4 to stop 6.

8.3 Depth-first search

Let Q be a stack in the Graph Scanning algorithm. We insert and remove elements from one end of
the linear data structure only, using the methods push() and pop(). The resulting algorithm is called
Depth-First Search (DFS).

Require: G = (V,E), s ∈ V , R = {s}, Q = {s} is a stack
1: while Q 6= ∅ do

2: pop v from the stack Q
3: for w ∈ N(v)rR do

4: R← R ∪ {w}
5: push w on the stack Q
6: end for

7: end while

124 CHAPTER 8. GRAPH SEARCHING AND TRAVERSAL

Understanding DFS may be hard at first. Let us first see the effect on DFS on a tree.

8.3.1 Example

Consider the following tree, setting s = 1. Boxed elements are on the stack.

1

5

6

2

43

1 is pushed

1

5

6

2

43

1 is popped, 2, 5 are pushed

(in this order)

1

5

6

2

43

5 is popped, 6 is pushed

1

5

6

2

43

6 is popped

1

5

6

2

43

2 is popped, 3, 4 are pushed

(in this order)

1

5

6

2

43

4 is popped

1

5

6

2

43

3 is popped

So the order of the visit is 1, 5, 6, 2, 4, 3.

In other words, every path from the source to a leaf is explored by depth first, backtracking from
every reached leaf to the closest ancestor (i.e. previously visited vertex on the same path) with at least
three neighbours, or the source, and continuing until each edge has been traversed exactly twice (once
in each direction). On general graphs, just imagine the effect of the test v 6∈ R at Step 3: if v was just
popped off the stack a node has already been scanned previously, the edge is ignored.

DFS has been used for several different tasks in graph theory, see e.g. the WikiPedia entry
http://en.wikipedia.org/wiki/Depth-first_search.

8.3.1 A recursive version of DFS

DFS can also be written as a recursive algorithm. This should not be so surprising, in view of the rela-
tionship between stacks and recursion discussed in Chapter 7. Given a connected graph G = (V,E) and a
source vertex s ∈ V , consider the following recursive function dfs(G, s,R, v):

1: for w ∈ N(v)rR do

2: R← R ∪ {w}
3: dfs(G, s,R,w)
4: end for

The DFS search of G from s is then simply dfs(G, s, {s}, s).

8.3.2 Exercise

Rewrite the recursive DFS algorithm iteratively by means of a stack, and verify that it is the same as
the DFS algorithm given at the beginning of Sect. 8.3.

http://en.wikipedia.org/wiki/Depth-first_search

8.3. DEPTH-FIRST SEARCH 125

8.3.2 History of the DFS

The DFS is one of the oldest methods in graph theory; its first application was finding the way out of
mazes. Recursion is easily explained in this setting: a person inside a maze can barely be tele-transported
to a different location without actually travelling through the maze; so that from any visited node, one
can only go on visiting the adjacent nodes, and so on recursively.

U. Eco, in The Name of the Rose, has William of Baskerville read the following text from an ancient
manuscript, which must have dated before 1300:

To find the way out of a labyrinth, there is only one means. At every new junction, never
seen before, the path we have taken will be marked with three signs. If, because of previous
signs on some of the paths of the junction, you see that the junction has already been visited,
you will make only one mark on the path you have taken. If all the apertures have already
been marked, then you must retrace your steps. But if one or two apertures of the junction
are still without signs, you will choose any one, making two signs on it. Proceeding through
an aperture that bears only one sign, you will make two more, so that now the aperture bears
three. All the parts of the labyrinth must have been visited if, arriving at a junction, you never
take a passage with three signs, unless none of the other passages is now without signs.

Of course, Eco’s book is a novel, not history. Furthermore, the algorithm looks much more complicated
than DFS. Yet there is both backtracking (“retrace your steps”) and the statement of a theorem about
termination. It is also clear that this algorithm, unlike DFS, allows a searching agent to re-visit some
junctions.

König, in the chapter of his book [13] dedicated to the labyrinth problem, reports the algorithms
of Wiener’s, published in 1873, and Trémaux, published in 1882. The latter is now established [4] with
being the official creator of the DFS. WikiPedia reports that Trémaux was enrolled at Ecole Polytechnique
(X1876).

R. Tarjan published a series of works that established DFS as a very versatile algorithm, which can be
used for many important fundamental tasks in graph theory. For example, DFS can be used to identify
the blocks of a graph and the cut vertices in linear time. A cut vertex is a vertex which, if removed,
disconnects the graph. A block is a subgraph connected to the rest of the graph by means of a single cut
vertex.

DFS can also be used to determine whether a graph is planar (i.e. whether it can be drawn in the
plane without edge intersections). On digraphs, DFS can be used to determine a topological order on the
vertices of a Directed Acyclic Graph (DAG). The vertices of a DAG are in topological order if they are
labelled so that, for any arc (u, v), we have u < v.

8.3.3 Easy and difficult natural languages

In Sect. 6.4.3.4, we explained that understanding the grammatical structure of sentences in natural
languages requires them to be parsed into a derivation tree. When you hear a sentence, however, you
simply hear a sequence of words. How is a sequence (a linear structure) turned into a tree? We may assume
that our brain is doing the parsing, and that the leaves of the tree are some fundamental syntactical units
to which a basic meaning is attached. The complex meaning of the whole sentence is then put together
by the brain by combining the basic meanings of the leaves, retracing each path from the leaves to the
root.

Under this hypothesis, the brain performs a DFS on the derivation tree. The memory effort made by
the brain is proportional to the tree depth: one needs to remember all the intermediate vertices along
a path from a leaf to the root in order to build the meaning relative to that path. The derivation tree

126 CHAPTER 8. GRAPH SEARCHING AND TRAVERSAL

of the sentence the soft furry cat purrs (see Fig. 8.4) has depth 6; the brain must remember at most

sentence

names verb (purrs)

name

article (the) adjectives noun (cat)

adjective (soft) adjectives

adjective (furry)

Figure 8.4: The derivation tree of the soft furry cat purrs.

a sequence of 6 vertices to retrace to the root vertex. Miller, in 1956, proposed that on average, the
human memory can recall seven random words without efforts. In our setting, we can take this to mean
that the maximum “stack size” for the brain is 7. Sentenes are “simple” if the depth is 7 or less, and
“complicated” if more.

The brain, however, also follows a precise order when processing vertices at Step 3 of the (iterative)
DFS algorithm. This order is that of the temporal arrival of the words to the ear. What is said before is
processed before what is said later. We identify two “tree shapes” that are at the extrema of all possible
derivation trees: the regressive trees, slanted towards the left, and the progressive trees, slanted towards
the right (see Fig. 8.5). A regressive derivation tree corresponds to a sentence whose basic meanings

•

••

••

••

••

•

•

•

•

••

•

•

•

Figure 8.5: Regressive (left) and progressive (right) tree shapes.

comes later in time: in “the soft, furry cat purrs”, for example, the most basic meanings are assigned to
the leaves cat and purrs, the last words to be heard by the ear. A progressive derivation tree corresponds
to a sentence whose basic meanings come early in time: in “l’éleve retardataire n’apprend que la moitié
des choses qu’on lui enseigne”, the most basic meanings are assigned to the leaves éleve, retardataire and
apprend, the first words to be heard.

When DFS is applied to a regressive tree, it needs as much stack size as the tree depth. However,
when DFS is applied to a progressive tree, something different happens: once the DFS scans the deepest

8.4. FINDING A SPANNING TREE OF MINIMUM COST 127

(and rightmost) leaf, it no longer needs to backtrack to the root vertex, because the sentence is finished —
there are no more words being heard! In other words, your brain makes much less effort with progressive
than with regressive trees. In algorithmic terms, this means that you no longer need to push vertices on
the stack at Step 5 if you process vertices on a left-to-right order, and you are exploring the rightmost
path [24].

We can draw some linguistic conclusions from all this. Anglosaxon languages, for example, prefix
adjectives to nouns, and are therefore more regressive: when saying “soft, furry cat”, your ear hears soft
and furry before cat, which has the basic meaning: therefore, the adjectives must be remembered (pushed
on the stack) until the noun occurs. Latin languages decrease this tendency, and are more progressive: in
“le lion imposant et sauvage”, you do not need any stack: the basic meaning lion comes before imposant
and sauvage. Somehow, it seems that latin languages are easier from the brain to handle, as far as the
memory effort is concerned. Classical Latin, on the other hand, is different. Consider the famous incipit
of the Aeneid’s second canto, “Inde toro pater Æneas sic orsus ab alto”. Notice how the order looks
random: a literal English translation is “Thereafter seat father Eneas thus standing from a high” (a more
successful translation would be “Thereafter father Eneas, thus standing from a hight seat”). By messing
up the order of the words in the sentence, it produced derivation trees requiring a non-temporal order
on the N(v) loop in the DFS Step 3 in order to reconstitute the sentence’s meaning. Perhaps this is why
Latin is a dead language.

8.4 Finding a spanning tree of minimum cost

A tree T = (U, F) in a graph G = (V,E) is spanning if U = V , as explained in Sect. 6.1.3. Two
applications of minimum cost spanning trees to networks, whose edges are assigned costs, were discussed
in Sect. 6.4.4.

8.4.1 Theorem

Let G = (V,E) be a graph and c : E → R be an edge cost function. Let T = (R,F) be a spanning tree
of G. T is of minimum cost if and only if for each proper subset U of V , the unique edge of the cutset
δ(U) in T has minimum cost in δ(U).

Proof. (⇒) Proceed by contradiction, and assume T is of minimum cost, but there is a proper subset U (

V such that the unique edge e in F ∩δ(U) is not of minimum cost. Because of the minimal connectedness
of T , removing any edge disconnects T into two trees T1 and T2, with T1 spanning U , and T2 spanning
V rU . By definition of a cutset, every edge in δ(U) has one incident vertex in U and the other in V rU , so
every such edge can be used to re-connect T1 and T2 without creating any cycles. Let f be the minimum
cost edge in δ(U): then T ′ = T1 ∪ {f} ∪ T2 is connected, spans all V , and has no cycles: it is therefore a
spanning tree of G. Moreover, the cost of T ′ is c(T ′) = c(T1)+ c(f)+ c(T2) < c(T1)+ c(e)+ c(T2) = c(T),
so T could not be a minimum cost spanning tree, which goes against our assumption.

(⇐) Let T = (R,F) be a spanning tree for G such that T ∩ δ(U) = {e} be an edge of minimum cost
in δ(U) for each proper subset U (V . Let T ′ = (U, F ′) be a minimum cost spanning tree with E ∩ E′

as large as possible. Let f ∈ E r E′. Because of the minimal connectedness of T , the removal of f from
T disconnects T into two disconnected trees T1, T2 spanning respectively a proper subset U (V and
V rU . Consider the unique edge g in δ(U)∩ T ′: if c(g) = c(f) then, since E ∩E′ is as large as possible,
g = f ; but this is impossible since f was chosen to be outside E′. Also, by the hypothesis on T , f must
have minimum cost within δ(U). But then c(g) > c(f). So the tree T ′[U] ∪ {f} ∪ T ′[V r U] is different
from T ′ and has lower cost than T ′, which is impossible as T ′ was assumed to have minimum cost. Thus
E r E′ must be empty, which implies E = E′, which means that T has minimum cost. ✷

8.4.2 Exercise

Prove that for any proper subset U (V , |F ∩ δ(U)| = 1, and that for any tree T and edge e ∈ δ(U),
T [U] ∪ {e} ∪ T [V r U] is a tree.

128 CHAPTER 8. GRAPH SEARCHING AND TRAVERSAL

Here we give an algorithm to determine a Minimum-cost Spanning Tree (MST) based on the (⇐)
direction of Thm. 8.4.1. This algorithm, due to R. Prim and published in 1957, “grows” a spanning tree
T = (R,F), initially set to ({s},∅), starting from a source vertex s ∈ V . At the outset, it selects from
the cutset δ(s) the cheapest edge {s, w} and adds it to F , also adding w to R. The general iteration is
as follows. The cheapest edge {v, w} is selected from the cutset δ(R); by definition, exactly one between
v and w is in R, assume this to be v without loss of generality. Then {v, w} is added to F and w to R.

8.4.1 Prim’s algorithm: pseudocode

Here follows a more detailed pseudocode for Prim’s Algorithm. Given a weighted graph G = (V,E, c)
where c : E → R is an edge cost function, and a source vertex s ∈ V , it outputs a spanning tree
T = (R,F) of G of minimum cost. We denote the edge weight c({u, v}) by cuv for any edge {u, v} ∈ E.
Prim’s algorithm employs the following data structures:

• R: set of reached vertices (vertices in the tree)

• F : set of edges in the tree

• u: best next vertex

• ζ : V rR→ R: cost of reaching from R a vertex outside R

• π : V rR→ R: immediate predecessor in T to a vertex outside R.

It works by iteratively choosing the best edge {u, v} in the current cutset (containing u but not v) and
adding v to the cutset. It terminates when the cutset contains every vertex.

1: R = {s}, F = ∅, ∀v ∈ V set ζ(v) =∞, π(v) = s
2: for w ∈ N(s) do
3: ζ(w) = csw
4: end for

5: while R 6= V do

6: let u ∈ V rR such that ζ(u) is minimum
7: mark u as reached by adding it to R
8: add the edge {π(u), u} to T
9: update ζ, π: ∀v ∈ N(u) s.t. ζ(v) > cuv, let ζ(v) = cuv and π(v) = u.

10: end while

8.4.3 Example

Here is the effect of Prim’s algorithm on the following weighted graph.

1

2

2

2

6

4

1

1

1

1

5

zb

zc

ze

zf

zg

−1

zd

pb

pc

pd

pg

pe

pf

0

1 2

3

45

6

7

1

2

2

2

6

4

1

1

1

1

5

zb

zc

ze

zf

zg

−1

zd

pb

pc

pd

pg

pe

pf

0

1 2

3

45

6

7

1

2

2

2

6

4

1

1

1

1

5

zb

zc

ze

zf

zg

−1

zd

pb

pc

pd

pg

pe

pf

0

1 2

3

45

6

7

1

2

2

2

6

4

1

1

1

1

5

zb

zc

ze

zf

zg

−1

zd

pb

pc

pd

pg

pe

pf

0

1 2

3

45

6

7

8.4. FINDING A SPANNING TREE OF MINIMUM COST 129

1

2

2

2

6

4

1

1

1

1

5

zb

zc

ze

zf

zg

−1

zd

pb

pc

pd

pg

pe

pf

0

1 2

3

45

6

7

1

2

2

2

6

4

1

1

1

1

5

zb

zc

ze

zf

zg

−1

zd

pb

pc

pd

pg

pe

pf

0

1 2

3

45

6

7

1

2

2

2

6

4

1

1

1

1

5

zb

zc

ze

zf

zg

−1

zd

pb

pc

pd

pg

pe

pf

0

1 2

3

45

6

7

8.4.4 Exercise

Fill the empty boxes in Example 8.4.3 with the values for ζ, π at every vertex.

8.4.2 Complexity of Prim’s algorithm

The initialization takes O(n) (Step 2). The main loop (Step 5) also takes O(n). The choice of u (Step
6) takes O(n), the updates of R, T (Steps 7-8) take O(1), and the updates of ζ, π (Step 9) takes O(n).
Altogether, this is:

O(n+ n(n+ 1 + n)) = O(n + n2 + n+ n2)

= O(2(n+ n2))

= O(n + n2) = O(n2).

130 CHAPTER 8. GRAPH SEARCHING AND TRAVERSAL

Chapter 9

Problems and complexity

Abstract. A theoretical excursion in the theory of complexity. Problems and complexity

classes: P and NP. NP-hard and NP-complete problems. Exact and heuristic algorithms.

