
16th Cologne-Twente Workshop
on Graphs and

Combinatorial Optimization

CNAM
Paris, France

June 18-20, 2018

Proceedings of the Workshop

General Chair: Leo Liberti
Editors: Emiliano Traversi, Fabio Furini, Leo Liberti

1

CTW 2018 (CNAM, Paris, France, 18-20 June)

Schedule

The seminar rooms are the Paul Painlevé (PP), the Robert Faure (Z) and the Jean-Baptiste Say (Y) amphitheatres, located in Access 1, lower ground floor. Opening, plenary and
closing sessions will take place in the PP amphitheatre. The cocktail event on Tuesday evening will take place in the salle des textiles room, located in Access 3, 1st floor. Coffee
pauses will take place in the hall before the three amphitheatres. http://cedric.cnam.fr/~courtiep/planCnam/plan_Cnam_3e_arrondissement.html

Session chairs. The last speaker of the session will chair the session, with two exceptions for PhD-only sessions: Combinatorial Optimization (Mon 18, Room PP, 16-17) chaired by
R. Schrader, and Graphs III (Wed 20, Room PP, 9:30-10:30) chaired by R. Cordone. Session chairs must remind speakers to load up slides on laptops, and keep the sessions on time.
Session chairs are encouraged to be cruel and despotic as regards times allotted, since there are parallel sessions. If a speaker will not get your hints, standing is often not enough: just
cut him/her short and invite the next speaker (as the last speaker in the session, you have every incentive to do so, but please don't be the chair who overruns his own time slot).
Conversely, if a speaker ends before the time is up, you should encourage some questions/discussion/debate: e.g. invite questions from the audience and leave a pause long enough to
be slightly awkward, then possibly someone will ask a question just to fill in the horrible silence, and then other questions may follow. If no-one asks, you can start off the debate by
asking a session yourself. In any case, keep all slots to exactly 30 minutes (parallel sessions regime).

Mon 18 June Tue 19 June Wed 20 June
Room PP Room Z Room Y Room PP Room Z Room Y Room PP Room Z Room Y

09:00-09:30 Registration (hall) and opening (PP)

09:30-10:00
Complexity

Anapolska Iommazzo
Networks I

Oustry
Games II

Yang Bauguion
Energy I

Schwenk Aoudia Vanier

10:00-10:30 Pradhan Lee Gunnec Furini Righini Tian Traversi
10:30-11:00 coffee (hall) coffee (hall) coffee (hall)

11:00-11:30
Seiller (plenary, PP) Wiegele (plenary, PP) Graphs V

Zheng Pisacane

1130-12:00 Bruglieri Pacifici
12:00-14:00 lunch (on your own) lunch (on your own) Closing (PP)

14:00-14:30

Graphs I

Nguyen

Algorithms I

Silva

Clustering

Francois Pan

14:30-15:00 Vernet Serocold Gentile Casazza Schaudt

15:00-15:30 Hossain Vandomme Lavor Marinelli Nicosia
15:30-16:00 coffee (hall) coffee (hall)

16:00-16:30 Graphs II Obreja Vretta Games I Lozovanu
Graphs III

Klootwijk Ghanem
16:30-17:00 Wolfler Apke Kern Hu Verma Baste

17:00-17:30 Weller Danisch
19:00-21:00 Cocktail (salle des textiles)

Math. Progr.
I

Transport-
ation I

Graphs IV
(Cordone)

Kumbar-
goudra Math. Progr.

III
Energy

IIThomo-
pulos

Menca-
relli

Transport-
ation II

Games
III

Boehn-
lein

Behm-
aram

Hommels-
heim

Graph
Embed-
dings

Edel-
mann

Math.
Progr. II

Schedu-
ling

Gomes da
Silva

Cordo-
ne

Comb. Opt.
(Schrader)

Gishbo-
liner

Algorithms
II

Networks
II

Del-
Vecchio

This conference is supported by a
hell of an organizing committee.
Special thanks go to Amélie
Lambert (local arrangements),
Lucas Létocart (website), Fabio
Furini (email), Emiliano Traversi
(proceedings). All complaints
should go to Leo Liberti (sigh).

Did you know that CNAM hosts a Sciences Museum? This is
one of the most crucial places in the novel “Foucault’s
Pendulum” by Umberto Eco (possibly my favorite writer). Many
years ago I had applied to an assistant professorship at CNAM.
I did not get the position, but during the interview I could not
refrain from declaring that one of my strong motivations to
apply was working in a place celebrated in a novel I loved. The
hiring committee burst out laughing, and maybe that's why I
wasn't ofered the position. In any case you should go and visit
the museum (same building, diferent entrance). Do not miss
the part of the museum which hosts Foucault’s pendulum,
which hangs from the dome of the church of St. Martin-des-
Champs (literally: St. Martin-in-the-Fields, which describes a
sister church in London, equally central, but of a diferent
confession I think).

CTW 2018 (CNAM, Paris, France, 18-20 June)

Invited speakers

Thomas Seiller, Univ. Paris-Nord, Mon 18, PP, 11-12
From Proofs to Programs, Graphs and Dynamics. Geometric
perspectives on computational complexity.

Angelika Wiegele, Alpen-Adria Univ. Klagenfurt, Tue 19, PP, 11-12
Modeling and Solving Combinatorial Optimization Problems using
Semidefinite Programming

Speaker Title Session
Anapolska Minimum Color-Degree Perfect b-Matchings Complexity
Aoudia Star forest polytope on complete graph Math. Progr. III
Apke A Characterization of Interval Orders with Semiorder Dimension Two Comb. Opt.
Baste Temporal matching in link stream: kernel and approximation Networks II
Bauguion Multimodal transportation plan adjustment with passengers behaviour constraints Transportation I
Behmaram On matching and distance property of m-barrele Fullerene Graphs V
Boehnlein Make or Buy: Revenue Maximization in Stackelberg Scheduling Games III
Bruglieri The Electric Vehicle Relocation Problem in Carsharing Systems with Collaborative Operators Transportation II
Casazza Dual bounds for a Maximum Lifespan Tree Problem Math. Progr. II
Cordone Some polynomial special cases for the Minimum Gap Graph Partitioning Problem Clustering
Danisch A Modular Overlapping Community Detection Algorithm: Investigating the “From Local to Global” Approach Networks II
Del-Vecchio A new centrality measure: spectral closeness. Graphs III
Edelmann Graph partitioning using matrix differential equations Clustering
François Mixed Integer Linear Programming Approach for a Distance-Constrained Elementary Path Problem Math. Progr. II
Furini Attacking the Clique Number of a Graph Games II
Gentile An algorithm for computing lower bounds for the Microaggregation problem Clustering
Ghanem How to exploit structural properties of dynamic networks to detect nodes with high temporal closeness Networks II
Gishboliner A Generalized Turan Problem and its Applications Graphs III
Gomes Da Silva Equitable total chromatic number of two classes of complete r-partite p-balanced graphs Graphs I
Gunnec Influence Maximization in Social Networks under Deterministic Linear Threshold Model Networks I
Hommelsheim Robust Matching Augmentation Algorithms I
Hossain Multicoloring of Pattern Graphs for Sparse Matrix Determination Graphs I
Hu On the spectra of general random mixed graphs Graphs III
Iommazzo A methodology for addressing the Algorithm Configuration problem on mathematical programming solvers Math. Progr. I
Kern The asymptotic price of anarchy for k-uniform congestion games Games I
Klootwijk Probabilistic Analysis of Optimization Problems on Generalized Random Shortest Path Metrics Algorithms II
Kumbargoudra Total k-rainbow Domatic Number Graphs IV
Lavor New advances on the branch-and-prune algorithm for the discretizable molecular distance geometry problem Graph Embeddings
Lee Gomory by column generation Math. Progr. I
Lozovanu Nash Equilibria in Mixed Stationary Strategies for m-Player Cyclic Games on Networks Games I
Marinelli A star-based reformulation for the maximum quasi-clique problem Math. Progr. II
Mencarelli A Multiplicative Weights Update Algorithm for a Class of Pooling Problems Energy II
Nguyen On some tractable constraints on paths in graphs and in proofs Graphs I
Nicosia Single machine scheduling with bounded job rearrangements Scheduling
Obreja Extremal Graphs with respect to the Modified First Zagreb Connection Index Graphs II
Oustry Optimal Deployment of Wireless Networks Networks I
Pacifici Two Stackelberg Knapsack games Games IV
Pan A hybrid heuristic for multi-activity tour scheduling Scheduling
Pisacane Solving the Green Vehicle Routing Problem with Capacitated Alternative Fuel Stations Transportation II
Pradhan Algorithmic aspects of neighborhood total domination in graphs Complexity
Righini Dynamic programming for the Electric Vehicle Orienteering problem with multiple technologies Transportation I
S. Schaudt Parallel machine scheduling with unit time distinct due windows Scheduling
Schwenk A Green Energy Grid Coupling Problem (GEGCP) Energy I
Serocold Rigidity of 1-coordinated frameworks in 2 dimensions Graph Embeddings
Silva Graphs with at most one crossing Graph Embeddings
Tian Sufficient degree conditions for traceability of claw-free graphs Graphs IV
Thomopulos A Constrained Shortest Path formulation for the Two-Reservoir Hydro Unit Commitment Problem Energy I
Traversi Decomposition Methods for Quadratic Programming Math. Progr. III
Vandomme Fully leafed induced subtrees (extended abstract) Algorithms I
Vanier Column Generation for the Energy-Efficient in Multi-Hop Wireless Networks Problem Energy II
Verma Edge Domination in subclasses of bipartite graphs Algorithms II
Vernet Successive Shortest Path Algorithm for Flows in Dynamic Graphs Algorithms I
Vretta A characterization for binary signed-graphic matroids Comb. Opt.
Weller Listing Conflicting Triples in Optimal Time Algorithms II
Wolfler A branch-and-price framework for decomposing graphs into relaxed cliques Graphs II
Yang On the One-Cop-Moves Game on Graphs Games II
Zheng Implicit heavy subgraph conditions for hamiltonicity of almost distance-hereditary graphs Graphs V

The proceedings of this workshop are distributed in a PDF file which is available for
download at www.lix.polytechnique.fr/~liberti/ctw18-proceedings.pdf.

A special issue of Discrete Applied Mathematics will be dedicated to the topics of the
CTW18. Watch out for calls for papers to this issue during summer/autumn/winter 2018.

Enter CNAM by
the entrance
labelled "1". The
amphitheatres
are underground,
underneath the
entrance court
(see picture
below). The "Salle
des textiles"
(where the
cocktail event
takes place) is
labeled by "3", on
the frst foor.

Preface

This volume collects the abstracts of invited plenary and accepted contributed talks presented
at the 16th Cologne-Twente Workshop (CTW) on graphs and combinatorial optimization, which
took place at the Conservatoire National d’Arts et Métiers (CNAM) in Paris, 18-20 June 2018.
Only those accepted abstracts for which the authors gave an explicit consensus of appearance are
collected in this volume. The copyright of each single abstract rests with its authors. This volume
is posted online at http://www.lix.polytechnique.fr/~liberti/ctw18-proceedings.pdf.
Following tradition, a special issue of Discrete Applied Mathematics (DAM) dedicated to this
workshop and its main topics of interest will be edited.

The CTW workshop series has been initiated by Ulrich Faigle, around the time he moved
from Twente University to the University of Köln. After many CTW editions in Twente and
Köln, it was decided that CTWs were mature enough to move about: in 2004 the CTW was
organized in Villa Vigoni (Como, Italy) by F. Maffioli (Politecnico di Milano) and myself. Since
then, the CTW visited Italy again many times and in many places (and more visits are planned),
France and Turkey. The first edition of CTW in France occurred when I chaired the 8th edition
of CTW in 2009 in Paris (at CNAM). In this second French edition of CTW, which I am again
chairing, I aimed at more or less the same organization style as in 2009: the wonderful CNAM
venue, which affords beautiful buildings, a wonderful science museum, a central Paris location
close to lots of small, quaint and (relatively) cheap restaurants where you can while lunch breaks
away; a cocktail on the second day; but other than that, an orga nization which is as simple as
possible. For the first time, we shall not distribute paper copies of these proceedings. Instead,
we shall distribute a single sheet of paper with the timetable and the list of talk titles with
presenting authors (http://www.lix.polytechnique.fr/~liberti/ctw18-program.pdf).

The scientific program of this CTW edition (codenamed CTW18) includes two plenary talks
(by Dr. Thomas Seiller and Prof. Angelika Wiegele), and 57 contributed (accepted) talks. The
57 accepted talks were selected from an initial set of 69: counter to computer science habits, this
is not a “selective workshop”. Having been initially set up by discrete applied mathematicians, it
still follows the mathematical tradition whereby the main purpose of workshops is to present and
discuss (possibly preliminary) results, rather than publish proceedings articles which are fully
accomplished and have an archival nature. CTWs are not selective, and hence, in today’s aca-
demic publish-or-perish worldview, not as attractive as they used to be. Are they still necessary?
Among the initial motivations for CTWs we find a special attention to young (nonpermanent)
researchers: MSc and PhD students as well as postdoctoral fellows. Another initial motivation
was to provide a venue where preliminar y work could be presented and discussed. In this sense,
this edition is perfectly in line with these two motivations (which I personally find very valid).
At CTW18, 31 out of 57 contributed talks will be given by MSc, PhD or Postdocs. Half of
the registered participants are MSc, PhD or Postdocs. While some talks relate to accomplished
works, many have a preliminary/ongoing nature.

The governance of the CTW workshop series is assured by a “steering committee” which also
acts as “programme committee”, in the sense that it screens contributed abstracts and rejects
those which are scientifically objectionable, written extremely poorly, or off topic. New members
of the steering committee are sometimes chosen from CTW organizers. Currently, this committee
counts 19 researchers from Germany, Italy, Turkey and France. Organizing committees are newly
formed for each CTW edition. This year we have Fabio Furini (Paris-Dauphine), Amélie Lambert
(CNAM), Lucas Létocart (Paris-Nord), Ivana Ljubic (ESSEC, Paris), Emiliano Traversi (Paris-
Nord), Roberto Wolfler Calvo (Paris-Nord) and myself (CNRS & Ecole Polytechnique).

Not every CTW edition features invited plenaries, but this one does. Two young and brilliant
researchers were invited: Thomas Seiller and Angelika Wiegele. Thomas is a CNRS researcher
affiliated to the Computer Science Dept. (LIPN) at Paris-Nord. His research focuses on a certain
unusual semantics for linear logic which holds some promise as a tool for separating complexity
classes. Although this topic is far from the usual CTW crowd, I believe it is important enough
that this community should know about it. Thomas was asked to give a “tutorial” on this line of
research. Angelika, an associate professor at the Mathematics Dept. of Alpen-Adria University
in Klagenfurt, Austria, is a well-known member of the mathematical programming community.
She specializes in semidefinite programming applied to combinatorial optimization problems.
She is one of those rare researchers who pursue the whole “pipeline” of a scientific result in

4

mathematical programming, from theorems through algorithms to software (see e.g. doi.org/
10.1007/s10107-008-0235-8 to biqmac.uni-klu.ac.at and biqbin.fis.unm.si).

I very much hope you will all enjoy this 2018 edition of CTW.

Leo Liberti
CTW18 General Chair

CNRS LIX, Ecole Polytechnique

5

Organization

The CTW18 venue is the Conservatoire National d’Arts et Métiers (CNAM) in Paris (lecture
halls PP, Y and Z) located in the third arrondissement of Paris (France).

The CNAM has several sites, and the rooms of CTW18 are located in the main site, 292 rue
Saint-Martin, 75003 Paris.

The seminar rooms are the Robert Faure (Z), Paul Painlevé (PP) and Jean-Baptiste Say (Y)
amphitheatres, located in Access 1, lower ground floor. The cocktail event on Tuesday evening
will take place in the salle des textiles room, located in Access 3, 1st floor.

Scientific Committee:

• Ali Fuat Alkaya (U Marmara)

• Alberto Ceselli (U Milano)

• Roberto Cordone (U Milano)

• Ekrem Duman (U Ozyegin)

• Ulrich Faigle (U Koeln)

• Johann L. Hurink (U Twente)

• Leo Liberti (CNRS & École Polytechnique)

• Bodo Manthey (U Twente)

• Gaia Nicosia (U Roma Tre)

• Andrea Pacifici (U Roma Tor Vergata)

• Britta Peis (RWTH Aachen)

• Stefan Pickl (UBw München)

• Bert Randerath (Technische Hochshule Koeln)

• Giovanni Righini (U Milano)

• Heiko Roeglin (U Bonn)

• Oliver Schaudt (U Koeln)

• Rainer Schrader (U Koeln)

• Rüdiger Schultz (U Duisburg-Essen)

• Frank Vallentin (U Koeln)

Local Organization:

• Fabio Furini (U Paris Dauphine)

• Amélie Lambert (CNAM)

• Lucas Létocart (U Paris XIII)

• Leo Liberti (CNRS & École Polytechnique)

• Ivana Ljubic (ESSEC)

• Evelyne Rayssac (École Polytechnique, Paris)

• Emiliano Traversi (U Paris XIII)

• Roberto Wolfler Calvo (U Paris XIII)

6

Table of Contents

Monday 18 June

Complexity 9:30-10:30, Room PP

Mariia Anapolska, Christina Büsing , Martin Comis

Minimum Color-Degree Perfect b-Matchings 13

S. Banerjee, Anupriya Jha, D. Pradhan

Algorithmic aspects of neighborhood total domination in graphs 17

Mathematical Programming I 9:30-10:30, Room Z

Dario Bezzi, Alberto Ceselli, Giovanni Righini

Dynamic programming for the Electric Vehicle Orienteering Problem with
multiple technologies 21

Jon Lee

Gomory by column generation 24

Networks I 9:30-10:30, Room Y

Antoine Oustry, Marion Le Tilly

Optimal Deployment of Wireless Networks 26

Furkan Gursoy, Dilek Gunnec

Influence Maximization in Social Networks under Deterministic Linear Thresh-
old Model 30

Pause 10:30-11:00

Plenary 11:00-12:00, Room PP

Thomas Seiller

From Proofs to Programs, Graphs and Dynamics. Geometric perspectives on
computational complexity 31

Lunch break 12:00-14:00

Graphs I 14:00-15:30, Room PP

Lê Thành Dung Nguyen

On some tractable constraints on paths in graphs and in proofs 32

A. G. da Silva, D. Sasaki, S. Dantas

Equitable total chromatic number of two classes of complete r-partite p-
balanced graphs 36

Shahadat Hossain, Trond Steihaug

Multicoloring of Pattern Graphs for Sparse Matrix Determination 40

7

Algorithms I 14:00-15:30, Room Z

Viktor Bindewald, Felix Hommelsheim, Moritz Mühlenthaler, Oliver Schaudt

Robust Matching Augmentation 44

Mathilde Vernet, Maciej Drozdowski, Yoann Pigné, Eric Sanlaville

Successive Shortest Path Algorithm for Flows in Dynamic Graphs 48

A. Blondin Massé, J. de Carufel, A. Goupil, M. Lapointe, É. Nadeau, É. Vandomme

Fully leafed induced subtrees 52

Graph Embeddings 14:00-15:30, Room Y

André C. Silva, Alan Arroyo, R. Bruce Richter, Orlando Lee

Graphs with at most one crossing 56

Bernd Schulze, Hattie Serocold, Louis Theran

Rigidity of 1-coordinated frameworks in 2 dimensions 60

C. Lavor, L. Mariano, M. Souza

New advances on the branch-and-prune algorithm for the discretizable molec-
ular distance geometry problem 64

Pause 15:30-16:00

Graphs I 16:00-17:00, Room PP

Guillaume Ducoffe, Ruxandra Marinescu-Ghemeci, Camelia Obreja, Alexandru Popa,

Rozica Maria Tache

Extremal Graphs with respect to the Modified First Zagreb Connection Index 65

Timo Gschwind, Stefan Irnich, Fabio Furini, Roberto Wolfler Calvo

A branch-and-price framework for decomposing graphs into relaxed cliques 69

Combinatorial Optimization (Schrader) 16:00-17:00, Room Z

Konstantinos Papalamprou, Leonidas Pitsoulis, Eleni-Maria Vretta

A characterization for binary signed-graphic matroids 70

Alexander Apke, Rainer Schrader

A Characterization of Interval Orders with Semiorder Dimension Two 74

Games I 16:00-17:00, Room Y

Dmitrii Lozovanu, Stefan Pickl

Nash Equilibria in Mixed Stationary Strategies for m-Player Cyclic Games on
Networks 76

Jasper de Jong, Walter Kern, Berend Steenhuisen, and Marc Uetz

The asymptotic price of anarchy for k-uniform congestion games

Tuesday 19 June

8

Games II 9:30-10:30, Room PP

Boting Yang

On the One-Cop-Moves Game on Graphs 80

Fabio Furini 1 , Ivana Ljubić 2 , Sébastien Martin 3 , Pablo San Segundo 4

Attacking the Clique Number of a Graph 84

Transportation I 9:30-10:30, Room Z

Pierre-Olivier Bauguion, Claudia D’Ambrosio

Multimodal transportation plan adjustment with passengers behaviour con-
straints 85

Dario Bezzi, Alberto Ceselli, Giovanni Righini

Dynamic programming for the Electric Vehicle Orienteering Problem with
multiple technologies 88

Energy I 9:30-10:30, Room Y

Andreas Schwenk, Hubert Randerath

A Green Energy Grid Coupling Problem (GEGCP) 91

Dimitri Thomopulos, Wim van Ackooij, Pascal Benchimol, Claudia D’Ambrosio

A Constrained Shortest Path formulation for the Two-Reservoir Hydro Unit
Commitment Problem

Pause 10:30-11:00

Plenary 11:00-12:00, Room PP

Angelika Wiegele

Modeling and Solving Combinatorial Optimization Problems using Semidefi-
nite Programming 95

Lunch break 12:00-14:00

Clustering 14:00-15:30, Room PP

Eleonora Andreotti, Dominik Edelmann, Nicola Guglielmi and Christian Lubich

Graph partitioning using matrix differential equations 96

Jordi Castro, Claudio Gentile, Enrique Spagnolo

An algorithm for computing lower bounds for the Microaggregation problem 100

Maurizio Bruglieri, Roberto Cordone, Isabella Lari, Federica Ricca, Andrea Scozzari

Some polynomial special cases for the Minimum Gap Graph Partitioning
Problem 104

Mathematical Programming II 14:00-15:30, Room Z

9

Sebastien François, Rumen Andonov, Hristo Djidjev, Metodi Traikov, Nicola Yanev

Mixed Integer Linear Programming Approach for a Distance-Constrained El-
ementary Path Problem

Marco Casazza, Alberto Ceselli

Dual bounds for a Maximum Lifespan Tree Problem 108

Fabrizio Marinelli, Andrea Pizzuti, Fabrizio Rossi

A star-based reformulation for the maximum quasi-clique problem 112

Scheduling 14:00-15:30, Room Y

Stefania Pan, Mahuna Akplogan, Lucas Létocart, Louis-Martin Rousseau, Nora Touati,

Roberto Wolfler Calvo

A hybrid heuristic for multi-activity tour scheduling 116

Oliver Schaudt, Stefan Schaudt

Parallel machine scheduling with unit time distinct due windows 120

Arianna Alfieri, Gaia Nicosia, Andrea Pacifici, Ulrich Pferschy

Single machine scheduling with bounded job rearrangements 124

Pause 15:30-16:00

Graphs III 16:00-17:30, Room PP

Lior Gishboliner, Asaf Shapira

A Generalized Turán Problem and its Applications 128

Dan Hu, Hajo Broersma, Jiangyou Hou, Shenggui Zhang

On the spectra of general random mixed graphs 132

Algorithms II 16:00-17:30, Room Z

Stefan Klootwijk, Bodo Manthey, Sander K. Visser

Probabilistic Analysis of Optimization Problems on Generalized Random Short-
est Path Metrics 136

B.S. Panda, Shaily Verma

Edge Domination in subclasses of bipartite graphs 140

Mathias Weller

Listing Conflicting Triples in Optimal Time 144

Networks II 16:00-17:30, Room Y

Marwan Ghanem, Clémence Magnien, Fabien Tarissan

How to exploit structural properties of dynamic networks to detect nodes
with high temporal closeness 148

Julien Baste, Binh-Minh Bui-Xuan

Temporal matching in link stream: kernel and approximation 152

10

Maximilien Danisch, Noé Gaumont, Jean-Loup Guillaume

A Modular Overlapping Community Detection Algorithm: Investigating the
“From Local to Global” Approach 156

Cocktail 19:00-21:00, salle des textiles

Wednesday 20 June

Graphs IV (Cordone) 9:30-10:30, Room PP

Pavitra Kumbargoudra, S. S. Shirkol

Total k-rainbow Domatic Number 160

Tao Tian, Hajo Broersma, Liming Xiong

Sufficient degree conditions for traceability of claw-free graphs 164

Mathematical Programming III 9:30-10:30, Room Z

Lamia Aoudia, Zohra Aoudia, Viet Hung Nguyen, Méziane Aider

Star forest polytope on complete graphs 168

Enrico Bettiol, Alberto Ceselli, Lucas Létocart, Francesco Rinaldi, Emiliano Traversi

Decomposition Methods for Quadratic Programming 172

Energy II 9:30-10:30, Room Y

Sonia Vanier

Column Generation for the Energy-Efficient in Multi-Hop Wireless Networks
Problem 173

Luca Mencarelli

A Multiplicative Weights Update Algorithm for a Class of Pooling Problems 175

Pause 10:30-11:00

Graphs V 11:00-12:00, Room PP

Wei Zheng, Hajo Broersma, Ligong Wang

Implicit heavy subgraph conditions for hamiltonicity of almost distance-hereditary
graphs 179

Afshin Behmaram, Cédric Boutillier

On matching and distance property of m-barrele Fullerene 183

Transportation II 11:00-12:00, Room Z

Maurizio Bruglieri, Simona Mancini, Ornella Pisacane

Solving the Green Vehicle Routing Problem with Capacitated Alternative
Fuel Stations 185

11

Maurizio Bruglieri, Fabrizio Marinelli, Ornella Pisacane

The Electric Vehicle Relocation Problem in Carsharing Systems with Collab-
orative Operators 189

Games III 11:00-12:00, Room Y

Toni Böhnlein, Oliver Schaudt, Joachim Schauer

Make or Buy: Revenue Maximization in Stackelberg Scheduling Games 193

Gaia Nicosia, Andrea Pacifici, Ulrich Pferschy, Joachim Schauer

Two Stackelberg Knapsack games 198

12

Minimum Color-Degree Perfect b-Matchings

Mariia Anapolska1, Christina Büsing1, Martin Comis1

Lehrstuhl II für Mathematik, RWTH Aachen University, Aachen, Germany
{buesing,comis}@math2.rwth-aachen.de

Abstract

We study the complexity of the Minimum Color-Degree Perfect-b-Matching Problem as
an extension of the perfect b-matching problem on edge colored graphs. The problem
is strongly NP-hard on bipartite graphs but can be solved in polynomial time on series-
parallel graphs and trees for a fixed number of colors.

Keywords : b-matchings, complexity, dynamic programming, series-parallel graphs, trees

1 Introduction
Assignment problems are among the most famous combinatorial optimization problems. In
their simplest form, every assignment problem consists of a set of agents A, a set of jobs J
and a set of agent-job pairs E ⊆ A × J that define which agent can perform which job. The
objective is to find an assignment of jobs to agents, such that every job is assigned to exactly one
agent and every agent performs exactly one job. Graph-theoretically, this problem corresponds
to the perfect matching problem in a bipartite graph which is known to be polynomial-time
solvable by the Hungarian method. Unfortunately, for many applications this simple version
of the assignment problem does not capture all relevant requirements. Therefore, various more
complex forms of the assignment problem exist, e.g., [1, 3, 5].

In this paper we study a different extension, the so-called minimum color-degree perfect b-
matching problem (Col-BM). In the Col-BM agents are allowed to perform multiple jobs and
jobs are categorized into multiple classes, e.g., according to their location. Assuming that the
execution of multiple jobs of the same category is desirable, we seek an assignment of jobs to
agents such that the maximum number of differently categorized jobs assigned to one agent
is minimized. In terms of graph theory Col-BM is a perfect b-matching problem on an edge
colored graph with the objective of minimizing the maximum number of differently colored
edges adjacent to any node. Before we formalize Col-BM, we define a node’s color degree. Let
G = (V,E) be a graph with edge coloring F1∪̇ . . . ∪̇Fq = E. For M⊆E and v∈V , let colM (v)
denote the set of colors in δM (v) := {{v, w}∈M}, i.e., colM (v) := {j | 1 ≤ j ≤ q ∧ δM (v)∩Fj 6=
∅}. The number of colors |colM (v)| is called the (M)-color-degree of v.

Definition 1 (Minimum Color-Degree Perfect b-Matching Problem (Col-BM)) Given
an undirected graph G = (V,E), an edge coloring F1∪̇ . . . ∪̇Fq = E, and a mapping b : V → N0,
the Col-BM asks for a perfect b-matching M ⊆ E with |δM (v)| = b(v) for all v ∈ V of minimal
maximum color degree maxv∈V |colM (v)|.

Related Work Weighted b-matching problems (WBM) are polynomial-time solvable by an
extension of Edmonds’ blossom algorithm. Chen et al. [3] studied the conflict aware WBM
on bipartite graphs (CA-WBM) in which nodes may be in conflict and should therefore have
disjoint neighborhoods. They show that CA-WBM is NP-hard and propose a greedy approxi-
mation algorithm. The diverse WBM (D-WBM) studied by Ahmed et al. [1] can be considered
as the counterpart to the Col-BM. Given a weighted edge colored bipartite graph, a b-matching

13

M satisfying upper and lower bounds on δM (v) is sought, such that the weight of edges ad-
jacent to a node is equally distributed amongst all colors in order to ensure diversification.
Instead of employing a max-min approach as it is done in this paper, the authors encourage
diversification by minimizing a quadratic function that penalizes uneven weight-color distribu-
tions. The authors present a greedy algorithm for D-WBM and claim that D-WBM is NP-hard.

Contribution In this paper we study the complexity of the Col-BM. By a reduction from
(2B,3)-SAT, we show the problem’s strong NP-hardness on bipartite graphs with 2 colors and
conclude that there can be no (2 − ε)-approximation algorithm unless P=NP (Section 2).
Finally, we show that Col-BM with a fixed number of colors is polynomial-time solvable by
dynamic programming on series-parallel graphs and trees (Section 3).

2 Complexity
The Col-BM problem reduces to a simple, polynomial-time solvable perfect matching problem
if b(v) = 1 for all v∈V . We show at the end of this section that already for b : V → {1, 2} the
problem becomes strongly NP-hard. We begin with an intermediate statement.

Theorem 1 The Col-BM on bipartite graphs with at most 2 colors is strongly NP-hard.

Proof : We reduce (2B,3)-SAT, a specialization of the 3SAT problem in which each clause
consists of exactly 3 literals and every literal occurs exactly twice, to Col-BM. The (2B,3)-SAT
problem is strongly NP-complete [2]. Let I be a (2B,3)-SAT instance with n variables x1, . . . , xn
andm clauses C1, . . . , Cm. We construct a Col-BM instance Ĩ as follows: the graph G = (V,E)
is composed of two layers (Fig. 1). Layer 1 contains two sets of nodes V := {v1, . . . , vn} and
U := {u1, . . . , um} representing the variables and clauses of I, respectively. We connect the
node sets V and U via the following edges: blue edges {vi, uj} for all positive literals xi ∈ Cj
and red edges {vi, uj} for all negated literals xi ∈ Cj . Finally, we set b(vi) = 2 for 1 ≤ i ≤ n
and b(uj) = 1 for 1 ≤ j ≤ m.

Layer 1 is bipartite and since 3m = 4n we have
∑n
i=1 b(vi) >

∑m
j=1 b(uj). To ensure the

existence of a perfect b-matching, we construct a second layer of G: For each vertex vi ∈ V
we introduce three vertices wi,1, wi,2, wi,3, edges {vi, wi,1}, {vi, wi,2} colored in blue, and an
edge {vi, wi,3} colored red. Let W := {wi,k | 1 ≤ i ≤ n ∧ 1 ≤ k ≤ 3} and set b(wi,k) = 1 for
all wi,k ∈ W . Finally, a vertex r with b(r) = 7n

3 is introduced and connected to all vertices
wi,k ∈ W with blue edges . Note that 7n

3 is integer as 3 | n.
We show: I is a Yes-instance if and only if Ĩ has a perfect b-matching M with maximum

color degree maxv∈V (G) |colM (v)| = 1. Let M be such a perfect b-matching. For each vi ∈ V ,
|colM (vi)| = 1 and we set xi = true, if δM (vi) is blue, and xi = false if δM (vi) is red. For every
vertex uj ∈ U exactly one edge eij = {vi, uj} is in M as b(uj) = 1. If eij is blue, xi ∈ Cj and
hence our choice xi = true verifies clause Cj . Analogously, if eij is red, xi ∈ Cj and by setting
xi = false the clause Cj is verified which implies that x is a satisfying assignment of I.