9.1 Decision problems

In Sect. 1.4.2 and 7.1.2.3, we defined a problem to be a set of pairs (input,output). In fact, we understand
a decision problem to be an infinite set of instances, which are data objects of the same type, together
with a formal question that can only be answered by YES or NO. For example, the Connected Graph

Problem (CGP) takes as input an undirected graph G = (V,E) and asks to determine whether the
graph is connected or not. We remark that in order to qualify as a formal decision problem, the instance
set must be infinite.

In a decision problem, it is not sufficient to guess the answer: we require a proof. Accordingly,
the answer to a given problem instance must be YES or NO with a certificate that anyone can check
computationally to establish the truth of the answer. A certificate may be a combinatorial structure
which, by its very presence, testifies as to the truth of the answer; or a theorem with its formal proof;
or even the printout of all the computation carried out to obtain the YES or the NO. In the case of the
CGP, for example, we might exhibit a spanning tree for a YES, or an empty nontrivial cutset for a NO:
a graph has a spanning tree if and only if it is connected, and has a nonempty nontrivial cutset if and
only if it is not. Notice that an instance might have more than one certificate: for the CGP example,
any spanning tree is an acceptable YES certificate, and any nonempty nontrivial cutset is an acceptable
NO certificate.

An infinite subset of instances out of a given problem is sometimes called a problem case or subproblem.
For example, the CGP restricted to cliques is an infinite class of instances (there is a clique for every
integer n). Because it is easy to show that every clique is connected, the answer to each instance of this
CGP subproblem is always YES, and the proof, valid for every instance, provides an instance-independent
certificate.

131

132 CHAPTER 9. PROBLEMS AND COMPLEXITY

9.2 Optimization problems

In an optimization problem we assign scalar values to all possible YES certificates, and look for certificates
having smallest (minimization) or greatest (maximization) value. If an instance of an optimization
problem is a NO instance, we simply require the proof for the NO (no scalar values are assigned to
NO instances).

The Minimum Spanning Tree (MST) problem is an example of an optimization problem. Discon-
nected graph instances are NO instances, whilst all connected weighted graphs provide YES instances,
and among the set of all spanning trees we require one with minimum cost (more than one spanning tree
might have minimum cost: consider the case where all edges have unit weight).

9.2.1 Relationship between decision and optimization

The abstract decision problem is as follows. Given a set U and a subset V of U , determine whether V
is empty or not. The abstract optimization problem would add a scalar-valued function µ : U → R and
ask to determine whether V is empty, and, if not, find v ∈ V with maximum or minimum µ value.

Let M = {µ(u) | u ∈ U}. A minimization problem (U, V, µ) on a finite set U can be solved by solving
O(log |M |) decision problems (U, Vα) defined by Vα = {v ∈ V | µ(v) ≤ α}. We proceed by bisection (see
Sect. 10.2) on the scalar set M . We start with α set to the median ofM , and solve (U, Vα). If Vα = ∅ we
replace M by {β ∈M | β > α}, otherwise by {β ∈M | β ≤ α}, and we repeat. By the familiar bisection
argument,1 we need at most O(log |M |) iterations before a v ∈ V minimizing µ is found.

9.2.1 Exercise

Adapt the above algorithm to the maximization case.

9.2.2 Exercise

Why does U need to be finite, in the above algorithm?

For example, the MST problem is equivalent to solving a set of decision problems of the form, “given
a weighted graph, and a scalar k, does it have a spanning tree with cost less than k?”.

9.3 Algorithms

In this context, we require an algorithm to solve a problem, rather than a finite set of instances. Proce-
dures that only work with a certain graph, or a finite set of graphs are not considered algorithms. Instead,
an algorithm is the description of a computational procedure, which takes any instance as an input, and
provides an answer with its proof (it might even fail to terminate if the problem is undecidable).

9.4 Complexity

The interest in grouping infinite sets of instances into problems, and to only consider algorithms that can
potentially solve all instances of a problem, is to provide asymptotic answers with respect to algorithmic
complexity. We are mainly interested in three points of view. First, what is the complexity of an algorithm
for a given problem? This is discussed in Sect. 1.4.3.1-1.4.3.3, and, via worst-case complexity, aims to
establish an upper bound for the asymptotic complexity of an algorithm as the instance size increases.

1See INF311.

9.5. EASY AND DIFFICULT PROBLEMS 133

Secondly: what is the algorithm that performs most efficiently on a given problem? This point of
view goes under the name of problem complexity, and aims to establish a lower bound for the asymptotic
worst-case complexity of the best algorithm for solving the problem as the instance size increases.

Typically, in the first case, we want to establish results like “the complexity of Prim’s algorithm
is O(n2).” In the second case, we want to establish results like “the MST problem has polynomial
complexity”. Notice that, in the second case, there might be other algorithms that take an exponential
time to solve the MST in the worst-case (such as for example listing all spanning trees), but we only
focus on the best. The second case is an abstraction of the first: whereas we looked at single algorithms
in the first case, we look at the best over all algorithms for a given problem in the second case.

We look at the third point of view in Sect. 9.5.

9.5 Easy and difficult problems

The third point of view abstracts problems too. We group problems into problem classes and classify
them by algorithmic efficiency: we have a problem class P of all decision problems that can be solved
in worst-case asymptotic time bounded by a polynomial in the instance size, and a problem class NP of
all decision problems whose YES certificates can be verified in worst-case asymptotic time bounded by
a polynomial in the instance size (notice we do not require any condition on NO certificates), as well as
many other problem classes. Informally, P is the class of problems that are “easy” to solve, whereas NP

is the class of problems whose solutions can be verified efficiently.

So we have a formal way to say a problem is easy (it can be solved in polynomial time), and a formal
way to say the solutions of a problem are easy to check. How about a formal way to say that a problem is
difficult? In [10], Garey and Johnson argue that a convenient way to do so would be to say that a problem
is difficult if no-one could solve it efficiently to date. The formalization of this concept is NP-hardness.

9.5.1 Reductions

Suppose we are given a new problem P for which we have to conceive and implement a solution algorithm.
We might notice and exploit a certain similarity between P and a problem we already know how to solve,
say Q. For example, suppose P is the problem of finding a stable (see Sect. 3.3.1) with at least k vertices
in a graph G, for given k and G (this problem is known as k-Stable). The similarity is usually derived
theoretically; consider for example the following result.

9.5.1 Lemma

Given a graph G = (V,E) and U ⊆ V , U is a stable set of G if and only if Ḡ[U] is a clique in Ḡ.

Proof. (⇒) Since U is a stable in G, the edge set of G[U] is empty by definition. Thus, in the complement
graph, the edge set of Ḡ[U] is complete, i.e. Ḡ[U] is a clique in G. The (⇐) direction is symmetric. ✷

According to Lemma 9.5.1, we can take Q to be the problem of finding a clique in G with at least k
vertices (this problem is known as k-Clique). Now an algorithm for solving P , given a graph G and the
integer k, is as follows:

1. construct the complement graph Ḡ

2. solve Q on Ḡ to obtain a clique C = (U, F) in Ḡ

3. return U as a stable set with k vertices in G

134 CHAPTER 9. PROBLEMS AND COMPLEXITY

Notice the structure of this algorithm: first we transform the input of P to the input of Q, then we solve
Q, then we transform the output of Q back to the output of P . In our example, by Exercise 3.2.1 the
complement graph can be constructed in polynomial time. If both input and output transformations can
be carried out in polynomial time, we obtain a polynomial reduction of P to Q.

9.5.2 The new problem is easy

If we were able to carry out both transformations in polynomial time and Q were in P, we would have
found a polynomial algorithm for P (transform the given P instance into a Q instance in polynomial
time, solve the Q instance in polynomial time, then transform the solution of the Q instance back into a
solution of the P instance in polynomial time), and we would have thus shown that P ∈ P too.

We remark that, so far, no-one was able to show that the problem of finding a k-clique subgraph of
G is in P. So our example with cliques and stables does not fall in this category.

9.5.3 The new problem is as hard as another problem

If we intuitively believe that P is a difficult problem, as seems to be the case with k-Stable, it makes
little sense to try and reduce it to an easy one. As mentioned above, one way to show P is difficult is to
show that every other “intuitively difficult” problem polynomially reduces to P . In other words, if P could
be solved efficiently, every “intuitively difficult” problem could also be solved efficiently by transforming
an instance to an instance of P , then solve P , then transform the output back to the difficult problem
(notice this exchanges the roles of P and Q in Sect. 9.5.1). In this setting, P being easy seems unlikely, for
it would mean that everyone had a wrong intuition about the difficulty of all other “intuitively difficult”
problems.

9.5.4 NP-hardness and NP-completeness

In order to formalize the discussion in the previous section, we define the problem P to be NP-hard if
every problem in NP can be polynomially reduced to P . We define P to be NP-complete if it is NP-hard
and also belongs to NP.

9.5.2 Example

It turns out that k-Clique is NP-complete. The problem Max Clique, which asks to find the greatest
complete subgraph in a given graph, isNP-hard: since it is an optimization problem, andNP is a subclass
of all decision problems, by definition Max Clique cannot belong to NP. We emphasize, however, that
k-Clique is the “decision version” of the Max Clique optimization problem, in the sense given in
Sect. 9.2.1.

This leaves us with just one basic question: how can we possibly hope to reduce every problem in
NP to a specific problem P? S. Cook first provided a proof of NP-completeness: he encoded a Turing
Machine with certain properties into a propositional formula. With Cook’s approach, “every problem in
NP” was replaced by the TM used for its solution. Once a single problem is shown to be NP-hard, it
can also be used as a representative of “every problem in NP”. Cook’s theorem thus paved the way for
decades of polynomial reduction based NP-hardness proofs.

Back to our stables and cliques, since by Example 9.5.2 we know that k-Clique is NP-complete,
reducing it to k-Stable proves that the latter is also NP-complete. But this is easily done, since Lemma
9.5.1 is an “if and only if” result, and the polynomial reduction works both ways. So we conclude that
k-Stable is at least as hard to solve as the most difficult problems in NP.

9.6. EXACT AND HEURISTIC ALGORITHMS 135

9.5.5 The most celebrated conjecture in computer science

It would be very nice if we were able to turn the definition of a difficult problem from “no-one else can
solve it efficiently” to “it is impossible to solve it efficiently”. Translated in the formal terminology about
P and NP, the latter corresponds to proving that P 6= NP, i.e. there is at least one problem in NP that
cannot be solved in polynomial time for sure. P 6= NP is the most celebrated conjecture in computer
science. The first person who is able to establish whether P 6= NP or P = NP stands to gain hefty
monetary rewards, too. Unfortunately, four decades of work in this sense yielded no definitive result yet.
Since we value our intuition, and we would not like to think that someone in the future will be able to
show that all the problems we thought difficult are really easy, people say it is unlikely that P = NP.
The method for proving P = NP would seem straightforward: simply find a polynomial algorithm for
any NP-hard problem. On the other hand, no convincing proof methodology for even attempting to
prove the converse was found to date.

J. Edmonds, who first proposed that efficient algorithms are those that run in time bounded by a
polynomial in the instance size, once said during a seminar at the Institut Poincaré in Paris, that Gödel’s
incompleteness theorem (see Sect. 7.5.2) is at play here, and that P 6= NP is true but cannot be proved
from the standard axioms.

9.5.6 The student’s pitfall

When asked to show the NP-hardness of problem P , every student seems to step in the following pitfall:
he or she reduces P to another NP-hard problem Q, then claims the work is done. This is wrong!
Remember:

1. If Q is in P, then a polynomial reduction P → Q proves P is also in P.

2. If Q is NP-hard, then a polynomial reduction Q→ P proves P is also NP-hard.

By contrast, polynomially reducing Q to P when Q is in P, or P to Q when Q is NP-hard proves
absolutely nothing.

9.6 Exact and heuristic algorithms

So what do we do after we decide whether a new problem P is easy or difficult? In the first case, the
polynomial reduction automatically gives an exact algorithm for finding guaranteed solutions, as we saw
in Sect. 9.5.1. We might perhaps wish to improve or fine-tune that algorithm, but essentially we are able
to find exact solutions of P .

If P turns out to be difficult, we can either use a non-polynomial solution algorithm to find exact and
guaranteed solutions, or use heuristic algorithms: these are methods based on intuitive common sense,
which do their best to try and find solutions in a limited amount of time (or resources). If they do, these
solutions are valid; but if they do not, this does not imply that the input instance is NO.

Heuristic algorithms for optimization problems provide solutions which may not be optimal, but are
supposed to be “good enough”.

9.6.1 A heuristic method for Max Stable

Since Max Stable is NP-hard, and it seems unlikely that P=NP, we provide a greedy heuristic for
solving this problem. Our heuristic is based on the idea that any maximum stable is also maximal. We

136 CHAPTER 9. PROBLEMS AND COMPLEXITY

recall that a stable is maximum if it has largest cardinality among all stable sets of the graph; and a
stable is maximal if there is no larger stable containing it as a subset. In other words, the “maximum”
property needs to be checked globally (which is time-consuming), whereas the “maximal” property only
needs to be checked locally (which is much more efficient).

9.6.1 Exercise

Prove formally that any maximum stable is also maximal. Show that the converse is not necessarily true.

Although maximal stables are not necessarily maximum, they might be: after all, maximality is a
necessary, if not sufficient, condition to be maximum. Moreover, maximal sets can be “grown” efficiently
by simply adding all elements until it is possible to do so. We start from an empty stable U , then scan all
vertices of V , adding them to U as long as no pair of vertices in U is adjacent to an edge. We can actually
improve on this algorithm by ordering the vertices first.

1: U = ∅;
2: order V by increasing values of |N(v)|;
3: while V 6= ∅ do

4: v = minV ;
5: U ← U ∪ {v};
6: V ← V r ({v} ∪N(v))
7: end while

9.6.2 Exercise

Explain the presence of Step 6: does it improve the algorithm? If so, why? If not, why not?

Chapter 10

Sorting

Abstract. The searching problem and the sorting problem: complexity in the best case.

Sorting algorithms: selection, insertion, merge and quick sort. Two-way partitioning.

Let V = (v1, . . . , vn) be a sequence with a natural order < defined on its elements. The sequence V
is sorted if:

∀i < j ≤ n vi ≤ vj , (10.1)

and unsorted otherwise.

10.1 The searching problem

A fundamental question that often occurs in algorithms is whether a given set V contains a given element
u. This is a decision problem with input V, u, called the Searching Problem. If V is unsorted,
searching takes longer than if V is sorted, as shown below. In this chapter we discuss methods for sorting
linear data structures.

10.2 Searching unsorted and sorted arrays

If V = (v1, . . . , vn) is stored as a linear data structure, say an array, and this array is unsorted, the only
possible approach is brute force: verify each element of V in turn, and stop with YES when v is found,
or terminate with NO at the end of the array. This method is obviously O(n).

If the array were sorted, on the other hand, we could proceed using bisection. Here is the recursive
pseudocode for bisection(V,w).

Require: V = {v1, . . . , vn} is sorted
1: if V = ∅ then

2: return NO
3: end if

4: let i = ⌈n2 ⌉
5: if u = vi then
6: return YES
7: else if u < vi then

137

138 CHAPTER 10. SORTING

8: let V = {v1, . . . , vi−1}
9: else if u > vi then

10: let V = {vi+1, . . . , vn}
11: end if

12: return bisection(V, u)

It is well known1 that the worst-case complexity of bisection is O(log n).

So, if an algorithm needs to repeatedly test for membership in V , it makes sense to invest some CPU
time to sort V first, prior to calling the membership test procedure.

10.3 The sorting problem

The Sorting Problem (SP) is as follows. Given a sequence s = (s1, . . . , sn) of elements of a set
S endowed with a total order <, find a permutation (see Sect. 7.3) π of n symbols such that πs =
(sπ(1), . . . , sπ(n)) satisfies Eq. (10.1). In other words, we want to order s according to <.

10.3.1 Considerations on the complexity of SP

In Sect. 9.4, we discussed two types of complexity: the complexity of an algorithm (how long it takes to
execute), and the complexity of a problem, i.e. how long does the best algorithm for the problem takes to
execute. In Sect. 9.5 we went on to classify problems according to whether they are known or unknown
to have polynomial complexity.

10.3.1.1 The best algorithm for a problem

In fact, however, we do not need to know the best possible algorithm that solves a given problem to
state that the problem belongs to the class P: it suffices for this purpose to find at least one polynomial
algorithm, even if it is not the best possible. This is rather lucky, because proving that a certain
algorithm is best for a given problem seems to require looking at the infinite class of all algorithms
solving the problem. This task is so difficult that, if one could prove that the best algorithm for solving
an NP-complete problem (such as e.g. k-Stable) is exponential, one would have settled the P 6= NP

conjecture.

10.3.1.2 The Ω(·) and Θ(·) notations

We introduced in Sect. 1.4.3.3 the O() notation to express asymptotic worst-case complexity: a function
t(n) is O(p(n)) if there is an N ∈ N such that, for all n > N , t(n) ≤ p(n). There is also a notation
for the asymptotic best-case complexity: a function t(n) is Ω(p(n)) if there is an N ∈ N such that, for
all n > N , t(n) ≥ p(n) — incidentally, if a function t(n) is both O(n) and Ω(n), we say it is Θ(n).
Best-case complexity is the correct notation for the difficult task we mentioned above: can we say that
SP is Ω(p(n)) for some function p?

10.3.2 Best-case complexity of SP

SP is one of those few cases where we can say something about the best-case complexity of a problem.
We must, however, assume no prior knowledge of the type of data stored in S.

1See INF311.

10.3. THE SORTING PROBLEM 139

More precisely, we assume that the only way to conclude that u < v in O(1) is to call the machine
language instruction for comparing bytes a constant number of times. This may not always be the case:
for example, if we knew a priori that S = {0, 1}, we could conclude that u < v in O(1) by testing whether
u 6= v and u = 0.

Any sorting algorithm capable of dealing with any input set S must be a set of instructions (tests,
loops, etc.) containing a sufficiently large number of comparisons: these are tests establishing whether
u < v or not. Informally, our requirement aims at generality: if our algorithm must be able to cater for
all data types, then it must make use of comparisons. This endows SP with sufficient structure to make
us able to reason on its best-case complexity.

10.3.2.1 The sorting tree

Accordingly, we can describe any comparison-based sorting algorithm via a sorting tree, which represents
the logical flow of the sorting algorithm based on the comparisons only.

10.3.1 Example

Here is a sorting tree for sorting s = (s1, s2, s3).

1
2

2 3

31

32

1 3

s1
?
≤ s2

s1
?
≤ s3s1

?
≤ s3

s2
?
≤ s3s2

?
≤ s3

e

(23) (132) (12) (123)

(13)

In the picture above, e stands for the identity permutation; the other permutations are expressed in cycle
notation (see Sect. 7.3.1.3).

Sorting trees represent the possible ways to chain comparisons as to sort all possible input sequences of
a given size; moreover, as mentioned earlier, any comparison-based sorting algorithm running over input
of given size corresponds to a particular sorting tree. In other words, the set of all execution traces out
of any possible comparison-based sorting algorithm is a subset of all sorting trees. Hence, the best-case
complexity can be defined in terms of the best sorting trees.

10.3.2.2 Formalizing the idea

Let Tn be the set of all sorting trees for sequences of length n. Different inputs lead to different permu-
tations in the leaf nodes of each sorting tree. For a sorting tree T ∈ Tn and a permutation π, we denote
by ℓ(T, π) the length of the path in T from the root to the leaf containing π. For each n ≥ 0 we can
express the best-case complexity for SP as:

Bn = min
T∈Tn

max
π∈Sn

ℓ(T, π).

We remark that sorting trees are binary trees, since there are only two answers (YES or NO) to each
comparison. Notice that a binary tree with depth bounded by k has at most 2k nodes. Let T ∗ be the

140 CHAPTER 10. SORTING

sorting tree of the best sorting algorithm: its number t of nodes must then be at most 2Bn . Moreover,
since any sorting tree lists all n! possible permutations in its leaves, it must have at least n! nodes. Hence
n! ≤ t ≤ 2Bn , whence n! ≤ 2Bn , which implies

Bn ≥ ⌈logn!⌉.

By Stirling’s approximation formula [6], logn! = n logn − 1
ln 2n+ O(log n), so we can conclude that Bn

is bounded below by a function proportional to n logn, i.e. Bn is Ω(n logn).

10.4 Sorting algorithms

There are scores of general-purpose algorithms for sorting a sequence s = (s1, . . . , sn) of elements from a
totally ordered set S. Many work well with some sequences but not with others. Here we only discuss
a couple of the simplest algorithms (selection and insertion sort), together with two of the best (merge
and quick sort).

10.4.1 Selection sort

In Selection Sort we start from s = (s1, . . . , sn) and end with a sorted sequence t, initially empty. We
iteratively select the minimum element of s, move it to the leftmost free slot in t, and remove it from s.
Since selecting the minimum from an unsorted array requires scanning the whole array, this takes O(n2)
in the worst case.

10.4.1 Example

Let s = (3, 1, 4, 2) and t = ∅. Selection Sort performs the following sequence of steps:

(3, 1 , 4, 2),∅ → (3, 4, 2), (1)

→ (3 , 4), (1, 2)

→ (4), (1, 2, 3)

→ ∅, (1, 2, 3, 4).

10.4.2 Insertion sort

Insertion Sort is somehow dual to Selection Sort: instead of choosing the minimum from s, we
iteratively choose the leftmost element of s, insert it in t at the correct position, and remove it from s.
Since finding the correct position in t requires scanning t, this takes O(n2) in the worst case. Empirically,
Insertion Sort is known to be fast for small values of n.

10.4.2 Example

Let s = (3, 1, 4, 2) and t = ∅. Insertion Sort performs the following sequence of steps:

(3 , 1, 4, 2),∅ → (1 , 4, 2), (3)

→ (4 , 2), (1, 3)

→ (2), (1, 3, 4)

→ (1, 2, 3, 4).

10.4.3 Exercise

Implement Insertion Sort in Java. What data structure did you employ for t?

10.4. SORTING ALGORITHMS 141

10.4.3 Merge sort

MergeSort is a recursive algorithm of the Divide-and-Conquer class.

10.4.3.1 Divide and conquer

Divide-and-Conquer names a family of algorithms that split a complex problem into two or more
subproblems having the same structure, recursively solve each of them (the recursion is on the problem
size), then recombine the partial solutions from both subproblems to construct a solution of the original
problem. Divide-and-Conquer is essentially recursion (see Chapter 7) combined with bisection (see
Sect. 9.2.1 and 10.2).

10.4.3.2 Pseudocode

The idea of MergeSort is to partition s mid-way and create two smaller unsorted subsequences s′, s′′,
sort each of them recursively, and recombine the sorted subsequences so that the sorting of the resulting
sequence is maintained. Here is mergeSort(s).

1: if |s| ≤ 1 then

2: return s; // base case

3: else

4: m = ⌊ |s|2 ⌋;
5: s′ = mergeSort((s1, . . . , sm));
6: s′′ = mergeSort((sm+1, . . . , sn));
7: return merge(s′, s′′);
8: end if

10.4.4 Example

If s = (5, 3, 6, 2, 1, 9, 4, 3), we first split s midway to obtain (5, 3, 6, 2) and (1, 9, 4, 3). These subsequences
are sorted recursively, to yield s′ = (2, 3, 5, 6) and s′′ = (1, 3, 4, 9); s′, s′′ are then merged (see Example
10.4.6) to s = (1, 2, 3, 3, 4, 5, 6, 9).

10.4.5 Exercise

Show, by exhibiting a few examples, that splitting s mid-way intuitively yields a more balanced recursion
tree.

10.4.3.3 Merging two sorted sequences

We still need to specify how to efficiently merge two sorted subsequences r = (r1, . . . , rh) and t =
(t1, . . . , tk) into a single sorted sequence s. Here is s =merge(r, t).

1: rh+1 =∞, tk+1 =∞
2: i = 1, j = 1, ℓ = 1
3: while i ≤ h ∨ j ≤ k do

4: if ri ≤ tj then

5: sℓ = ri
6: i← i+ 1
7: else

8: sℓ = tj
9: j ← j + 1

10: end if

11: ℓ← ℓ+ 1
12: return s

142 CHAPTER 10. SORTING

13: end while

Since all elements of r, t are scanned, merge(r, t) runs in O(h + k) in the worst case.

10.4.6 Example

Let r = (2, 3, 5, 6) and t = (1, 3, 4, 9). This is how merge works.

(2, 3, 5, 6)

(1 , 3, 4, 9)
→ ∅

(2 , 3, 5, 6)

(1, 3, 4, 9)
→ (1)

(2, 3 , 5, 6)

(1, 3, 4, 9)
→ (1, 2)

(2, 3, 5, 6)

(1, 3 , 4, 9)
→ (1, 2, 3)

(2, 3, 5, 6)

(1, 3, 4 , 9)
→ (1, 2, 3, 3)

(2, 3, 5 , 6)

(1, 3, 4, 9)
→ (1, 2, 3, 3, 4)

(2, 3, 5, 6)

(1, 3, 4, 9)
→ (1, 2, 3, 3, 4, 5)

(2, 3, 5, 6)

(1, 3, 4, 9)
→ (1, 2, 3, 3, 4, 5, 6)

(2, 3, 5, 6)

(1, 3, 4, 9)
→ (1, 2, 3, 3, 4, 5, 6, 9) = s.

10.4.7 Exercise

What is the purpose of setting rh+1 and tk+1 to ∞? How would you implement this in Java, since r only
has h elements and t only k?

10.4.3.4 Worst-case complexity

Each call to merge has complexity O(n), and, by bisection, the complexity of the Divide-and-Conquer

recursion is O(log n). This yields an overall worst-case complexity of O(n logn). This result is used in
Sect. 10.5 below.

10.4.4 Quick sort

QuickSort is another Divide-and-Conquer algorithm, somehow dual to MergeSort. Whereas in
MergeSort we recurse first and work on subsequences later, in QuickSort we work on the sequence
first and recurse later.

10.4.4.1 Pseudocode

The idea is the following: we choose a pivot value p (any element si of the unsorted sequence s will do, so
we arbitrarily pick2 p = s1), then partition sr{s1} into two subsequences s′, s′′ of s such that s′ contains

2For real-world implementations, this choice is suboptimal,
see http://en.wikipedia.org/wiki/Quicksort#Choice_of_pivot.

http://en.wikipedia.org/wiki/Quicksort#Choice_of_pivot

10.4. SORTING ALGORITHMS 143

all si < s1, and s
′′ all si ≥ s1. Now we recursively sort s′, s′′, and let t be composed by the elements of

s′, followed by the pivot s1, followed by the elements of s′′ (we denote this operation by (s′, p, s′′)). The
sequence t is obviously sorted, since s′, s′′ are sorted, and s′i < s1 ≤ s′′j for all i, j. Here is the pseudocode
for quickSort(s).

1: if |s| ≤ 1 then

2: return ∅; // base case

3: else

4: p = s1 // the pivot

5: (s′, s′′) = partition(s, p);
6: s′ = quickSort(s′);
7: s′′ = quickSort(s′′);
8: s =← (s′, p, s′′);
9: end if

10.4.4.2 Partition

To complete the description of QuickSort, we have to exhibit a pseudocode for partition. This is
easy: we scan sr{s1}: if si < s1 we put it in s′, if si ≥ s1 we put it in s′′. This has worst-case complexity
O(n).

10.4.8 Exercise

Since we already disposed of s1, why can’t we simply say test si > s1 above, instead of si ≥ s1?

10.4.9 Example

Here is the effect of partition on (5, 3, 6, 2, 1, 9, 4, 3) with pivot p = s1 = 5.

(5, 3 , 6, 2, 1, 9, 4, 3) → ∅,∅

(5, 3, 6, 2, 1, 9, 4, 3) → (3),∅

(5, 3, 6 , 2, 1, 9, 4, 3) → (3),∅

(5, 3, 6, 2, 1, 9, 4, 3) → (3), (6)

(5, 3, 6, 2 , 1, 9, 4, 3) → (3), (6)

(5, 3, 6, 2, 1, 9, 4, 3) → (3, 2), (6)

(5, 3, 6, 2, 1 , 9, 4, 3) → (3, 2), (6)

(5, 3, 6, 2, 1, 9, 4, 3) → (3, 2, 1), (6)

(5, 3, 6, 2, 1, 9 , 4, 3) → (3, 2, 1), (6)

(5, 3, 6, 2, 1, 9, 4, 3) → (3, 2, 1), (6, 9)

(5, 3, 6, 2, 1, 9, 4 , 3) → (3, 2, 1), (6, 9)

(5, 3, 6, 2, 1, 9, 4, 3) → (3, 2, 1, 4), (6, 9)

(5, 3, 6, 2, 1, 9, 4, 3) → (3, 2, 1, 4), (6, 9)

(5, 3, 6, 2, 1, 9, 4, 3) → (3, 2, 1, 4, 3), (6, 9).

10.4.10 Exercise

Implement partition in Java so that, instead of producing two new sequences s′, s′′, it updates the input
s so that it has all elements of s′ first, then s1, then all elements of s′′. Make sure you allocate no new
memory: the update must be “in place”. [Hint: consider swapping pairs of elements in s].

144 CHAPTER 10. SORTING

10.4.4.3 Worst-case complexity

Differently from (and worse than) MergeSort, the worst-case complexity of QuickSort is O(n2). This
is because we can make the MergeSort recursion tree balanced by splitting s mid-way, but we cannot
obtain the same on the QuickSort tree balanced. So: partition is O(n) and the tree depth is also
O(n), which makes O(n2).

10.4.11 Exercise

Show that picking the median value in s does not necessarily make the QuickSort recursive tree bal-
anced.

10.4.12 Proposition

The worst-case complexity of QuickSort is O(n2).

Proof. It suffices to exhibit an instance where QuickSort takes time proportional to n2. Consider the
input (n, n − 1, . . . , 1) with pivot p = s1. At recursion level 1, p = n, s′ = (n − 1, . . . , 1), s′′ = ∅; at
recursion level 2, p = n− 1, s′ = (n− 2, . . . , 1), s′′ = ∅; and so on, down to p = 1 (base case). Each call
to partition takes O(n), hence the result. ✷

10.4.4.4 Average-case complexity

The reason why QuickSort is so popular is that in practice, and for general input, it is the fastest
sorting algorithm. Some theoretical support for this statement can be found by performing an average
case complexity analysis, which yields O(n log n). We report a proof by P. Cameron [6] in this section.
The proof is long, most of the steps are algebraic manipulations of equations, power series and differential
equations, but I think that the overall proof structure is clear.

In order to understand Cameron’s proof we have to introduce recurrence relations. These are relations
over different elements of a sequence, expressed as a function of their positional index n in the sequence
e.g. q1 = 0, qn = qn−1 + 1 is a recurrence relation satisfied by all integers in N; q0 = 0, q1 = 1, qn =
qn−1+qn−2 is satisfied by the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 11, Sometimes a recurrence relation
has a closed-form solution, e.g. q0 = 1, qn = 3qn−1 has solution qn = 3n. In our setting, n is the length
of the unsorted sequence s and qn is the average number of comparisons taken by QuickSort.

10.4.13 Theorem

On average over all possible inputs, the complexity of QuickSort is O(n log n).