2v1 2v2 2 v3

11 1 11 1 11 1

1
u1

1
u2

1
u3

1
u4

b

r

C1 = x1 ∨ x2 ∨ x3

C2 = x1 ∨ x2 ∨ x3

C3 = x1 ∨ x1 ∨ x3

C4 = x2 ∨ x2 ∨ x3

M
w13w12w11 w23w22w21 w33w32w31

b = 7
3n

Layer 2
Layer 1

FIG. 1: Construction of the perfect b-matching

For the other direction let x be a satisfying truth assignment of I. We construct the perfect
b-matching M of G as follows: for each clause Cj choose a verifying literal xi (xi) and add the
corresponding blue (red) edge eij = {vi, uj} to M . This way, we select m edges in Layer 1 and
for all uj ∈ U it holds |δM (uj)| = b(uj) = 1. Since xi and xi cannot be simultaneously satisfied
in x, δM (vi) contains only edges of the same color for all vi ∈ V . It remains to extend M to
Layer 2: if vi ∈ V is incident to exactly one blue edge eij∈M , add

{{vi, wi,1}
}
to M ; if vi ∈ V

is incident to exactly one red edge eij ∈M , add
{{vi, wi,3}

}
to M ; if vi ∈ V is incident to no

edge in M , add
{{vi, wi,1}, {vi, wi,2}

}
to M . This ensures |δM (vi)| = 2 and |colM (vi)| = 1 for

all vi ∈ V . As M contains exactly m edges between V and U (Fig. 1), 2n −m = 2n
3 vertices

in W are matched to V . All remaining 3n − 2n
3 = 7

3n vertices in W are matched to r. This
ensures |δM (r)| = b(r) with |colM (r)| = 1 and consequently M is a perfect b-matching of Ĩ
with maxv∈V (G) |colM (v)| = 1. �
Corollary 1 There can be no (2− ε)-approximation algorithm for Col-BM unless P=NP.

By eliminating vertex r in Layer 2 of G, extending W by {wi,4 | 1 ≤ i ≤ n} with b(wi,4) = 1,
and connecting all pairs of nodes in W by blue edges our reduction only requires two b-values.

Corollary 2 The Col-BM with b : V → {1, 2} and at most 2 colors is strongly NP-hard.

3 Series-parallel Graphs and Trees
In this section we consider the Col-BM on series-parallel graphs and trees and show that for a
fixed number of colors Col-BM can be solved in polynomial-time by dynamic programming.

Definition 2 A (2-terminal) series-parallel (SP) graph with two distinguished nodes s and t
called source and sink, respectively, is defined recursively. An edge {s, t} is SP; if G1, G2 are
two SP-graphs with sources s1, s2 and sinks t1, t2, then the graph resulting from identifying
t1 with s2 is SP (called the series composition of G1 and G2), and the graph resulting from
identifying s1 with s2 and t1 with t2 is SP (called the parallel composition of G1 and G2).

Every SP graph G can be associated with a decomposition tree T = T (G), a rooted binary
tree with nodes corresponding to the subgraphs of G appearing in the recursive construction.
Leaves correspond to edges in G, and inner nodes are of two types: S-nodes correspond to the
series-composition of the graphs associated with their child nodes, and P -nodes analogously
correspond to their parallel composition. By construction, the root r of T corresponds to G
itself. A decomposition tree of a series-parallel graph can be computed in linear time [4]. Note
that the graph constructed in the proof of Theorem 1 is, in general, not series-parallel.

We propose a dynamic program to solve the Col-BM on SP-graphs. Let G = (V,E) be SP
with edge coloring F1∪̇ . . . ∪̇Fq = E, decomposition tree T , and b : V → N0. For v∈V (T), let
Gv denote the subgraph of G with source sv and sink tv corresponding to v.

We introduce labels labv = (α, σ, β, τ) for all v ∈ V (T). The parameters 0 ≤ α ≤ b(sv) and
0 ≤ β ≤ b(tv) define new smaller b-values at sv and tv, respectively while the color vectors
σ, τ ∈ {0, 1}q define the required set of colors incident to sv and tv. Thus we call allM ⊆ E(Gv)
with |δM (u)| = b(u) for all u∈V (Gv)\{sv, tv}, |δM (sv)| = α, |δM (tv)| = β, colM (sv) = σ−1({1})
and colM (tv) = τ−1({1})} labv-restricted matchings, and define the labv-restricted Col-BM as

min
M⊆E(Gv)

{
max

u∈V (Gv)
|colM (u)|

∣∣ M is labv-restricted matching in Gv

}
.

The cost cv(labv) is the optimal solution value of the labv-restricted Col-BM. We compute label
costs recursively. If v∈V (T) is a leaf in T , the graph Gv consists of one edge e and the label cost
computation is straightforward. If v ∈ V (T) is an S-node with children ` and w, then sv = s`,
tv = tw, and t` = sw =:x. Every (αv, σv, βv, τv)-restricted matchingM of Gv is composed of an
(αv, σv, β`, τ`)-restricted matchingM`⊆G` and an (αw, σw, βv, τv)-restricted matchingMw⊆Gw.
The value b(x) is split in β` and αw = b(x)− β`, and it holds colM (x) = colM`

(x) ∪ colMw(x).

The maximum color-degree ofM is max
{
c`
(
αv, σv, β`, τ`

)
, cw

(
b(x)−β`, σw, βv, τv

)
, |colM (x)|}

with |colM (x)| = ‖τ` ∨ σw‖1 where ∨ denotes the logical bitwise-or operator. Hence, we can
compute the cost cv(αv, σv, βv, τv) by considering all possible choices for β`, τ` and σw, that is
cv(labv) = min

0≤k≤b(x), τ`,σw∈{0,1}q
max

{
c`
(
αv, σv, k, τ`

)
, cw

(
b(x)− k, σw, βv, τv

)
, ‖τ` ∨ σw‖1

}
.

If v ∈ V (T) is a P -node with children ` and w, then s` = sw = sv, t` = tw = tv, and
every labv-restricted matching M is composed of an (α`, σ`, β`, τ`)-restricted matching M` and
(αw, σw, βw, τw)-restricted matching Mw. The edges in δM (sv) and δM (tv) are split between
M` and Mw such that αv = α` + αw and colM (sv) = colM`

(s`) ∪ colMw(sw) (analogously for
tv). Consequently, minimizing over all possible ways of splitting δM (sv) and δM (tv) yields
cv(labv) = min

0≤k≤αv , σ`∨σw=σv

0≤m≤βv , τ`∨τw=τv

max
{
c`
(
k, σ`,m, τ`

)
, cw

(
αv − k, σw, βv −m, τw

)
, ‖σv‖1, ‖τv‖1

}
.

The algorithm computes all label costs for every node v ∈ V (T) proceeding from leaves to the
root r. The optimal solution value can be calculated as minσ,τ cr

(
b(sr), σ, b(tr), τ

)
.

Theorem 2 Col-BM on SP graphs with a fixed number of colors can be solved in O(|E|·‖b‖4
∞).

Proof : The correctness of the algorithm can be shown by induction. As for its runtime,
observe that for each node v ∈ V (T), O(‖b‖2

∞ · 4q) labels must be computed. The computa-
tional complexity of computing labels is dominated by P -nodes. For P -nodes we compute the
minimum of at most O(9q · ‖b‖2

∞
)
maxima, and every maximum can be calculated in O(1)

time. Since |V (T)| = 2|E| − 1, the total runtime of the algorithm is in O(|E| · 36q · ‖b‖4
∞
)
. �

We note that for all graphs, ‖b‖∞ ≤ |E| and therefore our algorithm runs in polynomial
time. Moreover, we can extend our algorithm to the Col-BM on trees as follows: given a Col-
BM instance I with tree T = (V,E), we construct an auxiliary SP graph G by adding a new
vertex t, connecting it to all leaves of T and setting b(t) = 0. Then every perfect b-matching
in G contains no edges from δG(t) = E(G)\E and thus is a perfect b-matching in T .

4 Conclusion
In this paper we introduce the Col-BM and prove its strong NP-hardness on bipartite graphs
with a fixed number of colors and show that Col-BM is (2 − ε)-inapproximable. For SP-
graphs and trees we propose a dynamic program solving Col-BM in polynomial time for a
fixed number of colors. Future work will include research on efficient exact algorithms for
other graph classes, particularly graphs with bounded treewidth. Furthermore, we take a
closer look at the approximability of Col-BM.

References
[1] F. Ahmed, J. P. Dickerson, and M. Fuge. Diverse weighted bipartite b-matching. In

Proceedings of IJCAI-17, pages 35–41, 2017.

[2] P. Berman, M. Karpinski, and A. D. Scott. Approximation hardness of short symmetric
instances of max-3sat. 01 2003.

[3] C. Chen, L. Zheng, V. Srinivasan, A. Thomo, K. Wu, and A. Sukow. Conflict-aware
weighted bipartite b-matching and its application to e-commerce. IEEE Trans. on Knowl.
and Data Eng., 28(6):1475–1488, June 2016.

[4] B. de Fluiter and H. Bodlaender. Parallel algorithms for series parallel graphs. PhD thesis,
University of Utrecht, 1997.

[5] S. L. Tanimoto, A. Itai, and M. Rodeh. Some matching problems for bipartite graphs. J.
ACM, 25(4):517–525, Oct. 1978.

Algorithmic aspects of neighborhood total domination in graphs

S. Banerjee, Anupriya Jha, D. Pradhan∗

Department of Applied Mathematics
Indian Institute of Technology (ISM), Dhanbad

sumanta.banerjee5@gmail.com; jha.anupriya@gmail.com; dina@iitism.ac.in

Abstract

A set D ⊆ V of a graph G = (V,E) is called a neighborhood total dominating set of G
if D is a dominating set of G and the subgraph of G induced by the open neighborhood
of D has no isolated vertex. Given a graph G, Min-NTDS is the problem of finding a
neighborhood total dominating set of G of minimum cardinality. The decision version
of Min-NTDS is known to be NP-complete for bipartite graphs and chordal graphs via
split graphs. In this paper, we first extend this NP-completeness result to undirected
path graphs, chordal bipartite graphs, and planar graphs and then present a linear time
algorithm for computing a minimum neighborhood total dominating set in proper interval
graphs. We show that Min-NTDS cannot be approximated within a factor of (1 −
ε) log |V |, unless NP⊆DTIME(|V |O(log log |V |)) and can be approximated within a factor
of O(ln ∆). Finally, we show that Min-NTDS is APX-complete for graphs of maximum
degree 3.

Keywords : Domination, total domination, neighborhood total domination, polynomial time
algorithm, NP-complete, APX-complete.

1 Introduction
A set D of vertices of a graph G = (V,E) is a dominating set of G if every vertex in V \D is

adjacent to some vertex in D. The domination number of a graph G, denoted by γ(G), is the
minimum cardinality of a dominating set of G. The concept of domination and its variations
have many applications and have been widely studied in literature (see [4, 5]). A set D of
vertices of a graph G = (V,E) is a total dominating set of G if every vertex in V is adjacent
to at least one vertex of D. The total domination number of a graph G, denoted by γt(G), is
the minimum cardinality of a total dominating set of G. For extensive literature and survey
of total domination in graphs, we refer to [6, 9].

In a graph G = (V,E), the sets NG(v) = {u ∈ V : uv ∈ E} and NG[v] = NG(v) ∪ {v}
denote the open neighborhood and the closed neighborhood of a vertex v, respectively. For a set
S ⊆ V , NG(S) = ∪u∈SNG(u) and NG[S] = NG(S) ∪ S. A total dominating set D can be seen
as a dominating set D such that induced subgraph G[D] has no isolated vertex. Looking the
similar property of the open neighborhood of a dominating set D, Arumugam and Sivagnanam
[1] introduced the concept of neighborhood total domination in graphs. Formally, a dominating
set D of a graph G is called a neighborhood total dominating set, abbreviated as ntd-set if
G[NG(D)], i.e., the subgraph of G induced by NG(D) has no isolated vertex. The neighborhood
total domination number, denoted by γnt(G), is the minimum cardinality of a ntd-set of G.

Notice that in any graph without isolated vertices, every ntd-set is a dominating set and
every total dominating set is a ntd-set. So the following observation follows.

∗Corresponding Author

17

Observation 1 ([1]) For any graph G without any isolated vertex, γ(G) ≤ γnt(G) ≤ γt(G).

Observation 1 motivates researchers to study the neighborhood total domination in graphs
since the neighborhood total domination number lies between the domination number and the
total domination number, the two most important domination parameters in graphs. Henning
and Rad [7] continued the further study on neighborhood total domination in graphs and
gave several bounds on the neighborhood total domination number. Henning and Wash [8]
characterized the trees with large neighborhood total domination number. Mojdeh et al. [11]
studied the neighborhood total domination related to a graph and its complement. Recently,
the algorithmic complexity of Min-NTDS has been studied by Lu et al. [10]. In particular, Lu
et al. [10] proved that the decision version of Min-NTDS is NP-complete for bipartite graphs
and chordal graphs via split graphs and presented a linear time algorithm for computing a
minimum ntd-set in trees. In this paper, we first extend the known NP-completeness result
of the decision version of Min-NTDS to undirected path graphs, chordal bipartite graphs,
and planar graphs. We present a linear time algorithm for Min-NTDS in proper interval
graphs. We then present results on the hardness of approximation, approximation algorithm,
and APX-completeness for Min-NTDS.

2 NP-completeness

In this section, we provide a polynomial time reduction from the decision version of Min-
Dom-Set to the decision version of Min-NTDS and using this reduction we prove that the
decision version of Min-NTDS is NP-complete for undirected path graphs, chordal bipartite
graphs, and planar graphs. Min-Dom-Set is defined as the problem of finding a minimum
dominating set for a given graph.

Let G = (V,E) be a graph. We construct a new graph G′ = (V ′, E′), where V ′ = V ∪
{av, bv, cv, xv, yv : v ∈ V } and E′ = E ∪ {vav, avbv, bvcv, bvxv, cvyv}. Notice that for every
v ∈ V , xv and yv are pendant vertices of G′. Now it can be proved that G has a dominating
set of cardinality at most k if and only if G′ has a ntd-set of cardinality at most k + 2|V |.

Notice that if G is a chordal bipartite (resp. a planar or an undirected path) graph, then
G′ is also a chordal bipartite (resp. a planar or an undirected path) graph. Since the decision
version of Min-Dom-Set is NP-complete for undirected path graphs [2], for planar graphs [3],
and for chordal bipartite graphs [12], we have the following theorem.

Theorem 1 The decision version of Min-NTDS is NP-complete for undirected path graphs,
chordal bipartite graphs, and planar graphs.

3 Algorithm for Min-NTDS in proper interval graphs

A graph G is called a proper interval graph if G is the intersection graph of a nonempty
family of intervals on the real line such that no interval properly contains another interval. A
vertex v of a graph G is called a simplicial vertex of G if NG[v] is a clique of G. An ordering
σ = (v1, v2, . . . , vn) is a perfect elimination ordering (PEO) of G if vi is a simplicial vertex of
Gi = G[{vi, vi+1, . . . , vn}] for all i, 1 ≤ i ≤ n. A PEO σ = (v1, v2, . . . , vn) of a chordal graph is
a bi-compatible elimination ordering(BCO) if σ−1 = (vn, vn−1, . . . , v1), i.e. the reverse of σ, is
also a PEO of G. It is well known that a graph G is a proper interval graphs if and only if G
has a BCO.

Let G be a connected proper interval graph with a BCO σ = (v1, v2, . . . , vn). For each
vi, 1 ≤ i ≤ n, let ℓ(vi) = max{{i} ∪ {k : vivk ∈ E(G) and k > i}}.

We now present our algorithm, namely MNTDS-PIG(G) to compute a minimum ntd-set
of a given connected proper interval graph G with at least 2 vertices. If G is a proper interval

graph with at most two vertices, then it is easy to construct a minimum ntd-set of G.
Algorithm 1: MNTDS-PIG(G)
Input: A connected proper interval graph G = (V, E) with at least 2 vertices;
Output: A minimum ntd-set D of G;

1 Compute a BCO σ = (v1, v2, . . . , vn) of G;
2 Initialize D = ∅;
3 i = 1;
4 while (i ≤ n) do
5 Let ℓ(vi) = j;
6 if (dGi

(vi) = 1 and i = 1) then
7 if (vj = vn) then
8 D = D ∪ {vi, vj};
9 else

10 if (ℓ(ℓ(vj))) = ℓ(ℓ(vj+1)) then
11 D = D ∪ {vj , vℓ(vj)};
12 i = ℓ(vℓ(vj)) + 1;
13 else
14 D ∪ {vi, vℓ(vj+1)};

15 i =

ℓ(ℓ(vj+1)) + 1, if |NG(vℓ(vj+1)) ∩ {vℓ(vj+1)+1, . . . , vn}| ≥ 2 or

vℓ(vj+1)+1vℓ(vj+1)−1 ∈ E;
ℓ(vj+1) + 1, otherwise.

16 else
17 if (vi is not dominated) then
18 D = D ∪ {vj};

19 i =
{
ℓ(vj) + 1, if |NG(vj) ∩ {vj+1, . . . , vn}| ≥ 2 or vj+1vj−1 ∈ E;
ℓ(vi) + 1, otherwise.

20 else
21 if ((dGi

(vi) = 0) or (dGi
(vi) = 1 and vj = vn)) then

22 D = D ∪ {vi};
23 else
24 Let ℓ(vi+1) = p and ℓ(vp) = p′;
25 D = D ∪ {vp};

26 i =
{
ℓ(vp) + 1, if |NG(vp) ∩ {vp+1, vp+2, . . . , vn}| ≥ 2 or vp+1vp−1 ∈ E;
ℓ(vi+1) + 1, otherwise.

27 return D;

Theorem 2 MNTDS-PIG(G) correctly computes a minimum ntd-set of a given proper in-
terval graph G with at least 2 vertices in linear time.

Proof : (Sketch:) Suppose that MNTDS-PIG(G) executes for k number of iterations. Then
k ≤ n. Let Dr, 1 ≤ r ≤ k be the set constructed by MNTDS-PIG(G) after the execution
of the r-th iteration. We first prove that Dk is a ntd-set of G. Then by using the method of
induction, we prove that for each r, 1 ≤ r ≤ k, Dr is contained in some minimum ntd-set of
the proper interval graph G. We can argue that all the steps of the algorithm can be executed
in at most O(n + m) time.

4 Hardness results and approximation algorithm
We establish the following two theorems corresponding to the lower bound and upper bound

on the approximation ratio for Min-NTDS.

Theorem 3 Let G = (V,E) be a graph with n vertices. Unless NP ⊆ DTIME(nO(log logn)),
Min-NTDS cannot be approximated within a factor of (1 − ε) lnn for any ε > 0. The same
holds for split graphs and bipartite graphs.

Proof : (Idea) This can be proved by establishing an approximation preserving reduction
from Min-Dom-Set to Min-NTDS.

Theorem 4 Min-NTDS in a graph G = (V,E) can be approximated within an approximation
ratio of 2(ln(∆(G) + 1) + 1).

By using the construction used in Theorem 1, we can establish an L-reduction from Min-
Dom-Set for graphs of degree at most 3 to show that Min-NTDS is APX-complete for graphs
of degree at most 4. Then we establish an L-reduction from Min-NTDS for graphs of degree
at most 4 to Min-NTDS for graphs of degree at most 3. So we have the following theorem.

Theorem 5 Min-NTDS is APX-complete for graphs of degree at most 3.

References
[1] S. Arumugam and C. Sivagnanam. Neighborhood total domination in graphs. Opuscula

Math., 31:519–531, 2011.

[2] K. S. Booth and J. H. Johnson. Dominating sets in chordal graphs. SIAM J. Comput.,
11(1):191–199, 1982.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[4] T.W. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs.
Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1998.

[5] T.W. Haynes, S. Hedetniemi, and P. Slater. Domination in Graphs: Volume 2: Advanced
Topics. Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1998.

[6] M. A. Henning. Recent results on total domination in graphs: A survey. Discrete Math.,
309:32–63, 2009.

[7] M. A. Henning and N. J. Rad. Bounds on neighborhood total domination in graphs.
Discrete Appl. Math., 161:2460–2466, 2013.

[8] M. A. Henning and K. Wash. Trees with large neighborhood total domination number.
Discrete Appl. Math., 187:96–102, 2015.

[9] M. A. Henning and A. Yeo. Total domination in graphs. Springer Monographs in Mathe-
matics, Springer-Verlag New York, 2013.

[10] C. Lu, B. Wang, and K. Wang. Algorithm complexity of neighborhood total domination
and (ρ, γnt)-graphs. J. Comb. Optim., 35(2):424–435, 2017.

[11] D. A. Mojdeh, M. R. Sayed Salehi, and M. Chellali. Neighborhood total domination of a
graph and its complement. Australasian J. Combinatorics, 65:37–44, 2016.

[12] H. Müller and A. Brandstädt. The NP-completeness of steiner tree and dominating
set for chordal bipartite graphs. Theor. Comput. Sci., 53(2-3):257–265, August 1987.

Dynamic programming for the Electric Vehicle Orienteering
Problem with multiple technologies

Dario Bezzi1, Alberto Ceselli1, Giovanni Righini1

Dept. of Computer Science, University of Milan, Italy
dario.bezzi,alberto.ceselli,giovanni.righini@unimi.it

Abstract

We describe a bi-directional dynamic programming algorithm to solve the Electric
Vechile Orienteering Problem, arising as a pricing sub-problem in column generation
algorithms for the Electric VRP with multiple recharge technologies.

Keywords : Combinatorial optimization, dynamic programming, shortest path.

1 Problem description
The Electric Vehicle Routing Problem (EVRP) has been introduced by Erdogan and Miller-
Hooks under the name of Green Vehicle Routing Problem in [1]. Several variations have been
studied, including problem with time windows, partial recharges, multiple technologies and
both exact and heuristic algorithms have been developed. Examples of heuristic algorithms for
the EVRP are given in Felipe et al. [2], Schneider et al. [3] and Koc and Karaoglan [4]. More
references on VRP variants involving the use of electric vehicles can be found in a recent and
extensive survey by Pelletier et al. [5].

The computation of exact solutions is more challenging than for the classical VRP, because
of the additional subproblem of deciding the optimal recharges at some points along the routes.
An additional source of complexity is the presence of different recharge technologies, each one
characterized by a unit cost and a recharge speed. Schiffer and Walther [6] recently considered a
similar problem in the context of location-routing. Sweda et al. [7] studied the optimal recharge
policy when the route is given. As with many other variations of the VRP, the most common
choice to design effective exact optimization algorithms is to rely upon branch-and-cut-and-
price, starting from a reformulation of the routing problem as a set covering or set partitioning
problem, where each column represents the duty of a vehicle. For instance, Desaulniers et al.
[8] developed a branch-and-price-and-cut algorithm for the exact solution of the EVRP with
time windows. In this study we investigate the Electric Vehicle Orienteering Problem, arising
as a pricing sub-problem when the EVRP is solved by branch-and-price and in particular we
consider a dynamic programming algorithm for the case with multiple technologies.

2 Formulation
Let G = (N ∪ R,E) be a given weighted undirected graph whose vertex set is the union
of a set N of customers and a set R of recharge stations. A distinguished station in R is
the depot, numbered 0. A fleet of V identical vehicles, located at the depot, must visit the
customers. All customers in N must be visited by a single vehicle; split delivery is not allowed.
Each customer i ∈ N is characterized by a demand and each vehicle has a capacity as in the
classical Capacitated VRP. Vehicles are equipped with batteries of given capacity B. Recharge
stations can be visited at any time; multiple visits to them is allowed and partial recharge is also
allowed. We consider a set of different technologies for battery recharge. For each technology we

21

assume a given recharge speed. When visiting a station, only one of the available technologies
can be used.

All vertices i ∈ R ∪N are also characterized by a service time, representing the time taken
by pick-up/delivery operations for i ∈ N or a fixed time to be spent to set-up the recharge
for i ∈ R. The distance de and the travel time are known for each edge e ∈ E. The energy
consumption is assumed to be proportional to the distance through a given coefficient π. The
duration of each route (including service time, travel time and recharge time) is required not
to exceed a given limit.

A feasible route must comply with capacity and duration constraints. Furthermore the level
of the battery charge must be kept between 0 and B at any time. A set of feasible routes
is a feasible solution if all customers are visited once and no more than V vehicles are used.
The objective to be optimized is given by the overall recharge cost, consisting of a fixed cost
and a variable cost. Since batteries allow for a limited number of recharge cycles during their
operational life, we associate a fixed cost f with each recharge operation. The variable cost
associated with a recharge operation at any station i ∈ R is proportional to the amount of
energy recharged, but it also depends on the recharge technology.

We indicate with Ω the set of all feasible routes. We associate a binary variable xr with each
feasible route r ∈ Ω: Binary coefficients yir take value 1 if and only if customer i ∈ N is visited
along route r ∈ Ω. We indicate by cr the cost of each route r ∈ Ω. With these definitions and
notation we obtain the following ILP model (master problem):

minimize
∑

r∈Ω
crxr (1)

s.t.
∑

r∈Ω
yirxr ≥ 1 ∀i ∈ N (2)

∑

r∈Ω
xr ≤ V (3)

xr ∈ {0, 1} ∀r ∈ Ω. (4)

At each node of a branch-and-bound tree the linear relaxation of the master problem is solved
by column generation. We indicate by λi the non-negative dual variables vector corresponding
to the covering constraints (2) and by µ the scalar non-negative dual variable corresponding
to constraints (3) restated in ≥ form. With this notation, the expression of the reduced cost
of a generic column r is

ĉr = cr −
∑

i∈N
λiyir + µ.

3 The pricing sub-problem
The pricing problem, whose ILP formulation is not reported here for brevity, is a variation of
the Orienteering Problem and it requires to find a minimum cost closed walk from the depot
to the depot, not visiting any customer vertex more than once and not consuming more than
a given amount of available resources (capacity, time and energy). Edges between stations can
be traversed more than once. This problem is also a variation of the Resource Constrained
Elementary Shortest Path Problem, in which the elementary path constraints are imposed only
on a subset of vertices, the resources are partly discrete and partly continuous and one of the
resources (energy) is renewable.

3.1 The algorithm
We have devised an exact pricing algorithm based on dynamic programming, where labels are
associated with paths emanating from the depot and have the following form:

L = (u, S, φ, t, ĉ,∆,∆, δ, δ),

where u is the endpoint of the path different from the depot, S is the set of customer vertices
visited along the path, t is the minimum time required to traverse the path, ĉ is the minimum
reduced cost of the path, ∆ and ∆ (scalar values) are the minimum and the maximum amount
of residual energy that can exist in the battery when the vehicle reaches u from the depot, δ
and δ (vectors with one component for each technology) are the lower and upper bounds on
the total amount recharged with each technology along the path. For brevity, we indicate by
P the polytope defined by the lower and upper bounds. The information conveyed by t and ĉ
is indicated for convenience but it can be obtained from the knowledge of P .

Relying upon these definitions we developed and tested a dynamic programming algorithm
to price out columns. Besides fathoming dominated states, the algorithm also relies on accel-
eration techniques such as bounding and state space relaxation.

In our talk we will present computational results obtained on benchmark instances from the
literature on the pricing problem for the EVRP.

References
[1] S. Erdogan and E. Miller-Hooks, A Green Vehicle Routing Problem, Transportation Re-

search Part E 48, 100-114, 2012.

[2] Á. Felipe, M.T. Ortuño, G. Righini and G. Tirado, A heuristic approach for the green
vehicle routing problem with multiple technologies and partial recharges, Transportation
Research Part E 71, 111-128, 2014.

[3] M. Schneider, A. Stenger and D. Goeke, The Electric Vehicle-Routing Problem with Time
Windows and Recharging Stations Transportation Science 48(4), 500-520, 2014.

[4] C. Koc and I. Karaoglan, The green vehicle routing problem: A heuristic based exact
solution approach, Applied Soft Computing 39, 154-164, 2016.

[5] S. Pelletier, O. Jabali and G. Laporte, Goods distribution with electric vehicles: review and
research perspectives, Transportation Science 50(1), 3-22, 2016.

[6] M. Schiffer and G. Walther, The electric location routing problem with time windows and
partial recharging, European Journal of Operational Research 260(3), 995-1013, 2017.

[7] T.M. Sweda, I.S. Dolinskaya and D. Klabjan, Optimal Recharging Policies for Electric
Vehicles, Transportation Science 51(2), 457-479, 2017.

[8] G. Desaulniers, F. Errico, S. Irnich and M. Schneider, Exact Algorithms for Electric Vehicle-
Routing Problems with Time Windows, Operations Research 64(6), 1388-1405, 2016.

Gomory by column generation∗

Jon Lee1

University of Michigan, Ann Arbor, Michigan
jonxlee@umich.edu

Abstract

Gomory cutting planes, for both the pure-integer and mixed-integer extensions of
linear optimization, were introduced in the early 1960’s. We present Gomory’s ideas in a
different algebraic manner than he did, resulting in a cleaner view of his finite-convergence
proofs and simpler linear algebra to carry out.

Keywords : Gomory, cutting plane, pure-integer, mixed-integer, column generation

1 Introduction
Gomory cutting planes, both pure-integer and mixed-integer, are classically presented for the
standard-form mixed-integer linear problem

min{c′x : Ax = b, x ≥ 0, xj ∈ Z for j ∈ J }, (PI)

where A is m × n, everything else is sized accordingly, and J ⊂ {1, 2, . . . , n}. This starting
point leads to cutting-plane methods for (PI). The linear-algebra that we carry out in applying
such a method is cumbersome, because for each cut we need to add a constraint (and slack
variable), and the simplex-method bases for the continuous relaxation of (PI) grow in size.
Still, Gomory could use this framework to make finitely-converging cutting-plane algorithms,
employing the lexicographic dual-simplex algorithm (see [3] and [2]). Moreover, Gomory cuts
eventually became practically relevant (see [1]).

2 Gomory in a column-generation framework
Our starting point is rather

max{y′b : y′A ≤ c′, yi ∈ Z for i ∈ I}, (DI)

where now I ⊂ {1, 2, . . . , m}. A nice feature of (DI) is that the dual of its continuous
relaxation is the standard form linear-optimization problem P∅. By developing Gomory’s cuts
differently, using his same geometric reasoning but now with different linear algebra, we get
cutting-plane methods for (DI) that are simple column-generation methods for P∅. We find a
few interrelated benefits: (i) the linear-algebra is simpler to carry out, with simplex-method
bases not growing in size, (ii) there is no need to appeal to the dual simplex method at all,
and (iii) versions of our approach gain their finite convergence using the lexicographic primal
simplex algorithm. To drive home the appeal of our pedagogy, our CTW presentation features
a demonstration of a free Matlab tool for carrying out our Gomory (see [5])

∗based on joint works with Qi He and Angelika Wiegele, presented in the papers [4] and [6]. Supported by
ONR grants N00014-14-1-0315 and N00014-17-1-2296.

24

References
[1] Gérard Cornuéjols. Revival of the Gomory cuts in the 1990’s. Annals of Operations Re-

search, 149(1):63–66, 2007.

[2] Ralph E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597,
The RAND Cooperation, 1960.

[3] Ralph E. Gomory. An algorithm for integer solutions to linear programs. In Recent Advances
in Mathematical Programming, pages 269–302. McGraw-Hill, New York, 1963.

[4] Qi He and Jon Lee. Another pedagogy for pure-integer Gomory. RAIRO - Operations
Research, 51(1):189–197, 2017.

[5] Jon Lee. A First Course in Linear Optimization (Third Edition, version 3.00). Reex Press,
2013–17. https://github.com/jon77lee/JLee_LinearOptimizationBook.

[6] Jon Lee and Angelika Wiegele. Another pedagogy for mixed-integer Gomory. EURO
Journal on Computational Optimization, 5(4):455–466, 2017.

Optimal Deployment of Wireless Networks

Antoine Oustry1, Marion Le Tilly2

1 Ecole polytechnique, Palaiseau, France
antoine.oustry@polytechnique.edu

2 Ecole polytechnique, Palaiseau, France
marion.le-tilly@polytechnique.edu

Abstract
This paper aims at providing a quantitative method to optimize the deployment of

a wireless network. Firstly it presents a frequency-domain finite difference method to
simulate wave propagation in a building. Secondly it proposes a Mixed-Integer Linear
Programming formulation to minimize the cost of the network deployment taking into
account the computed signal propagation, the WiFi demand at each point and the number
of available channels.

1 Introduction
Nowadays, wireless network planning relies on intuition and experience with very limited use
of simulation software. Therefore, it usually yields in approximated infrastructure placements
providing suboptimal services. In this context, we aim to achieve a network planning method-
ology based on simulating the electromagnetic field strength within the deployment location,
and using the simulated data as an input to various mathematical programming formulations.
Therefore, we build our own simulator taking into account physical effects such as interfer-
ence or diffraction, to generate data for our combinatorial program. Eventually, this program
aims to provide wireless access to a whole building at the lowest cost, considering potential
statistical changes in the wireless demands across the building.

2 Data Model
First, radio wave propagation is simulated in the target building, since this data is the basis
of the combinatorial problem. While standard empirical methods were available, we chose to
develop a more accurate method based on the simulation of a partial differential equation.