Proof. First, notice that partition(s) involves n − 1 comparisons. Assume that the pivot p = s1 is
the k-th smallest element of s. It is then easy to show that the resulting sorting tree has a left subtree
with qk−1 nodes and a right subtree with qn−k nodes on average (since p is k-smallest in s, picture an
unbalanced tree with the given proportions), so qn = qk−1+ qn−k. We average this over the n values that
k can take, and obtain:

qn = n− 1 +
1

n

n∑

k=1

(qk−1 + qn−k)

Notice that in the sum
∑n

k=1(qk−1 + qn−k), each qk occurs twice (to see this, consider the table below).

k qk−1 qn−k

1 q0 qn−1

2 q1 qn−2

...
...

...
n− 1 qn−2 q1
n qn−1 q0

10.4. SORTING ALGORITHMS 145

Hence we can write:

qn = n− 1 +
2

n

n−1∑

k=0

qk (10.2)

We now consider the formal power series

Q(t) =
∑

n≥0

qnt
n. (10.3)

If Q(t) is known, then the value for each qn can also be obtained as follows: differentiate Q(t) n times
with respect to t, set t = 0, and divide the result by n (convince yourself this works). We multiply each
side of the recurrence relation (10.2) by ntn and sum over all n ≥ 0, to get:

∑

n≥0

nqnt
n =

∑

n≥0

n(n− 1)tn + 2
∑

n≥0

(
n−1∑

k=0

qk

)

tn

We now replace each of these three terms: this will yield a neater expression for Q(t).

1. Differentiate Q(t) with respect to t and multiply by t to get an expression for the first term:

t
dQ(t)

dt
= t

∑

n≥0

nqnt
n−1 =

∑

n≥0

nqnt
n.

2. It is well known that:
∑

n≥0

tn =
1

1− t (10.4)

for all 0 ≤ t < 1. Since Q(t) is a formal power series, the values that t takes are not important, all
else being equal — so we can accept a constraint 0 ≤ t < 1; in any case what is important to us are
the coefficients q0, q1, Differentiate Eq. (10.4) twice with respect to t, to get:

∑

n≥0

n(n− 1)tn−2 =
2

(1− t)3

Multiply both members by t2 to get an expression for the second term:

∑

n≥0

n(n− 1)tn =
2t2

(1− t)3 . (10.5)

3. Now for the third: the n-th term of the sum
∑

n≥0(
∑n−1

k=0 qk)t
n can be written as

n−1∑

k=0

tn−k(qkt
k)

Hence, the whole sum over n can be written as the following product (convince yourself that this
is true by testing a few finite examples by hand):

(t+ t2 + t3 + . . .)(q0 + q1t+ q2t
2 + q3t

3 + . . .)

The first factor is
∑

n≥0 t
n = 1

1−t
, and the second is simply the expression for Q(t), hence the third

term is 2tQ(t)
1−t

.

146 CHAPTER 10. SORTING

Putting all this together, we obtain a first-order differential equation for Q(t):

tQ′(t) =
2t2

(1− t)3 +
2t

1− tQ(t) (10.6)

We remark that if we differentiate the expression (1− t)2Q(t) w.r.t. t, we get:

d

dt
((1 − t)2Q(t)) = (1 − t)2Q′(t)− 2(1− t)Q(t). (10.7)

We rearrange the terms of Eq. (10.6) to get:

tQ′(t)− 2t

1− tQ(t) =
2t2

(1− t)3 . (10.8)

We multiply Eq. (10.8) through by (1−t)2

t
and get:

(1− t)2Q′(t)− 2(1− t)Q(t) =
2t

1− t . (10.9)

The right hand side of Eq. (10.7) is the same as the left hand side of Eq. (10.9), hence we can rewrite
Eq. (10.7) as:

d

dt
((1 − t)2Q(t)) =

2t

1− t . (10.10)

Now, straightforward integration w.r.t. t yields:

Q(t) =
−2(t+ log(1 − t))

(1 − t)2 . (10.11)

The next step consists in writing the power series for log and 1/(1 − t)2, rearrange them in a product,
and read off the coefficient qn of the term in tn. Without going into details, this yields:

qn = 2(n+ 1)
n∑

k=1

1

k
− 4n (10.12)

for all n ≥ 0. For all n ≥ 0, the term
∑n

k=1
1
k
is an approximation of:

∫ n

1

1

x
dx = log(n) +O(1). (10.13)

Thus, we finally get an asymptotic expression for qn:

∀n ≥ 0 qn = 2n log(n) +O(n) (10.14)

This shows that the average number of comparisons taken by QuickSort is O(n logn). ✷

10.5 Exact complexity of SP

By Sect. 10.3.2.2, the best-case complexity of SP is Ω(n logn). Notice we did not actually prove that an
algorithm is best; instead, we found a smart way to represent all possible algorithmic outputs (or rather,
traces of algorithmic executions where we only listed the comparisons with their respective mutual flows)
as combinatorial structures (trees) and exhibited a way to minimize over them by means of lower and
upper bounds in terms of the number of tree nodes.

Also, by Sect. 10.4.3.4, the worst-case complexity of an actual sorting algorithm is O(n log n). We can
therefore conclude that the exact complexity of the sorting algorithm is Θ(n logn).

10.6. TWO-WAY PARTITIONING 147

10.6 Two-way partitioning

This is a sorting algorithm for ordered sets S with only two elements, say 0, 1 with 0 < 1. The input is a
binary sequence s = (s1, . . . , sn), and the output is a reordering of s such that all zeroes come before all
ones. The method is as follows: we keep two indices, i, j, initially set at i = 1 and j = n. If si, sj are out
of place, we swap them, otherwise we leave them fixed. We then increase i and decrease j while i ≤ j.

Here is the pseudocode for partition2way(s):

1: i = 1; j = n;
2: while i ≤ j do

3: if si = 0 then

4: i← i+ 1;
5: else if sj = 1 then

6: j ← j − 1;
7: else

8: swap(s, i, j);
9: i← i+ 1;

10: j ← j − 1;
11: end if

12: end while

Its worst-case complexity is evidently O(n).

10.6.1 Example

Here is how two-way partitioning sorts (1, 0, 0, 1, 1, 0, 0, 0, 1, 1):

1. swap (1, 8), get (0, 0, 0, 1, 1, 0, 0,1, 1, 1)

2. swap (4, 7), get (0, 0, 0,0, 1, 0,1, 1, 1, 1)

3. swap (5, 6), get (0, 0, 0, 0,0,1, 1, 1, 1, 1).

10.6.1 A paradox?

We proved in Sect. 10.5 that the exact asymptotic complexity of Sorting Problem is Θ(n logn), and
here we go exhibiting an O(n) sorting algorithm. This only looks like a paradox. We had warned that
our reasoning in terms of sorting trees only held if no prior knowledge of the data type of S was available.
In our case, we know that S = {0, 1} aprioristically. In fact, S is so small that no comparison is necessary
to determine whether si < sj : since we expect all zeros to come before all ones, if i < j it suffices that
si = 1 or sj = 0 to establish that si, sj are out of place and have to be swapped.

148 CHAPTER 10. SORTING

Chapter 11

Searching

Abstract. Data structures for searching efficiently. Binary search trees, balanced trees,

heaps.

As mentioned in Sect. 10.1, searching a set V for a given element is a fundamental tool in algorithms.
Chapter 10 dealt with this problem by sorting the linear data structure storing V as a pre-processing
step to repeatedly searching V . This implies that V does not change between one search query to the
next: V is a static data container. It often happens, however, that data containers might be dynamic, in
the sense that V evolves between search queries. Since it would be inefficient to re-sort V as elements are
added or deleted to it, in this chapter we discuss techniques for keeping V sorted, i.e. to modify insertion
and deletion procedures so that if V is sorted before the changes, then V is also sorted after the changes.

We look at both decision and optimization problems: we are given a finite set V and an element v
of the same data type as the elements in V , and ask the question, “does v belong to V ”? Also, given a
finite set V and a scalar function µ : V → R, we might want to find the element of v with maximum or
minimum µ value (see Sect. 9.2.1). The typical methods for searchable data structures are find, insert,
delete, min and max — the meaning of each being evident from the name.

These methods provide a fundamental algorithmic toolbox, are called many times, and must therefore
be very efficient. Efficiency is provided by storing V by means of appropriate data structures. Most
often, these data structures are trees, with elements stored in such a way as to be found by exploring
only one path from the root to a leaf. Since these paths are on average O(log |V |) long, searching usually
only takes O(log |V |) or less, rather than the O(|V |) necessary with linked lists.

Because we use tree data structures, method implementations will be recursive.

11.1 Notation

We usually think of such trees T as rooted and directed from their root r(T) to their leaves. We refer
to nodes instead of vertices, specifically to parent, ancestor and child nodes (which also called subnodes).
A tree is k-ary if every node has either zero or k subnodes. In a binary tree, for example, every node
has either zero or two subnodes (a node without subnodes is a leaf). For a non-root node v of T , P (v)
denotes the parent of v. For a non-leaf node v of T , we distinguish the left subnode L(v) and the right
subnode subnodes R(v). We also denote by D(v) the depth of the tree rooted at v.

The set of nodes reachable from L(v) is the left subtree rooted at L(v), and the set of nodes reachable

149

150 CHAPTER 11. SEARCHING

from R(v) is the right subtree rooted at R(v) (see Fig. 11.1).

r(T)

L(v) R(v)

D(v)

Figure 11.1: The notation used on search trees, where v = r(T).

11.2 Binary search trees

Binary Search Trees (BST) make it easy to store sorted sequences, and hence to answer the question
“does the sequence contain a certain element?” Accordingly, we assume V is totally ordered by the
relation <.

The principle underlying BSTs is that every non-leaf node v ∈ V is such that

L(v) ≤ v < R(v). (11.1)

The order relation < is the order on V mentioned above: this does NOT imply that the nodes all store
scalars, although our examples will involve scalars for simplicity. All methods (find, insert, delete,
min, max) are O(log n) on average and O(n) in the worst case, where n = |V |.

11.2.1 Example

The following are all valid BSTs storing V = {1, 3, 6, 7}.

1

3

6

7∅

∅

∅ 3

6

7∅

1

6

73

∅1

7

∅6

∅3

∅1

Naturally, some (those with smaller depth), yield more efficient searches than others.

All recursive BST methods are designed so that the base case is on the leaf nodes. In particular, they
do nothing on empty nodes, which are simply implemented as null reference.

11.2.1 BST min and max

Here follows the recursive function min(v) for finding the minimum element in the subtree rooted at
v.

11.2. BINARY SEARCH TREES 151

1: if L(v) = ∅ then

2: return v;
3: else

4: return min(L(v));
5: end if

Finding the minimum element in V is obtained by calling min(r), where r is the root of the tree. This
code simply follows the leftmost path as long as it is possible. The returned element is minimum by
Eq. (11.1).

The method for finding maximum is similar.

1: if R(v) = ∅ then

2: return v;
3: else

4: return max(R(v));
5: end if

11.2.2 Example

Finding the minimum and maximum of V = {12, 5, 14, 7, 13, 18}.

12

5

∅ 7

14

13 18

12

5

∅ 7

14

13 18

11.2.2 BST find

Here is the recursive function find(v). The special marker not found might be implemented as a null

value or as raising a Java exception.

1: ret = not found;
2: if v = k then

3: ret = v;
4: else if k < v then

5: ret = find(k, L(v));
6: else

7: ret = find(k,R(v));
8: end if

9: return ret;

Finding v in V is obtained by calling insert(r).

11.2.3 Example

Successfully finding 13 in V = {12, 5, 14, 7, 13, 18} (left) and unsuccessfully searching for 1 (right).

12

5

∅ 7

14

13 18

12

5

∅ 7

14

13 18

152 CHAPTER 11. SEARCHING

11.2.3 BST insert

Here is the recursive function insert(w,v). It takes as input the element w to insert into the subtree
rooted at v. The marker already in set can be implemented as raising a Java exception, or simply
doing nothing.

1: if w = v then

2: return already in set;
3: else if w < v then

4: if L(v) = ∅ then

5: L(v) = w;
6: else

7: insert(w,L(v));
8: end if

9: else

10: if R(v) = ∅ then

11: R(v) = w;
12: else

13: insert(w,R(v));
14: end if

15: end if

To insert w into V , simply call insert(w, r).

11.2.4 Example

Inserting a 1 into V .

12

5

7

14

13 181

11.2.4 BST delete

Deletion is possibly the only nontrivial operation of a BST. Deleting a leaf node w is easy: it can simply
be removed together with its incoming arc (P (w), w) (Fig. 11.2, left). If R(w) = ∅ and L(w) 6= ∅, replace
w with L(w) (Fig. 11.2, middle).

11.2.5 Exercise

Prove that this case of deletion (Fig. 11.2, middle) satisfies Eq. (11.1).

Similarly, if L(w) = ∅ and R(w) 6= ∅, replace w with R(w) (Fig. 11.2, right). Of course “replacing” here
has a precise meaning: we define first the utility function unlink(w): applied to node w, this function
completely disconnects w from the tree.

1: let P (w) =null

2: let L(w) =null

3: let R(w) =null

Replacing node w with umeans to connect u to the same parent and subnodes ofw. Here is replace(w, u)
(see Fig. 11.3).

1: if R(P (w)) = v then

11.2. BINARY SEARCH TREES 153

L L

R R

Figure 11.2: Deletion of BST nodes: easy cases.

2: R(P (w))← u // u is a right subnode

3: else

4: L(P (w))← u // u is a left subnode

5: end if

6: if u 6= ∅ then

7: P (u)← P (w)
8: end if

9: unlink(w)

z

w

u

−→

z

w

u

Figure 11.3: Replacing a node w with a node u.

11.2.4.1 Deleting a node with both subnodes

If w has 2 non-null subnodes, deletion becomes slightly more complicated. We swap the value of w and
of the minimum element u of the right subtree of w and then delete u, which ends up being one of the
easy deletion cases above, since it has a null left subnode. Here is replaceValueMinRight(w), which
returns the node u to be subsequently deleted.

1: T ′ =right subtree rooted at w
2: u = min T ′

3: swap the values of w and u
4: return u

To show that this works, we have to show that Eq. (11.1) holds in the resulting BST. By Eq. (11.1), the
minimum element of a BST is always the leftmost node without a left subtree.

11.2.6 Exercise

Prove the previous statement.

Since u is in the right subtree of w, by Eq. (11.1) u > w and also u is greater than all the elements in
the left subtree of w. Also, since u is minimum in the right subtree, u is smaller than all other elements

154 CHAPTER 11. SEARCHING

of the right subtree. So replacing w with u yields a BST where the new root is greater than (or equal to)
all nodes in its left subtree, and smaller than all nodes in its right subtree. Thus Eq. (11.1) holds in the
new BST.

11.2.7 Exercise

Are there any other possibilities for deleting v from a BST in such a way that Eq. (11.1) holds?

11.2.4.2 Putting it all together

Here is the code for delete(w, v), which deletes elementw from the tree rooted at v.

1: if w < v then

2: delete(w,L(v));
3: else if w > v then

4: delete(w,R(v));
5: else

6: // base case of recursion, w = v
7: if L(v) = ∅ ∧R(v) = ∅ then

8: unlink(v)
9: else if L(v) = ∅ ∧R(v) 6= ∅ then

10: replace(v,R(v))
11: else if L(v) 6= ∅ ∧R(v) = ∅ then

12: replace(v, L(v))
13: else

14: u =replaceValueMinRight(v)
15: delete(u, v) // an easy case

16: end if

17: end if

11.2.8 Example

In order to delete the element 10 from the tree rooted at r, we call delete(10, r) on the following tree.

10

5

7

14

12 18

10

5

7

14

12 18

12

5

7

14

10 18

12

5

7

14

18

The tree Minimum elt. Swap values Delete u

11.2.5 Complexity

All the recursive methods for BSTs have worst-case complexity proportional to the length of the longest
path from the root to a leaf. If the tree is balanced, this is O(log n), otherwise it is O(n). Notice we
supplied no method for balancing a BST yet. Inserting 1, 3, 6, 7 in an empty BST in this order yields the
unbalanced BST in Fig. 11.4.

11.3 AVL trees

Adelson-Velskii-Landis (AVL) trees are BSTs with a mechanism for balancing the tree. For a BST T
rooted at v, we let BT (v) be the depth difference between left and right subtrees of T rooted at v (we

11.3. AVL TREES 155

1

3

6

7∅

∅

∅

Figure 11.4: An unbalanced BST.

drop the subscript T when it is clear from the context):

BT (v) = D(L(v))−D(R(v)).

An AVL tree T always has the following property:

∀v ∈ T BT (v) ∈ {−1, 0, 1}. (11.2)

This means that B(r(T)) is O(1) (asymptotics on the number n of nodes in the BST), which implies that
all recursive BST methods are O(log n).

11.3.1 Exercise

Prove formally that in a BST with n nodes, Eq. (11.2) yields a maximum root→leaf path length of logn.

11.3.2 Example

Here are examples of AVL and non-AVL BSTs. The nodes are labelled with B(v).

−1

−1

0

0

00

−1

0∅

−1

1

∅0

0

1

01

00

−2

−1

−1

0∅

0

0

AVL tree non-AVL tree

11.3.1 Balance-independent methods

The methods min, max, find do not change the BST, so if Eq. (11.2) holds before the call, it also holds
after the call.

11.3.2 Balance-dependent methods

The methods insert and delete either add or remove a node from the BST. This means that if Eq. (11.2)
holds before the call, after the call we might have B(v) ∈ {−2,−1, 0, 1, 2}. In this section we introduce
methods for rebalancing based on tree rotation.

156 CHAPTER 11. SEARCHING

We consider a BST rooted at u, with a left subtree called α, and right subtree rooted at v = R(u),
which itself has a left subtree called β and a right subtree called γ. A left rotation rearranges the arcs
so that the BST is rooted at v, its right subtree is γ, and its left subtree is rooted at u, with has left
subtree α and right subtree β, as shown in Fig. 11.5. The right rotation is the inverse transformation.
The operation of rotating a BST is such that:

u

uv

v

α

α
β β

γ
γ

rotateLeft

rotateRight

Figure 11.5: rotateLeft transforms the left BST T into the right one T ′. rotateRight transforms the
right BST T ′ into the left one T .

1. it is invariant with respect to the BST property (Eq. (11.1));

2. If BT (u) = −2, then BT ′(v) = 0; if BT ′(v) = 2, then BT (u) = 0.

Thus, it can be used for rebalancing BSTs having a shape like T or T ′.

11.3.2.1 Tree rotation properties

In order to prove the properties above, we introduce an algebraic notation for BSTs: we let a BST rooted
at r be denoted by 〈L(r), r, R(r)〉. For example, the left BST in Fig. 11.5 is T = 〈α, u, 〈β, v, γ〉〉, and the
right one is T ′ = 〈〈α, u, β〉, v, γ〉. Thus, we have

• rotateLeft(T) = T ′

• rotateRight(T ′) = T

Directly by definition, we infer that rotateRight(rotateLeft(T)) = rotateLeft(rotateRight(T)) =
T .

11.3.3 Proposition

If T is a BST, rotateLeft(T), rotateRight(T ′) are BSTs, i.e. they satisfy Eq. (11.1).

Proof. The node order in the tree only changes for u and v. In T , v = R(u), which by Eq. (11.1) implies
u < v. In rotateLeft(T), u = L(v), which also implies u < v. The proof for T ′ is similar. ✷

Now suppose that the depths of α, β is h, and the depth of γ is h+1. Then the depth difference B(u)
of the tree 〈α, u, 〈β, v, γ〉〉 is −2, and, similarly, B(v) = 2.

11.3.4 Proposition

B(r(rotateLeft(T))) = B(r(rotateRight(T ′))) = 0.

11.3.5 Exercise

A proof sketch for Prop. 11.3.4 is that since the subtrees α, γ are swapped, and those subtrees are the
cause of the unbalance, the rotated tree is balanced. Formalize this proof sketch.

11.3. AVL TREES 157

11.3.2.2 The remaining cases

Consider the case of a tree S = 〈α, u, 〈β, v, γ〉〉 where D(r(α)) = D(r(β)) = h, and D(r(γ) = h+ 1. This
does not fall into either of the cases T, T ′ above. Because γ is the left subtree of v, it has depth h+ 3,
while the depth of α is h + 1, so BS(u) = −2 and the tree is unbalanced (see Fig. 11.6). Rotating S,
however, only exchanges the roles of α, β, fixing γ; this results in another unbalanced tree. To deal with

u

v

D
=
h

D
=
h

D
=
h
+
1

−2

1

α

βγ

Figure 11.6: The unbalanced tree shape S.

tree shape S, we “break up” the subtree γ, writing it as 〈λ, r(γ), µ〉 . Assume first that λ has depth h
and µ has depth h− 1, as shown in Fig. 11.7, so that B(r(γ)) = 1, and call this tree shape S′. We now

u

v

D
=

h

D
=

h

h

h
−

1

−2

1

α

β

γ

λ

µ

Figure 11.7: The unbalanced tree shape S′.

recognize the BST rooted at v as a tree of shape T ′. Although it is not unbalanced itself, as B(v) = 1,
we rotate it right: the effect of this operation will be to “shift” the unbalance of the tree shape S′ from
the subtree γ to the subtree β. Thereafter, the resulting BST will be still unbalanced but will have shape
S, and a left rotation will balance it (see Fig. 11.8).

Another tree shape S′′, which has λ with depth h− 1 and µ with depth h, is symmetric with respect
to S′ and can be handled in exactly the same way, i.e. right rotation of the right subtree of the root,
followed by a left rotation of the resulting BST (Fig. 11.9).

A last unbalanced tree shape S̄ rooted at u needs handling. This is symmetric with S, having
B(u) = 2 (see Fig. 11.10). Following the same pattern as above, we can distinguish two further symmetric
unbalanced tree shapes S̄′, S̄′′, both subsumed by S̄. Both can be rebalanced in the same way, by rotating
L(u) left first, and then rotating the resulting BST right.

11.3.6 Exercise

Convince yourself that T, T ′, S, S̄ exhaust the possible tree shapes that can occur after an insert or

158 CHAPTER 11. SEARCHING

uu

v

v

D
=

h

D
=

h

D
=

h

h

h

h

h
−

1

h
−

1

−2

−2

1

−1

−1αα

β

β

γ

r(γ)
rotateRight(R(u))

ւ

u

u

v

v

D
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

h

h

h

h

h
−

1

h
−

1

−2

−1

−1
0

0−1

α

α

β

β

r(γ)

r(γ)

rotateLeft(T)

Figure 11.8: Dealing with tree shape S′: a right rotation of the right subtree followed by a left rotation
of the result rebalances the BST.

u u

v

v

D
=

h

D
=

h

D
=

h

h h

h

h
−

1

h
−

1

−2

−2

1

−2

0α α

β

β

γ

r(γ)
rotateRight(R(u))

ւu

u

v

v

D
=

h

D
=

h

D
=

h
+

1

D
=

h
+

1

h

h h

h

h
−

1

h
−

1

−2

−2

0

0

10α

αβ

β

r(γ)

r(γ)

rotateLeft(T)

Figure 11.9: Tree shape S′′, symmetric with S′ and handled in the same way.

delete operation in a BST.

11.4. HEAPS 159

u

v

D
=
h D

=
h

D
=
h
+
1

2

−1

α

β γ

Figure 11.10: The unbalanced tree shape S̄.

11.4 Heaps

A heap is a basic tree-like data structure that is specially conceived to implement the concept of a priority
queue efficiently.

11.4.1 Priority queues

A priority queue is simply a queue (see Sect. 4.3) with an additional node extraction mechanism. Specif-
ically, we associate a scalar p(v) (called priority) to each element v of the queue V , and want to be able
to efficiently extract an element from highest priority. Accordingly, we introduce two new methods to
the queue’s standard set of methods: max and popMax. The former returns the priority of the element
with highest priority, and the latter returns the element of highest priority and removes it from V . We
also modify insert(v, p(v)) to also take the priority of v as input.

11.4.1 Exercise

Show that, if p(v) is an integer specifying the order of entrance in the queue, popMax has the same effect
as the popFront method in standard queues.

11.4.2 Heap properties

Having motivated heaps, we now look at them in more depth. A heap is a binary tree with the following
properties.

1. All tree levels except perhaps the last one are fully filled; the last one is filled left-to-right (shape
property).

2. Every node stores an element of higher property than its subnodes (heap property).

We remark that a heap is not a BST, as Eq. (11.1) is not necessarily satisfied.

Intuitively, the shape property ensures that the tree is balanced, and hence most depth-dependent
methods are O(log n) instead of O(n) (where n = |V |). The heap property induces the element of V
having highest priority to be stored as the root node.

11.4.2 Example

An example of heap where V ⊆ N and the priority order is simply the usual integer order.

160 CHAPTER 11. SEARCHING

100

36

125

19

317

72

11.4.3 Proposition

If V is a heap, ∀v ∈ V BV (v) ∈ {0, 1}.

Proof. This follows trivially from the shape property. Since all levels are filled completely apart perhaps
from the last, B(Q) ∈ {−1, 0, 1}. Since the last is filled left-to-right, B(Q) 6= −1. ✷

Thus, a heap is a balanced binary tree. Since a heap is not a BST (and thus not an AVL tree), we cannot
use the same balanced insertion and deletion methods as for AVL trees.

Notice that the shape property induces a linear order ≺ on the heap nodes, based on levels: for two
nodes u, v in a heap, we let u ≺ v if and only if either the depth of u is smaller than the depth of v, or, if
u, v are on the same level, if u is on the left of v. This order defines a notion of ≺-successor, which can
also be extended to the ≺-last element in the heap: the ≺-successor position after the ≺-last element is
either the leftmost “free slot” in the last level, if this is not completely filled, or the leftmost slot in a
new level otherwise. This position is also called the bottom of the heap.

11.4.2.1 Insertion

In order to add a new element v with priority p(v) to the heap V , we insert it at the bottom of the heap,
then “float it up” the path to the root while its priority is higher than that of its parent. Here is the
code for floatUp(v), which floats a node v up a heap V rooted at r, until v’s position satisfies the heap
property.

1: while v 6= r ∧ p(v) > p(P (v)) do
2: swap v with P (v)
3: end while

11.4.4 Example

As an example, we insert 1, 4, 2, 3, 5 in an empty heap.

∅ 1

1

∅4

4

∅1

4

21

4

21

∅3

4

23

∅1

4

23

51

4

25

31

5

24

31

insert 1 insert 4 float 4 insert 2 insert 3 float 3 insert 5 float 5 float 5

11.4.5 Exercise

Write floatUp as a recursive algorithm.

11.4.6 Exercise

Prove that heap insertion maintains the shape and heap properties.

11.4. HEAPS 161

Because a heap is a balanced tree, insertion takes O(log n).

11.4.2.2 Maximum

Returning the highest prority over all heap elements is equivalent to simply returning the priority of the
root element, because of the floatUp operation. Obviously, the complexity of the max method is O(1).

11.4.2.3 Popping the maximum

Since the highest priority element is at the root of the heap, we save the root for returning it later. We
then overwrite the root with the ≺-last heap element, i.e. the rightmost “filled slot” on the last heap
level, and unlink the latter (the unlink method can be borrowed from BSTs). Finally, we float the
updated root down the heap while one of its subnodes have higher priority. Here is the floatDown(v)
method.

1: while v < max(L(v), R(v)) do
2: swap v with max(L(v), R(v))
3: end while

In floatDown, we assume that if v has no left subnode, then L(v), R(v) return ∅, and that ∅ has priority
−∞.

11.4.7 Example

Here is an example of popping the maximum element from the heap.

5

24

31

5

24

31

3

24

∅1

4

23

∅1

heap ≺-last move to root swap with L(r)

The floatDown operation takes O(log n) in the worst case, so popMax also takes O(log n).

11.4.8 Exercise

Prove that floatDown preserves the shape property.

11.4.2.4 Initial heap construction

In Example 11.4.4, we constructed a new heap by inserting all the element in an empty heap, one after the
other. This has complexity O(n log n), since we must insert n element, and each insertion takes O(log n).
This is suboptimal; consider the following procedure instead.

1. Insert elements in a binary tree V in their natural order, respecting the shape property but not the
heap property.

2. For each v ∈ V , call floatDown(v).

It should be obvious that the net effect of the above procedure is the same as inserting elements in a
heap one by one, since the first step ensures the shape property is satisfied, whilst the second ensures the
heap property is satisfied (by Exercise 11.4.8, the shape property is preserved).

162 CHAPTER 11. SEARCHING

A superficial worst-case analysis gives the above procedure at O(n log n): there are n elements, and
each floatDown costs O(log n) by Sect. 11.4.2.3. There is a more refined analysis, however. The
floatUp(v) and floatDown(v) methods take a CPU time proportional to the level ℓ of the node v.
There are at most ⌈ n

2ℓ+1 ⌉ nodes at level ℓ, and O(log n) possible levels. Thus, the overall worst-case
complexity is:

⌈logn⌉
∑

ℓ=0

n

2ℓ+1
O(ℓ) = O



n

⌈log n⌉
∑

ℓ=0

1

2ℓ





≤ O

(

n

∞∑

ℓ=0

1

2ℓ

)

= O(2n)

= O(n).

11.4.9 Exercise

Implement a Java heap with the following methods: insert(v), max(), popMax(). Implement the two
versions of initialize(V) given in this section, and compare the CPU time they take over sets of 10,
100, 1000, 10000, 100000 elements. Do your empirical observations fit the theory?

Chapter 12

Shortest paths

Abstract. Shortest path problems and variants. Negative weights and negative cycles. Di-

jkstra’s algorithm: simple and more refined pseudocodes, with complexity. Floyd-Warshall’s

algorithm.

Given an edge-weighted directed or undirected graph, the problem of finding shortest paths in the
graph, in terms of the sum of the weights of the path edges, has dozens of applications, in logistics, com-
munication networks, power networks, engineering,, computer science itself (shortest path computations
are often sub-steps of more complex algorithms), and other fields.

Although in digraphs paths are technically known as walks, in this chapter we shall nonetheless call
them paths for historical reasons. Similarly, we use the term cycle to possibly mean a circuit in a
digraph. Moreover, undirected graphs occurring in path problems can be replaced by digraphs with pairs
of antiparallel arcs (u, v) and (v, u) for every edge {u, v} in the original graph G.

In the rest of this chapter, we assume that all graphs are connected, and that digraphs are strongly
connected.

12.1 Basic literature

12.1.1 Problem variants

Although the concept of a shortest path is easy to grasp, there are several different formal variants of the
shortest path problem. Here are some of these.

• The Shortest Path Problem (SPP). Given a directed or undirected graph G = (V,A), a node
or vertex s ∈ V , and a non-negative arc or edge weight function c : A→ R+, find c-shortest paths
from s to all other vertices of V . This problem is in P.

• The SPP with unit weights is the SPP with c : A → {1}, i.e. all arcs/edges have the same (unit)
weight. This problem is in P.

• The Negative Cycle Problem (NCP) asks to determine whether G has a cycle of negative
weight (the weigth of a cycle is the sum of the weights of the cycle edges). This problem is in P.

163

164 CHAPTER 12. SHORTEST PATHS

• The SPP with negative weights is the SPP with c : A → R, i.e. c can also take negative values.
This problem is in P.

• The Point-to-Point Shortest Path Problem (P2PSPP). Given G, c, and two distinct nodes
or vertices s, t ∈ V , find a c-shortest path from s to t. This problem is in P.

• The All Shortest Paths (ASP) problem asks to determine all shortest paths from u to v for any
couple (u, v) of nodes or vertices in V . This problem is in P.

• The Shortest Simple Path (SSP) problem consists in finding the shortest simple path from s to
t in G. This problem is NP-hard.

• The Longest Path Problem (LPP) asks to find the longest simple path from s to t in G. This
problem is NP-hard.