2.1 Classical methods
In practice, methods belong to one of the following category:
• Empirical methods: These methods, such as the multi-wall model, predict the average

behavior of waves based on the distance as well as the number and the nature of walls
between transmitter and receiver. These approaches are widely used for network design,
thanks to their low computational load requirement. However these approaches are less
accurate than the one presented below given that some physical effects are not taken into
account, e.g diffraction, self-interference or corridor effect.
• Ray-tracing methods: These methods are based on geometrical optics: using the

Fermat’s principle of least time, it determines a ray’s trajectory between source point and
field locations enabling the computation of the propagation loss at those locations. Yet,
it also does not take into account diffraction and self-interference, and its computational
complexity is proportional to the number of rays launched by the source and grows
exponentially with the number of reflections each ray undergoes.

26

2.2 Our frequency-domain finite difference method
Wave propagation in frequency domain: the Helmholtz equation. Inspired by both
Chopard’s ParFlow method [1] and the MR-FDPF method developed at INSA Lyon [3], the
Helmholtz equation predicts the radio wave propagation in a deterministic manner, considering
physical effects such as diffraction, self-interference or corridor effect. To begin with, we worked
with a 2D environment. To do so, consider - as done in [3] - the classical propagation equation
of a scalar wave: ∆u(x, y, t) − µε∂2

t u(x, y, t) = −s(x, y, t), where s(x, y, t) is a source term,
ε(x, y) is the local electric permittivity and µ(x, y) the local permeability. The physical values
ε and µ depend on the material : they represent the architecture of the floor.
Applying the Fourier transform to the wave equation eliminates the time differential, and
adding a diffusive term permits not to overestimate the reflections on the walls and on the
boundary (σ 6= 0, where σ is the electric conductivity). Eventually, it yields in the following
complex Helmholtz equation : ∆Ψ + (ω2µε− iωµσ)Ψ = −S(x, y, ω)

Finite difference scheme: The Helmholtz equation is simulated through a finite difference
scheme which consists in discretizing the rectangle [0, L] × [0, l] in a grid [|0, Nx|] × [|0, Ny|],
using the same step ∆x for both dimensions. ΨjNx+i is an approximation of Ψ(i∆x, j∆x). The
classic discretization of the Laplacian leads to the following sparse linear system :

∀k ∈ [1, NxNy],Ψk+1 + Ψk−1 + Ψk+Nx + Ψk−Nx + (β2n2
k − 4− i(∆x)2ωαk)Ψk = Fk

with the following conventions: FjNx+i = −(∆x)2S(i∆x, j∆x, ω), β = ω∆x

c0
, αk = µkσk, ∀i /∈

[1, NxNy]Ψi = 0. This sparse linear system can be efficiently solved by using an LU factoriza-
tion of the system matrix. In practice, the Python library SuperLU [2] was used.

Time complexity: Thanks to the SuperLU library our simple discretization method achieves
the same complexity as the MR-FDPF method [4]. For a given 2D map, a pre-computation
is required in time O(N3

x) to factorize the system. The computation of the field created by a
source in any given point is in O(N2

x log(Nx)).

From 2D to 3D: To make the model fit reality, it is crucial to model indoor radio wave
propagation in 3D environment. Trivially increasing the number of voxels in the methodol-
ogy sketched above would yield an excessive complexity increase. Thus, the 2.5D empirical
approach presented in [4] is more relevant to deal with 3D, it relies on the projections of the
field in the floor k to compute the field in the floor k + 1, using on of these alternatives :
• Field Projecting models the 3D propagation by projecting the field map through the roof

with an attenuation coefficient depending on the nature of the ceiling.
• Source Projecting consists in projecting the source (of the floor k) in the floor k+ 1 with

an attenuation factor and then in computing the 2D propagation in the floor k + 1 from
this virtual source.
• A combination of the two latter alternatives.

3 Mathematical Programming formulation
The data from the simulation enabled to build a mixed-integer linear program - with stochastic
constraints - which ensures wireless connection all over the building at minimum cost and takes
into account wireless demand at each point of the building. To build this network, our model
considers two types of equipment: wired access points (AP) and wireless repeaters. Both types
of devices have different costs and capacities. Considering a 2D or 3D grid, Vclients defines a set
representing the points of the grid to cover and Vcand a set representing eligible positions for
APs or repeaters. A point which has to to be covered and which is also a potential AP position
is duplicated, therefore the union of both sets is empty. V = Vclients ∪ Vcand. V ∗ = V ∪ {r}
represents all the vertices of the grid including r the root of the graph, to which all APs have
to be connected.

Parameters:
• The power gain matrix P = (pi,j)(i,j)∈V 2 computed by the data generation model;
• (CA

i)i∈Vcand
such that CA

i > 0 is the installation cost of an AP at i;
• (CR

i)i∈Vcand
such that CR

i > 0 is the installation cost of a repeater at i. CR
i < CA

i ;
• γA > 0 and γR > 0 are the maximum communication rate that an AP and a repeater

can handle;
• The vector (Di)i∈Vclients

with (Di ≥ 0) represents the bandwith demand at point i. These
random variables are not independent. Moreover we set : ∀i ∈ Vcand, Di = 0;
• ∀j ∈ V, pj

max = maxi∈Vcand
pi,j

• nmax > 0 a maximal noise level which is the only control parameter;
• We define a capacity matrix W = (wi,j)(i,j)∈(V ∗)2 :

– ∀(i, j) ∈ V × Vcand, wi,j = Blog(1 + pi,j

nmax
) > 0 : maximal data rate from i to j.

– ∀(i, j) ∈ (V × Vclients) ∪ ({r} × V ∗) ∪ (Vclients × {r}), wi,j = 0
– ∀(i, j) ∈ Vcand×{r}, wi,j = M where M a real number such that

∑
i∈Vclients

Di ≤M
almost surely;

Thus we consider the capacited oriented graph G = (V ∗, (V ∗)2,W), and the purpose is to
build a flow on G from the client points to the root by selecting relay nodes.

Decision variables:
• (Ai)i∈Vcand

∈ {0, 1}Vcand : indicates the presence of an AP at i;
• (Ac

i)i∈Vcand,c∈C ∈ {0, 1}Vcand×C : indicates the presence of an AP at i emitting on the
channel c;
• (Ri)i∈Vcand

∈ {0, 1}Vcand : indicates the presence of a repeater at i;
• (Rc

i)i∈Vcand,c∈C ∈ {0, 1}Vcand×C : indicates the presence of a repeater at i emitting on the
channel c;
• (fi,j)(i 6=j)∈(V ∗)2 ∈ R(V ∗)2

+ : the packet flow from i to j.
• (f c

i,j)(i 6=j,c)∈V 2×C ∈ RV 2×C
+ : the packet flow from i to j on channel c.

Objective: minimize the installation cost:
∑

i∈Vcand
AiC

A
i +RiC

R
i

Constraints:
• Link capacity: ∀(i 6= j) ∈ (V ∗)2, fi,j ≤ wi,j ;
• Kirchhoff law : ∀i ∈ V,∑j∈V ∗\{i} fi,j − fj,i = Di

• AP or repeater: ∀i ∈ Vcand, Ai +Ri ≤ 1;
• Only APs can be directly wired to the root: ∀i ∈ Vcand, fi,r ≤MAi ;
• Machine capacity: ∀j ∈ Vcand,

∑
i∈V fi,j ≤ Ajγ

A +Rjγ
R;

• Unique emission channel: ∀i ∈ Vcand, Ai =
∑

c∈C A
c
i , Ri =

∑
c∈C R

c
i ;

• Flow decomposition : ∀(i 6= j) ∈ V 2, fi,j =
∑

c∈C f
c
i,j

• Channel selection between client and candidate: ∀(i, j, c) ∈ Vclients × Vcand × C, f c
i,j ≤

wi,j(Ac
j +Rc

j);
• Channel selection between candidates: ∀(i 6= j, c) ∈ Vcand×Vcand×C, f c

i,j ≤ wi,j(Ac
i +Rc

i)
• Noise constraint between a client and a candidate: ∀(i, j, c) ∈ Vclients × Vcand × C:

∑

k∈Vcand\{j}
pk,i(Ac

k +Rc
k) ≤ (pi

max + nmax)(1− f c
i,j

wi,j
) + nmax

f c
i,j

wi,j

• Noise constraints between candidates: ∀(i, j, c) ∈ Vcand × Vcand × C:
∑

k∈Vcand\{i,j}
pk,i(Ac

k +Rc
k) ≤ (pi

max + nmax)(1− f c
j,i

wj,i
) + nmax

f c
j,i

wj,i

4 Solution and perspectives
Simulation’s performance TAB.1 below contains computation times obtained with a pro-
cessor Intel(R) Xeon(R) CPU E3-1271 v3 @ 3.60GHz for several simulations. The length and
the width of the building correspond to a discretization step of 3cm, equivalent to the quarter
of the wavelength for the WiFi 2.4GHz standard.

Length Width Nx Ny Factorisation time Resolution time (one source)
18m 12m 600 400 5s 0.07s
30m 10,5m 1000 350 8s 0.15s
30m 24m 1000 800 46s 0.4s
60m 30m 2000 1000 141s 1.2s

TAB. 1: Building dimensions, grid dimensions and computation times

First attempt to solve the problem For this first attempt we limit the analysis to a
deterministic demand : the vector D is constant and thus we get a classic MILP formulation.
We encoded it with AMPL and solved it for different instances using CPLEX solver. Below
are the computation times obtained with a processor Intel(R) Xeon(R) CPU E3-1271 v3 @
3.60GHz for several instance sizes :

|Vclients| |Vcand| Computation time
2 6 1s
5 10 6s
10 20 40s
20 60 4500s

TAB. 2: Number of clients and candidates, computation time

Perspectives Our current implementation considers a deterministic WiFi demand on the
building, yet a statistical approach would give a more relevant deployment for real instances.
In that case, we would need to choose between robust or stochastic optimization.

5 Figures

FIG. 1: 2.4GHz WiFi field in a building with source at different positions (red dot).

References
[1] B. Chopard, P. O. Luthi, and J. F. Wagen. Lattice boltzmann method for wave propagation

in urban microcells. IEE Proceedings - Microwaves, Antennas and Propagation, 144(4):251–
255, Aug 1997.

[2] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H.
Liu. A supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis and
Applications, 20(3):720–755, 1999.

[3] Jean-Marie Gorce, Katia Jaffrès-Runser, and Guillaume De La Roche. The Adaptive Multi-
Resolution Frequency-Domain ParFlow (MR-FDPF) Method for Indoor Radio Wave Prop-
agation Simulation. Part I : Theory and Algorithms. Technical Report RR-5740, INRIA,
November 2005.

[4] Guillaume De La Roche. Simulation de la propagation des ondes radio en environnement
multi-trajets pour l’etude des reseaux sans fil. PhD thesis, INSA Lyon, 2007.

Influence Maximization in Social Networks under Deterministic
Linear Threshold Model

Furkan Gursoy1, Dilek Gunnec2

1 Dept. of Management Information Systems, Bogazici University, 34342, Istanbul, Turkey
furkan.gursoy@boun.edu.tr

2 Dept. of Industrial Engineering, Ozyegin University, 34794, Istanbul, Turkey
dilek.gunnec@ozyegin.edu.tr

Abstract

We define the new Targeted and Budgeted Influence Maximization under Determin-
istic Linear Threshold Model problem by extending the original influence maximization
problem to a targeted version where nodes might carry heterogeneous profit values, and to
a budgeted version where nodes might carry heterogeneous costs for becoming seed nodes.
As a solution to this problem, we develop a novel and scalable general algorithm which
utilizes a set of alternative methods for different operations: TArgeted and BUdgeted
Potential Greedy (TABU-PG) algorithm.

TABU-PG works in an iterative and greedy fashion where nodes are compared at
each iteration and the best one(s) are chosen as seed. The main idea behind TABU-PG is
to invest in potential future gains which are hoped to be materialized at later iterations.
Alternative methods are provided for calculating potential gain, and for comparing nodes.
In comparing nodes, we propose a hybrid model which considers both gain and effi-
ciency. In calculating potential gains, we propose methods which dynamically assign
suitable weights to potential gains based on remaining budget. We also propose a new
method which ignores the potential gains which are results of partial influences under a
parameterized ratio. Moreover, we equip TABU-PG with novel scalability methods which
reduces runtime by limiting the seed node candidate pool, or by selecting more nodes
at each iteration; trading-off between runtime and spread performance. In addition, we
suggest new data generation methods for influence weights on links; and threshold, profit,
and cost values for nodes which better mimics the real world dynamics.

Extensive computational experiments with 8 different dataset on 4 real-life networks
(Epinions, Acedemia, Pokec, and Inploid) show that TABU-PG heuristics perform signif-
icantly better than benchmark heuristics. Moreover, runtime can be reduced with very
limited reduction in final influence spread.

Keywords : Influence Maximization, Social Networks, Diffusion Models, Targeted Market-
ing, Greedy Algorithm.

30

From Proofs to Programs, Graphs and Dynamics. Geometric
perspectives on computational complexity

Thomas Seiller
Laboratoire d’Informatique de Paris Nord,

Université de Paris 13 and Sorbonne Paris Cité
CNRS (UMR 7538), 93430 Villetaneuse, France

seiller@lipn.fr

Abstract

The current state of the art in the field of complexity theory is a demonstrated lack
of proof methods against problems still open. The combination of three separate results,
called barriers (Relativisation, Natural Proofs and Algebrization), implies that none of
the currently known proof methods for separation will successfully settle the remaining
open problems. A single research program – Geometric Complexity Theory (GCT) –
is considered viable by the community. However, according to its initiator and major
contributor K. Mulmuley, GCT will not provide new results within our lifetimes; recent
results have moreover closed the easiest path to GCT. As a consequence, complexity
theory is in dire need of new tools and methods as such advances should require “funda-
mentally new methods” to paraphrase S. Aaronson and A. Widgerson. This talk will be
about how such methods may be founded upon some recent developments in logic, and
more precisely some specific models of proofs introduced under the name “Interaction
Graphs”.

The interplay between logic and computational complexity has been the subject of
research for more than 50 years, but it has arguably failed to provide insights on the clas-
sification problem. Nevertheless, it has shown how logic is tightly bound to computation,
clearly circumscribing the limits of the different approaches. The framework of Interac-
tion Graphs, although taking its roots in logic, offers a mathematical model of programs
that bypasses these limits and accounts for subtle aspects of computation. Moreover, it
unveils deep connections with methods from geometry and dynamical systems that one
may hope to exploit to enable potent proof methods from mathematics to be used by
researchers against open problems in complexity theory.

31

On some tractable constraints on paths in graphs and in proofs

Lê Thành Dũng Nguyễn12

1 École normale supérieure, Paris Sciences et Lettres, Paris, France
le.thanh.dung.nguyen@ens.fr

2 LIPN, UMR 7030 CNRS, Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France

Abstract

We show that trails avoiding forbidden transitions and rainbow paths for complete
multipartite color classes can be found in linear time, whereas finding rainbow paths
is NP-complete for any other restriction on color classes. For the tractable cases, we
also state new structural properties equivalent to Kotzig’s theorem on bridges in unique
perfect matchings. Finally, we mention some connections with proof nets in linear logic
and combinatorial proofs (“proofs without syntax”) for classical propositional logic.

Keywords : Perfect matchings, forbidden transitions, properly colored paths, rainbow paths.

1 Introduction
Many problems which consist of finding a path or trail1 under some constraints between
two given vertices are equivalent to the augmenting path problem for matchings, and thus
tractable. Some of these problems have associated “structure from acyclicity” theorems which
were shown [13] to be equivalent to Kotzig’s theorem on the existence of bridges in unique2

perfect matchings (cf. [13, Theorem 1]): the absence of constrained cycles or closed trails entails
the positive existence of some structure in the graph.

Our results here consist of finding new members of this family of constraints on paths which
are equivalent in a certain sense, and excluding other constraints through NP-hardness results.
We also bring to attention the fact that this family has a representative in proof theory.

Edge-colored graphs From an assignment of colors to the edges of a graph, one can define
either local or global constraints:

• In a properly colored (PC) path (see [2, Chapter 16]) or trail (see [1]), consecutive edges
must have different colors. Both can be found in linear time by reduction to augmenting
paths, and conversely augmenting paths are a special case of both these problems. The
structural result for PC cycles is Yeo’s theorem on cut vertices separating colors [2, §16.3].

• In a rainbow (also called heterochromatic or multicolored) path, all edges have different
colors. The subject of rainbow connectivity has been an active area of research recently,
but the problem is NP-complete [4] in the general case.

For rainbow paths, we investigate whether restrictions on the shape of the color classes –
that is, the subgraphs induced by all edges of a given color – make the problem tractable, and
we establish that there is a single case which is not NP-hard:

1Following a common usage (see e.g. [2, Section 1.4]), a path is a walk without repeating vertices and a
trail is a walk without repeating edges; a cycle (resp. closed trail) is a closed walk without repeating vertices
(resp. edges). Paths (resp. cycles) are trails (resp. closed trails), but the converse does not always hold.

2This is indeed an acyclicity condition: recall that a perfect matching is unique if and only if it admits no
alternating cycle.

32

Theorem 1. Let A be a class of graphs without isolated vertices3. The rainbow path problem
for graphs whose color classes are all in A can be solved in linear time if all graphs in A are
complete multipartite, and is NP-complete otherwise.

The first case is part of our family of equivalent constraints, and the associated structural
theorem is as follows:

Theorem 2. Let G be an edge-colored graph whose color classes are complete multipartite. If
G has no rainbow cycle, then there exists a color c such that for all c-colored edges (u, v), u
and v are in different connected components after removing the color class of c.

Forbidden transitions A very general notion of local constraints is to simply forbid some
pairs of edges from occuring consecutively in a path. We take the following definition from [12].

Definition 1. Let G = (V,E) be a multigraph. A transition graph for a vertex v ∈ V is
a graph whose vertices are the edges incident to v. A transition system on G is a family
T = (T (v))v∈V of transition graphs.

A path (resp. trail) v1, e1, v2 . . . , ek−1, vk is said to be compatible (or avoiding forbidden
transitions) if for i = 1, . . . , k − 14, ei and ei+1 are adjacent in T (vi+1).

That is, the edges of the transition graphs specify the allowed transitions. Finding a com-
patible path has been proven to be NP-complete [12]. However, the question for compatible
trails does not seem to have been asked before in its full generality. We show that:

Theorem 3. Finding a compatible trail can be done with a time complexity linear in the number
of allowed transitions (thus, in at most quadratic time in the size of the graph).
Theorem 4 (“Structure from acyclicity”). Let G be a multigraph with transition system T ,
with at least one edge. If, for all vertices v in G, the transition graph T (v) is connected, and
G has no closed trail compatible with T , then G has a bridge.
Corollary 1 (New5 proof of [1, Theorem 2.4]). Let G be an edge-colored graph such that every
vertex of G is incident with at least two differently colored edges. Then, if G does not have a
PC closed trail, then G has a bridge.

2 The edge-colored line graph
A key ingredient in the aforementioned results is a kind of line graph construction mapping
graphs with forbidden transitions to edge-colored graphs.

Definition 2. Let G = (V,E) be a multigraph and T be a transition system on G. The
EC-line graph LEC(G, T) is formed by taking the line graph of G, coloring its edges so that
the clique corresponding to v is given the color v (using the vertices of G as the set of colors),
and deleting the edges corresponding to forbidden transitions.

Formally, LEC(G, T) is defined as the graph with vertex set E and edge set F =
⊔
v∈V T (v),

equipped with an edge coloring c : F → V with values in V : for f ∈ F , c(f) is the unique
vertex such that f ∈ T (c(f)).

Proposition 1. Let G be a multigraph with transition system T , and s ̸= t be vertices of G.
The compatible paths between s and t correspond bijectively to rainbow paths in LEC(G, T)

between some vertex of ∂(s) and some vertex of ∂(t) which do not cross edges with color s or t.
Similarly, the compatible trails between s and t where neither s nor t appear as intermediate

vertices correspond bijectively to PC paths in LEC(G, T) between some vertex of ∂(s) and some
vertex of ∂(t) which do not cross any edge with color s or t.

3Indeed, a color class, which is an edge-induced graph, cannot have isolated vertices.
4For a cycle (resp. closed trail), we must also require ek−1 and e1 to be adjacent in T (v1) = T (vk).
5The original proof applies Yeo’s theorem to a construction which does not generalize to forbidden transi-

tions, but provides a trail-finding algorithm in linear time in the size of the graph.

Theorems 3 and 4 immediately follow from the second half of this proposition together
with the known results on PC paths. However, to get the hardness result for rainbow paths,
in addition to the EC-line graph, we need to reuse the proof techniques from [12] and [4],
in particular a characterization of complete multipartite graphs by excluded vertex-induced
subgraphs [12, Lemma 7]. As for the first half of Theorem 1, it uses the fact that one can
retrieve the vertex partition of a complete multipartite graph in linear time, for instance by
computing its cotree [5].

3 Constrained cycles in logic

In a recent work [9], we showed that the correctness of a proof net – a graph-like representation
of a proof in linear logic [6] – is equivalent to the uniqueness of a given perfect matching, and
is therefore part of our family of equivalent problems. Thus, it can be decided in linear time,
and the associated structural property is the key lemma in the proof of the “sequentialization
theorem”, an inductive characterization of the set of correct proof nets which mirrors exactly
the inference rules of linear logic.

One direction of the equivalence, from proof nets to perfect matchings, had been established
previously by Retoré [11, §1]6. His reduction can be understood a posteriori as a composition
of constructions on edge-colored graphs: it amounts to equipping a proof net with a transition
system, taking the EC-line graph introduced above, and applying a known reduction from
edge-colored graphs with chromatic degree ≤ 2 to perfect matchings [8]7.

Let us give a rough presentation of proof nets in graph-theoretic terms. A proof net may
be seen as the syntax tree of a propositional formula, with ∧ and ∨ nodes and literals at the
leaves, together with additional edges between the leaves pairing together opposite literals.
The syntax tree may be interpreted as the cotree of a cograph whose vertices are the literals,
as usual, see e.g. [3]. This leads to a restatement of correctness, also due to Retoré [11, §2].

Definition 3. A cographic proof is an pair of graphs (G,M), G being a cograph and M a
1-regular graph, with the same set of vertices.

A vicious circle in (G,M) is a chordless cycle in8 G ∪M which alternates between edges in
G and edges in M . A cographic proof is correct if it contains no vicious circle.

A proof net is correct if and only if the corresponding cographic proof (with the 1-regular
graph representing the pairing of the leaves) is correct in the sense above. Note that vicious
circles are not merely properly colored cycles for the natural 2-edge-coloring of the cographic
proof, because of the additional chordlessness condition.

Finally, let us mention that cographic proofs also have applications outside of linear logic.
Indeed, they have been used to define “proofs without syntax” for classical propositional logic:
Hughes’s combinatorial proofs [7] are graph homomorphisms (with additional properties) from
some correct cographic proof to the cograph of the classical formula being proven, and this
gives a sound and complete proof system. The tractability of our family of constraints on
cycles ensures that proofs are checkable in polynomial time.

6This was the first indication of a connection between linear logic and unique perfect matchings. Let us
mention as well that in an earlier attempt to connect linear logic with graph theory [10, Chapter 2], Retoré
proved a weaker version of the structural theorem for rainbow acyclic graphs (it requires the color classes to
be complete bipartite instead of complete multipartite).

7This paper only defines the reduction for 2-edge-colored graphs, but the required generalization is straight-
forward. Note also that the two last steps give a direct reduction from compatible trails to perfect match-
ings. Although we have not managed to find it in the literature, there is at least one other place where
it occurs implicitly, which also inspired us: a solution to an algorithmic puzzle by Christoph Dürr, see
http://tryalgo.org/en/matching/2016/07/16/mirror-maze/.

8By G ∪ M we mean the graph whose edges are the union of those in G and M , on the common vertex set.
This union may result in a multigraph with parallel edges.

4 Conclusion and perspectives
We summarize the complexity of the problems studied here in the following table. Our contri-
butions, marked in bold, fill some gaps in the table, thus answering several natural questions.
Furthermore, we exhibited a construction which provides a bridge between different kinds of
constraints on paths and trails, and described how different reductions relate to each other.

Time complexity / additional results
Path avoiding forbidden transitions NP-complete with dichotomy result [12]
Trail avoiding forbidden transitions Linear with structural theorem
Properly colored path Linear with structural theorem (cf. [2])
Properly colored trail Linear with structural theorem [1]
Rainbow path/trail9 (general) NP-complete [4], with dichotomy result
Rainbow path/trail (restricted10) Linear with structural theorem

To clarify, the connection with proof nets works specifically for a system called Multiplicative
Linear Logic with the Mix rule. Without this Mix rule, correctness becomes a “tree-like”
condition instead of an acyclicity (“forest-like”) condition.

What analogous conditions could one ask of a constrained graph? In the case of rainbow
paths and cycles, we may consider edge-colored graphs whose maximum rainbow subgraphs
are all trees. Remarkably, it seems that we have a polynomial-time recognition algorithm and
a structural property for these graphs without any restriction on the shape of color classes11.

References
[1] A. Abouelaoualim, K. Ch. Das, L. Faria, Y. Manoussakis, C. Martinhon, and R. Saad. Paths and

trails in edge-colored graphs. Theoretical Computer Science, 409(3):497–510, December 2008.

[2] Jørgen Bang-Jensen and Gregory Gutin. Digraphs. Theory, algorithms and applications. 2nd ed.

[3] Seth Chaiken, Neil V. Murray, and Erik Rosenthal. An application of P4-free graphs in theorem-
proving. Annals of the New York Academy of Sciences, 555(1):106–121, May 1989.

[4] Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Raphael Yuster. Hardness and algorithms
for rainbow connection. Journal of Combinatorial Optimization, 21(3):330–347, April 2011.

[5] Derek G. Corneil, Yehoshua Perl, Lorna K. Stewart. A linear recognition algorithm for cographs.
SIAM Journal on Computing, 14(4):926–934, 1985.

[6] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, January 1987.

[7] Dominic J.D. Hughes. Proofs without syntax. Annals of Mathematics, 143(3):1065–1076, 2006.

[8] Yannis Manoussakis. Alternating paths in edge-colored complete graphs. Discrete Applied Math-
ematics, 56(2):297–309, January 1995.

[9] Lê Thành Dũng Nguyễn. Unique perfect matchings and proof nets. Submitted. URL:
https://hal.archives-ouvertes.fr/hal-01692179.

[10] Christian Retoré. Réseaux et séquents ordonnés. PhD thesis, Université Paris VII, February 1993.

[11] Christian Retoré. Handsome proof-nets: perfect matchings and cographs. Theoretical Computer
Science, 294(3):473–488, February 2003.

[12] Stefan Szeider. Finding paths in graphs avoiding forbidden transitions. Discrete Applied Mathe-
matics, 126(2-3):261–273, 2003.

[13] Stefan Szeider. On theorems equivalent with Kotzig’s result on graphs with unique 1-factors. Ars
Combinatoria, 73, 2004.

9The existence of a rainbow path is equivalent to the existence of a rainbow trail between two vertices.
10Restricted to edge-colored graphs with complete multipartite color classes.
11The trick is that any such graph is a spanning subgraph of another with complete bipartite color classes.

Equitable total chromatic number of two classes of complete
r-partite p-balanced graphs

A. G. da Silva1, D. Sasaki2, S. Dantas3

1 Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
andersongs@hotmail.com.br

2 IME, State University of Rio de Janeiro, Rio de Janeiro, Brazil
diana.sasaki@ime.uerj.br

3 IME, Fluminense Federal University, Niteroi, Brazil
sdantas@im.uff.br

Abstract
An equitable total coloring of a graph is the assignment of colors to the vertices and

edges of a graph subject to the following conditions: adjacent vertices or edges must receive
different colors; an edge and a vertex that is incident to it have to be assigned to different
colors; and the difference between the cardinalities of any two color classes is at most one.
The least integer for which a graph has an equitable total coloring is called the equitable
total chromatic number of the graph and denoted by χ′′

e . It has been conjectured by Wang
(2002) that ∆ + 1 ≤ χ′′

e ≤ ∆ + 2. Such conjecture is known as the Equitable Total Coloring
Conjecture (ETCC). Fu (1994) determined χ′′

e for the bipartite p-balanced graphs. Silva,
Dantas and Sasaki (2016) verified the ETCC for four classes of complete r-partite p-balanced
graphs, which are: r and p odd (χ′′

e = ∆ + 1); r ≥ 4 even and p odd (χ′′
e = ∆ + 2); r ≥ 4

even and p even (χ′′
e ≤ ∆+2); and r odd and p even (χ′′

e ≤ ∆+2). In this paper, we present
new techniques and prove that complete r-partite p-balanced graphs (for r ≥ 4 even and p

even, and for r odd and p even) have χ′′
e = ∆ + 1, which concludes the study for all cases of

equitable total coloring of complete r-partite p-balanced graphs, showing sharp values for
the equitable total chromatic number.

Keywords : Equitable total coloring, complete r-partite p-balanced graphs, graph coloring.

1 Introduction
Througuout this paper all graphs analyzed are finite, undirected and simple. The equitable total
chromatic number of a graph G, denoted by χ′′e(G) is the least integer for which G has an equitable
total coloring. An equitable total coloring, in turn, is the assignment of colors to the vertices and
edges of a graph such that incident and adjacent elements do not receive the same color and the
difference between the cardinalities of any two color classes is at most 1.

A complete r-partite p-balanced graph, denoted by Kr×p is a graph where the vertex set can
be partitioned into r parts (V (Kr×p) = {X1, · · · , Xr}) so that two vertices within the same part
are not adjacent and there is an edge between any two vertices of different parts. The total
chromatic number of all complete r-partite p-balanced graphs was determined by Bermond [2].
Wang [6] conjectured that the equitable total chromatic number of a graph is either ∆ + 1 or
∆+2. Fu [3] determined that the equitable total chromatic number of complete bipartite graphs
is ∆ + 2, whereas Silva, Dantas and Sasaki [5] determined the equitable total chromatic number
for two classes of complete r-partite p-balanced graphs, which are the cases r ≥ 4 even and p odd
(χ′′e = ∆ + 2); and r and p odd (χ′′e = ∆ + 1). In this paper, we prove that Kr×p has χ′′e = ∆ + 1
if r ≥ 4 and p are even and if r is odd and p is even, concluding all cases of complete r-partite
p-balanced graphs.

36

2 Kr×p, p even
We adopt the following convention regarding the complete r-partite p balanced graphs, denoted
by Kr×p: when we refer to a graph of this kind, keep in mind that the display of the vertices is
like a matrix with r columns and p rows, where each column represents a part Xi of the partition
of the vertex set. The vertex xij is the j-th vertex of the part Xi and will be in the j-th row and
i-th column. Based on this display of vertices, we define a horizontal edge as an edge of the kind
xabxcb. Also, a horizontal matching of distance i between rows a and b (1 ≤ a < b ≤ p) is defined
as the matching {xjaxj+i,b|1 ≤ j ≤ r}, where the index j + i is taken modulo r.

Throughout the paper, it will be necessary to obtain matchings of the complete graph Ki. We
refer to the matchings of Ki as Pi when we need to take the matchings of the complete graph
with p vertices and Ri, when the complete graph has r vertices (r and p being related to the fact
that we are coloring r-partite p-balanced graphs).

Kr×p, with r ≥ 4 even and p even

A Latin square is an n × n matrix whose entries are the elements of the set {1, 2, · · · , n} such
that each symbol occurs precisely once per row and per column. Given a Latin square of order n,
a transversals is a set of n different entries of different rows and columns. In [4] it is proved the
following theorem: defining T (n) as the maximum number of transversals over all Latin squares
of order n, we have that bk ≤ T (k) for k ≥ 5, where b ≈ 1, 719. We present now a lemma and
omit its proof, because it is trivial.

Lemma 1. There exists a Latin square of even order n ≥ 4 whose elements in the main diagonal
are pairwise different.

Sketch of the algorithm for the case p = 2: we define a coloring matrix as a matrix whose
entries determine the colors assigned to the elements of a graph. Let AR1R2 be a matrix of order r
in which the entry aij represents the color that the edge xi1xj2 receives if i ̸= j and the color that
the vertices of the part Xi receive, otherwise. The matrix AL1L2 must be a Latin square whose
elements in the main diagonal are all distinct. Lemma 1 ensures the existence of such matrix.
Each one of these r colors is used r + 1 times.

We have that r − 1 colors still need to be used. They will be applied in horizontal edges as
follows: obtain the r − 1 matchings of Kr. Suppose that Ri = {va1va2 , · · · , var−1var}. Then
the edges xa11xa21, · · · , xar−11xar1, xa12xa22, · · · , xar−12xar2 must receive the same color, for each
i = 1, 2, · · · , r−1. By construction we get that the algorithm describes an equitable total coloring
of Kr×2 (r ≥ 4 even).
Sketch of the algorithm for the case p = 4: to color the vertices we use a different color for
each one of the following pairs: x11 and x12; x13 and x14; x21 and x22; x23 and x24; · · ·; x(r−1)1
and x(r−1)2; x(r−1)3 and x(r−1)4; xr1 and xr4; xr2 and xr2. The part Xr is the only one that has
a different pattern for the coloring of the vertices.

The colors used in the vertices of the rows 1 and 2 of the parts X1, X2, · · · , Xr−1 will be applied
on rows 3 and 4 in horizontal edges according to the matchings of Kr, whereas the colors used
in the vertices of rows 3 and 4 of the same parts will be assigned to horizontal edges of rows 1
and 2 according to the matchings of Kr. If R1 = {vb1vb2 , · · · , vbr−1vbr}, then assign the color of
the vertices x11 and x12 to the edges xb1ixb2i, · · · , xbr−1ixbri (i = 3, 4) and assign the color of the
vertices x13 and x14 to the edges xb1ixb2i, · · · , xbr−1ixbri (i = 1, 2). Proceed analogously regarding
the colors of the vertices of the parts X2, X3, · · · , Xr−1.

We define matrices AR1R2 , AR3R4 , AR2R3 , AR1R4 , AR1R3 and AR2R4 , of order r, where the entry
aij of the matrix ARkRl

represents the color that the edge xikxjl receives if i ̸= j. We leave the
entry empty if i = j.

We have to use r − 1 colors in matrices AR1R3 and AR2R4 , according to the following pattern:
on the first row, we apply the colors in ascending order, that is (1 2 3 · · · r); on the second

row, we shift the first row one unity to the right, that is, (r 1 · · · (r − 1)). After that, we
omit the entries of the main diagonal.

To fill the matrices AR1R2 and AR3R4 we need Latin squares with the elements in the main
diagonal being pairwise different (even though such entries will be ommited). The entries of the
matrix AR1R2 will be the colors used in the vertices of rows 1 and 2 of parts X1, X2, · · · , Xr−1,
whereas the entries of the matrix AR3R4 are the colors used in the vertices of rows 3 and 4 of
the same parts. Some entries stay empty at this point. Obtain a Latin square whose colors are
described above and whose entries of the main diagonal are all distinct. The empty entries are
the ones that would be the same color of the entry arr.

Suppose that colors colors α and β have been applied, respectively, in the vertices xr1 and
xr4; and in the vertices xr2 and xr3. Then, in the matrix AR1R4 , color α must occupy entries
a1,r−1, a21, a32, a43, · · · , ar−1,r−2, whereas color β must be occupy entries a12, a23, a34, · · · , ar−1,r,
ar1. In matrix AR2R3 , the corresponding entries occupied with α in the other matrix must be
filled with β and vice versa. It is easy to see that we can apply r−4 colors in horizontal matchings
of distance linking vertices of rows 1 and 4; and rows 2 and 3.

There are entries in the matrices AR1R2 , AR3R4 , AR2R3 and AR1R4 not filled with any color.
Such entries represent edges that form a 2-regular subgraph H of Kr×p. Since H is 2-regular, its
connected components are cycles. It can be easily seen that none of the connected components
is a cycle odd size. Since the components of H are cycles of even size, these edges can be colored
with 2 colors and this finishes the algorithm.
Sketch of the algorithm for the case p ≥ 6: to color the vertices, we need to obtain the
matching P1 of the graph Kp. If P1 = {vb1vb2 , vb3vb4 , · · · , vbp−1vbp}, then assign a different color
to each one of the following pairs of vertices: xib1 and xib2 ; xib3 and xib4 ; xibp−1 and xibp for
all i = 1, 2, · · · , r. Consider the matrices ARb1Rb2

, ARb3Rb4
, · · ·, ARbp−1Rbp

as described in the
beginning of this section. We use Lemma 1 to get Latin squares whose entries in the main
diagonal are pairwise distinct. Furthermore, the entry akk of a matrix ARiRj must be the colors
of the vertices xki and xkj . The entries of the matrices ARbi

Rbj
are the colors used in the vertices

of rows bi and bj .

Colors 1, 2, · · · , rp2 were represented in all vertices of two rows. However, they still need to
be represented in the vertices of the other rows. We need the following result to do so: [1] for
positive even integers m and n with 4 ≤ m ≤ n, the graph Kn− I can be decomposed into cycles
of size m if and only if the number of edges in Kn− I is a multiple of m. We remark that Kn− I
denotes a complete graph with n vertices minus a 1-factor, that is, minus a perfect matching.

For the next step of the algorithm we need to get p2 cycles of size p− 2 of the graph Kp minus
a 1-factor. Putting m = p− 2 and n = p in the theorem proved in [1], we conclude that Kp − I

can be decomposed into p

2 cycles of size p − 2, as desired. Suppose that Kp − I = Kp\P1, with
P1 being a perfect matching of Kp. It is known that every cycle of even size has an edge coloring
with 2 colors. Hence we divide each cycle of even order in two matchings and associate with the
edges of P1, so that each edge of P1 is associated to the matchings of the cycle of Kp − I that
does not contain the vertices vi and vj .

With the decomposition of Kp\P1, we get p2 cycles. Let Mk and M ′
k be the matchings obtained

from the k-th cycle of the decomposition of Ks\P1, that does not contain the edge vivj . Then, the
colors used in the i-th and j-th vertices of the parts X1, X2, · · · , X r

2
must be used in horizontal

matchings of distance linking vertices of rows determined by Mk, whereas the colors used in the
i-th and j-th vertices of parts X r

2+1, · · · , Xr are used in horizontal matchings of distance linking

vertices of rows determined by M ′
k. We have that

(
r

2 − 1
)

(p − 2) colors can still be applied in
these available matchings of distance. To end the coloring, we use r − 1 new colors in horizontal
edges determined by the matchings of Kr.

Kr×p, with r odd and p even
Sketch of the algorithm for the case p = 2: the vertices of part Xi must receive color i,
i = 1, 2, · · · , r. These r colors are also used in horizontal edges, as follows. Suppose that the
matching Rj = {vavb, · · · , vcvd} has vi as its remaining vertex. Then color cor i has to be used
in edges xa1xb1, · · · , xc1xd1, xa2xb2, · · · , xc2xd2. One can easily check that each one of the r colors
were used r + 1 times. Now r − 1 colors need to be used in non horizontal edges. We use each
one of the r − 1 colors in horizontal matchings of distance, which have r elements each. By
construction the algorithm provides a (∆ + 1)-equitable total coloring of Kr×2.
Sketch of the algorithm for the case p ≥ 4: we construct a table with (p − 1)(r − 1) =
rp − p − r + 1 rows where we repeat each matching Pi of Ks r − 1 times. Each row represents
a different color and each time a matching Pi is repeated it represents a different horizontal
matching of distance. Suppose that in the i-th row of the table we have distance j and matching
Pk = {vavb, · · · , vcvd}. This means that color i has to be used in a horizontal matching of distance
j between pairs of rows determined by the matching Pk, that is, between rows a and b; · · ·; c and
d. The second step consists in changing part of what was done in the previous one. All colors
that are in the same row as the matchings Pi (i = 1, 3, 5, · · · , p− 3) in the above described table
and also each color that is in the same row as the first occurrence of Pj (j = 2, 4, · · · , p − 2)
transfer the first element of their related matching to r new colors that will be inserted in the
new table.

If a given color i had been applied in a horizontal matching of distance j and transfered the
element vab of the matching Pk (k odd), then color i must be applied in the coloring of vertices
xja and xjb. If the index k of the matching Pk is even, then color i must be used to color vertices
xra and xrb. The last r colors (the ones that were added only in the second step) must color
vertices xt,p−1 and xtp if the corresponding distance in the second table described is t and if it
is not the last color. The last color is used in vertices xr1 and xrp. Horizontal edges are colored
using the matchings of Kr.

3 Conclusion and perspectives
In this paper we prove that χ′′e(Kr×p) = ∆+1 for r and p even (r ≥ 4); and for r odd and p even.
This paper, alongside with [3, 5] conclude the work of determining the equitable total chromatic
number for all cases of complete r-partite p-balanced graphs, verifying the ETCC for this class
of graphs. Future work include, but are not limited to determining the equitable total chromatic
number of complete r-partite non-balanced graphs.

References
[1] Brian Alspach and Heather Gavlas. Cycle Decompositions of Kn and Kn−I. Journal of Combinatorial

Theory, 2001.
[2] J. C. Bermond. Nombre chromatique total du graphe r-parti complet. J. London Math Soc., 1974.
[3] Hung Lin Fu. Some results on equilized total colorings. Congr. Numer., 1994.
[4] Brendan D. McKay, Jeanette C. McLeod and Ian M. Wanless. The number of transversals in a Latin

square. Des Codes Crypt, 2006.
[5] A. G. da Silva, S. Dantas and D. Sasaki. Equitable total coloring of complete r-partite p-balanced

graphs, submitted. Discrete Applied Mathematics, 2016.
[6] W. F. Wang. Equitable total coloring of graphs with maximum degree 3. Graphs Combin., 2002.

Multicoloring of Pattern Graphs for Sparse Matrix
Determination

Shahadat Hossain1, Trond Steihaug2

1 University of Lethbridge, Lethbridge, Alberta, Canada
shahadat.hossain@uleth.ca

2 University of Bergen, Bergen, Norway
Trond.Steihaug@ii.uib.no

Abstract

Evaluation of large and sparse derivative matrices is an essential and significant com-
putation in many numerical algorithms. The combinatorial problem of compressing the
sparse Jacobian matrix is an important component in its efficient evaluation and a variety
of compression methods (one-sided/two-sided) have been suggested that exploit problem
structures such as symmetry and partial separability. A common approach is to define an
appropriate graph for the sparse matrix and partition the vertices of the graph into groups
or color classes. Recently, the pattern graph has been proposed as a unifying framework
to model direct determination of sparse Jacobian and Hessian matrices. In this paper
we give a multi-coloring formulation for the two-sided compression of sparse Jacobian
and thus combine two closely related compression problems using the same graph. More-
over, we show that the essential computational complexity of the respective compression
problems remain the same under column or row permutation of the underlying sparse
matrix.

Keywords : Sparse Hessian Matrix, Sparse Jacobian Matrix, Multicoloring, Direct Determi-
nation, Algorithmic Differentiation.

1 Introduction
Combinatorial problems arising in diverse scientific and engineering areas are conveniently
modelled and studied using graphs. Numerical methods for solving system of nonlinear equa-
tions, differential equations, or optimization of nonlinear functions often require the evaluation
of first or higher-order derivatives, usually in each iteration. A significant fraction of the over-
all computation of such methods is attributed to the cost of evaluating these large and sparse
derivative matrices. A common approach to determining the sparse Jacobian and Hessian
matrices is to first represent the matrix pattern using a suitable graph and then employ a
grouping or coloring procedure to find a compressed representation of the sparsity pattern.
As the general grouping or coloring problems are computationally hard (NP-hard) heuristics
are commonly employed for compression. For a sparse matrix A, in a one-sided compression,
the rows of the sparsity pattern of A (or A>) are compressed and a two-sided compression
corresponds to row compression of both A and A>. Specifically, let F : Rn 7→ Rm be a once
continuously differentiable function in some neighborhood of x ∈ Rn. Then we can write,

∂F (x+ ts)
∂t

∣∣∣∣
t=0

= F ′(x)s ≡ As ≈ 1
ε

[F (x+ εs)− F (x)] ≡ b, (1)

where s ∈ Rn is a given direction and ε > 0 is a small increment. The key observation here is
to choose fewest directions s exploiting the sparsity information such that the matrix nonzero
unknowns can be determined by the algorithm sketched below.

40

1. Seeding or Compression. Given the seed matrix S ∈ Rn×p, compute B(= AS) using
a forward difference formula or tangent linear (or forward) algorithmic differentiation
[4]. (In a two-sided compression also compute C> = W>A using adjoint (or reverse)
algorithmic differentiation for a given W ∈ Rm×q.)

2. Harvesting or reconstruction. For row i, i = 1, 2, . . . ,m of A:

(a) define the reduced seed matrix Si ∈ Rρi×p for the ith row of A:

define: Si ≡ S(v, :)

(b) solve for the ρi unknown elements aij 6= 0

solve: A(i, v)Si = B(i, :)

where ρi denotes the number of nonzero elements in row i of A and vector v of length
ρi contains the column indices of those nonzero elements. (This step is repeated for
two-sided compression with matrices W and C.)

The goal is to choose matrices S (and W in a two-sided compression) minimizing p (p + q
in a two-sided compression) such that the nonzero elements of matrix A can be determined
uniquely. In this paper the equations solved in step 2(b) are permuted diagonal.

The combinatorial problem of finding suitable seed matrices for sparsity pattern of matrix A
has been found to be equivalent to grouping or coloring of the vertices of an appropriate graph
representing the sparsity pattern. Some of the features that we consider desirable in choosing
an appropriate graph model are: flexibility of the model to express alternative methods of de-
termination (one-sided, two-sided compression), exploitation of problem structure (symmetry),
and efficient implementation of graph operations. Graph models proposed by researchers in-
clude intersection graph [1], column segments graph [6], element isolation graph [10], bipartite
graph [2, 3, 5] and more recently pattern graph [7, 9]. With regard to flexibility, unfortunately,
intersection model requires the definition of a neutral color in a two-sided compression while
the bipartite model leaves out one set of vertices uncolored in a one-sided compression. The
pattern graph has been proposed as a unifying framework whereby the sparsity pattern of the
underlying matrix is readily apparent while avoiding the aforementioned difficulties.

Computations on graphs, in general, lead to irregular data access and may result in significant
performance degradation. Modern high-performance computing systems employ one or more
levels of fast cache memory to amortize main memory access latency. The irregular access
to data diminishes the benefit of hierarchical memory systems [11]. Some of the data access
issues with regard to computer implementation of coloring heuristics have been addressed in
[8]. In this paper, we unify the coloring formulation of the Hessian matrix determination that
exploits pattern and value symmetry [9] and the Jacobian matrix determination in a two-
sided compression [7]. Moreover, we address an outstanding issue with regard to the effect
of reordering of rows or columns of the underlying sparse matrix on the associated pattern
graph and show that reordering does not affect the essential complexity of the determination
problem.

2 Multi Coloring
Given matrix A, aij′ 6= 0 is a lateral neighbor of aij 6= 0 in A for indices j, j′ ∈ {1, . . . , n}, i ∈
{1, . . . ,m} such that the difference j′ − j is the smallest if j′ > j or such that the difference
j − j′ is the smallest if j > j′ among all such indices j′ in row i. A lateral neighbor of aij 6= 0
in A> is its vertical neighbor in A. The pattern graph associated with matrix A ∈ Rm×n is
GP(A) = (V,E), where

V = {vij | aij 6= 0, i = 1, . . .,m, j = 1, . . ., n}

and
{vij , vi′j′} ∈ E if aij and ai′j′ are lateral or vertical neighbors.

We say that there is a path of length l ≥ 1 between vertices vij and vkl, denoted vij ≡
wi0,j0 − wi1,j1 − wi2,j2 − · · · − wil,jl

≡ vkl and abbreviated as vij ∼ vkl if there exist distinct
vertices wi,j , i, j = 0, 1, 2, . . . , l − 1 such that {wi,j , wi+1,j+1} ∈ E.

We call element aij 6= 0 unknown if its value has not been determined; otherwise the element
is known. For a symmetric matrix A if aij is known then so is aji such that any method
for determining a symmetric matrix needs to determine only one of aij and aji. We call a
determination method symmetric direct determination (SDD) if there is a seed matrix S ∈
{0, 1}n×p such that each unknown aij is determined directly i.e., there is an index k such that
aij = bik or aji = bjk in the matrix equation AS = B. For matrix A not symmetric we
call a determination method direct determination two-sided (DD2) if there are seed matrices
S ∈ {0, 1}n×p and W ∈ {0, 1}m×q such that aij = bik in the matrix equation AS = B or that
aij = ckj in the matrix equation W>A = C>. A SDD in which number of column p of S is
minimum is said to be optimal SDD. A DD2 in which the sum of columns p+ q of S and W
is minimum is said to be optimal DD2 .

Let P(U) denote the set of all nonempty subsets of set U and denote by ej the jth Cartesian
basis vector. We first consider SDD of A. Let ΦSDD : V 7→ P({1, 2, . . . , p}) be a mapping
such that the seed matrix S

S(:, k) =
∑

{j | k∈ΦSDD(vij), i=1,...,n}
ej , k = 1, . . . , p

yields direct determination of matrix A.
Let σ1, . . . , σp, ω1, . . . ωq be p + q distinct numbers partitioned in two sets S and W . Anal-

ogously, for DD2, let the mapping ΦDD2 : V 7→ P(S ∪ W), where S = {σ1, . . . , σp},W =
{ω1, . . . ωq} be such that the seed matrices S and W

S(:, k) =
∑

{j | σk∈ΦDD2 (vij),i=1,...,n}
ej and W (:, l) =

∑

{i | ωl∈ΦDD2 (vij),j=1,...,m}
ei

yield direct determination of A.
The key observation here is that the two mappings defined above naturally imply colorings

of vertices where each vertex is assigned a subset of colors. Then the direct determination of
a nonzero unknown of the matrix can be expressed in terms of colors of the associated vertex
and the colors of the other vertices that are reachable from it along some specific paths in
the associated pattern graph. Consider a vertex vij in the pattern graph of matrix A. In the
SDD method we have a p−multi-coloring [9] of the vertices of the pattern graph satisfying:
(a) there is a color c ∈ ΦSDD(vij) such that c 6∈ ΦSDD(vij′), j 6= j′ or (b) there is a color
c ∈ ΦSDD(vji) such that c 6∈ ΦSDD(vji′), i 6= i′. In the DD2 method we have a (p + q)−multi-
coloring of the vertices of the pattern graph satisfying: (a) there is a color c ∈ ΦDD2 (vij) such
that c 6∈ ΦDD2 (vij′), j 6= j′ or (b) there is a color c ∈ ΦDD2 (vij) such that c 6∈ ΦDD2 (vi′j), i 6= i′.
Thus, the mappings ΦDD2 and ΦSDD unify the main results (Theorem 1 of [7]) and (Theorem
1 of [9]), respectively, as multi-colorings of the pattern graph.

Denote by πc and πr permutations of columns and rows of matrix A, respectively, and let
P and Q be the associated permutation matrices. It is clear that the pattern graph of the
permuted matrix QAP , in general, will be structurally different from the pattern graph of A.
On the other hand, as shown above, in a direct determination of matrix A, the multi-coloring
constraints are expressed in terms of the paths in the pattern graph. We claim that for vertices
vij and vkl, vij ∼ vkl in GP(A) if and only if vπr(i)πc(j) ∼ vπr(k)πc(l) in GP(PAQ). First, consider
the case i = k (the case when j = l is analogous). Clearly, vπr(i)πc(j) ∼ vπr(i)πc(l) in GP(PAQ).
If i 6= k and j 6= l, then we must have that there is an index j′ such that

vij ∼ vkl = vij ∼ vij′ ∼ vkj′ ∼ vkl

or that there is an index i′ such that

vij ∼ vkl = vij ∼ vi′j ∼ vi′l ∼ vkl.

Considering each subpath separately and with a similar argument as above it is evident that
vπr(i)πc(j) ∼ vπr(k)πc(l), i 6= k and j 6= l in GP(PAQ).

Let χSDD(GP(A)) and χDD2(GP(A)), respectively, denote the minimum colors needed in a
corresponding multi-coloring. The following results now follow from the discussion above.

Theorem 1 χSDD(GP(A)) = χSDD(GP(P>AP)).

Theorem 2 χDD2(GP(A)) = χDD2(GP(QAP)).

References
[1] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph coloring

problems. SIAM J. Numer. Anal., 20(1):187–209, 1983.

[2] T. F. Coleman and A. Verma. The efficient computation of sparse Jacobian matrices using
automatic differentiation. SIAM J. Sci. Comput., 19(4):1210–1233, 1998.

[3] A. H. Gebremedhin, F. Manne, and A. Pothen. What color is your Jacobian? Graph
Coloring for Computing Derivatives. SIAM Rev., 47(4):629–705, 2005.

[4] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. 2nd edn. SIAM, Philadelphia, PA. 2008.

[5] A. S. Hossain and T. Steihaug. Computing a sparse Jacobian matrix by rows and columns.
Optimization Methods and Software, 10(1):33–48, 1998.

[6] S. Hossain and T. Steihaug. Optimal direct determination of sparse Jacobian matrices.
Optimization Methods and Software, 28(6):1218–1232, 2013.

[7] S. Hossain and T. Steihaug. Graph models and their efficient implementation for sparse
Jacobian matrix determination. Discrete Applied Mathematics, 161(12):1747 – 1754, 2013.

[8] M. Hasan, S. Hossain, A. I. Khan, N. H. Mithila, and A.H. Suny. DSJM: a software
toolkit for direct determination of sparse Jacobian matrices. In Proceedings of the 5th
International Conference on Mathematical Software, ICMS, volume 9725 of LNCS, pages
275–283, Berlin,Germany, 2016. Springer.

[9] S. Hossain and N. H. Mithila. Pattern Graph for Sparse Hessian Matrix Determination.
Optimization Methods and Software. DOI: 10.1080/10556788.2018.1458849, 2018.

[10] G. N. Newsam and J. D. Ramsdell. Estimation of sparse Jacobian matrices. SIAM Journal
on Algebraic and Discrete Methods, 4(3):404–417, 1983.

[11] JS. Park, M. Penner, and V. K. Prasanna. Optimizing graph algorithms for improved
cache performance. IEEE Trans. Parallel Distrib. Syst., 15(9):769–782, September 2004.

Robust Matching Augmentation

Viktor Bindewald1, Felix Hommelsheim1, Moritz Mühlenthaler1, Oliver Schaudt2

1 Fakultät für Mathematik, TU Dortmund University, Germany
{viktor.bindewald, felix.hommelsheim, moritz.muehlenthaler}@math.tu-dortmund.de

2 RWTH Aachen University, Germany
schaudt@mathc.rwth-aachen.de

Abstract

The matching preclusion number of a graph is the minimal number of edges whose re-
moval destroys all perfect matchings. We provide algorithms and hardness results for the
task of increasing the matching preclusion number from one to two in bipartite graphs at
minimal cost. Our motivation is to make matchings of a graph robust against the failure
of a single edge. Our methods rely on a close relationship to the classical strong con-
nectivity augmentation problem. For the unit weight problem we provide a deterministic
log2 n-factor approximation algorithm, as well as polynomial-time algorithms for graphs
of bounded treewidth and chordal-bipartite graphs.

Keywords : Matchings, Robustness, Connectivity Augmentation

1 Introduction
Suppose we are given a bipartite graph and some adversary may remove any single edge from
it with the intention of destroying all perfect matchings of the graph. How many edges do
we need to buy, such that the adversary does not succeed? The matching preclusion number
of a graph is the minimal number of edges that need to be removed, such that the resulting
graph has no perfect matching. We call a graph robust, if its matching preclusion number is at
least two. That is, the adversary cannot be successful on a robust graph, since no removal of
a single edge destroys all perfect matchings. Given a bipartite graph G that admits a perfect
matching, the problem Robust Matching Augmentation asks for a minimum-cardinality
set L from the bipartite complement of G, such that G+L is robust. This problem fits into the
context of augmentation problem as follows. An augmentation problem asks for a minimum-
cost supergraph with a certain property, which is typically related to connectivity (for example,
Strong Connectivity Augmentation, see [5, 7]), but for instance, hamiltonicity has also
been considered (Hamiltonian Completion [6, GT34]). In our setting, the property of
interest is robustness.

It has been shown in [4, 8] that it is NP-complete to decide if the matching preclusion
number of a graph is at least k, if k is part of the instance. Note that if k is constant, we
can check this property in polynomial time by enumeration. Robust matchings with a given
recovery budget have been considered by Dourado et al. in [4]. Our notion of robustness
corresponds to 1-robust ∞-recoverable in their terminology. They show that it is NP-hard to
determine, if a graph admits a perfect matching M , such that M can be repaired by changing
at most r edges after the removal of any single edge. Their hardness result does not apply to
Robust Matching Augmentation, since we have no repair budget. Furthermore, Robust
Matching Augmentation is a special case of the bulk-robust assignment problem studied
by Adjiashvili et al. in [1]. They consider explicitly given subsets of edges of a graph that
may fail and ask for a minimum-cost subgraph that admits a perfect matching after any of
the failure scenarios have emerged. They provide a randomized O(log n)-factor approximation
algorithm for this problem, which can also be applied to Robust Matching Augmentation.

44

However, the hardness results for bulk-robust problems in [2, 1] do not apply in our setting.
We show that the randomized O(log n)-factor approximation algorithm from [1] is essentially
optimal for Robust Matching Augmentation.

Theorem 1 Robust Matching Augmentation admits no o(log n)-factor approximation
unless P = NP.

Furthermore, we provide polynomial-time algorithms for Robust Matching Augmenta-
tion on chordal-bipartite graphs and graphs of bounded treewidth, as well as a deterministic
log2 n-factor approximation algorithm. Our main technical result is Theorem 2, which estab-
lishes a close relation between Robust Matching Augmentation and the problems Set
Cover and Strong Connectivity Augmentation. All our algorithmic results follow
from Theorem 2.

2 Results
We first give a statement of our main result and then sketch the main ideas behind the proof.
Finally we present some algorithmic consequences of the main result and discuss a generaliza-
tion of the problem to matchings of a specified size.
For our main result we need some notion of Set Cover. Therefore let (U, S) be an instance of
Set Cover. The incidence graph of a Set Cover instance (U, S) is an undirected bipartite
graph with bipartition (U, S), that has an edge us iff the item u ∈ U is contained in the set
s ∈ S.

Theorem 2 There is a polynomial-time algorithm that, given an instance I = (G) of Robust
Matching Augmentation, computes two instances A1 and A2 of Set Cover, such that
the following holds:

1. OPT(I) = max{OPT(A1), OPT(A2)}.

2. From a solution C1 of A1 and a solution C2 of A2 we can construct in polynomial time
a solution L of I, such that |L| = max{|C1|, |C2|}.

There is a close relation between robustness and strong connectivity, which is an important
ingredient in the proof of Theorem 2. Let G = (U + W, E) be a graph and let M be a perfect
matching in G. Since M is a perfect matching, each edge e ∈ M is incident to a single vertex ue

of U . We consider two directed auxiliary graphs D1(G, M) = (U, A1) and D2(G, M) = (W, A2),
whose arc-sets are given by

A1 :={uu′ | u, u′ ∈ U : there is a vertex w ∈ W such that uw ∈ M and wu′ ∈ E \ M},

A2 :={ww′ | w, w′ ∈ W : there is a vertex u ∈ U such that wu ∈ M and uw′ ∈ E \ M}.

It can be argued that all of the statements that follow hold for D1(G, M) as well as D2(G, M),
so we will refer to D1(G, M) just as D(G, M) and may omit G and M if there is no risk of
confusion.

Proposition 1 M is robust if and only if each strongly connected component of D(G, M) is
non-trivial, that is, it contains at least two vertices.

A vertex of a digraph is called a source (sink) if it has no incoming (outgoing) arc. Consider
the condensation C(D) of a digraph D, that is, the directed acyclic graph of strongly connected
components of D. We call a source or sink of C(D) strong if the corresponding strongly
connected component of G is non-trivial. From Proposition 1 it follows that strong sources
and sinks are robust against the failure of a single matching edge. We may assume without
loss of generality that a minimum-cardinality set L of arcs such that G + L is robust connects
sinks of C(D) to sources of C(D).

The main idea of the algorithm mentioned in Theorem 2 is the following. We first pick an
arbitrary perfect matching M of G. Our goal is to select a suitable set of sources and sinks
of C(D) such that we can use the Eswaran-Tarjan algorithm [5] on these sources and sinks in
order to establish in polynomial time the condition that every edge of M is contained in an M -
alternating cycle. We call an edge e ∈ M critical, if its removal destroys all perfect matchings
of G. For this purpose we construct from G two Set Cover instances B1 = (M, S1) and
B2 = (M, S2). The sets S1 and S2 are constructed as follows: For each source s of C(D), we
add a set Xs to S1, where Xs contains all critical edges that are reachable from any node in
the component s in D. Similarly, for each sink t of C(D) we add a set Xt to S2, where Xt

contains all critical edges from which we can reach the component.
Taking a closer look at the incidence graphs of the Set Cover instances, we can show

that the property of being chordal bipartite is preserved from the original graph G. Since Set
Cover can be solved in polynomial time on instances where the incidence graph is chordal
bipartite [9], we get the following result.

Corollary 1 Robust Matching Augmentation restricted to chordal bipartite graphs ad-
mits a polynomial-time algorithm.

Unfortunately, if the input graph has bounded treewidth, the incidence graph of the Set
Cover instance does not necessarily have this property. However, by using the structure of
C(D) instead of the Set Cover instance, one can obtain a polynomial-time algorithm for
graphs of bounded treewidth.

Corollary 2 Robust Matching Augmentation restricted to graphs of bounded treewidth
admits a polynomial-time algorithm.

Furthermore, from Theorem 2, we directly obtain an approximation algorithm for Robust
Matching Augmentation by applying the greedy algorithm for Set Cover.

Corollary 3 Robust Matching Augmentation admits a polynomial-time log n-factor ap-
proximation algorithm.

Finally, we relax the requirement of having a perfect matching in the graph. In fact, all
of our algorithmic results for Robust Matching Augmentation generalize to the setting
where we desire to have a matching of size k after deleting any single edge from a graph.

The main idea of the proof is to add new vertices and edges, such that we obtain a perfect
matching in the new graph. An optimal set of edges to be added in the new graph then
corresponds to an optimal set of edges to be added in the original graph and vice versa. The
transformation preserves the approximation guarantee, the property of being chordal bipartite
and increases the treewidth by at most 2.

References
[1] Adjiashvili, David and Bindewald, Viktor and Michaels, Dennis. Robust Assignments via

Ear Decompositions and Randomized Rounding. ICALP, 55(1):71:1–71:14, 2016.

[2] Adjiashvili, David and Stiller, Sebastian and Zenklusen, Rico. Bulk-robust combinatorial
optimization. Mathematical Programming, 149(1-2):361–390, 2015.

[3] Robert C. Brigham and Frank Harary and Elizabeth C. Violin, and Jay Yellen. Perfect-
matching preclusion.. Congressus Numerantium, 174(1):185–192, 2005.

[4] Dourado, Mitre C. and Meierling, Dirk and Penso, Lucia D. and Rautenbach, Dieter and
Protti, Fabio and de Almeida, Aline Ribeiro. Robust recoverable perfect matchings. Net-
works, 66(3):210–213, 2015.

[5] Eswaran, Kapali P. and Tarjan, Robert E. Augmentation problems. SIAM Journal on
Computing, 5(4):653–665, 1976.

[6] Garey, Michael R. and Johnson, David S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[7] András Frank and Tibor Jordán. Graph connectivity augmentation. In Handbook of Graph
Theory, Combinatorial Optimization, and Algorithms, chapter 14, pages 313–346. CRC
Press, 2015.

[8] Mathieu Lacroix, A. Ridha Mahjoub, Sébastien Martin, and Christophe Picouleau. On
the np-completeness of the perfect matching free subgraph problem. Theoretical Computer
Science, 423:25–29, 2012. doi:10.1016/j.tcs.2011.12.065.

[9] Schrijver, Alexander Combinatorial Optimization - Polyhedra and Efficiency. Algorithms
and Combinatorics, 2003.

Successive Shortest Path Algorithm for Flows in Dynamic
Graphs

Mathilde Vernet1, Maciej Drozdowski2, Yoann Pigné1, Eric Sanlaville1

1 Normandie Univ, UNIHAVRE, UNIROUEN, INSA Rouen, LITIS, 76600 Le Havre, France
{mathilde.vernet,yoann.pigne,eric.sanlaville}@univ-lehavre.fr

2 Institute of Computing Science, Poznań University of Technology, Piotrowo 2, Poznań 60-965,
Poland

Maciej.Drozdowski@cs.put.poznan.pl

Abstract

This work focuses on the minimum cost flow problem in dynamic graphs. We use
a model in which there are no travel time on arcs, and storage on vertices is not al-
lowed. Every other graph parameter is time-dependent. We propose a method using
the successive shortest path algorithm that avoids using the time-expanded graph that
significantly increases the complexity of the problem. Our method is implemented using
the GraphStream library.

Keywords : Dynamic graphs, minimum cost flow, successive shortest path algorithm.

1 Introduction

1.1 Dynamic graphs

Static graph models are not always sufficient to describe some real-world problems and their
evolution through time. Adding a time dimension to graphs offers extra modeling possibilities.
This is a motivation to explore known problems on graphs in a dynamic context.

A dynamic graph is defined on a time horizon. Vertices and arcs can be modified over the
time horizon as well as any parameter the graph has. Holme (2015) gives an overview of the
different dynamic graph models and their applications.

1.2 Flows in dynamic graphs

We focus on flow problems in dynamic graphs. Flow problems in graphs are modeled using
various graph parameters such as arc capacity, arc cost. As we consider dynamic graphs, travel
time on arcs or storage on vertices with a storage cost can be defined. All these parameters
can vary over time or not.

Flow problems as defined in static graphs (Ahuja et al., 1993) have a dynamic version in
dynamic graphs where a given amount of flow units has to be sent in the graph from a source
to a sink over the time horizon. This work focuses on the minimum cost flow problem.

Though many different works on dynamic flows have been carried on (Wilkinson, 1971;
Hoppe and Tardos, 2000; Skutella, 2009), most of the times, travel time is added on arcs and
the graph stays unchanged over time. Here, travel time is negligible and flow cannot be stored
in the nodes, while other parameters can change over time.