• The Undirected SPP (USPP) with weights in N requires G to be an undirected graph and can
be solved in linear time.

12.1.2 Algorithms

To every problem variant, there corresponds a specific algorithm.

• The SPP can be solved by Dijkstra’s algorithm (see Sect. 12.4 below), which bears some resemblance
to the Graph Scanning algorithm (see Sect. 8.1) with Q implemented as a priority queue (see
Sect. 11.4.1), and no restrictions about scanning a vertex more than once. Dijkstra’s algorithm
runs in polynomial time (simple implementation: O(n2)).

• The SPP with unit weights is solved using Breadth-First Search as explained in Sect. 8.2. BFS
runs in linear time O(n+m).

• The NCP and the SPP with negative weights are related. In fact, the issue with having negative
weights in the SPP is that the path weight might be unbounded. More precisely, if there is a cycle
of negative weight, any path from s to t can travel along the cycle as many times as desired (notice
that the path is not required to be simple) to reduce its weight as much as desired. The Bellman-
Ford algorithm, which runs in polynomial time O(nm), scans all arcs repeatedly to identify either
a shortest path tree or identify a negative weight cycle, and therefore solves both the NCP and the
SPP with negative weights.

• The ASP can be solved using the Floyd-Warshall algorithm, which runs in polynomial time O(n3)
and, interestingly, also solves the NCP.

• The algorithm for solving the USPP with nonnegative integer weights is given in [22].

The SSP and LSP can be solved either using brute force, or using an implicit enumeration method,
such as the Branch-and-Bound (BB) algorithm, or using heuristics (see Sect. 9.6).

12.2 Weight functions

If F is a set of c-weighted arcs in the digraph G = (V,A), the cost function c : A → R can be extended
to sets of arcs by setting

c(F) =
∑

(u,v)∈F

cuv.

12.3. THE SHORTEST PATH TREE 165

12.2.1 Exercise

Prove formally that, if there exist a negative weighted circuit in the digraph G = (V,A), no walk
P = (U, F) attains the minimum on the function c extended to sets of arcs.

12.2.2 Example

The cycle emphasized in the graph below has negative weight 1 + 0− 4 + 2 = −1 < 0.

1 2

3

45

6

7

2

11

2 1

1

0

1

5

-4

3
2

6

If an arc weight function c : A → R yields no negative cycles on a digraph G = (V,A), it is called
conservative.

12.3 The shortest path tree

Given a graph G = (V,E), a conservative weight function c : E → R and a source vertex s ∈ V , it is not
immediately evident that the union of all shortest paths from s to all other vertices forms a spanning
tree of G. After all, two paths from s to two vertices v, w might intersect at a single vertex u, and thus
form a cycle including s and u. This is indeed possible; however, shortest paths need not be unique, and
if two shortest paths from s to v, w form a cycle, then there must exist another shortest path from s to
w which follows the shortest path from s to v until u, and forks towards w later (and similarly for the
case where v, w are inverted).

12.3.1 Theorem

If c is conservative, every initial subpath of a shortest path is a shortest path.

Proof. Let P be a shortest path from s to v, and let u be a vertex in P different from u, v. Suppose, to get
a contradiction, that the initial subpath P0 of P from s to u is not a shortest path. Since G is connected,
there is a shortest path from s to every other vertex in G, so let Q be a shortest path from s to u. Since
Q is shortest and P0 is not, we have c(Q) < c(P0). Now consider the path Q′ from s to v consisting of Q
followed by the path P rP0 from u to v: the cost of Q′ is c(Q) + c(P rP0) < c(P0) + c(P rP0) = c(P),
which means that P is not shortest, against the assumption. So P0 is a shortest path from s to u, as
claimed. ✷

The solutions of all SPP variants are Shortest Path Trees (SPT), often encoded by means of two maps
π, d: π(v) stores the parent of vertex v in the tree rooted at s, and d(v) is the weight of the shortest path
from s.

12.3.2 Exercise

Adapt Thm. 12.3.1 to digraphs. The (directed) SPT should be oriented out of the source.

166 CHAPTER 12. SHORTEST PATHS

12.4 Dijkstra’s algorithm

Dijkstra’s algorithm solves the SPP: given a nonnegatively weighted digraph G = (V,A) and a source
node s ∈ V , find a SPT from the source to all other nodes.

12.4.1 Exercise

Prove that a nonnegative edge function is conservative.

12.4.1 Data structures

We label the nodes of the digraph V = {1, . . . , n} and maintain two integer arrays1 πv and dv: for all
v ∈ V , πv is the parent node of v in the SPT rooted at s, and dv is the weight of shortest path from s to
v. Initially, πv = s for all v, ds = 0 and dv =∞ for all v 6= s.

12.4.2 Exercise

Consider the star digraph on V with arc set {(s, v) | v ∈ V }, each arc with weight∞. Show that there is
only one possible SPT from s, that the predecessor of each v 6= s is s, and that the weight of a shortest
path from s to v is ∞ for each v.

12.4.2 Reach, settle and relax

As mentioned above, Dijkstra’s Algorithm is similar to Graph Scanning with Q implemented as
a priority queue (see Sect. 11.4.1), an update of the arrays πv, dv as the algorithm progresses, and no
restriction about scanning a node more than once.

We are going to introduce a slightly different terminology in order to align with the current shortest
path literature. A node v 6= s such that dv 6=∞ is reached. A node v ∈ V is settled when πv, dv no longer
change during the rest of the algorithm’s execution. After a node u is settled, each node v in its star is
checked: if shortest paths through u should take the arc (u, v), then we update pv = u (the parent of v be-
comes u) and dv = du+cuv (the weight of the shortest path to v is the weight to the shortest path to u plus
the weight of the arc (u, v)). This update is also called relaxing the arc (u, v) (see Fig. 12.1). The code for
relax(u, v), which also includes the check, is as follows.

1: if du + cuv < dv then

2: dv ← du + cuv;
3: pv ← u;
4: end if

uu

vv

dudu

dv

cuvcuv

du + cuv

Figure 12.1: Relaxing the arc (u, v).

12.4.3 A simple implementation

With the terminology in place, the pseudocode is as follows.

1For clarity of exposition, we index these arrays starting from 1. In Java/C/C++, indexing would start from 0.

12.4. DIJKSTRA’S ALGORITHM 167

1: while ∃ unsettled nodes do
2: Let u be an unsettled node with minimum du;
3: Settle u;
4: for (u, v) ∈ A do

5: Relax (u, v);
6: end for

7: end while

12.4.3 Exercise

Prove that if dv =∞ at Step 4, relaxing (u, v) will necessarily make dv reached.

12.4.4 Exercise

Copy the Graph Scanning algorithm and adapt it so it becomes an implementation of Dijkstra’s

Algorithm. Prove that the two algorithms yield the same solutions for any SPP instance.

12.4.5 Exercise

Convince yourself that each node is settled at exactly once.

12.4.6 Example

Fig. 12.2 shows a worked-out example of Dijkstra’s algorithm finding the SPT on a digraph.

12.4.7 Exercise

Write down the data structures π, d for each step of Example 12.4.6.

12.4.3.1 Complexity

The worst-case complexity of a simple implementation for Dijkstra’s algorithm is O(n2): each node is
settled exactly once, so the outer loop at Step 1 is executed O(n) times; finding the minimum element
of V takes no longer than O(n) independently of the data structure (less with a priority queue); and the
inner loop at Step 4 is executed at worst O(n) times, since any vertex can be adjacent to at most n− 1
other vertices. Simple implementations are competitive in dense graphs, but graphs are often sparse in
practice.

12.4.3.2 Correctness

It should be evident that a node must be reached before it can be settled.

12.4.8 Proposition

All nodes are settled by Dijkstra’s algorithm.

Proof. By Thm. 8.1.1, and because Dijkstra’s algorithm is essentially like Graph Scanning with one
fewer check in the inner loop, all nodes are reached. Since the outer loop continues until all nodes are
settled, the algorithm terminates with this condition holding. ✷

12.4.9 Theorem

Whenever v ∈ V is settled by Dijkstra’s algorithm, dv is the weight of a shortest path from s to v where
all predecessors of v in the path are settled.

Proof. By induction on the iteration index k. Let S be the set of settled nodes at iteration k − 1, let v
be chosen at Step 2 of iteration k, and P ∗ be the path from s to v determined by Dijkstra’s algorithm.
Suppose there is another path P from s to v with weight c(P) (see Fig. 12.3). Since v 6∈ S, there must
be (w, z) ∈ A with w ∈ S and z 6∈ S s.t. P = P1 ∪ {(w, z)} ∪ P2, where V (P1) ⊆ S. Then c(P) =

168 CHAPTER 12. SHORTEST PATHS

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

settle 1 reach 2, 3, 5, 6 & relax settle 3

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

reach 7, relax to 2, 4, 5 settle 4 relax to 6, 7

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

settle 5 relax to 6, 7 settle 2

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

relax nothing settle 6 relax nothing

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

1 2

3

45

6

7

2

11

2 1

1

0

1

5

4

3
2

6

1 2

3

45

6

7

2

11

2

0
3

settle 7 relax nothing the final SPT

Figure 12.2: Dijkstra’s algorithm running over a small graph (see Example 12.4.6).

c(P1) + cwz + c(P2) ≥ c(P1) + cwz because we subtracted c(P2), c(P1) + cwz = dw + cwz by the induction
hypothesis (because, since w ∈ S, w was settled at an iteration k′ < k), dw + cwz = dz ≥ dv because
otherwise dv would not be minimum, contradicting the choice of v at Step 2, and finally dz ≥ dv = c(P ∗),
so that P ∗ is a shortest path from s to v, as claimed. ✷

12.4. DIJKSTRA’S ALGORITHM 169

P ∗

s

v

w

z

p(v)

P1

P2

S

Figure 12.3: The crux of the argument in Dijkstra’s correctness theorem 12.4.9.

12.4.4 A more refined implementation

In the complexity analysis of the simple implementation of Dijkstra’s algorithm, we did not exploit the
fact that V is implemented as a priority queu (see Sect. 11.4.1). Moreover, because only reached nodes
can be settled, V need only contain unsettled, reached nodes at any time. Because Step 2 requires the
node v with minimum dv, we use dv as priorities. This, however, raises an issue: since dv is updated
every time an arc is relaxed, priorities might need to be changed for nodes that are already in the queue.
One way to implement the update of the priority dv for the node v in a heap (the tree structure that
implements a priority queue, see Sect. 11.4) is to delete v (O(log n)) and re-insert it with the updated
priority (O(log n)).

12.4.4.1 Pseudocode

In the pseudocode, we distinguish between V , the set of nodes, and Q, the priority queue of reached
unsettled nodes.

1: ∀v ∈ V dv =∞, ds = 0;
2: ∀v ∈ V pv = s;
3: Q.insert(s, ds);
4: while Q 6= ∅ do

5: Let u = Q.popMin();
6: for (u, v) ∈ δ+(u) do
7: Let ∆ = du + cuv;
8: if ∆ < dv then

9: Let dv = ∆;
10: Let pv = u;
11: Q.delete(v); // no effect if v 6∈ Q
12: Q.insert(v, dv);
13: end if

14: end for

15: end while

12.4.4.2 Complexity

By Exercise 12.4.5, nodes are settled exactly once. This implies that Step 5 is executed O(n) times, each
taking O(log n); and also that each arc is relaxed exactly once, since its head vertex must be settled in
order for an arc to be relaxed inside the loop at Step 6; since priority update takes O(log n), as remarked
above, this implementation is O((n +m) logn) overall. This is worse than O(n2) if the digraph is dense

170 CHAPTER 12. SHORTEST PATHS

but better if it is sufficiently sparse, which is most usually the case.

There exists also an O(m+n logn) Dijkstra algorithm implementation using more refined data struc-
tures.

12.4.5 The point-to-point SPP

Solving the point-to-point SPP from s to t can be seen as a “part” of the SPP: it suffices to stop the
search as soon as t is settled, since, by definition, a settled node will keep its priority until the end of the
algorithm.

Accordingly, we can use a Dijkstra’s algorithm modified by inserting the code below between Step 5
and 6:

if u = t then
exit;

end if

12.5 Floyd-Warshall algorithm

The Floyd-Warshall algorithm finds all shortest paths (i.e. it solves the ASP) on a digraph G = (V,A)
with any arc weight function c : A→ R.

12.5.1 Data structures

As data structures, we use two n× n matrices p, d: puv is the predecessor of v in the shortest path from
u; duv is the cost of the shortest path from u to v. The principle of the algorithm is the following: for
each node z and node pair u, v, we check whether the current shortest path from u to v can be improved
by passing through z.

u v

z

puv

pzv

If so, we update duv to duz + dzv and puv to pzv, otherwise we consider the next triplet z, u, v.

12.5.2 Pseudocode

I find this algorithm is the very simplest to remember!

1: ∀u, v ∈ V duv =

{
cuv if (u, v) ∈ A
∞ otherwise

2: ∀u, v ∈ V puv = u
3: for z ∈ V do

4: for u ∈ V do

5: for v ∈ V do

6: ∆ = duz + dzv;

12.5. FLOYD-WARSHALL ALGORITHM 171

7: if ∆ < duv then

8: duv = ∆;
9: puv = pzv;

10: end if

11: end for

12: end for

13: end for

The complexity of the Floyd-Warshall algorithm is clearly O(n3).

12.5.1 Exercise

Prove that the algorithm is correct. Try to express the following concept formally: at termination, every
possible triplet was checked.

12.5.3 Negative cycles

It is interesting to remark that the Floyd-Warshall algorithm can also solve the NCP. Assume there is a
negative cycle through u; when u = v, the “triangulations” through other nodes z will eventually yield
duu < 0, since a path from u to itself via the negative cycle will have negative weight. Whenever that
happens, terminate the algorithm: a negative cycle was found.

The modification to the pseudocode above is trivial: after Step 6, insert this code:

if ∆ < 0 then

exit;
end if

172 CHAPTER 12. SHORTEST PATHS

Bibliography

[1] Ph. Baptiste and L. Maranget. Programmation et Algorithmique (in French). Polycopié de l’Ecole
Polytechnique, Palaiseau, 2009.

[2] C. Berge. Théorie des graphes et ses applications. Dunod, Paris, 1958.

[3] E. Berlekamp, J. Conway, and R. Guy. Winning ways for your mathematical plays, vol. 2. Academic
Press, 1982.

[4] N. Biggs, E. Lloyd, and R. Wilson. Graph Theory 1736-1936. Oxford University Press, Oxford,
1976.

[5] C. Böhm and G. Jacopini. Flow diagrams, turing machines and languages with only two formation
rules. Communications of the ACM, 9(5):366–371, 1966.

[6] P. Cameron. Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press, Cam-
bridge, 1994.

[7] N. Chomsky. Aspects of the Theory of Syntax. MIT Press, Cambridge, MA, 1965.

[8] A. Clark. Elements of Abstract Algebra. Dover, New York, 1984.

[9] G. Dowek. Les principes des langages de programmation (in French). Editions de l’Ecole Polytech-
nique, Palaiseau, 2008.

[10] M. Garey and D. Johnson. Computers and Intractability: a Guide to the Theory of NP-
Completeness. Freeman and Company, New York, 1979.

[11] J. Jones. Universal diophantine equation. Journal of Symbolic Logic, 47(3):549–571, 1982.

[12] D.E. Knuth. The Art of Computer Programming, Part I: Fundamental Algorithms. Addison-Wesley,
Reading, MA, 2nd edition, 1997.

[13] D. König. Theory of Finite and Infinite Graphs. Birkhäuser, Boston, 1990.

[14] K. Kunen. Set Theory. An Introduction to Independence Proofs. North Holland, Amsterdam, 1980.

[15] K. Mehlhorn and P. Sanders. Algorithms and Data Structures. Springer, Berlin, 2008.