48

FIG. 1: Dynamic graph with 3 time steps. On arc ij, couple (uij , cij) represents the capacity of arc
ij and the cost of arc ij.

1

2

4

3

(2,1) (1,1)

(1,3) (2,1)

(1,1) 1

2

4

3

(1,2) (1,3)

(1,2) (1,2)

(1,1) 1

2

4

3

(2,1) (2,2)

(1,2) (2,1)

(2,0)

Time Step 1 Time Step 2 Time Step 3

1.3 This work’s hypotheses
We assume a model without travel time on arcs and without storage on vertices. Flow units

travel instantaneously from a vertex to its neighbor and when arrive at a vertex they are not
allowed to "wait" before going to a neighbor. Arc capacities and arc costs are time-dependent
and supposed integer. Without loss of generality, vertices and arcs are present all over the
time horizon. Their accessibility is determined by arc capacities. If an arc capacity is 0, this
arc cannot be used by flow units. If every arc going into a vertex has 0 capacity, this vertex is
unreachable.

At each time step t, our graph can be seen as a static graph. The static graphs defined at
each time step are independent. We call t-graph the static graph at time step t, noted Gt.

This set of hypotheses can, for instance, be used to model power grid systems.

2 Minimum cost flow problem in dynamic graphs
We consider the minimum cost flow problem in which, as in the static context, a predeter-

mined amount of flow has to be sent in the graph from the source to the sink at the minimum
possible cost. The amount of flow is defined globally for the whole time horizon and is not
defined at each time step.

Although the t-graphs are independent, this problem cannot be solved by computing the
minimum cost flow in each t-graph because this is not equivalent to the optimum solution in
the dynamic graph. Figure 1 shows an example of a dynamic graph with 3 time steps, without
travel time or storage. Sending 3 flow units in this graph from vertex 1 to vertex 4 would cost
6. To get the minimal cost, we send 1 flow unit with cost 2 through path (1, 2, 4) at time step
1, and 2 flow units with cost 4 through path (1, 2, 3, 4) at time step 3. Nothing is sent at time
step 2. Note that the minimum cost to send 3 units in G1 and G3 is 9 and 8 respectively. G2
admits a maximum flow of value 2 which can be sent a cost 9.

3 Solving methods

3.1 Using the time-expanded graph
The most popular method used to solve optimization problems on dynamic graphs is to build

the time-expanded graph to have a static representation of it and use algorithms developed
for static graphs on it (Minieka, 1973; Parpalea and Ciurea, 2011). Using the time-expanded
graph increases the size of the problem. The number of vertices and arcs is multiplied by the
number of time steps T .

Figure 2 represents the time-expanded graph for our model. Each t-graph Gt has n vertices
and m arcs, therefore the time-expanded graph has T · n + 2 vertices and T · m + 2 · T arcs.

A regular Successive Shortest Path (SSP) algorithm (Ahuja et al., 1993) on a graph with a
unique source and a unique sink using Dijkstra (Ahuja et al., 1993) to solve the shortest path

problem has complexity O(U · (m + n · log(n))), where U is the supply of the source, n is the
number of vertices and m the number of arcs. As the expanded graph has T ·n+2 vertices and
T ·m+2 ·T arcs, SSP on the time-expanded graph has complexity O(U ·T · (m+n · log(n ·T))).

FIG. 2: Time-expanded graph for our model. We add a source O connected to the source of each
t-graph Gt and a sink D connected to the sink of each t-graph Gt. The new arcs all have infinite
capacity and null cost.

O

D

G1 . . .G2 GT

3.2 Dynamic successive shortest path Algorithm
In order to improve the complexity, we propose a method that does not use the time-

expanded graph. It adapts SSP to a dynamic graph on T time steps without travel time nor
storage. At each iteration, the algorithm performs one search of a shortest path (as in classical
SSP) but does it on one specific t-graph, which had the shortest path (i.e. the minimum cost
augmenting path) at the previous iteration. It works as such :

1. Initialization : Execute Dijkstra using the cost as arc length on each t-graph Gt, 1 ≤
t ≤ T − 1 and let t̄ = T . (Example of Figure 1, 3 units to send : Shortest path in G1 is
(1, 2, 4) cost 2, shortest path in G2 is (1, 3, 4) cost 4, t̄ = 3)

2. Execute Dijkstra on Gt̄’s residual graph(Example, 1st iteration : Shortest path in G3 is
(1, 2, 3, 4) cost 2. 2nd iteration : Shortest path in G1 is (1, 2, 3, 4) cost 3)

3. Compare the real cost of the shortest path from the source to the sink in each Gt (Exam-
ple, 1st iteration: Shortest path is (1, 2, 4) in G1. 2nd iteration: Shortest path is (1, 2, 3, 4)
in G3)

4. Let t̄ be the time step which has the shortest path from the source to the sink and update
reduced costs, vertex potentials, flow and capacity on shortest path on Gt̄’s residual graph
(Example, 1st iteration : t̄ = 1, update G1’s residual graph. 2nd iteration : t̄ = 3, update
G3’s residual graph)

5. Until there are no flow units left to be sent, go back to step 2 (Example, 1st iteration :
2 units left to be sent. 2nd iteration : 0 units left to be sent)

We implemented this algorithm using the GraphStream library1 (Dutot et al., 2007).

3.3 Complexity
The initialization phase needs O(T ·(m+n · log(n))) because we execute Dijkstra’s algorithm

on T graphs with n vertices and m arcs.
One iteration takes O(m + n · log(n) + log(T)) because we execute Dijkstra’s algorithm on

one t-graph, the comparison of T paths costs can be done in O(log(T)) and the residual graph
update can be done in O(n + m). As for a regular SSP algorithm with integer capacities, the
number of iteration is bounded by U , which is the source supply.

1http://graphstream-project.org

Our algorithm has complexity O((U + T) · (m + n · log(n)) + U · log(T)) which improves the
complexity of the algorithm using the time-expanded graph.

3.4 Correctness
We can prove the correctness of this algorithm using a swapping argument. Suppose f∗ is

an optimum flow on the graph and f the flow given by our algorithm. Due to the nature of
the algorithm, it is possible, starting from f∗, to repeatedly swap one unit of flow from some
graph Gi for one unit in some graph Gj so that the cost is non-increasing. The sequence of
swaps eventually transforms f∗ into f . The complete proof is not given in this abstract.

4 Conclusion
We presented a dynamic graph model without travel time nor storage and proposed for this

model a method to solve the minimum cost flow problem based on the successive shortest path
algorithm. Unlike methods widely used to solve optimization problems on dynamic graphs, we
do not use the time-expanded graph, allowing us to work on much smaller graphs and therefore
significantly improve the complexity. An experimental study to validate our approach is a work
in progress. Furthermore, the same principle could be used for other dynamic flow problems.

Acknowledgment
The project is co-financed by the European Union with the European regional development

fund (ERDF) and by the Normandie Regional Council (CLASSE2 project). The French-Polish
collaboration is possible thanks to a Polonium Project.

References
Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993). Network flows: theory, algorithms, and

applications.

Dutot, A., F. Guinand, D. Olivier, and Y. Pigné (2007). Graphstream: A tool for bridging
the gap between complex systems and dynamic graphs. In Emergent Properties in Natural
and Artificial Complex Systems. Satellite Conference within the 4th European Conference on
Complex Systems (ECCS’2007).

Holme, P. (2015). Modern temporal network theory: a colloquium. The European Physical
Journal B 88 (9), 234.

Hoppe, B. and É. Tardos (2000). The quickest transshipment problem. Mathematics of Oper-
ations Research 25 (1), 36–62.

Minieka, E. (1973). Maximal, lexicographic, and dynamic network flows. Operations Re-
search 21 (2), 517–527.

Parpalea, M. and E. Ciurea (2011). The quickest maximum dynamic flow of minimum cost.
International Journal of Applied Mathematics and Informatics 3 (5), 266–274.

Skutella, M. (2009). An introduction to network flows over time. In Research trends in
combinatorial optimization, pp. 451–482. Springer.

Wilkinson, W. L. (1971). An algorithm for universal maximal dynamic flows in a network.
Operations Research 19 (7), 1602–1612.

Fully leafed induced subtrees (extended abstract)∗

A. Blondin Massé1, J. de Carufel2, A. Goupil2, M. Lapointe1, É. Nadeau1,
É. Vandomme1

1 Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal, Canada

2 Laboratoire Interdisciplinaire de Recherche en Imagerie et en Combinatoire,
Université du Québec à Trois-Rivières, Canada

Abstract

Subtrees of graphs, as well as their number of leaves, have been investigated by various
communities: from discrete mathematics to data mining and information retrieval. We
consider a variant where we require the subtrees to be induced and compute their maximal
number of leaves. The problem, which is NP-complete in general, becomes polynomial
in the case of trees. The leaf function associates to a number n the maximal number of
leaves an induced subtree of size n can have. To compute the leaf function, we provide
an efficient branch and bound algorithm. In the particular case of trees, we provide a
polynomial algorithm using the dynamic programming paradigm.

Keywords : graph theory, induced subtrees, optimization problem, number of leaves

1 Introduction
In the past decades, many researchers coming from various communities extensively studied
subtrees of graphs and their number of leaves. For instance in 1984, Payan et al. [9] discussed
the maximum number of leaves, called the leaf number, that can be realized by a spanning tree
of a given graph. This problem, called the Maximum Leaf Spanning Tree problem (MLST), is
known to be NP-complete even in the case of regular graphs of degree 4 [8] and has attracted
interest in the telecommunication network community [3, 4]. The frequent subtree mining prob-
lem [5] investigated in the data mining community, has applications in biology. The detection
of subgraph patterns such as induced subtrees is useful in information retrieval [12] and re-
quires efficient algorithms for the enumeration of induced subtrees. In this perspective, Wasa
et al. [11] proposed an efficient parametrized algorithm for the generation of induced subtrees
in a graph. Note that the induced property requirement brings an interesting constraint on
subtrees, yielding distinctive structures with respect to other constraints such as in the MLST
problem. A first result given by Erdös et al. in 1986, showed that the problem of finding an
induced subtree of a given graph G with more than i vertices is NP-complete [7].

Among induced subtrees of simple graphs, we focus in particular on those with a maximal
number of leaves. We call these objects fully leafed induced subtrees (FLIS). Particular in-
stances of the FLIS recently appeared in a paper of Blondin Massé et al. [2], where the authors
considered the maximal number of leaves that can be realized by tree-like polyominoes, re-
spectively polycubes. Their investigation led to the discovery of a new 3D tree-like polycube
structure that realizes the maximal number of leaves constraint. The observation that tree-like
polyominoes and polycubes are induced subgraphs of the lattices Z2 and Z3 respectively leads
naturally to the investigation of FLIS in general simple graphs, either finite or infinite.

∗This document is an extended abstract of the paper [1] available on arXiv.

52

2 Fully leafed induced subtrees
We introduce the decision problem called Leafed Induced Subtree problem (LIS) and its associ-
ated optimization problem MLIS:

LIS. Given a simple graph G and two positive integers i and `, does there exist an
induced subtree of G with i vertices and ` leaves?

MLIS. Given a simple graph G on n vertices, what is the maximum number of leaves,
LG(i), that can be realized by an induced subtree of G with i vertices, for
i ∈ {0, 1, . . . , n}?

We believe that induced subtrees with the maximal number of leaves are interesting candi-
dates for the representation of structures appearing in nature and in particular in molecular
networks. Indeed, in chemical graph theory, subtrees are known to be useful in the compu-
tation of the Wiener index of chemical graph, that corresponds to a topological index of a
molecule [10]. The results of [2] and [10] suggest that a thorough investigation of subtrees, and
in particular induced subtrees with many leaves, could lead to the discovery of combinatorial
structures relevant to chemical graph theory.

Definition 1 (Leaf function) For a graph G = (V, E), the leaf function of G, denoted by
LG, is the function with domain {0, 1, 2, . . . , |V |} which associates to i the maximum number
of leaves that can have an induced subtree of size i of G. As is customary, we set max ∅ = −∞.
An induced subtree T of G with i vertices is called fully leafed when its number of leaves is
exactly LG(i).

The following observations are immediate. Consider a graph G with at least 3 vertices.
The sequence (LG(i))i=0,1,...,|G| is non-decreasing if and only if G is a tree. Moreover, we have
LG(0) = 0 = LG(1) and LG(2) = 2 if G contains at least one edge. If G is connected and
non-isomorphic to a complete graph, then LG(3) = 2.

While it is easy to determine the leaf function for some well-known families of graphs (such
as complete graphs, wheels etc.), in general the problem is much harder.

3 Complexity and algorithms
First, we prove that the problem LIS is NP-complete by reducing it from the Independent
Set problem. To tackle the MLIS problem and compute the leaf function, we provide a non
trivial branch and bound algorithm. The algorithm is based on a data structure that we call
an induced subtree configuration.

Definition 2 Let G = (V, E) be a simple graph and Γ = {green, yellow, red, blue} be a set of
colors with coloring functions c : V → Γ. An induced subtree configuration of G is an ordered
pair C = (c, H), where c is a coloring and H is a stack of colorings called the history of C.
All colorings c : V → Γ must satisfy the following conditions for any u, v ∈ V :

(i) The subgraph induced by c−1(green) is a tree;

(ii) If c(u) = green and {u, v} ∈ E, then c(v) ∈ {green, yellow, red};

(iii) If c(u) = yellow, then |c−1(green) ∩N(u)| = 1, where N(u) denotes the set of neighbors
of u.

The initial induced subtree configuration of a graph G is the pair (cblue, H) where cblue(v) =
blue for all v ∈ G and H is the empty stack. When the context is clear, C is simply called a
configuration.

Roughly speaking, a configuration is an induced subtree enriched with information that
allows one to generate other induced subtrees either by extension, by exclusion or by back-
tracking. The colors assigned to the vertices can be interpreted as follow. The green vertices
are the confirmed vertices to be included in a subtree. Since each yellow vertex is connected
to exactly one green vertex, any yellow vertex can be safely added to the green subtree to
create a new induced subtree. The red vertices are those that are excluded from any possible
tree extension. The exclusion of a red vertex is done either because it is adjacent to more
than one green vertex and its addition would create a cycle or because it is explicitly excluded
for generation purposes. Finally, the blue vertices are available vertices that have not been
considered yet and that could be considered later. It is convenient to save in the stack H the
colorations from which C was obtained.

Contrary to a naive algorithm that considers all induced subtrees to compute the maximal
number of leaves, the strategy prunes the search space by discarding induced subtrees that
cannot be extended to fully leafed subtrees (see Figure 1). Therefore, given an induced subtree
configuration of n green vertices, we define a function C.LeafPotential(n′), for n ≤ n′ ≤ |V |,
which computes an upper bound on the number of leaves that can be reached by extending
the current configuration C to a configuration of n′ vertices. To compute this upper bound
we consider an optimistic scenario in which all available yellow and blue vertices that are close
enough can be safely colored in green without creating a cycle, whatever the order in which
they are selected.

Proposition 1 Let C be any configuration of a simple graph G = (V, E) with n ≥ 3 green
vertices and let n′ be an integer such that n ≤ n′ ≤ |V |. Then any extension of C to a configu-
ration of n′ vertices has at most C.LeafPotential(n′) leaves, where C.LeafPotential(n′)
is the operator described above.

102

103

104

105

106

107

102

103

104

105

106

107

FIG. 1: Number of induced subtrees visited for samples of 10 random graphs with edge probability
0.3 (on the left) and with edge probability 0.8 (on the right).

When restricted to the case of trees, we show that the MLIS problem is polynomial using a
dynamic programming strategy.

Theorem 1 Let T = (V, E) be a tree with n ≥ 2 vertices. Then LT can be computed in
O(n3∆) time and O(n2) space where ∆ denotes the maximal degree of a vertex in T .

Notice that a naive greedy approach cannot work, even in the case of trees, because a fully
leafed induced subtree with n vertices is not necessarily a subtree of a fully leafed induced
subtree with n + 1 vertices. Both algorithms are available, with examples, in a public GitHub
repository1.

1https://github.com/enadeau/fully-leafed-induced-subtrees

4 Perspectives
There seems to be some room for improving and specializing the branch and bound algorithm.
For example, we are able to speed up the computations for the hypercube Q6 by taking into
account some symmetries, but significant improvements could be done by discarding more
configurations by exploiting the complete automorphism group of the hypercube. It seems
reasonable to expect similar speed up for other highly symmetric graphs.

From a theoretical perspective, it is not clear if the algorithm described for the trees is
optimal. As a last observation, we believe that it would be interesting to investigate the
natural problems of counting and generating related to the concept of fully leafed induced
subtrees.

References
[1] Alexandre Blondin Massé, Julien de Carufel, Alain Goupil, Mélodie La-

pointe, Émile Nadeau, and Élise Vandomme. Fully leafed induced subtrees.
https://arxiv.org/abs/1709.09808 arXiv preprint.

[2] Alexandre Blondin Massé, Julien de Carufel, Alain Goupil, and Maxime Samson. Fully
leafed tree-like polyominoes and polycubes. In Combinatorial Algorithms, LNCS 28th In-
ternational Workshop, IWOCA 2017, New-Castle, Australia, Springer. To appear.

[3] Azzedine Boukerche, Xuzhen Cheng, and Joseph Linus. A performance evaluation of a
novel energy-aware data-centric routing algorithm in wireless sensor networks. Wireless
Networks, 11(5):619–635, 2005.

[4] Si Chen, Ivana Ljubic̀, and Subramanian Raghavan. The generalized regenerator location
problem. INFORMS Journal on Computing, 27(2):204–220, 2015.

[5] Akshay Deepak, David Fernández-Baca, Srikanta Tirthapura, Michael J. Sanderson, and
Michelle M. Evominer: frequent subtree mining in phylogenetic databases. Knowledge and
Information Systems, 41(3):559–590, 2014.

[6] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer,
Heidelberg, fourth edition, 2010.

[7] Paul Erdős, Michael Saks, and Vera T. Sós. Maximum induced trees in graphs. J. Combin.
Theory Ser. B, 41(1):61–79, 1986.

[8] Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Freeman
and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series
of Books in the Mathematical Sciences.

[9] Charles Payan, Maurice Tchuente, and Nguyen Huy Xuong. Arbres avec un nombre maxi-
mum de sommets pendants. Discrete Math., 49(3):267–273, 1984.

[10] Lászlò A. Székely and Hua Wang. On subtrees of trees. Advances in Applied Mathematics,
34(1):138–155, 2005.

[11] Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno. Efficient enumeration of induced
subtrees in a K-degenerate graph. In Algorithms and computation, LNCS 8889, 94–102.
Springer, Cham, 2014.

[12] Mohammed J. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’02, 71–80, New York, NY, USA, 2002. ACM.

Graphs with at most one crossing

André C. Silva1∗, Alan Arroyo2†, R. Bruce Richter2‡, Orlando Lee1§

1 Universidade Estadual de Campinas, Campinas, Brazil
{andre.silva,lee}@ic.unicamp.br

2 University of Waterloo, Waterloo, Canada
{amarroyo,rbruce}@uwaterloo.ca

Abstract
The crossing number of a graph G is the least number of crossings over all possible

drawings of G. We present a structural characterizations of graphs with crossing number
one.

Keywords : Graph Theory, Graph Drawing, Crossing Number.

1 Introduction
For a graph G let V (G) and E(G) denote its vertex set and edge set respectively. We assume
that graphs may have multiples edges but no loops. In the context of crossing number, we
can interpret Kuratowski’s classic characterization of planar graphs as: a graph has crossing
number at least one if and only if it contains a subdivision of K5 or K3,3. In this paper we
answer a similar question: when does a graph have crossing number at least 2? We answer
this question by characterizing graphs with crossing number one.

This problem was already studied by Arroyo and Richter [AR17] in the context of peripherally
4-connected graphs. A graph G is peripherally 4-connected if G is 3-connected and for every
vertex 3-cut X of G, and for any partition of the components of G − X into two non-null
subgraphs H and K, at least one of H or K has just one vertex. Two edges e = x1y1 and
f = x2y2 are linked if either e and f are incident to a common vertex or there is a 3-cut X
in G such that X ⊂ {x1, y1, x2, y2} and the vertex in {x1, y1, x2, y2}\X is a vertex of a trivial
component of G − X. Otherwise, e and f are unlinked. Arroyo and Richter [AR17] proved
that a peripherally 4-connected non-planar graph G has crossing number at least two if and
only if, any pair of unlinked edges e, f in G, there exists two vertex-disjoint cycles Ce and Cf

in G with e ∈ Ce and f ∈ Cf (we say in this case that e, f are separated by cycles in G).
We assume the reader is familiar with the concept of drawings of graphs. We make no

distinction between the elements of a graph and their representations in the drawing.
Also, we only concern ourselves with good drawings, that is any pair of edges may cross at

most once, no adjacent edges cross and no three edges share a crossing point.
A 1-drawing of a graph G is a drawing D of G with cr(D) = 1. A subgraph H of G is a

1-subgraph if cr(H) = 1.
A pair of edges e, f of a graph G is a crossing pair of G if there exists a 1-drawing of G in

which e and f cross. A potential crossing pair of a graph G is a pair of edges e, f which is a
crossing pair for every 1-subgraph H of G. Note that this does not mean that e and f cross
in every 1-drawing of H – only that there exists some 1-drawing of H in which e and f cross.
This also implies that e and f belong to every 1-subgraph of G.

The following is the main result of this paper.
∗Research supported by FAPESP Proc. 2015/04385-0, 2014/14375-9 and 2015/11937-9, CNPq Proc. 311373/2015-1 †Supported

by CONACyT ‡Supported by NSERC §Research supported by CNPq Proc. 311373/2015-1, CNPq Proc. 425340/2016-3 and

FAPESP Proc. 2015/11937-9. 1

56

Theorem 1 Let G be a non-planar graph. Then e, f ∈ E(G) is a crossing pair of G if and
only if e, f is a potential crossing pair not separated by cycles.

In Section 2 we give some terminology and state a result from Mohar that will be key in the
proof of Theorem 1. In Section 3 we present the proof of Theorem 1.

2 Preliminaries
In this section we present some definitions and results which are used throughout the text.
Through this section, let G be a graph.

For a subset S of V (G), let G−S denote the subgraph of G induced by V (G)−S. If S = {v}
we simply write G − v instead of G − {v}. Let E denote a set of edges between vertices of
G (possibly E 6⊆ E(G)). Let G + E and G − E to denote the graphs (V (G), E(G) ∪ E) and
(V (G), E(G) \ E), respectively. If E = {e}, we simply write G + e or G− e instead.

Given a subgraph H of G, a path P is H-avoiding or avoids H if no internal vertex of P is
in V (H) and has both ends in V (H).

Given graphs H, K and G, we say that H is a subdivision of K in G if H is a subgraph of
G isomorphic to a subdivision of K. A Kuratowski subgraph of G is a subdivision of K3,3 or
K5 in G.

Let G be a connected graph. A node of G is any vertex with degree different from 2. A
branch of G is any path between main vertices of G that does not contain any node as an
internal vertex.

A k-separation of a graph G is a pair of subgraphs {G1, G2} such that G = G1 ∪ G2,
E(G1)∩E(G2) = ∅, |V (G1)∩V (G2)| = k, and for i = 1, 2, |E(Gi)| ≥ k and V (Gi)−V (G3−i) 6=
∅.

A graph G is nonseparable if has no 0- or 1-separation and separable otherwise. Let G be
a nonseparable graph and let {G1, G2} be a 2-separation of G with V (G1) ∩ V (G2) = {x, y}.
A 2-separation is elementary if: either G1 − {x, y} or G2 − {x, y} is nonempty and connected;
and either G1 or G2 is nonseparable. Graphs without elementary 2-separations are either
3-connected graphs, cycles, parallel edges, or rather small [Tut66].

Suppose {G1, G2} is an elementary 2-separation of a nonseparable graph G with {x, y} =
V (G1)∩V (G2). Let G′1 and G′2 obtained from G1 and G2 by adding an extra edge between x and
y, respectively. This new edge is called a virtual edge. If Gi has no elementary 2-separation
itself then G′i is a 3-connected component of G, for i = 1, 2. Otherwise, the 3-connected
components of G are the 3-connected components of G′1 and G′2. If G is separable, then the
3-connected components of G are the 3-connected components of its blocks. The 3-connected
components of G are uniquely determined [Tut66]. They are also called cleavage units [Tut66].

A useful observation is that, by construction, any edge of G is in exactly one 3-connected
component. Thus, for any 3-connected component H of G, there exists a corresponding sub-
graph H of G in which each virtual edge of H is replaced by an H-avoiding path in G.

Let C a cycle of G. Let P1 and P2 be a pair of disjoint paths both internally disjoint from
C and whose ends are in V (C). They are called a pair of disjoint crossing paths if the ends of
P1 and P2 alternate in C.

A tripod in G with respect to C is a subdivision H of a K2,3 in G together with three disjoint
paths (possibly trivial) joining C with the part of size 3 in H. The tripod itself is edge-disjoint
from C. We denote by Aux(G, C) the graph obtained from G by adding a new vertex v and
an edge vw for each w ∈ V (C).

For a disc D in the plane, let ∂(D) denote its boundary. We need the following result of
Mohar.

Theorem 2 [Moh94] Let G be a graph, C a cycle of G and D a disk. Let G̃ = Aux(G, C).
There is a linear time algorithm that either finds an embedding of G in D with C on ∂(D), or:

(1) a pair of disjoints crossing paths (w.r.t. C),

u

sx

sa sb

v

a b

x

Pua

Pux

Pub

Pva
Pvx Pvb

Ra

Rx

Rb

FIG. 1: The tripod in proof of Theorem 1.

(2) a tripod (w.r.t. C) or

(3) a Kuratowski subgraph contained in a 3-connected component of G̃ distinct from the 3-
connected component of G̃ containing C.

3 Proof of Theorem 1
Proof : The sufficiency is a direct consequence of the next two lemmas. Their proofs are
straightforward.

Lemma 1 Let G be a graph and let e, f ∈ E(G). If e, f are separated by cycles then e, f is
not a crossing pair of G.

Lemma 2 If e, f is a crossing pair of G, then it is a potential crossing pair.

We focus on the necessity. Let G be a graph and let e, f be a potential crossing pair not
separated by cycles in G. Let {a, b} and {x, y} be the (all distinct) ends of e and f , respectively.
As G is nonplanar, let H be a Kuratowski subgraph of G. We may assume that G is connected.

Our goal is to show that there exists an embedding of G − {e, f} in a disk D on the plane
with ∂(D) containing a, x, b, y in this cyclic order. If so, we can simply draw e and f crossing
on the exterior of D obtaining a 1-drawing of G.

Let ax, xb, by and ya be new edges and let C be the cycle induced by them. Let G′ =
(G− {e, f}) ∪C. If we obtain a disk embedding of G′, we can delete the edges of C to obtain
our desired embedding of G− {e, f}. So suppose there is no such embedding. By Theorem 2
one of (1)-(3) does holds.

Suppose (3) holds. Let G̃ = Aux(G′, C). Let J be the 3-connected component of G̃ con-
taining C. Let K be a Kuratowski subgraph of G̃ not in J . Let {G1, G2} be an elementary
2-separation in G̃, with u, w the vertices of G1∩G2, such that J ⊆ G1 +uw and K ⊆ G2 +uw,
where uw is a virtual edge. There is a uw-path P in G1 such that we can exchange the virtual
edge uw of K for P to obtain a Kuratowski subgraph in G2∪P . We will also call this subgraph
K.

Since H is non-separable and e, f ∈ E(H), there are vertex-disjoint paths in H from the two
ends of e to the two ends of f ; we may choose the labelling so that these are ax- and by-paths
Pax and Pby, respectively. At most one of these paths has an edge in G2.

Suppose that Pax contains an edge of G2. Then Pby is disjoint from {u, w} and we may
replace P with ((Pax ∩G1)∪Pby) + {e, f} to get a Kuratowski subgraph of G in which e, f are
in the same branch. This contradicts the fact that e, f is a potential crossing pair. Therefore,
we may assume that Pax and Pby are contained in G1.

We may assume P uses at most two edges of C. Since consecutive edges of C can be replaced
by either e or f , in this case K converts to a Kuratowski subgraph of G containing only one

REFERENCES

of e and f , a contradiction. Thus, we may assume that, if there are two edges of C in P , then
they are either ax and by or ay and bx.

In the first case, we may replace ax with Pax and by with Pby to get a uw-walk W in G2
that uses no edge of C. Thus, W contains a uw-path P ′ and K ∪P ′ is a Kuratowski subgraph
of G− {e, f}, a contradiction.

In the second case, we replace ay with Pax + f and bx with Pby + e to get a uw-walk W in
G2 that uses no edge of C. In this case, G contains a Kuratowski subgraph K ′ in which any
of e and f that are in K ′ are in the same K ′-branch, again a contradiction.

If (1) holds, then the crossing paths together with e and f form disjoint cycles in G. Suppose
(1) from Theorem 2 holds. If G − {e, f} contains a pair of disjoint crossing pairs, but then
these paths joined with e and f show that e and f are separated by cycles, a contradiction.

Finally, suppose (2) from Theorem 2 holds. We refer the reader to Figure 1 for a visual
aid in the following definitions. Let T be a minimal (in the number of vertices) tripod in G′.
As the tripod is edge-disjoint from C, T ⊆ G − {e, f}. Let K be the subdivision of K2,3 in
T . We may assume that {a, x, b} are the vertices of C connected to K in T . Let {u, v} and
S = {sa, sx, sb} be the parts of K. For i ∈ S, let Pui be the ui-subpath in K \ (S \ {i}).
Similarly, define Pvi for v. For j ∈ {a, x, b}, let Qj be the jsj-paths connecting C to K in T .

Because H is a Kuratowski subgraph and e and f are in different branches of H, H −{e, f}
is a connected. It follows that there is a yT -path in H − {e, f} and, therefore, a yT -path in
G − {e, f}. The reader may verify that if P is a V (T)-avoiding path from y to V (T) which
ends in Ra − sa or Rb − sb then (T ∪ y) + e + f contains a Kuratowski subgraph in which e
and f is not a crossing pair; and, for i ∈ {a, b, c}, if y ends in Pui − {sa, sb} or Pvi − {sa, sb},
then e and f are separated by cycles in (T ∪ P) + e + f .

So any V (T)-avoiding path from y to V (T) in G − {e, f} ends in {sa, sb}. Note that by
symmetry, the same holds for a in place of y. Let Py be a path in G − {e, f} from y to
{sa, sb}, say sa. By the minimality of T , Py is nontrivial. If there exists some z ∈ (Py − sa)
(respectively, Ra − sa) with a zsb-path Q that is internally disjoint from Py (respectively, Ra)
then (K ∪Py ∪Q)+f (respectively, (K ∪Ra∪Q)+e) is a subdivision of K3,3 in G−e (G−f),
a contradiction.

So, we may assume that sa separates y (a) from V (T) in G− f (G− e). If Ra is trivial (that
is, sa = a), then {a, x} separates y from b in H. This implies that either e and f are in the
same or adjacent branches of H, a contradiction. If Ra is not trivial, then (G − {e, f}) − sa,
and consequently (H − {e, f}) − sa, has at least three components: one for each vertex in
{y, a, x}. Assuming H−{e, f} is connected, since otherwise e and f are in the same branch of
H, the only way this can happen is if sa is a node in H and e and f are in adjacent branches,
a contradiction. �

References
[AR17] Alan Arroyo and R. Bruce Richter. “Characterizing graphs with crossing number at

least 2.” In: J. of graph theory 85.4 (2017), pp. 738–746.
[Moh94] Bojan Mohar. “Obstructions for the disk and the cylinder embedding extension

problems.” In: Combin. probab. comput. 3.3 (1994), pp. 375–406.
[Tut66] William Thomas Tutte. Connectivity in Graphs. Vol. 15. University of Toronto Press,

1966.

Rigidity of 1-coordinated frameworks in 2 dimensions

Bernd Schulze1, Hattie Serocold1, Louis Theran2

1 Lancaster University, Lancaster, UK
b.schulze@lancaster.ac.uk, h.serocold@lancaster.ac.uk

2 University of St Andrews, St Andrews, Scotland
louis.theran@st-andrews.ac.uk

Abstract
A bar-joint framework (G, p) is a graph G with an embedding of its vertices into Rd.

Coordinated frameworks are those with a subset of bars that may extend or retract, but
must all do so at the same time, in contrast to standard frameworks in which the bar
lengths are fixed by the embedding p. We wish to extend characterisations of standard
frameworks to the coordinated context.

Keywords : rigidity, infinitesimal rigidity, Henneberg construction

1 Introduction
We extend the definition of a bar-joint framework to include frameworks where some collection
of the bars are required to extend or contract in a coordinated manner. This could be considered
as a set of pistons connected to a central pump, for example. It is natural to model this type
of coordinated framework with an edge-coloured graph, wherein edges with the same colour
form such a collection. The concept of a motion of a standard framework is similarly extended
to contain motions that involve an extension or contraction of such a set of bars.

This extended abstract uses some basic results from geometric rigidity, and Henneberg-style
inductive moves, to give a sparsity-based characterisation of 2-dimensional frameworks with
one class of coordinated edges, along with an inductive construction of such frameworks.

2 Definitions
We give the following definitions as extensions of definitions from the existing rigidity literature.

Definition 1 Let G = (V, E) be a graph. We define the edge-colouring function c : E →
{0, 1, . . . , k}. We use E0 := c−1(0) to denote the set of uncoloured edges of the graph G, and
define the k colour classes to be the induced partitions c−1(`) for 1 ≤ ` ≤ k. We denote each
colour class by E` := c−1(`).
We may then refer to (G, c) as a k edge-coloured graph, and refer to edges in E1 ∪ · · · ∪E`

as the coloured edges of (G, c).

Definition 2 For a graph G = (V, E) with k edge-colouring c, we define a configuration of G
by (p, r) ∈ Rd|V |+k, where p ∈ Rd|V | is such that p(i) 6= p(j) for any {i, j} ∈ E and r ∈ Rk is
a vector representing the colour classes 1 ≤ ` ≤ k.
We refer to (G, c, p, r) as a k-coordinated framework.

Definition 3 If a k edge-coloured graph (G, c) has two potential placements (p, r) and (q, s),
the k-coordinated frameworks (G, c, p, r) and (G, c, q, s) are considered to be equivalent if

‖p(i)− p(j)‖2 = ‖q(i)− q(j)‖2 for all {i, j} ∈ E0 (1)
‖p(i)− p(j)‖2 + r(`) = ‖q(i)− q(j)‖2 + s(`) for all {i, j} ∈ E`, ` ∈ {1, . . . , k} (2)

60

The k-coordinated frameworks (G, c, p, r) and (G, c, q, s) are congruent if the frameworks are
equivalent and the placements (p, r) and (q, s) are congruent.

‖p(i)− p(j)‖2 = ‖q(i)− q(j)‖2 for all i, j ∈ V (3)

Definition 4 A k-coordinated framework (G, c, p, r) is locally rigid if there is a neighbourhood
U of (p, r) ∈ Rd|V |+k such that, if (q, s) ∈ U and the frameworks (G, c, p, r) and (G, c, q, s) are
equivalent, then the frameworks (G, c, p, r) and (G, c, q, s) are congruent.
If a framework is not locally rigid, we refer to it as being flexible.

It is equivalent for a framework (G, p) to be locally rigid, and for the only continuous motions
of the framework (G, p) to be isometries of Rd. We refer to the isometries of Rd as the trivial
motions of any framework (G, c, p, r) in Rd.

Rather than consider continuous motions of frameworks, we differentiate the constraints to
linearise the problem. This allows us to consider infinitesimal motions, defined as follows.

In the infinitesimal case, we may often refer to a k-coordinated framework as (G, c, p).

Definition 5 An infinitesimal motion of the k-coordinated d-dimensional framework (G, c, p)
is (p′, r′) ∈ Rd|V |+k, where p′ ∈ Rd|V | is a velocity field supported on p and r′ ∈ Rk is a vector,
such that

[p(i)− p(j)] · [p′(i)− p′(j)] = 0 for all {i, j} ∈ E0 (4)
[p(i)− p(j)] · [p′(i)− p′(j)] + r′(`) = 0 for all {i, j} ∈ E`, ` ∈ {1, . . . , k} (5)

A trivial infinitesimal motion (p′, r′) of a k-coordinated framework (G, c, p) will be (p′, 0),
where p′ is an isometry of Rd. These span a space of dimension d +

(d
2
)

=
(d+1

2
)
and satisfy

[p(i)− p(j)] · [p′(i)− p′(j)] = 0 for all i, j ∈ V.

Definition 6 A k-coordinated framework (G, c, p) is considered to be infinitesimally rigid if
all the infinitesimal motions of (G, c, p) are trivial infinitesimal motions.

We define the coordinated rigidity matrix using the following notions, which is a natural
extension of the standard rigidity matrix (see, for example, [4]).

Definition 7 Let (G, c, p) be a k-coordinated framework. The characteristic vector of the
colour class E` for 1 ≤ ` ≤ k is denoted by 1` ∈ R|E|, where 1`(e) = 1 if e ∈ E` and 1`(e) = 0
if e /∈ E`. The characteristic vectors for each colour class may be combined into the |E| by k
matrix 1(c) :=

[
11, . . . ,1k

]
.

The edge-length function for a graph G is fG : Rd|V | → R|E|, where fG(p){i,j} = ‖p(i)−p(j)‖2

for a placement p ∈ Rd|V | with p(i) 6= p(j) for any edge {i, j} ∈ E. We derive the |E| by d|V |
matrix R(G, p), referred to as the rigidity matrix of the d-dimensional framework (G, p), from
the edge-length function by dfG(p) = 2R(G, p). Each row of R(G, p) will have p(i)−p(j) in the
d columns associated to the vertex i, and p(j)− p(i) in the columns associated to the vertex j.
The coordinated rigidity matrix of the k-coordinated framework (G, c, p) is R(G, c, p) :=[

R(G, p),1(c)
]
. This gives the following matrix condition for an infinitesimal motion (p′, r′),

equivalent to Equations (4) and (5):

R(G, c, p) [p′, r′] = 0. (6)

We may in fact check whether or not a coordinated framework is infinitesimally rigid by
checking whether the rank of R(G, c, p) is d|V |+ k − (d+1

2
)
. We state the following definition.

Definition 8 A k-coordinated framework (G, c, p, r) is isostatic in Rd, or d-isostatic, if it is
infinitesimally rigid in Rd, and the rows of R(G, c, p) are independent.

We may consider the infinitesimal rigidity of a framework (G, c, p, r) as being a property of the
coloured graph (G, c) by restricting the class of placements that we consider to the following
dense subset of Rd|V |.

Definition 9 A placement (p, r) ∈ Rd|V |+k of a k edge-coloured graph (G, c) is regular if
rankR(G, c, p) ≥ rankR(G, c, q) for all q ∈ Rd|V |.

This leads to the following analogue to a standard result, given by Asimow and Roth [1].

Theorem 1 Let (G, c, p) be a d-dimensional framework with a regular placement p ∈ Rd|V |.
Then (G, c, p) is rigid if and only if (G, c, p) is infinitesimally rigid.

3 Main result
We wish to state an analogue to the standard result known as Laman’s Theorem [3], for 2-
dimensional frameworks with one class of coordinated edges. Laman characterises the class of
graphs that are generically isostatic in 2 dimensions, and we use an extension of this class.

Definition 10 A graph G = (V, E) is referred to as a (2,3)-tight graph, or a Laman graph, if
G has |E| = 2|V | − 3, with |E′| ≤ 2|V ′| − 3 for every subgraph (V ′, E′) ⊂ (V, E) with |V ′| ≥ 2.
A graph G = (V, E) is Laman-plus-one if there exists an edge e ∈ E such that G − e is a

Laman graph. A Laman-plus-one graph G = (V, E) is a rigidity circuit if G − e is a Laman
graph for every edge e ∈ E.

The proof method used by Laman [3] gives an inductive construction of Laman graphs, using
0-extensions and 1-extensions. We extend these constructions to our coordinated frameworks
as follows, and note that such coloured extensions will preserve isostaticity.

Definition 11 In 2 dimensions, the 0-extension is applied to a 1 edge-coloured graph (G, c)
by creating a new vertex x, along with a pair of new edges {x, u1}, {x, u2} for some u1, u2 ∈
V . When both edges are uncoloured, this is equivalent to the standard 0-extension used by
Laman [3]. The edges may also both be coloured, or one may be coloured while the other is not.

Definition 12 In 2 dimensions, the 1-extension is applied to a 1 edge-coloured graph (G, c)
by removing an edge {u1, u2} ∈ E, and replacing it with a new vertex x, along with three new
edges, {x, u1}, {x, u2}, {x, u3} for some other vertex u3 ∈ V \ {u1, u2}. If the edge {u1, u2}
is removed from E0, we require that both of the edges {x, u1}, {x, u2} be added to E0, and the
third edge may be added arbitrarily to either E0 or E1. When {x, u3} is also added to E0, this
is equivalent to the standard 1-extension. If instead {u1, u2} ∈ E1, we require only that one of
{x, u1} and {x, u2} be added to E1. The other, and the third edge {x, u3}, may be added to
either E0 or E1 arbitrarily.

These definitions allow us to state the following main result, which characterises the isostatic
frameworks with one class of coordinated edges in 2 dimensions. We give a sketch of the proof
below.

Theorem 2 Let (G, c, p) be a 1-coordinated framework with a regular configuration p ∈ R2|V |.
The following are equivalent:

1. (G, c, p) is an isostatic framework;

2. The graph G is Laman-plus-one, and at least one edge in E1 is in the rigidity circuit of
(G, c);

3. The graph G is Laman-plus-one, and |D| ≤ 2|V (D)| − 3 for any D ⊆ E0.

4. The edge-coloured graph (G, c) can be constructed from a copy of K4 with at least one
edge in E1, by a sequence of coloured 0-extensions and 1-extensions.

We note that the equivalence of the second and third conditions is straightforward. Proving
that the third condition implies the fourth makes up the main body of the proof, and uses
induction on the number of vertices of (G, c). To confirm that the fourth condition implies
the first, it is straightforward to check that any regular coloured (K4, c, p) with |E1| ≥ 1 is
isostatic. As the coloured 0-extensions and 1-extensions preserve isostaticity of a 1-coloured
framework, any framework constructed in this way will be isostatic.

We shall now prove that the first condition implies the third. If the graph (G, c) is not
Laman-plus-one, we may remove any edge e from a rigidity circuit of G to create G− e, which
is flexible as an uncoloured graph. The edge e will be replaced within a Laman subgraph of
G − e, so the flex of G − e will remain as a flex of G, and so (G, c) will be flexible. It is also
clear from Laman’s Theorem [3] that an uncoloured subgraph of (G, c) with |D| > 2|V (D)|−3
cannot be independent, and so we require that |D| ≤ 2|V (D)| − 3 for any D ⊆ E0.

We apply induction on |V | to prove that any framework satisfying the third condition may
be constructed as described in the fourth condition. As the average degree within a Laman-
plus-one graph is strictly less than four, there will be vertices of degree two or degree three. A
vertex of degree two may be viewed as the result of a 0-extension, whether the adjacent edges
are uncoloured or coloured, and will lie outside the rigidity circuit of (G, c). We may apply
the reverse to a 0-extension to remove this vertex, resulting in a smaller graph containing an
identical rigidity circuit, which will still satisfy the third condition.

If instead the minimum degree is three, and the Laman-plus-one graph is not a rigidity
circuit, there will be a degree three vertex in the subgraph outside the rigidity circuit of (G, c).
We may apply the reverse of a 1-extension at this vertex, as a vertex outside the rigidity circuit
may have at most two neighbours within the rigidity circuit. The rigidity circuit of the reduced
graph will contain the rigidity circuit of the larger graph.

If there are no vertices outside the rigidity circuit of (G, c), we consider the two cases of
whether the rigidity circuit (G, c) is 2-connected or 3-connected. We apply results proved by
Berg and Jordán [2] to prove that a coloured 3-connected circuit can be reduced to a smaller
3-connected circuit that still contains at least one coloured edge. When G is a 2-connected
rigidity circuit, we identify a cut pair and a coloured edge e ∈ E1, and apply the reverse of
the 1-extension move to a degree three vertex on the other side of the cut pair. The rigidity
circuit of the reduced graph will contain the whole subgraph on the same side of the cut pair
as e, and so the rigidity circuit will still contain at least one coloured edge as required.

4 Further work
We have a characterisation of isostatic 2-dimensional frameworks with two classes of coordi-
nated bars, with a similar structure to Theorem 2, along with characterisations of isostatic
1-dimensional frameworks with one and two classes of coordinated edges. Similar coloured
sparsity conditions will clearly be necessary for any regular k-coordinated framework to be iso-
static, though there may also be others. We aim to extend our coordinated class of frameworks
to those including symmetry, which is currently work in progress.

References
[1] L. Asimow and B. Roth. The rigidity of graphs I. Trans. of the AMS, 245:279–289, 1978.

[2] A. R. Berg and T. Jordán. A proof of Connelly’s conjecture on 3-connected circuits of the
rigidity matroid. Journal of Combinatorial Theory, Series B, 88(1):77–97, 2003.

[3] G. Laman. On graphs and rigidity of plane skeletal structures. Journal of Engineering
mathematics, 4(4):331–340, 1970.

[4] B. Schulze and W. Whiteley. Rigidity and Scene Analysis, Handbook of Discrete and Com-
putational Geometry, Third Edition, CRC, 2017.

New advances on the branch-and-prune algorithm for the
discretizable molecular distance geometry problem

C. Lavor1, L. Mariano2, M. Souza3

1 University of Campinas, Brazil
clavor@ime.unicamp.br

2 State University of Rio de Janeiro, Brazil
3 Federal University of Ceará, Brazil

Abstract

The discretizable molecular distance geometry problem (DMDGP) is associated to
protein structure calculations using data from Nuclear Magnetic Resonance (NMR) ex-
periments, where the problem is how to calculate the 3D protein structure using NMR
distance information. Protein geometry allow us to define atomic orders such that a dis-
crete method, called Branch-and-Prune (BP), can be applied to the problem. We will
present a new atomic order and discuss its theoretical properties that can be useful to
model the uncertainties in NMR data.

Keywords : distance geometry, protein conformation

64

Extremal Graphs with respect to the Modified First Zagreb
Connection Index

Guillaume Ducoffe2,3, Ruxandra Marinescu-Ghemeci1, Camelia Obreja1 ,
Alexandru Popa1,2, Rozica Maria Tache1

1 University of Bucharest, Romania
2 National Institute for Research and Development in Informatics, Romania

3 The Research Institute of the University of Bucharest ICUB, Romania

Abstract

Topological indices (TIs) have an important role in studying properties of molecules.
A main problem in mathematical chemistry is finding extreme graphs with respect to
a given TI. In this paper extremal graphs with respect to the modified first Zagreb
connection index for trees, unicyclic graphs with or without a fixed girth and connected
graphs are determined. These graphs are relevant since they are chemical graphs.

Keywords : topological index, Zagreb indices, trees, unicyclic graphs

1 Introduction
Molecular descriptors are numerical values that characterize different properties of molecules.

They are used mainly in the construction of Quantitative Structure-Activity Relationship
(QSAR) or Quantitative Structure-Property Relationship (QSPR) models to generate pre-
dictions about the biological activity or physico-chemical properties of new untested or even
yet to be synthetized substances. Such models have an accuracy up to 90% in predicting the
effects of different medicines on some species of parasites which cause a large number of deaths
or viruses known for their aggressivity, like Hepatitis B and C, Cytomegalovirus and HIV-1
([4, 5]). Moreover, these models provides new drugs much more active than those already
existing on the market ([2]).

A special family of molecular descriptors is represented by the topological indices (TIs),
invariants that characterize the topology of a graph, indicating its ramification. TIs are mainly
studied in connection with chemical graphs, which are undirected, connected graphs that model
organic compounds by considering only the carbon-carbon and carbon-hydrogen type atomic
bonds. Analysed in this context, the TIs appeared from the desire of studying structural
properties of chemical compounds. Since the structures of substances, even modelled as graphs,
cannot be readily investigated as such, numerical quantities associated with these structures
have to be considered for successful studies in this area ([2, 4, 5]). Thus TIs participate, along
with other molecular descriptors, in the construction of QSAR or QSPR models that generate
predictions about the biological activity or physico-chemical properties of new substances.
Consequently, more and more topological indices are being introduced in the literature with
the purpose of being used mainly in applications within different areas of chemistry.

One of the most important and intensely studied TIs are the Zagreb indices, introduced in
[6] from the desire to examine the dependence of the total π-electron energy on the molecular
structure. They are defined by

M1(G) =
∑

v∈V (G) dG(v)2 and M2(G) =
∑

(u,v)∈E(G) dG(u)dG(v),
where G = (V (G), E(G)) is a connected graph and dG(v) denotes the degree of the vertex v.

65

Starting from these, a whole family of Zagreb indices appeared, including the multiplicative
Zagreb indices ([8]), the reformulated Zagreb indices ([9]) and the modified Zagreb connection
index ([6]).

This class of indices has been used to study molecular complexity, chirality, ZE-isomerism,
heterosystems and has been used with good results in QSAR and QSPR models. Thus, math-
ematical chemistry experts note that the best descriptor models considered in the literature
contains the Zagreb M2-index. ([7])

An important direction in the field of mathematical chemistry is given by the determination
of the extreme graphs with respect to a given TI. This field started with the leading article
of Bollobás and Erdös ([3]), in which they determine the extremal graphs with respect to the
Randić index, a well-known and intensely used in QSAR and QSPR models TI.

In this paper we study a modified Zagreb index introduced by Gutman and Trinajstić in [6],
but studied for the first time in [1], and named the modified first Zagreb connection index:

ZC∗1 (G) =
∑

v∈V (G)
dG(v)τG(v),

where τG(v) denotes the number of vertices at distance 2 from v, also called the connection
number of v. The latter article determines the extremal graphs with respect to the ZC∗1 (G)-
index in the class of chemical trees (in which every vertex has degree at most four). In
this paper we extend the above study by considering general trees and unicyclic graphs with
given or arbitrary girth, all of them representing classes of graphs of interest for the field of
mathematical chemistry, due to their topology that closely resembles molecular structures.

The main method used in determining the extremal graphs is defining graph transformations
that, under certain conditions, strictly increase/decrease the value of the topological index.
This leads us to the extremal graph(s) by the following principle: whenever a graph is not yet
of the desired shape, there is a way to apply one of the transformations mentioned above to
yield a new graph; since the class of graphs under investigation is finite, this process is finite;
since the process gives the same end result regardless of the graph it starts with, it exhibits
the extremal graph(s) of the class in question.

We propose a new method with higher degree of generality with respect to the transformation
techniques usually used in such context. It allows to find transformations that strictly increases
the index by seeing the graph as a result of join operations of subgraphs and study the changes
in the index when replacing a subgraph with another. This is useful, since various types of
decomposition of graphs exists in literature, such as block decompositions.

2 Results on graph operations and transformations
Let G, H be two connected graphs and consider one vertex from each graph: a ∈ V (G),

b ∈ V (H). Denote by (G, a) � (H, b) the graph obtained from the union of graphs G and
H by identifying vertices a and b. Note that if a graph has cut vertices, it can be seen as a
vertex-joins of its biconnected components.

For a graph G denote by d(G) the set of the degrees of its vertices and, for a vertex v ∈ V (G),
by sG(v) the sum of the degrees of its neighbors. In order to determine the ZC∗1 -index for graphs
obtained from vertex-join operations, we define the following constants:

εn =

4, if n ≥ 5,
2, if n = 4,
0, if n = 3.

αn =

6, if n ≥ 5,
5, if n = 4,
4, if n = 3.

Lemma 1 Let G, H be two connected graphs and two vertices a ∈ V (G), b ∈ V (H). Let
Ω = (G, a)� (H, b). Then

ZC∗1 (Ω) = ZC∗1 (G) + ZC∗1 (H) + (sG(a) + τG(a))dH(b) + dG(a)(sH(b) + τH(b)).

Since for the classes of graphs considered in this paper are results of applying vertex-join
operations on trees and cycles or of moving pendant edges from one vertex to another, we
derive formulas for the case when one of the graphs is a path with one edge or a cycle.

Corollary 1 Let G, H be two connected graphs and two vertices a ∈ V (G), b ∈ V (H). Let
Ω = (G, a)� (H, b).

1. If H ' P2, then ZC∗1 (Ω) = ZC∗1 (G) + dG(a) + τG(a) + sG(a).
2. If H ' Cn, n ≥ 3, then ZC∗1 (Ω) = ZC∗1 (G) + εnn+ αndG(a) + 2τG(a) + 2sG(a).
We define the following transformation on a connected graph G. If G contains a pendant

edge yx with y of degree at least 2 (non-pendant) and u is a vertex of G, u 6= y and u 6= x,
define transformation t1 through which we obtain the graph

t1(G, yx, u) := G− yx+ ux
by removing the pendant edge yx from y and attaching it to vertex u.

A similar transformation can be defined by removing a cycle C from a vertex y and attaching
it to a vertex u. We calculate the effect of these transformations on ZC∗1 (G) by seeing G and
the obtained graph as results of vertex-join operations.
Lemma 2 Let G be a connected graph and t1 the transformation defined above. Then
ZC∗1 (t1(G, yx, u))−ZC∗1 (G) = 2(sG(u)−sG(y))+2(τG(u)−τG(y))+2(dG(u)−dG(y))+2γG,y,u

where
γG,y,u =

{ 0, if u and y are adjacent ,
1, otherwise.

3 Trees
In [1] it is proven that, for n ≥ 5, the path graph Pn has minimum ZC∗1 value among all trees

with n vertices and this minimum value is 4n − 10. In this section the trees with n vertices
having maximum ZC∗1 value are determined. Let Sn be the family of trees with n vertices and
diameter at most 3. Note that the only trees in Sn are the star and double stars.

Theorem 1 The trees with n ≥ 4 vertices having the maximum value of modified first Zagreb
connection index are the trees in Sn and this value is (n− 2)(n− 1).
Proof : For a tree T /∈ Sn there are two vertices u, y at distance at least 2 in which are
incident pendant edges denoted such that sT (u) ≥ sT (y). Consider the tree T ′ = t1(T, yx, u).
By Lemma 2 we obtain ZC∗1 (T ′)− ZC∗1 (T) = 2(sT (u)− sT (y)) + 2 > 0 �

4 Unicyclic graphs
A unicyclic graph is a connected graph containing exactly one cycle. Let n ≥ 5 and g < n.

In this section we consider first unicyclic graphs with n vertices and fixed girth g, that is having
the length of the cycle equal to g.

Denote by Un,g the family of unicyclic graphs with n vertices and girth g such that any two
non-pendant vertices incident to pendant edges are adjacent vertices on the cycle.

Theorem 2 Let n ≥ 5 and g < n. The unicyclic graphs with n vertices and girth g having the
maximum value of modified first Zagreb connection index are the graphs in Un,g and this value
is (n− g)2 + (αg + 1)(n− g) + εgg.
Proof : Let G /∈ Un,g. We construct a graph with higher index using previous results. More
exactly, if there are in G two non-pendant vertices u, y both incident to at least one pendant
edge, such that d(u, y) ≥ 2 and sT (u) + dT (u) + τT (u) ≥ sT (y) + dT (y) + τT (y), we consider
the graph G′ = t1(G, yx, u). Otherwise the vertices of the cycle of G have degree 2, with one
exception, a vertex denoted y. Then G = (TG, y)� (Cg, y) where TG is a tree. In this case, we
consider G′ = (Sn−g, a)� (Cg, y) where a is the center of star Sn−g (G′ is obtained from G by
replacing tree TG rooted in y with star Sn−g rooted in the center). �

Let G be a unicyclic graph and C its unique cycle. Note that the connected components
of G − E(C) are trees rooted in vertices belonging to C. In order to obtain unicyclic graphs
with smaller ZC∗1 index we study the changes of this index when replacing such a component
with paths (with the same number of vertices) rooted in one extremity. Moreover, if one such
component is a path, consider the graph obtained by attaching this component to a pendant
vertex of G instead of a vertex from cycle C. The following result holds.

Theorem 3 Let n ≥ 5 and g < n. The unicyclic graph with n vertices and girth g having
the minimum value of modified first Zagreb connection index is Tg,n−g = (Cg, a)� (Pn−g+1, v),
where v is a pendant vertex in Pn−g+1 (the (g, n− g)-tadpole graph). Moreover,

ZC∗1 (Tg,n−g) =
{ 4(n− g) + εgg + αg, if g ≤ n− 2,
εgg + αg + 2, if g = n− 1.

We use the results on extremal unicyclic graph with fixed girth to study how the maximum
and minimum value of ZC∗1 evolves when girth is variable, in particular to find the extremal
unicyclic graphs with n vertices.
Theorem 4 Let n ≥ 5.

1. The unicyclic graphs with n vertices having the maximum value of the ZC∗1 -index are the
graphs in Un,5 if n < 8, in Un,5 ∪ Un,3 if n = 8 and in Un,3 if n > 8.

2. The unicyclic graph with n vertices having the minimum value of the ZC∗1 -index is T3,n−3.

5 Connected graphs with n vertices
One important problem is to find the structure of an extremal connected graph with respect

to ZC∗1 , having n vertices and no other constrains, that is to know the possible structure of
molecules with n atoms that have minimum or maximum value of ZC∗1 .
Theorem 5 Let n ≥ 5.

1. The complete graph Kn is the unique graph that minimizes the index ZC∗1 among all
n-vertex connected graphs.

2. A connected graph G with n vertices maximizes the index ZC∗1 among all n-vertex con-
nected graphs if and only if it has diameter 2 and:
• d(G) ⊆ {n

2 − 1, n
2}, if n ∈ {4k, 4k + 2|k ∈ N}

• d(G) = {n−1
2 }, if n ∈ {4k + 1|k ∈ N}

• there exists a vertex x ∈ V (G) such that d(G) \ {d(x)} = {n−1
2 } and d(x) ∈ {n−1

2 −
1, n−1

2 + 1}, if n ∈ {4k + 3|k ∈ N}

References
[1] A. Ali and N. Trinajstić. A novel/old modification of the first Zagreb index.

https://arxiv.org/pdf/1705.10430.pdf.
[2] A. T. Balaban and O. Ivanciuc. Historical Development of Topological Indices. Topologi-

cal Indices and Related Descriptors in QSAR and QSPR, J. Devillers and A. T. Balaban
(Eds.), Gordon and Breach Science Publisher, Amsterdam: 21–57, 1999.

[3] B. Bollobás and P. Erdös. Graphs of extremal weights. Ars Comb., 50: 225–233, 1998.
[4] I. Garcia, Y. Vall and G. Gomez. Using Topological Indices to Predict Anti-Alzheimer and

Anti-Parasitic GSK-3 Inhibitors by Multi-Target QSAR in Silico Screening. Molecules,
15: 5408–5422, 2010.

[5] H. Gonzales-Diaz and C.R. Munteanu. Topological indices for Medical Chemistry, Bi-
ology, Parasitology, Neurological and Social Networks. Transworld Research Network,
Kerala, 2010.

[6] I. Gutman and N. Trinastić. Graph theory and molecular orbitals. Total π - electron
energy of alternant hydrocarbons. Chem Phys. Lett., 17: 535–538, 1972.

[7] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić The Zagreb Indices 30 Years
After. Croat. Chem. Acta, 76: 113–124, 2003.

[8] R. Todeschini and V. Consoni New local vertex invariants and molecular descriptors
based on functions of the vertex degrees. MATCH, 64: 359–372, 2010.

[9] B. Zhou and N. Trinajstić Some properties of the reformulated Zagreb indices. J. Math.
Chem., 48(3): 714–719, 2010.

A branch-and-price framework for decomposing graphs into
relaxed cliques

Timo Gschwind1, Stefan Irnich1, Fabio Furini2, Roberto Wolfler Calvo3

1 Gutenberg School of Management and Economics, University of Maintz
gschwind@uni-mainz.de irnich@uni-mainz.de

2 PSL, UniversitÃ c© Paris-Dauphine, Paris, France,
fabio.furini@dauphine.fr

3 Laboratoire d’Informatique de Paris Nord,
Université de Paris 13 and Sorbonne Paris Cité
CNRS (UMR 7538), 93430 Villetaneuse, France

wolfler@lipn.fr

Abstract

Relationships between objects can be modeled with graphs, where nodes represent the
different objects and edges express the relationship. Social network analysis is an example
where clusters, e.g., formed by members of a community, are studied using cliques and
clique relaxations. A clique is a subgraph with pairwise directly connected nodes, i.e.,
a subgraph with diameter one. Several relaxations have been defined either in terms of
distance (k-clique), degree (k-plex, k-core), diameter (k-club), or density. The majority
of the literature deals with identifying such subgraphs of maximum cardinality or weight.
In this presentation, we consider the generic problem of covering or partitioning a graph
with a set of relaxed cliques. We present an exact solution fromework for solving the
relaxed clique partitioning and covering problems based on branch-and-price. Herein, the
subproblem consists of finding a relaxed clique of maximum weight. We present heuris-
tics and a new combinatorial branch-and-bound algorithm for its resolution. The current
state of the art in the field of complexity theory is a demonstrated lack of proof methods
against problems still open. The combination of three separate results, called barriers
(Relativisation, Natural Proofs and Algebrization), implies that none of the currently
known proof methods for separation will successfully settle the remaining open problems.
A single research program – Geometric Complexity Theory (GCT) – is considered viable
by the community. However, according to its initiator and major contributor K. Mulmu-
ley, GCT will not provide new results within our lifetimes; recent results have moreover
closed the easiest path to GCT. As a consequence, complexity theory is in dire need of
new tools and methods as such advances should require “fundamentally new methods”
to paraphrase S. Aaronson and A. Widgerson. This talk will be about how such methods
may be founded upon some recent developments in logic, and more precisely some specific
models of proofs introduced under the name “Interaction Graphs”.

The interplay between logic and computational complexity has been the subject of
research for more than 50 years, but it has arguably failed to provide insights on the clas-
sification problem. Nevertheless, it has shown how logic is tightly bound to computation,
clearly circumscribing the limits of the different approaches. The framework of Interac-
tion Graphs, although taking its roots in logic, offers a mathematical model of programs
that bypasses these limits and accounts for subtle aspects of computation. Moreover, it
unveils deep connections with methods from geometry and dynamical systems that one
may hope to exploit to enable potent proof methods from mathematics to be used by
researchers against open problems in complexity theory.

69

A characterization for binary signed-graphic matroids

Konstantinos Papalamprou, Leonidas Pitsoulis, Eleni-Maria Vretta
School of Electrical and Computer Engineering,

Aristotle University of Thessaloniki, Thessaloniki, Greece
papalamprou@auth.gr, pitsouli@auth.gr, emvretta@auth.gr

Abstract

Binary matroids can be represented by {0, 1}-matrices, while signed-graphic matroids
can be represented by signed graphs. We provide a characterization for the class of
binary signed-graphic matroids, generalizing a known result for graphic matroids. The
latter characterization constitutes the first step towards the construction of an algorithm
for recognizing binary signed-graphic matroids.

Keywords : algorithm, binary matroids, signed-graphic matroids, tangled signed graphs, to-
tally unimodular matrices

1 Introduction
The natural connection of matroids with Combinatorial Optimization is established via their
algorithmic definition1, since matroids are precisely the structures for which the Greedy algo-
rithm works. Furthermore, there are several results of Matroid Theory that have significant
consequences for Combinatorial Optimization. One of them is the Regular Matroid Decom-
position Theorem, which resulted in a polynomial time algorithm for recognizing totally uni-
modular (TU) matrices [3]. The latter class of matrices plays a central role in Combinatorial
Optimization, since it defines a class of integer programs that are solved in polynomial time.

In this work, we present some results on signed graphs and matrices and prove a characteri-
zation for binary signed-graphic and nongraphic matroids. Moreover, we characterize the class
of binary signed-graphic matroids, generalizing a known characterization for graphic matroids.
The extended abstract is structured as follows. In section 2, some definitions and notations
are given. In section 3, we introduce the main tools and present the results as well as some
future perspectives for the utility of the characterization.

2 Preliminaries
A graph G = (V,E) consists of a finite set of vertices V and a set of edges E ⊆ V ∪ V 2. We
shall denote by V (G) and E(G) the vertex set and edge set of a graph G, respectively. Given
two distinct vertices u, v in a graph G we define four types of edges: e = {u, v} is called a link,
e = {v, v} a loop, e = {v} a half-edge, while e = ∅ is a loose-edge. Each edge has a set of one,
none or two vertices associated with it, which are called its endvertices.

1An independence system (E, I) is a pair of a finite set E and a collection I of subsets of E closed under
inclusion. An independence system (E, I) is a matroid if and only if the Greedy algorithm is optimal for the
maximum-weight problem associated with (E, I).

This research was implemented with a scholarship from the State Scholarships Foundation of Greece which
was funded by the «Scholarship Program for Postgraduate Studies of the Second Cycle Studies» with resources
from the Operational Program «Human Resources Development, Education and Lifelong Learning» 2014-2020
which was co-financed by the European Social Fund and the Greek State.

70

A signed graph Σ = (G, σ) is a graph G = (V,E) together with a sign function σ : E(G)→
{+1,−1} such that σ(e) = −1 if e is a half-edge and σ(e) = +1 if e is a loose-edge. The
graph G is called the underlying graph of Σ. We shall denote by V (Σ) and E(Σ) the set of
vertices and the set of edges of a signed graph Σ, respectively. We consider a graph G to be
a signed graph whose edges are all positive. Thus, signed graphs constitute a generalization
of graphs. A signed graph is connected if and only if its underlying graph is connected. Any
operation or term on signed graphs is defined via a corresponding operation or term on the
underlying graph and the sign function. The incidence matrix of a signed graph Σ = (G, σ)
is a |V (G)| × |E(G)| matrix AΣ ∈ GF (3) with columns ae = (αie)i∈V (G) for each e ∈ E(Σ)
defined as follows: αue = −αve if e = {u, v} is a positive link, αue = αve if e = {u, v} is a
negative link, αue = 1 or −1 if e = {u} is a half-edge or e = {u, u} is a negative loop, αve = 0
if e = {u, u} is a positive loop and αie = 0 if i 6= u, v [2].