[16] M. Minsky. Size and structure of universal turing machines using tag systems. In Recursive Function
Theory, volume 5 of Symposia in Pure Mathematics, pages 229–238. AMS, Providence, 1962.

[17] M. Minsky. Computation: Finite and infinite machines. Prentice-Hall, London, 1967.

[18] R. Montague. Formal Philosophy. Yale University Press, London, 1974.

173

174 BIBLIOGRAPHY

[19] Y. Roghozin. Small universal Turing machines. Theoretical Computer Science, 168:215–240, 1996.

[20] S. Seshu and M.B. Reed. Linear Graphs and Electrical Networks. Addison-Wesley, Reading, MA,
1961.

[21] C. Shannon. A universal Turing machine with two internal states. In C. Shannon and J. McCarthy,
editors, Automata Studies, volume 34 of Annals of Mathematics Studies, pages 157–165, Princeton,
1956. Princeton University Press.

[22] M. Thorup. Undirected single-source shortest paths with positive integer weights in linear time.
Journal of the ACM, 46(3):362–394, 1999.

[23] A. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society, 42(1):230–265, 1937.

[24] V. Yngve. The depth hypothesis. In Structure of Language and its Mathematical Aspects, volume XII
of Proceedings of Symposia in Applied Mathematics. American Mathematical Society, Providence,
1961.

Index

O(·), 23, 138
[n], 105
Ω(·), 138
Θ(·), 138
⊥, 61, 63
k-Clique, 133, 134
k-Stable, 134
k-Stable, 133, 138
;, 32
<>, 72
{}, 31

abstraction, 133
action, 105
address, 30, 103

return, 71
Adelson, 154
algorihm, 109
algorithm, 22, 29, 102, 132, 133

Bellman-Ford, 164
best, 138
Dijkstra, 164, 166, 167, 169, 170
efficient, 87
exact, 135
execution, 146
exponential, 138
Floyd-Warshall, 164, 170
heuristic, 135
input, 56
non-polynomial, 135
polynomial, 135, 138
Prim, 128
Prim’s, 133
recursive, 124, 141, 160
sorting, 144, 147
best, 140
comparison-based, 139
general-purpose, 140

sub-step, 163
alphabet, 18, 20, 104
ambiguous, 94
AMPL, 19

ancestor, 124
node, 149

approximation, 140
arc, 41, 59, 122

multiple, 41
multiplicity, 41
relaxed, 169

args, 30
Ariane 5, 28
array, 30, 32, 33, 36, 37, 53, 75, 77, 109, 137

access, 67
binary, 118
bound, 71
circular, 65
implementation, 66

complexity, 54
component, 58
delimiter, 55
efficiency, 54
entry, 55
insert, 54, 75
insertion, 56
integer, 121, 166
jagged, 53
linear, 32, 36, 53
memory, 71
memory size, 55
move, 54
multidimensional, 32, 53
operation
copy, 58

operations, 54
read, 54
removal, 56
remove, 54
scanning, 140
size, 54, 55
sorted, 137
splice, 56
two-dimensional, 32, 36
unsorted, 137, 140
write, 54

175

176 INDEX

ArrayList, 29, 110
ASCII, 25, 71, 77, 79
ASP, 164, 170
assembly, 71
assert, 67
assignment, 22, 75, 104
atom, 45, 92
atomic formula, 92
attribute, 21, 27, 35, 81
automorphism, 43, 105

graph, 43
AVL, 154
axiom, 114

backtrack, 124, 125
base address, 75
base case, 150
Basic, 19, 25
BB, 164
Bellman, R., 164
BFS, 67, 120, 123, 164

rank, 120
bijection, 43, 106
bipartite, 41, 42
bisection, 132, 137, 141, 142
bit, 20, 118
block

for, 31
if, 31
while, 31

bond, 92
boolean, 31
bot, 63
bound, 146
brace, 31, 34
bracket

curly, 31
square, 32

Branch-and-Bound, 164
breadth-first search, 67
Breadth-First Search, 120
Breadth-First Search, 164
brute force, 137
BST, 150, 154, 158–160

balancing, 154
delete, 154, 158
deletion, 152
two subnodes, 153

find, 151
insert, 157
insert, 152
left, 156
max, 151
min, 150

minimum, 153
property, 156
rebalancing, 156
recursive
methods, 150

right, 156
root, 154
rooted, 156, 157
rotating, 156

bug, 28
byte

comparison, 139

C, 19, 25, 31, 53
C++, 19, 25, 30, 31, 53
call

recursive, 108
Cameron, P., 144
CAML, 19
carbon, 92
cardinality

largest, 136
Carnap, R., 95
Cartesian product, 41
Cayley, 90
cell, 18
certificate, 131

NO, 133
YES, 133

char, 26, 31
chemical formula, 93
Chomsky, N., 95
chord, 92
Church’s thesis, 18
Church, A., 18
circuit, 48, 163

weighted, 165
circular array, 65
circularArray, 67
class, 21, 27, 28, 33, 53, 80

constructor, 63
function, 35
implementation, 62
infinite, 138
inheritance, 28
interface, 28
member, 27, 32, 82
parameter, 72
parametrizable, 110
parametrized, 72
reference, 110
structure, 28, 34
user-defined, 26

clique, 42, 45, 131, 133

INDEX 177

directed, 41
co-domain, 19
code

duplication, 28
executable, 32

collision, 78
column, 33, 36
command line, 70
comment, 26, 33, 62, 109, 113
commodity, 97
comparison, 139, 144, 146, 147

byte, 77
compiler, 25, 27, 28, 30, 31, 53
complete, 41, 45, 133
complete graph, 42
complexity

algorithm, 133, 138
array, 54
asymptotic, 57, 138, 147
average case, 57, 60
average-case, 22, 56, 144
best-case, 22, 138
exact, 147
lower bound, 133
order, 23
polynomial, 138
problem, 133, 138
space, 22
time, 22
upper bound, 132
worst-case, 22, 23, 132, 138, 147

component, 33
components, 36
composition, 106
computable, 19
computer science, 163
concatenate, 61
concatenation, 18, 22
conformance, 28
conjecture, 138
connected, 46

component, 118
connectedness

minimal, 127
connectivity, 97
conservative, 165, 166
console, 33, 35–37
constant, 20, 23, 94, 139
constant time, 75
constructor, 63, 82
contraction, 50
contradiction, 108, 119
control, 71
Cook, S., 134

copy
deep, 26
shallow, 26

cost, 97
function, 128
minimum, 127, 132
nonnegative, 97
unitary, 97

couple, 164
CPU, 17, 25
cutset, 46, 60, 127, 128

empty
nontrivial, 131

trivial, 46
cycle, 60, 65, 87, 89, 119, 127, 163, 165

basis, 92
fundamental, 92

disjoint, 107
length, 107
negative, 163–165
set, 92
linearly independent, 92

simple, 47, 59, 60
space, 48, 87
basis, 92

sum, 92
unique, 90, 92

cylinder, 112
radius, 112

DAG, 125
data

container, 53, 149
dynamic, 149
size, 58
static, 149

object, 131
shared, 27, 35
structure, 20, 21, 27, 41, 53, 71, 110, 119, 128,

149
element, 53
elementary, 21
entry, 53
fixed size, 76
linear, 58, 87, 110, 137, 149
searchable, 149
tree, 87, 149
tree-like, 159
user-defined, 21

type, 26, 27, 31, 60, 131, 138, 149
elementary, 26, 30, 31
non-elementary, 71, 72

data container, 58
decidable, 19, 21

178 INDEX

decision, 19, 131
declaration, 34
declarative, 19
definition, 34
degree, 46, 89
delete, 149, 155
delimiter, 55
depth, 88, 124, 156

difference, 156
depth-first, 102
Depth-First Search, 123
DFS, 102, 123, 125

scan, 126
search, 124

dfs, 124
digraph, 41, 54, 118, 163, 165, 166, 170

acyclic, 125
arc list, 54
bipartite, 41
complete, 41
dense, 169
empty, 41
nonnegatively weighted, 166
simple, 41
star, 166
strongly connected, 47, 163

Dijkstra, E., 164
dimension, 33, 87
Diophantine equation, 19
disconnected, 87
distance

Hamming, 97
Divide-and-Conquer, 141, 142
Divide-and-Conquer, 142
DLList, 61, 62
domain, 19, 76
dot operator, 31
double, 31
double, 21, 26

Eco, U., 125
edge, 42, 59, 89, 92, 97, 118–120, 124

addition, 50, 60
cheapest, 128
column, 92
contraction, 50
cost function, 127
intersection, 125
number, 123
removal, 50, 60
set, 42, 45, 133
swap, 90
tree, 92
weighted, 163

Edmonds, J., 135
efficiency

algorithmic, 133
efficient, 20
element

leftmost, 140
minimum, 140, 150

empty, 45, 132
engineering, 163
equation, 144

differential, 144
first-order, 146

error
detection, 67

event
independence, 57
independent, 57

expression, 94
mathematical, 94
tree, 95

factor, 145
factorial

iterative, 104
recursive, 101

Fermat, 114
Fibonacci (L. Pisano), 144
field

finite, 92
FIFO, 65
file, 32
find, 149, 155
flip, 97
float, 26, 31
floatDown, 161, 162
floating-point, 30
floatUp, 161
floatUp, 162
floor, 36
Floyd, 164
Ford, L., 164
formula

propositional, 134
Stirling, 140

Fortran, 19, 25
function, 19, 20, 23, 71

arc
weigth, 170

arc weight, 165
argument, 29
call, 71, 104
nested, 71
recursive, 101
tree, 103

INDEX 179

computable, 19
edge weight, 163
input, 71
overloading, 77
plot, 33
recursive, 124, 150
scalar-valued, 132
user-defined, 21
weight
conservative, 165

well-defined, 71
functionPlot, 33

Gödel
incompleteness theorem, 114

Gödel, K., 114
Game of Life, 18
Garey, M., 133
generic container, 72
GOTO, 71
grammar

formal, 94
label, 95

graph, 41, 42, 54, 59, 102, 120, 124, 132, 163
adjacency list, 54
automorphism, 43
bipartite, 42
block, 125
complement, 42, 133
complete, 42, 97
connected, 46, 87, 120, 124, 131, 163
dense, 167
directed, 41, 88, 163
disconnected, 132
edge list, 54
empty, 42
exploration, 67
isomorphism, 43
line, 44
minor, 50
operation, 50, 60
planar, 125
problem, 117
representation, 54
simple, 42
sparse, 167
strongly connected, 46
structure, 43
theory, 125
underlying, 42
undirected, 163, 164
weighted, 128

Graph Scanning, 117
Graph Scanning, 120

Graph Scanning, 119, 123, 164, 166, 167
greedy, 135
group, 43, 106

structure, 44
symmetric, 106

GUI, 28

Hamming, 97
Hanoi towers, 112

Java, 113
hash

table, 80
hash function, 79

injective, 78
hash function, 76, 78, 79, 83

family, 79
injective, 77

hash table, 75, 78, 79
find, 83

hashCode, 77
head, 18
heap, 159, 160, 169

bottom, 160
empty, 161
float, 161
floatUp, 160
insertion, 160
last, 160
level, 160, 161
new, 161
node, 160
popMax, 161
property, 159–161
root, 161
shape property, 160
shape properties, 160
shape property, 159, 160
unlink, 161

height, 88
helloWorld, 27
heuristic, 135, 164

greedy, 135
Hilbert, D., 19, 114
hydrogen, 92

identity, 44
imperative, 19
implementation

recursive, 149
import, 34, 62, 109, 113
indegree, 42
independent

set, 45
index, 53, 76, 79, 147

arithmetic, 53, 61

180 INDEX

iteration, 167
positional, 144

induced, 44
induction

mathematical, 101, 104
infinite, 131
information

exchange, 97
inheritance, 28
injective, 80
input, 71, 102, 131, 132, 134, 137, 144, 152

argument, 104, 105
general, 144

insert, 149, 155
array, 54

insertion, 161
Insertion Sort, 140
instance, 102, 131, 132, 144

NO, 132
size, 133
YES, 132

instar, 42
instruction, 17, 25, 27, 71

basic, 32
int, 20, 26, 31, 110
Integer, 72, 110
integer, 30, 33, 58, 133, 144
integer rounding, 34, 36
integration, 146
interface, 28, 67

implementation, 29
interpreter, 25
inverse, 156
IO, 17
isomer, 92
iteration, 119, 167

successive, 91
Iterator, 110, 111

.hasNext(), 110

.next(), 110
itinerary, 122, 123

Java, 19, 25, 27, 53, 109
compiler, 30
exception, 151, 152
function, 29
programming, 77

java, 26
javac, 26
jmp, 71
Johnson, D., 133
junction, 125

key, 75, 76, 78–80

label, 88
Landis, 154
language, 18, 93

assembly, 71
declarative, 19
formal, 26, 93
semantics, 95
syntax, 94

imperative, 19
machine, 139
meaning, 93
natural, 26, 93, 125
semantics, 96
syntax, 95

programming, 25, 93
universal, 19

leaf, 88, 94, 95, 124, 126, 139, 149, 154
deepest, 127
rightmost, 127

left, 160
level, 88, 160
library, 36, 62

standard, 34, 69
LIFO, 67
line graph, 44
linear

independence, 92
time, 164

link, 97
LinkedList, 79, 80, 110
Linux, 25
LISP, 19
list, 58, 75, 77

access, 61
adjacency, 54, 102, 118
arc, 54
concatenate, 61
doubly-linked, 59
edge, 54
find, 64
find next, 64
first, 63
implementation, 61
insertion, 60
Java, 61
last, 63
linked, 109, 110, 118, 149
next, 58, 61
operation, 59
placeholder, 59
pop, 61, 63
previous, 59, 61
print, 64
push, 61, 63

INDEX 181

read, 61
removal, 60
singly-linked, 58, 61, 78, 83
find, 83
implementation, 80

size, 63
write, 61

logistics, 163
long, 26, 31
Longest Path Problem, 164
loop, 18, 20, 22, 31, 36, 41, 56, 80, 102, 139

incomplete
complexity, 57

infinite, 104, 105
inner, 167
internal, 167
outer, 167
simple, 56
termination, 56

LPP, 164
LSP, 164

MacOSX, 25
main, 32
main, 27, 30, 31, 33, 61, 78
Map, 72
map, 71, 77
Math, 36
matrix, 32, 53
Matyasevič, 19
max, 149, 155, 159, 161
Max Clique, 134
Max Stable, 135
maximization, 132
maximum, 37
maze, 125
median, 132, 144
member, 31
memory, 18, 20, 30, 104

access, 53
address, 26, 27, 31, 58, 71, 75
allocation, 32, 63
automatic, 61
manual, 61

block, 53
cell, 58, 65
object, 62
size, 77
swap, 55

merge, 141
efficiently, 141

MergeSort, 141
MergeSort, 141, 142, 144
method, 21, 27

depth-dependent, 159
static, 109

min, 149, 155
minimization, 132
minimum, 37, 140
Minimum Spanning Tree, 132
minor, 50
Minsky, 18
model of computation, 18
molecule, 45, 92
Montague, R., 96
move

array, 54
MST, 128, 132
multidigraph, 41
multigraph, 42

NCP, 164, 171
neighbour, 124
neighbourhood, 43

outgoing, 42
networj

event, 122
network, 97

communication, 163
distance, 97
event, 123
power, 163

new, 61
node, 41, 59, 123, 139, 144, 149

child, 149
degree, 88
depth, 160
extraction, 159
labelled, 122
leaf, 139, 150, 152
leftmost, 153
level, 162
non-leaf, 149, 150
non-root, 149
order, 156
pair, 170
parent, 149, 166
reached, 166, 169
root, 159
scanning, 117
settled, 166, 167
source, 166
unsettled, 169