In a signed graph, each walk W = e1, e2, . . . , en has a sign σ(W) := σ(e1)σ(e2) . . . σ(en).
Therefore, a positive (resp. negative) cycle is a cycle that contains an even (resp. odd)
number of negative edges. Negative loops and half-edges are considered negative cycles and
are called joints. A signed graph without negative cycles is called balanced, otherwise it is
called unbalanced. A vertex v in an unbalanced signed graph that belongs to every negative
cycle is called a balancing vertex. An unbalanced signed graph is called tangled, if it has no
balancing vertex and no two vertex-disjoint negative cycles. Given a signed graph Σ, if G is a
tree, then Σ is a signed tree. Negative 1-tree of Σ is a signed tree with one more edge (link or
joint) that forms a negative cycle with the signed tree. A connected subgraph of Σ consisting
of a negative cycle and a path that has exactly one common vertex with the cycle is called
negative 1-path. A signed graph whose connected components are either negative 1-trees or
signed trees is called 1-forest.

Matroids have several equivalent axiomatic definitions; the following is in terms of circuits.
A matroid M is an ordered pair (E, C) of a finite set E and a collection C of subsets of E
satisfying the following three conditions: (i) ∅ /∈ C, (ii) If C1 and C2 are members of C and
C1 ⊆ C2, then C1 = C2 (iii) If C1, C2 are distinct members of C and e ∈ C1 ∩C2, then there is
a C3 ∈ C such that C3 ⊆ (C1 ∪C2)− e. The set E is called the ground set of M , denoted also
by E(M), while C is the family of circuits of M . The independent sets of a matroid M are all
the subsets of E that do not contain a circuit C ∈ C. A maximal independent set in M is a
basis of M and is denoted by B. Given a basis B of a matroid M , for each f ∈ E(M)−B, we
define Pf ⊆ B such that Cf = Pf ∪ {f} is the unique circuit contained in B ∪ {f}, that is Cf

is the fundamental circuit of f with respect to B. A matroid M is connected if and only if any
two distinct elements of E(M) belong to a circuit. Two matroids M1 and M2 are isomorphic
and we write M1 ∼= M2, if there is a bijection φ : E(M1) → E(M2) such that X ∈ C(M1) if
and only if φ(X) ∈ C(M2).

A major class of matroids, the class of F-representable matroids, where F is some finite field,
arises from matrices in the following way. Let E be the set of columns of a m × n matrix
A in some field F and let C be the collection of all subsets of E which are minimal linearly
dependent sets of vectors in the vector space V (m,F); then M = (E, C) is a matroid called
vector matroid, denoted by M [A]. Any matroid isomorphic to M [A] is called F-representable
matroid. Matroids that are representable over the finite fields GF (2) and GF (3) are called
binary and ternary, respectively. The elements of GF (3) are written as 0, 1,−1. Furthermore,
a matroid that is representable over every field is called regular. Equivalently, a regular matroid
is one that can be represented by a TU matrix, the latter being a matrix over R for which
every square submatrix has determinant in {0, 1,−1}.

The class of signed-graphic matroids and the class of graphic matroids are two fundamental
classes of matroids that derive from signed graphs and graphs, respectively as follows. Let
E(Σ) be the set of edges of a signed graph Σ and C be the family of minimal edgesets inducing
a subgraph that is either: (a) a positive cycle, or (b) two negative cycles which have exactly
one common vertex, or (c) two vertex-disjoint negative cycles connected by a path, that has
no common vertex with the cycles apart from its endvertices. Then M(Σ) = (E(Σ), C) is a
matroid on E(Σ) with circuit family C and it is called the signed-graphic matroid of Σ. The

connected subgraphs of Σ which are described in cases (b) and (c) in the above definition are
called type I and type II handcuff, respectively. If, instead of a signed graph Σ, we have a
graph G and the collection C ⊆ 2E(Σ) of edgesets of cycles of G, then M(G) = (E(G), C) is a
matroid on E(G) with circuit family C, which is called the cycle matroid of G. A matroid that
is isomorphic to the cycle matroid of a graph is called graphic.

3 Results
In this section, we present the main tools and the results of the work. Given a subset A of
E(M(Σ)), where Σ is a signed graph and M(Σ) is the associated signed-graphic matroid, then
A corresponds to a subset of edges in Σ. Frequently, we shall refer to the induced subgraph
of the edgeset of A in Σ, instead of the edgeset of A. By [[5], Theorem 5.1], every basis of a
signed-graphic matroid M(Σ) is a spanning 1-forest in a signed graph Σ. Hence the following
two propositions are immediate consequences of the definition of a connected signed graph and
the definition of a tangled signed graph. We note that a tangled signed graph is jointless.

Proposition 1 If Σ is a connected tangled signed graph then every basis ofM(Σ) is a spanning
negative 1-tree in Σ.

Proposition 2 If Σ is a connected tangled signed graph then there is no circuit of M(Σ) which
is a type II handcuff in Σ.

Let M be a matroid represented by a TU matrix D. If D is viewed to be a matrix over
an arbitrary field F, then M is represented by D over F. The binary support of a matrix D,
denoted by BS(D), is defined to be a matrix which is obtained from D by replacing each non-
zero entry of D by a 1. Since regular and signed-graphic matroids are GF (3)-representable,
we use the following two propositions from [1] in the proof of Proposition 5.

Proposition 3 ([1], Proposition 6.4.1) Let [Ir|D1] and [Ir|D2] be matrices over the fields
K1 and K2 with the columns of each labelled, in order, by e1, e2, . . . , en. If the identity map on
{e1, e2, . . . , en} is an isomorphism from M [Ir|D1] to M [Ir|D2], then BS(D1) = BS(D2).

Proposition 4 ([1], Proposition 10.2.4) Let D1 and D2 be {0,±1}-matrices. If BS(D1) =
BS(D2) and [Ir|D1] and [Ir|D2] represent the same matroid over GF (3), then D2 can be ob-
tained from D1 by multiplying some rows and columns by −1.

The incidence matrix AΣ of a signed graph Σ is a representation of the signed-graphic
matroidM(Σ) over GF (3) [2]. Furthermore, total unimodularity is maintained when we apply
the following operations to a TUmatrix: (1) pivots (2) row and column interchanges (3) scalings
of rows or columns by −1. On combining the above, we obtain the following proposition, which
highlights the connection between regular signed-graphic matroids and TU matrices.

Proposition 5 Let B = {e1, e2, . . . , er} be a basis of a connected signed-graphic and non-
graphic matroid M(Σ), then M(Σ) is regular if and only if the incidence matrix of the signed
graph Σ is TU.

Proof : Let us assume first that M(Σ) is a regular matroid, then by definition there is a TU
matrixA such thatM(Σ) ∼= M [A]. By a sequence of pivots and row and column interchanges, A
can be transformed into a TU matrix of the form [Ir|D1], where the first r columns are labelled
e1, e2, . . . , er. Therefore [Ir|D1] has {0,±1} entries and it represents M(Σ) over GF (3). Since
the incidence matrix AΣ of Σ is over GF (3), by applying pivots, row and column scalings to
AΣ, it can be transformed into [Ir|D2] in which the first r columns are labelled e1, e2, . . . , er.
By Proposition 3, it follows that BS(D1) = BS(D2). Moreover, combining the fact that D1 is
TU with Proposition 4, we have that D2 is TU.

For the converse, the incidence matrix AΣ of Σ is TU and therefore, it is a representation
matrix of M(Σ) over R. �

Proposition 6 If B is a basis of a binary matroid M , then M is graphic if and only if there
is a tree T with E(T) = B such that each of the sets (Pf : f ∈ E(M)−B) is a path in T .

The following theorem characterizes the class of binary signed-graphic and nongraphic ma-
troids. Our main tools for its proof are matrices and signed graphs that represent binary and
signed-graphic matroids.

Theorem 1 Let B be a basis of a connected binary matroid M , then M is signed-graphic and
nongraphic if and only if

1. there is a negative 1-tree T with negative cycle CT , that is not a half-edge and E(T) = B
such that each of the sets (Pf : f ∈ E(M)−B) is either a path or a negative 1-path in T

2. the signed graph obtained from T by adding each f ∈ E(M)−B as a link with endvertices
the ends of Pf (resp. Pf −CT) if Pf is a path (resp. negative 1-path) and with the same
sign with Pf , has an incidence matrix that is TU.

Proof : For the ”if” part. Since M is a connected binary signed-graphic and nongraphic
matroid, there is a connected and tangled signed-graph Σ such that M = M(Σ) [[4], Theorem
1.4]. By Proposition 1, there is a negative 1-tree TΣ in Σ such that E(TΣ) = B with negative
cycle CTΣ that is not a half-edge. Moreover, by Proposition 2, the fundamental circuits of
M(Σ) with respect to B are either positive cycles or type I handcuffs in Σ. Therefore each set
(Pf :f ∈ E(Σ) − TΣ) is either a path or a negative 1-path in TΣ. Furthermore the incidence
matrix of Σ is TU by Proposition 5, since M(Σ) is regular.

For the ”only if” part. Let us assume that there is a negative 1-tree T with negative cycle
CT that is not a joint and it holds that E(T) = B. Moreover, for each f ∈ E(M) − E(T)
the set Pf is either a path or a negative 1-path in T . We construct a signed graph Σ from T
by adding each f ∈ E(M) − E(T) to T in the following manner. Suppose that Pf is a path
in T , then we add edge f to T as a link with endvertices the two ends of Pf . Furthermore
we attribute to f the sign of the path Pf . Therefore Pf ∪ {f} is a positive cycle in T ∪ {f}.
Suppose that Pf is a negative 1-path in T , then we add edge f to T as a link with endvertices
the two ends of the path Pf − CT . Furthermore we assign to f the opposite sign of the path
Pf − CT . Thereby (Pf − CT) ∪ {f} is a negative cycle and Pf ∪ {f} is a type I handcuff in
T ∪ {f}. By assumption the incidence matrix of Σ is TU, which implies that M(Σ) is regular
and therefore, M(Σ) is binary. Since both of M and M(Σ) are binary and the fundamental
circuits of M(Σ) and M coincide with respect to the basis B, it follows that M ∼= M(Σ). �

On combining Theorem 1 and the proposition preceding it, we obtain the following char-
acterization for the class of binary signed-graphic matroids. Given a basis B of a binary
matroid M , the existence of a tree or a negative 1-tree T with E(T) = B such that each set
(Pf :f ∈ E(M) − B) is either a path or a negative 1-path in T and (ii) of Theorem 1, are
necessary and sufficient conditions for M to be signed-graphic. As a future step, it is desirable
to obtain a polynomial time algorithm, which determines whether a given binary matroid is
signed-graphic and returns also the graphical representation in the affirmative.

References
[1] J. Oxley. Matroid Theory 2nd edition. Oxford University Press, Oxford, 2011.

[2] L. Pitsoulis. Topics in Matroid Theory. Springer, 2014.

[3] P. Seymour. Decomposition of regular matroids. Journal of Combinatorial Theory Series,
B 28 305-359, 1980

[4] D. Slilaty and H. Qin. Decompositions of signed-graphic matroids. Discrete Mathematics,
307 (17-18), 2187–2199, 2007.

[5] T. Zaslavsky. Signed graphs. Discrete Applied Mathematics 4, 47–74, 1982.

A Characterization of Interval Orders with Semiorder
Dimension Two

Alexander Apke1, Rainer Schrader1

University of Cologne, Germany

Abstract

Given a partial order Q, its semiorder dimension is the smallest number of semiorders
whose intersection is Q. When we look at the class of partial orders of fixed semiorder
dimension k, no characterization is known, even in the case k = 2. In this paper, we give
a characterization of the class interval orders of semiorder dimension two.

Keywords : partially ordered sets, interval order, semiorder, dimension

1 Introduction
A partial order Q = (V,≤) is an interval order if

a < b, c < d⇒ a < c or b < d ∀ a, b, c, d ∈ V.

Every interval order Q has a representation by intervals I(v) on the real line, i.e. u < v iff I(u)
lies completely to the left of I(v). An interval order is a semiorder if it has a representation
where all intervals have length 1.

Given a class K of orders, the K-dimension of a partial order P is the smallest number k
such that P is the intersection of k orders in K. This concept was introduced by Dushnik
and Miller [5] as (linear) dimension for the class of linear orders. Dagan et al. [4] introduced
the class of trapezoid graphs and observe that they are exactly the co-comparability graphs
of partial orders with interval dimension two. Langley [8] and Ma and Spinrad [9] proved
that partial orders of interval dimension two and the associated class of trapezoid graphs can
be recognized in polynomial time. Rabinovich [12] and Bogart et al. [2], [3] investigate the
semiorder dimension and the associated class of co-comparability graphs. Since then, several
related notions of order dimension and associated graph classes have been investigated (see,
for example, [6], [7], [10], [11], [13]).

For partial orders of a fixed semiorder dimension k no characterization is known, even in
the case that k = 2. In this paper, we give a characterization of the class interval orders of
semiorder dimension two. It follows by our results that partial orders that are interval orders
of semiorder dimension two can be recognized efficiently.

2 Preliminaries
Let Cl be a chain of length l. Given two chains Cl and C ′

l such that no two elements u ∈ Cl

and v ∈ C ′
l are comparable, we denote their union by Cl,l′ . We call C3,1 the claw order since

its complement induces a claw. Let C ′ = (u, v, w, z) be a claw order with u < v < w. Then
we call z the center of C ′, u the tail of a claw with center z or simply a tail of z, and w a head
of z. Let Z ⊆ V be the set of all centers of Q. In [1] we showed that for every interval order
there is an interval representation such that |I(z)| > 1 for z ∈ Z and |I(v)| = 1 for v ∈ V \ Z.
We call U = V \ Z the set of unit elements of Q.

74

We call z, z′ ∈ V queued if z is a tail of z′ and z′ is a head of z. Observe that if z and z′ are
queued then z is the center of a claw a leaf z′ and vice versa.

For an interval order Q we introduce the undirected queue graph G′(Q) = (Z, E). The set
of vertices of G′ corresponds to the set of centers in Q and we add an edge zz′ to E if z and
z′ are queued.

3 Our Main Result
Theorem 1 Let Q = (V,≤) be an interval order. Then, Q is of semiorder dimension two if
and only if G′(Q) is bipartite.

For an interval order Q = (V,≤) the queue graph G′(Q) can be constructed in time O(|V |2).
Further, interval orders can be recognized in linear time. Since it can also be checked in linear
time whether a graph is bipartite, it follows from Theorem 1 that interval orders of semiorder
dimension two can be recognized in time O(|V |2).

References
[1] A. Apke and R. Schrader. On the non-unit count of interval graphs. Discrete Appl. Math.,

195(C):2–7, November 2015.

[2] Kenneth P. Bogart, Peter C. Fishburn, Garth Isaak, and Larry J. Langley. Proper and
unit tolerance graphs. Discrete Applied Mathematics, 60(1 - 3):99 – 117, 1995.

[3] Kenneth P. Bogart, Rolf H. Möhring, and Stephen P. Ryan. Proper and unit trapezoid
orders and graphs. Order, 15(3):325–340, 1998.

[4] Ido Dagan, Martin Charles Golumbic, and Ron Yair Pinter. Trapezoid graphs and their
colorings. Discrete Applied Mathematics, 21(1):35 – 46, 1988.

[5] Ben Dushnik and Edwin W. Miller. Partially ordered sets. American Journal of Mathe-
matics, 63(3):600 – 610, 1941.

[6] Peter C. Fishburn and William Trotter. Split semiorders. Discrete Mathematics,
195(1):111 – 126, 1998.

[7] Martin C. Golumbic and Clyde L. Monma. A generalization of interval graphs with
tolerances. In Proceedings of the 13th Southeastern Conference on Combinatorics, Graph
Theory and Computing, Congressus Numerantion 35, pages 321–331, 1982.

[8] Larry J. Langley. A recognition algorithm for orders of interval dimension two. Discrete
Applied Mathematics, 60(1):257 – 266, 1995.

[9] T.H. Ma and J.P. Spinrad. On the 2-chain subgraph cover and related problems. Journal
of Algorithms, 17(2):251 – 268, 1994.

[10] George B. Mertzios, Ignasi Sau, and Shmuel Zaks. A new intersection model and improved
algorithms for tolerance graphs. SIAM Journal on Discrete Mathematics, 23(4):1800 –
1813, 2009.

[11] George B. Mertzios, Ignasi Sau, and Shmuel Zaks. The recognition of tolerance and
bounded tolerance graphs. In Proceedings of the 27th International Symposium on Theo-
retical Aspects of Computer Science (STACS), pages 585 – 596, 2010.

[12] I Rabinovitch. The dimension of semiorders. Journal of Combinatorial Theory, Series A,
25(1):50 – 61, 1978.

[13] Stephen P. Ryan. Trapezoid order classification. Order, 15(1):341 – 354, 1998.

Nash Equilibria in Mixed Stationary Strategies for m-Player
Cyclic Games on Networks

Dmitrii Lozovanu1, Stefan Pickl2
1 Institute of Mathematics and Computer Science of Academy of Sciences of Moldova;

dmitrii.lozovanu@math.md
2 Institute for Theoretical Computer Science, Mathematics and Operations Research,

Universität der Bundeswehr, Germany
stefan.pickl@unibw.de

Abstract
We consider non-zero cyclic games on networks with average payoffs and show that

this class of games possesses Nash equilibria in mixed stationary strategies. An approach
for determining the optimal strategies of the players in the considered games is proposed.

Keywords : Cyclic game, average payoffs, Nash equilibrium, mixed stationary strategy

1 Introduction and problem formulation
Let G = (V,E) be a finite directed graph in which every vertex u ∈ V has at least one
leaving edge e = (u, v) ∈ E. The vertex set V of G is divided into m disjoint subsets
V1, V2, . . . , Vm (V = V1 ∪ V2 ∪ . . . ∪ Vm; Vi ∩ V j = ∅, i 6= j) which we regard as positions
sets of m players. Additionally, on edge set m functions ci : E → R, i = 1, 2, . . . ,m are given
that assign to each directed edge e = (u, v) ∈ E the values c1

e, c
2
e, . . . , c

m
e that we treat as the

rewards for the corresponding players 1, 2, . . . ,m.
On G we consider the following m-person dynamic game. The game starts at given position

v0 ∈ V at the moment of time t = 0 where the player i ∈ {1, 2, . . . ,m} who is owner of starting
position v0 makes a move from v0 to a neighbor position v1 ∈ V through the directed edge e0 =
(v0, v1) ∈ E. After that players 1, 2, . . . ,m receive the corresponding rewards c1

e0 , c
2
e0 , . . . , c

m
e0 .

Then at the moment of time t = 1 the player k ∈ {1, 2, . . . ,m} who is owner of position
v1 makes a move from v1 to a position v2 ∈ V through the directed edge e1 = (v1, v2) ∈ E,
players 1, 2, . . . ,m receive their rewards c1

e1 , c
2
e1 , . . . , c

m
e1 , and so on, indefinitely. Such a play

of the game on G produces the sequence of positions v0, v1, v2, . . . , vt . . . where each vt is the
position at the moment of time t. In this game players make moves through the directed edges
in their positions in order to maximize their average rewards per move

ωivo = lim
t→∞

inf 1
t

t−1∑

τ=0
cieτ , i = 1, 2, . . . ,m.

If m = 2 and c1
e = −c2

e = ce, ∀e ∈ E then we obtain an antagonistic game with an average
payoff. This case of the game has been studied in [2, 3] where the existence of the value of
the game and the optimal pure stationary strategies of the players is proven. In [3] such an
antagonistic game is called cyclic game with a mean payoff. In general, for a m-player cyclic
game with average payoffs Nash equilibria in pure stationary strategies may not exist. This
fact has been shown in [3] where an example of a two-player nonzero cyclic game that has no
Nash equilibrium in pure strategies is constructed. A special class of m-player cyclic games for
which Nash equilibria in pure stationary strategies exist is presented in [5, 6].

In this paper, we show that an arbitrary m-player cyclic game with mean payoffs possesses
a Nash equilibrium in mixed stationary strategies. Based on a constructive proof of this result
we propose an approach for determining the optimal mixed stationary strategies of the players.

76

2 Cyclic games in pure and mixed stationary strategies
A strategy of moves of player i ∈ {1, 2, . . . ,m} in a cyclic game is a mapping si that provides
for every position vt ∈ Vi and every moment of time t a probability distribution over the set of
moves E(ut) = {e = (ut, v) ∈ E|v ∈ V }. If these probabilities take only values 0 and 1, then si
is called a pure strategy, otherwise si is called a mixed strategy. If these probabilities depend
only on the state ut = u ∈ Vi (i. e. si do not depend on t), then si is called a stationary
strategy, otherwise si is called a non-stationary strategy.

Denote by V (u) = {v ∈ V |(u, v) ∈ E} the set of neighbor vertices for vertex u in G. Then
the set of mixed stationary strategies Si of player i ∈ {1, 2, . . . ,m} we can identify with the
set of solutions of the system

∑
v∈V (u)

siu,v = 1, ∀u ∈ Vi;

siu,v ≥ 0, ∀u ∈ Vi, ∀v ∈ V (u),
(1)

where each basic solution of system (1) correspond to a pure stationary strategy. For a mixed
stationary strategy of player i the value siu,v for a given u ∈ Vi and an arbitrary v ∈ V can be
treated as the probability that player i will make a move from u ∈ Vi to v ∈ V at every time
when the position u is reached by any route in the dynamic game.

Let s = (s1, s2, . . . , sm) be a profile of stationary strategies (pure or mixed strategies) of the
players. Then the moves in the cyclic game from an arbitrary u ∈ V to v ∈ V induced by s
are made according to probabilities of a stochastic matrix P s = (su,v), where

sx,y =
{

siu,v if e = (u, v) ∈ E, u ∈ Vi, v ∈ V ; i = 1, 2, . . . ,m;
0 if e = (u, v) 6∈ E, (2)

This means that for given s we obtain a Markov process with a probability transition matrix
P s = (sx,y) and the corresponding rewards ciu,v, i = 1, 2, . . . ,m for u, v ∈ E. Therefore, if
Qs = (qs

x,y) is the limiting probability matrix of P s then the average rewards per transition
ω1
v0(s), ω2

v0(s), . . . , ωmv0(s) for the players can be determined as follows

ωiv0(s) =
m∑

k=1

∑

u∈Vk
qs
v0,uµ

i(u, sk), i = 1, 2, . . . ,m, (3)

where
µi(u, sk) =

∑

v∈V (u)
sku,vc

i(u, v), for u ∈ Vk, k ∈ {1, 2, . . . ,m} (4)

expresses the average step reward of player i in the state u ∈ Vk when player k use the strategy
sk. The functions ω1

v0(s), ω2
v0(s), . . . , ωmv0(s) on S = S1 × S2 × . . .× Sm, defined according to

(3),(4), determine a game in normal form that we denote by 〈{Si}i=1,m, {ωiv0(s)}i=1,m 〉. This
game corresponds to the cyclic game in mixed stationary strategies on G.

In the paper we will consider also cyclic games in which the starting state is chosen randomly
according to a given distribution {θu} on V . So, for a given stochastic positional game we will
assume that the play starts in the states u ∈ V with probabilities θu > 0 where

∑
u∈X

θu = 1.
If the players use mixed stationary strategies of a selection of the actions in the states then
the payoff functions

ψiθ(s) =
∑

x∈X
θuω

i
u(s), i = 1, 2, . . . ,m

on S define a game in normal form 〈{Si}i=1,m, {ψiθ(s)}i=1,m 〉. In the case θu = 0,∀u ∈ V \{v0},
θv0 = 1 the considered game becomes a cyclic game with fixed starting state v0.

3 Some auxiliary results
Let 〈{Si}i=1,m, {ψi(s)}i=1,m〉 be an m-player game in normal form, where Si ⊆ Rni ,
i = 1, 2, . . . ,m represent the corresponding sets of strategies of the players 1, 2, . . . ,m and
ψi :

m∏
j=1

Sj → R1, i = 1, 2, . . . , m represent the corresponding payoffs of these players.

Additionally, let s = (s1, s2, . . . , sm) be a profile of strategies of the players where s ∈ S =
m∏
j=1

Sj , and define s−i = (s1, s2, . . . , si−1, si+1, . . . , sm), S−i =
m∏

j=1(j 6=i)
Si where s−i ∈ S−i.

Thus, for an arbitrary s ∈ S we can write s = (si, s−i).
In [1] it is considered a class of games with upper semi-continuous, quasi-concave and graph-

continuous payoffs. The payoff ψi :
m∏
j=1

Sj → R1 of the game 〈{Si}i=1,m, {ψi(s)}i=1,m〉 is

graph-continuous if for all s = (si, s−i) ∈ S there exists a function F i : S−i → Si with
F i(s−i) = si such that ψi(F i(s−i), s−i) is continuous at s−i = s−i.

In [1] it is proven the following theorem.

Theorem 1 Let Si ⊆ Rni , i = 1, 2, . . . ,m, be non-empty, convex and compact sets. If each
payoff ψi : S → R1, i ∈ {1, 2, . . . ,m}, is quasi-concave with respect to si on Si, upper semi-
continuous with respect to s on S and graph-continuous, then the game 〈{Si}i=1,m, {ψi(s)}i=1,m〉
possesses a Nash equilibrium.

In the following we shall use this theorem for the case when each payoff ψi(si, s−i),
i ∈ {1, 2, . . . ,m} is quasi-monotonic with respect to si on Si and graph-continuous. In this
case the reaction correspondences of the players

φi(s−i) = {ŝi ∈ Si|f i(ŝi, s−i) = max
si∈Si

ψi(si, s−i)}, i = 1, 2, . . . ,m

are compact and convex valued and therefore the upper semi-continuous condition for the
functions f i(s), i = 1, 2, . . . ,m in Theorem 1 can be released. So, in this case the theorem can
be formulated as follows.

Theorem 2 Let Si ⊆ Rni , i = 1,m be non-empty, convex and compact sets. If each
payoff ψi : S → R1, i ∈ {1, 2, . . . , n}, is quasi-monotonic with respect to si on Si and
graph-continuous, then the game 〈{Si}i=1,m, {ψi(s)}i=1,m〉 possesses a Nash equilibrium.

4 The main results
We have shown that a m-player cyclic game in mixed stationary strategies can be formulated
as a game in normal form 〈{Si}i=1,m, {ψiθ(s)}i=1,m〉 where Si and ψiθ(s) for i ∈ {1, 2, . . . ,m}
are defined as follows: Si represents a set of the solution of the system

∑
a∈A(x)

siu,v = 1, ∀x ∈ Xi;

siu,v ≥ 0, ∀u ∈ Vi, v ∈ V (u)
(5)

and
ψiθ(s1, s2, . . . , sm) =

m∑

k=1

∑

u∈Vk

∑

v∈V (u)
sku,vc

i(u, v)qu, i = 1, 2, . . . ,m, (6)

where qx for x ∈ X are determined uniquely (via sku,v) from the following system of equations

qv −
m∑
k=1

∑
u∈Vk

∑
v∈V (u)

sku,v qu = 0, ∀v ∈ V (u);

qv + wv −
m∑
k=1

∑
v∈V

∑
a∈V (u)

sku,v wu = θv, ∀v ∈ V (u).
(7)

Here, θv for v ∈ V represent arbitrary fixed positive values such that
∑
v∈V

θv = 1.

For the game 〈{Si}i=1,m, {ψiθ(s)}i=1,m〉, where Si and ψiθ(s) are defined according to (5)-(7),
we proved the following two properties: each payoff ψiθ(s) is quasi-monotonic with respect to
si on Si; each payoff ψiθ(si, s−i), i ∈ {1, 2, . . . ,m} is graph-continuous. The first property
we derived from Theorem 4 is proven in [4] . The second property can be easily checked if for
each payoff ψiθ(si, s−i), i ∈ {1, 2, . . . ,m} we consider the function F i : S−i → Si such that

F i(s−i) = ŝi ∈ φi(s−i) for s−i ∈ S−i, i ∈ {1, 2, . . . ,m}

where
φi(s−i) = {ŝi ∈ Si| ψiθ(ŝi, s−i)) = max

si∈Si
ψiθ(si, s−i)}.

We can observe that ψiθ(F i(s−i), s−i) is continuous at s−i = s−i for an arbitrary (si, s−i) ∈ S
and consequently each payoff ψiθ(s) is graph-continuous.

Thus, based on Theorem 2, we obtain the following result.

Theorem 3 For an arbitrary cyclic game on G the corresponding game in normal form
〈{Si}i=1,m, {ψiθ(s)}i=1,m〉 possesses a Nash equilibrium s∗= (s1∗, s2∗, . . . , sm∗) ∈ S which
is a Nash equilibrium in mixed stationary strategies for the cyclic game on G with an arbitrary
starting position v0 ∈ V .

So, the optimal mixed stationary strategies of the players in a cyclic game can be found if we
determine the optimal stationary strategies of the players in the game 〈{Si}i=1,m, {ψiθ(s)}i=1,m〉
where Si and ψiθ(s) for i ∈ {1, 2, . . . ,m} are defined according to (5)-(7).

5 Conclusion and Perspectives
A Nash equilibrium in pure stationary strategies for a cyclic game with m players may not
exist. However an arbitrary cyclic game with average payoffs possesses a Nash equilibrium
in mixed stationary strategies. For an antagonistic cyclic game with an average payoff there
exists an equilibrium in pure stationary strategies. The optimal mixed stationary strategies
in a m-player cyclic game can be found using the game model from Section 4. The proposed
approach for determining mixed stationary Nash equilibria in cyclic games can be extended
for average stochastic positional games.

References
[1] Dasgupta P., Maskin E. The existence of equilibrium in discontinuous economic games.

The Review of economic studies: 53, 1-26, 1986.

[2] Ehrenfeucht A., Mycielski J. Positional strategies for mean payoff games. Int. J. of Game
Theory: 8, 109–113, 1979.

[3] Gurvich V., Karzaniv A., Khachyan L. Cyclic games and an algorithm to find minimax
mean cycles in directed graphs. USSR Comput. Math. Phis.: 28, 5-91, 1988.

[4] Lozovanu D., Pickl S. An approach for determining the optimal strategies for an average
Markov decision problem with finite state and action spaces.Bul. of ASM, ser. Math.: 1(86),
19-34, 2018.

[5] Lozovanu D., Pickl S. Nash equilibria conditions for cyclic games with p players. Electronic
Notes in Discrete Mathematics: 25, 117-124, 2006.

[6] Lozovanu D., Pickl S. Optimization of Stochastic Discrete Systems and Control on Complex
Networks. Springer Verlag, 2015.

On the One-Cop-Moves Game on Graphs

Boting Yang∗

Department of Computer Science, University of Regina, Canada
boting@uregina.ca

Abstract

In this paper, we consider one-cop-moves game, in which the cop number of a graph
G, denoted as c1(G), is the minimum number of cops required to capture a robber on G.
We give a characterization of graphs with c1(G) ≤ k. We investigate the cop number of
several classes of special graphs, including graphs with treewidth at most 2, Halin graphs,
nested-wheel graphs, and Cartesian product graphs.

Keywords : Graphs, Cops and Robbers, one-cop-moves game, lazy cops and robbers.

1 Introduction
Quilliot [10] and Nowakowski and Winkler [8] introduced Cops and Robbers independently. In
this paper, we study a variant of the Cops and Robbers game, known alternately as the one-
active-cop game [9], lazy cops and robbers game [2, 3, 12] or the one-cop-moves game [13, 5].
The one-cop-moves game is played on a graph containing a set of cops and a robber, where the
cops try to capture the robber. Both cops and the robber have perfect information, meaning
that all of them know the whole graph and everyone’s location at any moment. Initially, the
cops choose a set of vertices to occupy; then the robber chooses a vertex to occupy. At even
ticks of a clock (starting at 0), one of the cops moves to an adjacent vertex, and on odd ticks
of the clock, the robber moves to an adjacent vertex or stays at his current vertex. Cops win if
after some finite number of turns, one of the cops occupy the same vertex as the robber. This
is called a capture. The robber wins if he can evade capture indefinitely. We want to find the
minimum number of cops required to capture the robber in G. Such a number is called the
cop number of G, denoted by c1(G).

The one-cop-moves cop number has been studied for various special families of graphs such
as hypercubes [2, 9], generalized hypercubes [11], random graphs [3] and Rook’s graphs [12].
On the other hand, relatively little is known about the behaviour of the one-cop-moves cop
number of planar graphs. Aigner and Fromme [1] proved that for every connected planar graph,
its cop number in the Cops and Robbers game is at most 3. Gao and Yang [5] showed that
Aigner and Fromme’s result does not generalize to the one-cop-moves game by constructing a
connected planar graph whose structure is specifically designed for a robber to evade 3 cops
indefnitely.

2 Main Results
For a graph G with vertex set V (G) and edge set E(G), we use {u, v} to denote an edge with
endpoints u and v. The vertex set {u : {u, v} ∈ E(G)} is the neighborhood of v, denoted as
NG(v), and the vertex set NG(v) ∪ {v} is the closed neighborhood of v, denoted as NG[v]. The
distance between two vertices u, v, denoted by distG(u, v), is the length of the shortest path

∗Research supported in part by an NSERC Discovery Research Grant, Application No.: RGPIN-2013-
261290.