NP, 133
NP, 134
NP-complete, 134
NP-hard, 134
NP-hard, 135

182 INDEX

null, 150
null, 58, 65, 81

object, 21, 27, 28, 31, 32, 53, 62, 110
address, 65
equal, 77
interface, 29
member, 31
type, 131

operand, 95
operating system, 71
operating system, 32, 55
operator, 95

k-ary, 106
binary, 94
closed, 106
dot, 31
precedence, 94
unary, 94

order, 47, 105
alphabetical, 75
linear, 160
natural, 137, 161
rank, 75
relation, 150
topological, 125
total, 138

ordered
totally, 150

orders, 109
oriented, 165
OS, 32, 71, 104
outdegree, 42
output, 131, 134

algorithmic, 146
outstar, 42
overloading, 81

P, 133
P2PSPP, 164, 170
pair, 71, 122
paradox, 147
paraffin, 93
parent, 160
parsing, 95, 125
partition, 142
Pascal, 19, 25
passing

by reference, 30
by value, 110
by reference, 110
by value, 30

path, 47, 88, 119, 120, 123–125, 139, 149, 163
all, 164
directed, 59, 123

edge, 163
endpoint, 47
length, 118, 120
longest, 88, 154, 164
not unique, 165
shortest, 123, 163, 165, 170
weight, 166, 167

simple, 46, 47, 59, 164
unique, 92, 120

Peano
axioms, 114

Peano, G., 114
perl, 25
permutation, 105, 108, 138, 140

action, 105
cycle, 107, 139
identity, 139
inverse, 106
list, 108
product, 106

pivot, 142–144
placeholder, 59, 63
point of entry, 32, 35, 61, 110
Point-to-Point SPP, 164
pointer, 110
polynomial, 19, 133
polynomial time, 134
pop, 61
popFront(), 120
popFront, 159
popMax, 159
position

correct, 140
power, 97

series
log, 146

Prüfer, 90
predecessor, 167, 170
preprocessor, 27
Prim’s Algorithm, 128
Prim, R., 128
prime, 79
print, 34, 36
priority, 159, 169

higher, 160, 161
highest, 159, 161

priority queue, 67
private, 27, 35
probability, 57
probability distribution, 57
problem, 21, 22

case, 131
class, 133
complex, 141

INDEX 183

complexity, 133
decidable, 21, 22
decision, 19, 131, 132, 137
abstract, 132

instance, 102, 131
minimization, 132
MST, 132
complexity, 133

NP-complete, 138
NP-hard, 135
optimization, 132, 135
abstract, 132

size, 141
undecidable, 132

procedure
recursive, 101

product, 145, 146
associative, 106

program, 17, 18
execution, 58

programming language, 18
Prolog, 19
protein, 45
pseudocode, 102, 128

recursive, 137
public, 27, 30, 32, 35
public, 63
push, 61
pushBack(), 120
python, 25

query
search, 149

queue, 65, 67, 119, 120, 123, 159
applications, 67
beginning, 65
delete, 65
empty, 65
end, 65
insert, 65
insertion, 65
placeholder, 66
priority, 67, 159, 164, 166, 169
removal, 65
retrieve, 65
size, 65

QuickSort, 142, 144

RAM, 17, 18, 20
random

event, 57
random access, 54
read

array, 54
record, 75, 76, 78, 80

recursion, 94, 124, 125, 141, 142
level, 105, 144

recursive, 19
recursively enumerable, 19
reduction

polynomial, 134
reference, 26, 58, 61–63, 110

next, 110
null, 150
passing, 110
passing by, 30

relation, 41, 150
recurrence, 144

remove
array, 54

replace, 152
resource

limited, 135
return

type, 63
value, 104

return, 71
return value, 30
Roghozin, 18
root, 88, 125, 139, 149, 154

path to, 160
priority, 161
shell, 71

rotation
left, 156, 157
right, 156–158

rotationa
left, 158

route, 97
row, 33, 36, 54
rule

syntactical, 93

scalar, 159
scanning, 117
scope, 31
search

depth-first, 102
query, 149

searching, 87, 137, 149
Searching Problem, 137
see stack, pop, 61
see stack, push, 61
Selection Sort, 140
semantics, 95, 96
semicolon, 32
sentence

ambiguous, 93
meaning, 95

184 INDEX

structure, 125
valid, 93

sequence, 58, 79, 105, 125, 137–140, 142
binary, 147
elements, 144
empty, 91
Fibonacci, 144
Prüfer, 90, 91
sorted, 137, 141, 143, 150
unsorted, 137, 142, 144

series
power, 144
formal, 145

set, 27, 71, 95
closed, 106
decidable, 19
input, 139
property, 27
recursive, 19
scalar, 132
stable, 133
totally ordered, 140

settled, 166, 167, 169
shadowing, 36
Shannon, 18
shape

property, 161
shell, 32
Shortest Path Problem, 163
Shortest Path Problem, 47
Shortest Simple Path, 164
side-chain, 45
simulation, 18, 21
sine, 34
singlyLinkedList, 83
size

array, 54
slot

free
leftmost, 140

solution, 141
closed-form, 144
optimal, 135
partial, 141

sort
insertion, 140
merge, 140, 141
quick, 140
recursively, 143
selection, 140

sorted, 137, 149
sorting, 87, 149

tree, 139
Sorting Problem, 138, 147

source, 124
SP, 138
spanning, 127
sparse, 170
specifier, 30
SPP, 47, 163, 164, 166

instance, 167
negative weights, 164

SPT, 165, 166
directed, 165

SSP, 164
stable, 45, 133

maximal, 135
maximum, 135
set, 45, 133

stack, 61, 67, 71, 103, 104, 119, 123, 124
implementation, 68
pop, 67, 103, 123
push, 67, 103, 123
size, 105, 126
smashing, 71

star, 43, 54
incoming, 42, 54
neighbourhood, 42
outgoing, 42, 54

state, 17
static, 27, 31–33, 82

method, 78
static, 61
Stirling, 140
storage, 121
stringPair, 83
strongly connected, 47
structure

combinatorial, 146
subgraph, 44, 97

k-clique, 134
complete, 134
contraction, 50
densest, 45
induced, 44, 45
isomorphism, 45
minimally connected, 97
spanning, 88

subnode, 149
left, 149
right, 149

subpath
initial, 165

subproblem, 131, 141
subsequence, 55, 58, 142

sorted, 141
subset, 132

proper, 127

INDEX 185

subtree, 156, 157
left, 144, 149, 150, 153, 154, 157
right, 144, 153, 154, 158
rooted, 150

successor, 160
sum, 145
swap, 55, 107
symbol, 18, 20
syntax, 95
System, 31
System.out, 31, 34

tape, 18, 21
Tarjan, R., 125
Tarski, A., 96
template, 72
tensor, 32, 53
termination, 22

failure, 19, 132
test, 18, 20, 22, 139

termination, 105
theory, 114

complete, 114
consistent, 114
inconsistent, 115

this, 27, 62
time

limited, 135
TM, 18, 134
tour, 48
trace, 146
trade-off, 18, 22
trail, 47, 48
transportation

mode, 123
tree, 87, 89, 101, 119, 120, 124, 125, 127, 146, 149,

157
k-ary, 149
AVL, 154, 160
balanced, 144, 159
balancing, 154
BFS, 120
binary, 139, 149, 159, 161
balanced, 160

connected, 90
data structure, 87
depth, 88, 126, 139
derivation, 95, 125
directed, 88, 149
edge
removal, 127

expression, 95
function call, 103
height, 88

labelled, 89, 90
leaf, 88
level, 88, 159, 162
filled, 160

listing, 93
MergeSort, 144
node, 87, 146
parse, 95
progressive, 126
QuickSort, 144
recursion, 144
balanced, 141

regressive, 126
root, 151
rooted, 88
directed, 88

rotation, 155
search
binary, 150

shape, 156–158
symmetric, 157

shortest path, 120, 164, 165
sorting, 139, 140, 144, 147
spanning, 88, 90, 92, 97, 119, 120, 127, 131,

165
minimum cost, 97, 128

unbalanced, 144, 157
unlabelled, 89

Turing
Machine, 134
machine, 18
universal, 18, 104

Turing, A., 18
Turing-complete, 18
Turing-equivalent, 18
type

elementary, 110
parameter, 110
parametrized, 72

unbalance, 156, 157
unbounded

path weight, 164
undecidable, 19
universal, 20

language, 18
Turing machine, 18

universality, 104
unlink, 152, 161
unsorted, 137
user, 35, 36, 38
USPP, 164
UTM, 18, 19, 104

valence, 92

186 INDEX

value, 132, 144
maximum, 132
minimum, 132
passing, 110
passing by, 30

variable, 19, 94
address, 26
name, 27
static, 36
symbol, 26, 94, 95
temporary, 55
value, 26
default, 63

vector, 32, 33, 53, 57
binary, 49
incidence, 49
cycle-edge, 49, 92

space, 92
Velksii, 154
vertex, 41, 59, 65, 89, 119, 133, 149, 165

label, 88
addition, 50, 60
adjacent, 167
BFS rank, 120
cut, 125
degree, 89
disconnected, 89
distinct, 120
incident, 127
label, 43, 91
leaf, 91
level, 88
non-root, 88
order, 91
pair, 42
parent, 91, 165
rank, 120
removal, 50, 60, 91
root, 88, 126, 127
scanning, 117
sequence, 126
set, 43, 45
source, 118, 124, 128, 165

virtual machine, 25, 27, 35
void, 32
void, 30

walk, 47, 163, 165
closed, 48

Warshall, 164
weight

negative, 164
sum, 163
unit, 163

well-defined, 71
Wiles, A., 114
Windows, 25
word, 125
write

array, 54

XOR, 49, 92

	I Preliminaries and reminders
	Computation
	Computer hardware
	Programs

	Computer model
	Models of computation
	Church's Thesis

	Languages
	Declarative languages
	Decidability
	Java

	Efficiency
	Structuring data
	Problems
	Algorithms
	Algorithmic complexity
	Worst-case time complexity calculations
	Complexity orders

	Java basics
	Development of a Java program
	Variables
	References

	Comments
	Classes
	The this attribute
	Inheritance
	Interfaces

	Functions
	Passing by reference or value
	The main function
	Specifiers

	Data types
	The dot operator
	The curly brackets
	The semicolon
	How code is executed

	Arrays in Java
	Dimensions
	The square bracket notation

	Example: plotting the graph of a function
	A typical output
	Comments and imports
	The class declaration
	The main function
	Initialization
	Function tabulation
	Converting the function table to an array
	Printing the screen
	Compilation and running

	II Data structures
	Graphs
	Directed graphs
	Directed neighbourhoods

	Undirected graphs
	Complement graphs
	Neighbourhoods
	Graph isomorphism
	Line graph

	Subgraphs
	Stable and clique subgraphs
	Some applications

	Connectivity
	Simple paths
	An alternative definition of paths and connectivity
	Paths: not so simple
	Strong connectivity
	Cycles
	An alternative definition of cycles
	The cycle space
	Cycle-edge incidence vectors

	Basic operations on graphs
	Addition and removal of vertices and edges
	Contraction

	Linear data structures
	Arrays
	Jagged arrays
	Adjacency lists

	Array operations
	Size in O(1)
	Moving a subsequence
	Removal and insertion

	Complexity of an incomplete loop
	Worst-case complexity
	Average-case complexity

	Limitations of the array structure

	Lists
	Singly-linked lists
	Doubly-linked lists
	The placeholder node

	Lists modelled as graphs
	List operations
	Insertion
	Removal
	Find
	Access
	Other operations

	Java implementation
	The Node class
	The DLList class
	The main function

	Queues
	Circular arrays
	Java implementation

	What are queues used for?

	Stacks
	Using stacks for validating mathematical syntax
	Java implementation
	The main method for bracketStack
	Sample output

	Calling functions
	Smashing the stack for fun and profit

	Maps
	Maps as parametrized interfaces
	Example of map usage in Java

	Hashing
	Do we really need it?
	The phonebook example
	Formal explanation
	Applications of hashing to Java

	The last nagging doubt
	Java implementation
	A hash table without collisions
	Keys and records
	The main class
	The hash function
	Main function

	A hash table allowing for collisions
	A Java implementation of a singly-linked list
	The main class
	Adding elements to the hash table
	Finding elements in the hash table
	Main function

	Trees
	Definitions
	Roots and direction
	Leafs, depth and height
	Spanning tree
	Vertex labels

	Basic properties
	Number of edges
	Connectivity
	Acyclicity
	Edge swapping operation

	The number of labelled trees
	Mapping trees to sequences
	Mapping sequences to trees

	Applications
	Finding a basis of the cycle space
	Chemical trees
	Trees and languages
	Trees and recursion
	Syntax of formal languages
	Construction of valid sentences
	Recognition of valid sentences

	Semantics of formal languages
	Syntax of natural languages
	Semantics of natural languages

	Trees in networks
	Commodity networks
	Distance networks

	III Algorithms
	Recursive algorithms
	Motivations
	Proving program properties
	Expressing certain procedures naturally
	Encoding the tree
	A code with limited scope
	Algorithms and problems
	Recursion saves the day
	Back to iteration

	Iteration and recursion
	Terminating the recursion

	Listing permutations
	Some background material on permutations
	Product of permutations
	Group structure
	Cycle notation

	The inductive step
	Generalizing the example to an integer n
	The induction starts at 1

	The algorithm
	Data structures

	Java implementation
	Class structure
	The main method
	The printList method
	The orders method

	The Hanoi tower
	Inductive step
	Base case
	Java implementation

	Recursion in logic
	Definitions
	Gödel's theorem
	The beautiful and easy part of the proof
	The other part of the proof
	A natural language interpretation

	Graph searching and traversal
	Graph scanning
	The Graph Scanning algorithm
	Correctness
	Complexity
	Connected components
	The exploration tree
	Choosing vQ

	Breadth-first search
	Paths with fewest edges
	History of the BFS
	Looking for a good route in public transportation

	Depth-first search
	A recursive version of DFS
	History of the DFS
	Easy and difficult natural languages

	Finding a spanning tree of minimum cost
	Prim's algorithm: pseudocode
	Complexity of Prim's algorithm

	Problems and complexity
	Decision problems
	Optimization problems
	Relationship between decision and optimization

	Algorithms
	Complexity
	Easy and difficult problems
	Reductions
	The new problem is easy
	The new problem is as hard as another problem
	NP-hardness and NP-completeness
	The most celebrated conjecture in computer science
	The student's pitfall

	Exact and heuristic algorithms
	A heuristic method for Max Stable

	Sorting
	The searching problem
	Searching unsorted and sorted arrays
	The sorting problem
	Considerations on the complexity of SP
	The best algorithm for a problem
	The () and () notations

	Best-case complexity of SP
	The sorting tree
	Formalizing the idea

	Sorting algorithms
	Selection sort
	Insertion sort
	Merge sort
	Divide and conquer
	Pseudocode
	Merging two sorted sequences
	Worst-case complexity

	Quick sort
	Pseudocode
	Partition
	Worst-case complexity
	Average-case complexity

	Exact complexity of SP
	Two-way partitioning
	A paradox?

	Searching
	Notation
	Binary search trees
	BST min and max
	BST find
	BST insert
	BST delete
	Deleting a node with both subnodes
	Putting it all together

	Complexity

	AVL trees
	Balance-independent methods
	Balance-dependent methods
	Tree rotation properties
	The remaining cases

	Heaps
	Priority queues
	Heap properties
	Insertion
	Maximum
	Popping the maximum
	Initial heap construction

	Shortest paths
	Basic literature
	Problem variants
	Algorithms

	Weight functions
	The shortest path tree
	Dijkstra's algorithm
	Data structures
	Reach, settle and relax
	A simple implementation
	Complexity
	Correctness

	A more refined implementation
	Pseudocode
	Complexity

	The point-to-point SPP

	Floyd-Warshall algorithm
	Data structures
	Pseudocode
	Negative cycles