80

between u and v. The distance between a vertex v and a subset U of vertices in G, denoted
by distG(v, U), is defined as distG(v, U) = min{distG(v, u) : u ∈ U}.

2.1 Characterization of k-searchable graphs
If S is a collection of vertices of G in which vertices are allowed to appear more than once,
then we say that S is a multiset of vertices. For a graph G and a positive integer k, we use
VG,k to denote a multiset of vertices of G such that each vertex of G occurs exactly k times.
It is easy to see that VG,1 = V (G). The cardinality of S, denoted as |S|, is the total number
of occurrences of vertices in S. So |VG,k| = k|V (G)|. The notation of S ⊆ VG,k means that S
is a multisubset of VG,k such that each vertex of S can occur at most k times. If v ∈ S, we
use S \ {v} to denote a multisubset of S such that the number of occurrences of v is reduced
by one (if this number is reduced to 0, then v is removed from the multisubset). If v ∈ V (G),
we use S ∪ {v} to denote a multisuperset of S such that the number of occurrences of v is
increased by one.

Let G be a finite connected graph and k be a positive integer. We define a relation R0
G,k

by letting R0
G,k = {(u, S) : u ∈ S ⊆ VG,k and |S| = k}. Assume that the relation Ri

G,k has
been defined for each integer i ∈ [0, t]. Define Rt+1

G,k by saying (u, S) ∈ Rt+1
G,k , where u ∈ V (G),

S ⊆ VG,k and |S| = k, if and only if for every u′ ∈ N [u], there are vertices v ∈ S and v′ ∈ N [v]
such that (u′, S′) ∈ Ri

G,k for some i ∈ [0, t], where S′ = (S \ {v})∪ {v′}. The relation Ri
G,k has

the following property.

Lemma 1 For any i ≥ 0, Ri
G,k ⊆ Ri+1

G,k.

From the definition of the relation Ri
G,k, we know that whenever we reach a t such that

Rt
G,k = Rt−1

G,k , then Ri
G,k = Rt−1

G,k for all i ≥ t. From Lemma 1, there must be a smallest t for
which Rt

G,k = Rt−1
G,k . We then define the relation RG,k to be Rt−1

G,k . Since the graph G is finite
and k ≤ |V (G)|, we know that RG,k has only finitely many pairs (u, S), where u ∈ V (G),
S ⊆ VG,k and |S| = k.

The relation RG,k is built recursively starting with the relation R0
G,k as the initial step. In

forming R1
G,k, we first include R0

G,k. Consider a pair (u, S) with u 6∈ S. In order for (u, S) to
be in R1

G,k, for every vertex u′ ∈ N [u], we must find a vertex v ∈ S and v′ ∈ N [v] such that
(u′, S′) ∈ R0

G,k, where S′ = (S \ {v}) ∪ {v′}. However, the latter relation forces u′ ∈ S′. Thus,
every vertex in N [u] must be in N [S]. In particular, u ∈ N [S]. Hence, (u, S) ∈ R1

G,k implies
distG(u, S) ≤ 1. In general, we have the following property.

Lemma 2 For any i ≥ 0, if (u, S) ∈ Ri
G,k, then distG(u, S) ≤ i.

Note that the relation RG,k is a subset of the Cartesian product VG,1 × {S : S ⊆ VG,k

and |S| = k}. When the equality holds, the relation RG,k is called complete. A graph G is
k-searchable if c1(G) ≤ k, which is an analog of k-copwin in the Cops and Robbers game [6, 4].

Theorem 1 For a connected graph G and a positive integer k, G is k-searchable if and only
if the relation RG,k is complete.

2.2 Graphs with treewidth at most 2
The class of two-terminal series-parallel graphs are defined inductively as follows: (1) The
graph with the single edge {s, t} is a two-terminal series-parallel graph with terminals {s, t}.
(2) If G1 is a two-terminal series-parallel graph with terminals {s1, t1}, and G2 is a two-terminal
series-parallel graph with terminals {s2, t2}, then either identifying t1 = s2 to create a new two-
terminal series-parallel graph with terminals {s1, t2}, or identifying s = s1 = s2 and t = t1 = t2
to create a new two-terminal series-parallel graph with terminals {s, t}.

Theorem 2 If G is a two-terminal series-parallel graph, then c1(G) ≤ 2.

Given a graph G, a tree decomposition of G is a pair (T, W) with a tree T = (I, F), I =
{1, 2, . . . , m}, and a family of non-empty subsets W = {Wi ⊆ V : i = 1, 2, . . . , m}, such that
(1)

⋃m
i=1 Wi = V (G), (2) for each edge {u, v} ∈ E(G), there is an i ∈ I with {u, v} ⊆ Wi, and

(3) for all i, j, k ∈ I, if j is on the path from i to k in T , then Wi
⋂

Wk ⊆ Wj .
The width of a tree decomposition (T, W) is max{|Wi| − 1 : 1 ≤ i ≤ m}. The treewidth of G

is the minimum width over all tree decompositions of G.

Theorem 3 Let G be a connected graph with treewidth at most 2. Then c1(G) ≤ 2.

Corollary 1 For a connected graph G with treewidth 2, if G contains an induced cycle of
length at least 4, then c1(G) = 2.

A graph is outerplanar if it has a plane embedding with all vertices on the exterior face.

Corollary 2 For any connected outerplanar graph G, c1(G) ≤ 2.

2.3 Halin graphs

A Halin graph is a plane graph constructed from a plane embedding of a tree with at least 4
vertices and with no vertices of degree 2, by connecting all leaves with a cycle in the natural
cyclic order defined by the embedding of the tree.

Theorem 4 For a Halin graph H, c1(H) ≤ 3.

3 Nested-wheel graphs
We say that a cop protects a subgraph H of G if for any sequence of robber moves leading to
the robber moving to a vertex of H, the robber is immediately captured by the cop.

Let C be a cycle in a graph G such that for any vertex v of G, there is a unique vertex
fv of C satisfying distG(v, C) = distG(v, fv). The vertex fv is called the foot of v on C. If
distG(v, u) ≥ distC(fv, u), for any pair of vertices v ∈ V (G), u ∈ V (C), then we say that C is
a tight cycle of G.

Lemma 3 In the one-cop-moves game on a graph G with at least two cops, if C is a tight
cycle of G, then after a finite number of turns, a single cop can protect C.

Definition 1 Let G be a connected planar graph which has a plane embedding that contains
a collection of vertex-disjoint nested cycles {C1, . . . , Ck} such that ∪k

i=1V (Ci) = V (G), where
C1 may be a single vertex. If for each i ∈ {1, . . . , k − 1}, Ci is tight in the subgraph induced
by ∪k

j=iV (Cj), then G is called a nested-wheel graph.

Note that cylinder grids are nested-wheel graphs.

Theorem 5 If G is a nested-wheel graph, then c1(G) ≤ 2.

Since cylinder grids are nested-wheel graphs, by Theorem 5, we have c1(Cm�Pn) = 2 for
m ≥ 3 and n ≥ 2, where Pn is a path with n vertices and Cm is a cycle with m vertices. If
we replace each cycle Ci in Definition 1 by a path, Theorem 5 still holds. So it follows that
c1(Pm�Pn) = 2 for m ≥ 2 and n ≥ 2.

3.1 Cartesian product graphs
Let G1 and G2 be graphs. The Cartesian product of G1 and G2, denoted G1�G2, has vertex
set V (G1) × V (G2), where two vertices (u1, u2) and (v1, v2) are adjacent if and only if there
exists j, 1 ≤ j ≤ 2, such that {uj , vj} ∈ E(Gj) and ui = vi for i 6= j.

Maamoun and Meyiel [7] studied the cop number of Cartesian products of trees in the Cops
and Robbers game. The next result directly follows from Lemma 1 in [7].

Lemma 4 Let T1 and T2 be two trees, each of which contains at least one edge. Then
c1(T1�T2) = 2.

We now consider the Cartesian product of a tree T and a cycle C. Note that each subgraph
P�C is a nested-wheel graph, where P is a path in T . We can use the strategy described in
the proof of Theorem 5 to show the following result.

Theorem 6 Let T be a tree with at least two vertices and C be a cycle with at least three
vertices. Then c1(T�C) = 2.

References
[1] M. Aigner, M. Fromme, A game of cops and robbers, Discrete Applied Mathematics, 8:1–12,

1984.

[2] D. Bal, A. Bonato, W. B. Kinnersley, P. Pralat. Lazy cops and robbers on hypercubes.
Combinatorics Probability and Computing 24(6):829–837, 2015.

[3] D. Bal, A. Bonato, W. B. Kinnersley, P. Pralat. Lazy cops and robbers played on random
graphs and graphs on surfaces. International Journal of Combinatorics 7(4):627–642, 2016.

[4] N.E. Clarke, G. MacGillivray, Characterizations of k-copwin graphs, Discrete Mathematics,
312:1421–1425, 2012.

[5] Z. Gao, B. Yang, The Cop Number of the One-Cop-Moves Game on Planar Graphs, Pro-
ceedings of the 11th International Conference on Combinatorial Optimization and Appli-
cations (COCOA’17), Lecture Notes in Computer Science, Vol. 10628, Springer, Berlin,
pp.199–213, 2017.

[6] G. Hahn, G. MacGillivray, A note on k-cop, l-robber games on graphs, Discrete Mathe-
matics 306:2492–2497, 2006.

[7] M. Maamoun, H. Meyniel, On a game of policemen and robber, Discrete Applied Mathe-
matics, 17: 307–309, 1987.

[8] R.J. Nowakowski, P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Mathematics,
43:235–239, 1983.

[9] D. Offner, K. Okajian. Variations of Cops and Robber on the hypercube. Australasian
Journal of Combinatorics 59(2):229–250, 2014.

[10] A. Quilliot, Jeux et pointes fixes sur les graphes, Thèse de 3ème cycle, Université de Paris
VI, 131–145, 1978.

[11] K. A. Sim, T. S. Tan, K. B. Wong. Lazy cops and robbers on generalized hypercubes.
Discrete Mathematics 340(2017):1693–1704.

[12] B. W. Sullivan, N. Townsend, M. Werzanski. The 3×3 rooks graph is the unique smallest
graph with lazy cop number 3. Preprint. https://arxiv.org/abs/1606.08485.

[13] B. Yang, W. Hamilton. The optimal capture time of the one-cop-moves game. Theoretical
Computer Science 588(2015):96–113.

Attacking the Clique Number of a Graph

Fabio Furini1, Ivana Ljubić2, Sébastien Martin3, Pablo San Segundo4

1 PSL, Université Paris-Dauphine, Paris, France,
fabio.furini@dauphine.fr

2 ESSEC Business School, Cergy-Pontoise, France
ivana.ljubic@essec.edu

3 LCOMS, Université de Lorraine, Metz, France
sebastien.martin@univ-lorraine.fr

4 UPM, Universidad Politécnica de Madrid, Madrid, Spain,
pablo.sansegundo@upm.es

Abstract

We study the two player zero-sum Stackelberg game in which the leader interdicts
(removes) a limited number of vertices from the graph, and the follower searches for
the maximum clique in the interdicted graph. The goal of the leader is to derive an
interdiction policy which will result in the worst possible outcome for the follower.

Keywords : Network Interdiction, Maximum Clique, Social Network Analysis.

1 Introduction and Problem Definition
Interdiction games on networks are a special family of two-player zero-sum Stackelberg games,
in which the first player (a leader) decides which vertices or edges to interdict without violating
a given interdiction budget, and after that the second player (a follower) solves a network
optimization problem (e.g., the maximum clique, the shortest-path, the maximum flow) on
the remaining network. The goal of the leader is to choose an interdiction policy that will
guarantee the worst possible outcome for the follower. In this article we study the interdiction
game of the maximum clique in a network.

In the context of game theory, this problem can be seen as the two-player Clique Interdiction
Game (CIG), in which the leader has a limited budget of vertices to interdict in a network and
the follower finds the largest clique in the remaining network.

Definition 1 (The Maximum Clique Interdiction Game (CIG)) Given a graph G and
an interdiction budget k (k ≥ 1), the maximum clique interdiction game is to find a subset of
at most k vertices to delete from G so that the size of the maximum clique in the remaining
graph is minimized. The associated set of interdicted vertices is called the optimal interdiction
policy.

All the material presented here are not intended to appear in any publication and they refer
to a submitted paper with preprints here: [1].

References
[1] F. Furini, I. Ljubic, S. Martin, and P. San Segundo. The maximum clique interdiction

game. Optimization Online, 2018.

84

Multimodal transportation plan adjustment with passengers
behaviour constraints

Pierre-Olivier Bauguion1 Claudia D’Ambrosio2

1 IRT SystemX, 8 Avenue de la Vauve, 91120 Palaiseau, France
pierre-olivier.bauguion@irt-systemx.fr

2 CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France dambrosio@lix.polytechnique.fr

Keywords : Transportation optimization, network flows, passengers behavior, supervision.

1 Introduction
For the last decades, the growth of population in high density areas pressed the need to enhance
mobility services. Nowadays, most of the biggest cities have settled public transportation in-
frastructures to fluidize traffic and ease local mobility. Nevertheless, these infrastructures are
likely to meet their saturation limits during rush hours, making the management of such a
system a crucial point. This led to consider Transportation Network Optimization Problems
(TNOP).

One can divide TNOPs into two main parts, each part corresponding to a different aspect
of the problem.

1.1 Network flows and user equilibrium
It is usually more convenient to model passengers as flows. The practical interest of flows lies
in its ability to aggregate each individual while still capturing the movements on the network.
Network flows have been introduced long ago (see, e.g.,[4], enhanced later by [2]). Since then,
these models have been generalized for multiple “commodities” [10] and grouped under the
label of “multi-commodity” flow models. A lot of optimization problems aim at deciding
the best routing solution of flows –by minimizing a cost function for instance (see e.g. [1]),
whereas in transportation models these flows are used to describe a user equilibrium, namely
a Wardrop’s equilibrium. [11] sums up equilibrium models by describing its two competitive
mechanisms: a “selfish” disutility minimization for each individual on one hand (the objective),
and the increase of disutility generated by confronting the strategies of those individuals on
the other hand (the constraints). Hence, he shows how to reformulate it with mathematical
programming. This will become the base principle from which every other passengers behaviour
model will derive.

1.2 Network design and Bi-level Programming
Whereas network flows problems consists in using the network, the network design problem
consists in deciding how the network should be. The latter can be the case when it comes to
choose whether we want to install a network component or not, considering a cost function
(see e.g. [5]). More generally the impact of such decisions (in terms of cost and/or feasibility)
is not always easily computed, which is typically the case in TNOPs. It is typically the case
in TNOPs, where we have to solve a network flows problem (as [11]) to know what are the
consequences in our transportation plan decisions. These two embedded problems (network
flows problem and network design problem) can be seen as hierarchical in the sense that the

85

decisions of the transportation plan will set the available itineraries of passengers, but the
other way around is not true. From the game theory point of view, this can be seen as
Stackelberg competition, as the transport operator decides the transport plan first (and hence
is the so-called “leader”), and given that decision, the passengers will decide how to react
(they represent the so-called “followers”). However, the leader have insights about the way the
follower will react to developp a relevant strategy. To model it as an optimization problem,
Bi-level Programming is often used. Bi-level Programming means that two level of decisions
exist: one that becomes parameters for the second. [9] proposed a large survey of different
transportation Bi-level models and algorithm techniques to solve them, completed later by [3].
[8] then [7] tackles the stochastic versions of user equilibrium, especially for road networks.

1.3 Multimodal transportation plan adjustment with passengers behaviour
constraints

With the rise of digital technology and telecommunications, transportation operators can si-
multaneously be closer to the real time state of transportation infrastructure and have larger
vision of the whole (even multimodal) transportation system. This allows transport operators
to react at a disturbance dynamically and disseminate quickly a recourse strategy to face it off.
This is what we call multimodal supervision. From this point of view, we propose to address a
problem of transportation plan readjustment. Readjustment differs from classical optimization
by four main points. Firstly, the problem has a variable spatial and temporal perimeter, as we
do not necessarily know in advance how long and how far the issue will propagate along the
network(s). In other words, the space and time needed to go back to a nominal state is un-
known. Secondly, for the previous reason (propagation avoidance), the adjustment model must
be as accurate as possible during the horizon it is deployed. It includes passengers strategies
and problems caused by their overloads (delays, door blocking...). This can induce interde-
pendency between different transportation systems. Thus, the multimodal network must be
considered. Thirdly, the optimization horizon starts with a given infrastructure state. This
includes the positions of vehicles and passengers, and whole infrastructure state. Finally, ad-
justment implies that the solution is a differential plan from the nominal one. In terms of
optimizing process, it can induce a set of specific constraints related to the distance with the
proposed plan (adjustment) and the nominal one.

Moreover, as the situation is extremely dynamical, to ensure the strategy to be deployed at
the time it is provided, the adjustment must be made in a short time-window. This problem can
be formalized as a particular TNOP and modelled using (Time-Expanded or Time-Dependent)
graphs (see e.g. [6, 12]). We discuss here a first mathematical formulation to tackle this problem
in one single Mixed Integer Linear Program, and future methods to achieve these operational
objectives.

References
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms, and

applications. Prentice Hall Inc., 1993.

[2] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM, 19(2):248–264, 1972.

[3] R. Z. Farahani, E. Miandoabchi, W. Y. Szeto, and H. Rashidi. A review of urban
transportation network design problems. European Journal of Operational Research,
229(2):281–302, 2013.

[4] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

[5] E. Gourdin, M. Labbé, and H. Yaman. Telecommunication and location. In Z. Drezner
and H.W. Hamacher, editors, Facility Location: Applications and Theory, pages 275–305.
Springer, 2002.

[6] C. Liebchen and L. Peeters. Some practical aspects of periodic timetabling. In Opera-
tions Research Proceedings 2001, pages 25–32, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[7] H. Liu and D. Z. W. Wang. Global optimization method for network design problem with
stochastic user equilibrium. Transportation Research Part B: Methodological, 72:20–39,
2015.

[8] Q. Meng, D. H. Lee, H. Yang, and H. J. Huang. Transportation network optimization
problems with stochastic user equilibrium constraints. Transportation Research Record:
Journal of the Transportation Research Board, 1882:113–119, 2004.

[9] A. Migdalas. Bilevel programming in traffic planning: Models, methods and challenge.
Journal of Global Optimization, 7(4):381–405, 1995.

[10] F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. Journal of the
ACM, 37(2):318–334, 1990.

[11] Y. Sheffi. Urban Transportation networks: Equilibrium Analysis with Mathematical Pro-
gramming Methods. Prentice Hall Inc., 1985.

[12] M. Skutella. An Introduction to Network Flows over Time, pages 451–482. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

Dynamic programming for the Electric Vehicle Orienteering
Problem with multiple technologies

Dario Bezzi1, Alberto Ceselli1, Giovanni Righini1

Dept. of Computer Science, University of Milan, Italy
dario.bezzi,alberto.ceselli,giovanni.righini@unimi.it

Abstract

We describe a bi-directional dynamic programming algorithm to solve the Electric
Vechile Orienteering Problem, arising as a pricing sub-problem in column generation
algorithms for the Electric VRP with multiple recharge technologies.

Keywords : Combinatorial optimization, dynamic programming, shortest path.

1 Problem description
The Electric Vehicle Routing Problem (EVRP) has been introduced by Erdogan and Miller-
Hooks under the name of Green Vehicle Routing Problem in [1]. Several variations have been
studied, including problem with time windows, partial recharges, multiple technologies and
both exact and heuristic algorithms have been developed. Examples of heuristic algorithms for
the EVRP are given in Felipe et al. [2], Schneider et al. [3] and Koc and Karaoglan [4]. More
references on VRP variants involving the use of electric vehicles can be found in a recent and
extensive survey by Pelletier et al. [5].

The computation of exact solutions is more challenging than for the classical VRP, because
of the additional subproblem of deciding the optimal recharges at some points along the routes.
An additional source of complexity is the presence of different recharge technologies, each one
characterized by a unit cost and a recharge speed. Schiffer and Walther [6] recently considered a
similar problem in the context of location-routing. Sweda et al. [7] studied the optimal recharge
policy when the route is given. As with many other variations of the VRP, the most common
choice to design effective exact optimization algorithms is to rely upon branch-and-cut-and-
price, starting from a reformulation of the routing problem as a set covering or set partitioning
problem, where each column represents the duty of a vehicle. For instance, Desaulniers et al.
[8] developed a branch-and-price-and-cut algorithm for the exact solution of the EVRP with
time windows. In this study we investigate the Electric Vehicle Orienteering Problem, arising
as a pricing sub-problem when the EVRP is solved by branch-and-price and in particular we
consider a dynamic programming algorithm for the case with multiple technologies.

2 Formulation
Let G = (N ∪ R,E) be a given weighted undirected graph whose vertex set is the union
of a set N of customers and a set R of recharge stations. A distinguished station in R is
the depot, numbered 0. A fleet of V identical vehicles, located at the depot, must visit the
customers. All customers in N must be visited by a single vehicle; split delivery is not allowed.
Each customer i ∈ N is characterized by a demand and each vehicle has a capacity as in the
classical Capacitated VRP. Vehicles are equipped with batteries of given capacity B. Recharge
stations can be visited at any time; multiple visits to them is allowed and partial recharge is also
allowed. We consider a set of different technologies for battery recharge. For each technology we

88

assume a given recharge speed. When visiting a station, only one of the available technologies
can be used.

All vertices i ∈ R ∪N are also characterized by a service time, representing the time taken
by pick-up/delivery operations for i ∈ N or a fixed time to be spent to set-up the recharge
for i ∈ R. The distance de and the travel time are known for each edge e ∈ E. The energy
consumption is assumed to be proportional to the distance through a given coefficient π. The
duration of each route (including service time, travel time and recharge time) is required not
to exceed a given limit.

A feasible route must comply with capacity and duration constraints. Furthermore the level
of the battery charge must be kept between 0 and B at any time. A set of feasible routes
is a feasible solution if all customers are visited once and no more than V vehicles are used.
The objective to be optimized is given by the overall recharge cost, consisting of a fixed cost
and a variable cost. Since batteries allow for a limited number of recharge cycles during their
operational life, we associate a fixed cost f with each recharge operation. The variable cost
associated with a recharge operation at any station i ∈ R is proportional to the amount of
energy recharged, but it also depends on the recharge technology.

We indicate with Ω the set of all feasible routes. We associate a binary variable xr with each
feasible route r ∈ Ω: Binary coefficients yir take value 1 if and only if customer i ∈ N is visited
along route r ∈ Ω. We indicate by cr the cost of each route r ∈ Ω. With these definitions and
notation we obtain the following ILP model (master problem):

minimize
∑

r∈Ω
crxr (1)

s.t.
∑

r∈Ω
yirxr ≥ 1 ∀i ∈ N (2)

∑

r∈Ω
xr ≤ V (3)

xr ∈ {0, 1} ∀r ∈ Ω. (4)

At each node of a branch-and-bound tree the linear relaxation of the master problem is solved
by column generation. We indicate by λi the non-negative dual variables vector corresponding
to the covering constraints (2) and by µ the scalar non-negative dual variable corresponding
to constraints (3) restated in ≥ form. With this notation, the expression of the reduced cost
of a generic column r is

ĉr = cr −
∑

i∈N
λiyir + µ.

3 The pricing sub-problem
The pricing problem, whose ILP formulation is not reported here for brevity, is a variation of
the Orienteering Problem and it requires to find a minimum cost closed walk from the depot
to the depot, not visiting any customer vertex more than once and not consuming more than
a given amount of available resources (capacity, time and energy). Edges between stations can
be traversed more than once. This problem is also a variation of the Resource Constrained
Elementary Shortest Path Problem, in which the elementary path constraints are imposed only
on a subset of vertices, the resources are partly discrete and partly continuous and one of the
resources (energy) is renewable.

3.1 The algorithm
We have devised an exact pricing algorithm based on dynamic programming, where labels are
associated with paths emanating from the depot and have the following form:

L = (u, S, φ, t, ĉ,∆,∆, δ, δ),

where u is the endpoint of the path different from the depot, S is the set of customer vertices
visited along the path, t is the minimum time required to traverse the path, ĉ is the minimum
reduced cost of the path, ∆ and ∆ (scalar values) are the minimum and the maximum amount
of residual energy that can exist in the battery when the vehicle reaches u from the depot, δ
and δ (vectors with one component for each technology) are the lower and upper bounds on
the total amount recharged with each technology along the path. For brevity, we indicate by
P the polytope defined by the lower and upper bounds. The information conveyed by t and ĉ
is indicated for convenience but it can be obtained from the knowledge of P .

Relying upon these definitions we developed and tested a dynamic programming algorithm
to price out columns. Besides fathoming dominated states, the algorithm also relies on accel-
eration techniques such as bounding and state space relaxation.

In our talk we will present computational results obtained on benchmark instances from the
literature on the pricing problem for the EVRP.

References
[1] S. Erdogan and E. Miller-Hooks, A Green Vehicle Routing Problem, Transportation Re-

search Part E 48, 100-114, 2012.

[2] Á. Felipe, M.T. Ortuño, G. Righini and G. Tirado, A heuristic approach for the green
vehicle routing problem with multiple technologies and partial recharges, Transportation
Research Part E 71, 111-128, 2014.

[3] M. Schneider, A. Stenger and D. Goeke, The Electric Vehicle-Routing Problem with Time
Windows and Recharging Stations Transportation Science 48(4), 500-520, 2014.

[4] C. Koc and I. Karaoglan, The green vehicle routing problem: A heuristic based exact
solution approach, Applied Soft Computing 39, 154-164, 2016.

[5] S. Pelletier, O. Jabali and G. Laporte, Goods distribution with electric vehicles: review and
research perspectives, Transportation Science 50(1), 3-22, 2016.

[6] M. Schiffer and G. Walther, The electric location routing problem with time windows and
partial recharging, European Journal of Operational Research 260(3), 995-1013, 2017.

[7] T.M. Sweda, I.S. Dolinskaya and D. Klabjan, Optimal Recharging Policies for Electric
Vehicles, Transportation Science 51(2), 457-479, 2017.

[8] G. Desaulniers, F. Errico, S. Irnich and M. Schneider, Exact Algorithms for Electric Vehicle-
Routing Problems with Time Windows, Operations Research 64(6), 1388-1405, 2016.

A Green Energy Grid Coupling Problem (GEGCP)

Andreas Schwenk1,2∗, Hubert Randerath1,2

1 Institute of Telecommunications Technology, TH Köln, Germany
2 Institute of Computer Science, University of Cologne, Germany

andreas.schwenk@th-koeln.de, hubert.randerath@th-koeln.de

Abstract

We address the modeling and optimization of the coupling of energy sectors. Given
a network infrastructure in form of a graph G = (V,E) that consists of a priori un-
connected components, the objective is to synthesize an optimal set of parameterized
energy converters and energy storages. This enables cross–sectoral interconnection and
facilitates to buffer otherwise wasted volatile energy from renewable sources. Since the
underlying problem is polynomially reducible to the Facility Location Problem (FLP), it
is NP–hard [3]. We describe the modeling of the system and discuss approximations and
context sensitive heuristics in the talk. We target to allow the computation of large–scale
(real–world) problem instances in reasonable time.

Keywords : Modeling, Mathematical Programming, Energy Management.

1 Introduction
Conventionally, each energy sector (e.g. power, gas, heat, transport) operates independently.
Produced energy is fed in, then transported via an energy network infrastructure of the same
energy type and finally consumed. By the coupling of sectors, one may benefit from the equi-
libration and synergy effects between multiple networks. Energy of type a from regenerative
sources that is not demanded in its original form at production time, can be converted into
energy type b that has a higher demand probability. For example, power–to–gas (P2G) convert-
ers transform electrical power, e.g. from wind energy into gas fuel. The additional integration
of energy storages into the infrastructure allows to buffer stochastic supplies. Noteworthy,
the sole implementation of storages is not sufficient, since e.g. batteries imply significantly
higher investment costs per energy unit than heat-storages. Integrated energy is one of the key
technologies to progress the energy transition (Energiewende) [2].

Given an initial infrastructure, we introduce the Green Energy Grid Coupling Problem
(GEGCP) to address the optimal integration of energy conversion and storage devices, such
that both investment costs and greenhouse gas emissions are minimized, i.e. the loss of energy
of regenerative sources is kept as low as feasible. Under the assumption that a sufficient num-
ber of network nodes of different energy sectors are geometrically close, a dedicated synthesis
of transport edges can be omitted. In this work, we restrict to pure device synthesis.

2 Modeling
For simplicity, let [n] declare the set {1, 2, . . . , n} for n ∈ N. An ordered set on M with key
k is denoted by (M,≤k), i.e. with mi ∈ M we have: k(m1) ≤ k(m2) ≤ A shortest path
problem in a graph G from vertex vi ∈ V (G) to vj ∈ V (G), with respect to edge weight w, is
abbreviated by ρ := SPPw(vi, vj). Then ρ is the edge sequence (e1, e2, . . .) from vi to vj .

∗Funded by the European Regional Development Fund (EFRE-0800106)

91

We define a set of (initially independent) energy sectors by [ξ]. Let Gk = (Vk, Ek) be an
undirected and simple graph that describes the network of energy sector k ∈ ξ. We may assume
the following graph properties for every instance k: Gk is always planar. The average degree
d(Gk) is approximatively 2. The degree sequence is bounded by minimum degree δ(Gk) = 1
and maximum degree ∆(Gk) ≈ 20.

Independent Networks Let Vk be the finite set of vertices of Gk and let Ti ∈ {‘n‘, ‘p’, ‘c’} ∈
N enumerate the type of vertex vi ∈ Vk. The type T is either a passive connection node ‘n’ or
an actor ∈ {‘p’, ‘c’}, that distinguishes between producers ‘p’ and consumers ‘c’. A producer
node vi ∈ Vk has an environmental factor αi ∈ [0, 1] ∈ R that evaluates the attractiveness
of the producer for the environment: Green and volatile sources have a higher value than
conservative sources.

The load (or demand resp.) of a node vi ∈ Vk is described by a time series τi := {xt}Tt=1.
We index the k-th sample of τi by τ (k)

i . For homogeneity, all samples of non–actors are equal
to zero. Supply is indicated by a positive sign and demand is indicated by a negative sign. Let
pi = (x, y) ⊆ R2 be the geographic coordinates of vertex vi.

The set of edges is defined by Ek(Gk) = {(vi, vj) | vi ∈ V (Gk) ∧ vj ∈ V (Gk)}. An edge
represents a physically connection (an energy grind line) between two vertices. Let lij =
‖pi− pj‖2 be the length, cij ∈ R+

0 the capacity and ηij the energy conversion factor of an edge
(vi, vj) ∈ E(Gk). The conversion factor ηij unifies (a) the losses of physical energy lines and
(b) interposed transformers, if applicable. Let k : Rn → R be a cost function.

The actual implementation of costs for vertices and edges (as seen later) is denoted by ki
for vi ∈ Vk and kij for eij ∈ Ek respectively. Costs ki (resp. kij) are set to 0 for all nodes and
edges of the initial input infrastructure. We include costs of synthesized devices within the
optimizing process.

Network Approximation The following proposition holds for energy graph instances.

Proposition 1 If the transmission velocity in Gk is negligible1, then G′k := fw(MST (Gk)) ≈
Gk, with MST (Gk) the maximum spanning tree of Gk. If each cycle of Gk has semantics of
failure safety2, then fw : G → G is the identity function. Otherwise, fw adjusts the edge
capacities cij.

In the adjusted graph G′k, the energy flows from source to sink trivially and serves as prelimi-
nary work for a more simple formulation of energy flow constraints in section 2.1.

Composite Networks We define a coupled energy network G :=
⋃
kGk∈ξ that unifies all

sectors. Energy is consistently expressed in watt hours [Wh] for all sectors, such that energy
conversion does not require to change the unit. The inclusion of devices is described in the next
paragraphs. Note that the optimal number of storages and converters is initially unknown.

The instantiation of a storage device that buffers fluctuating energy is implemented by ap-
pending a vertex vs and an edge es (s ∈ N) to G, i.e. G := (V (G) ∪ vs, E(G) ∪ es). The
physical storage device itself is represented by vs and the type of vs is Ts := ‘s’. We declare
the device–type Di,s ∈ Z. The maximum charge is denoted by cs,m. The cost function ks is
defined by fk,s(cs,m, Ts) and depends on the former attributes. Let S = (si) ∈ Z|G|2 be a vector
that indicates the current instantiation of storage devices. Each si ∈ S expresses whether an
energy storage is instantiated close to vi ∈ G. For simpler index notation, we assume s := i,
as long as the uniqueness of indexing is maintained. The created edge es = (vi, vs) has energy
loss ηi,s and a capacity φi,sm = f(cs, Ts) that symmetrically bounds the maximum input and
output flow. An attractiveness–factor βi,s := fβ(φs,m, Ts, vi) : D → [0, 1] ∈ R estimates the a
priori qualification of vi to be a candidate for constructing a nearby storage of given properties.

1E.g. valid for energy sector power, since problem instances have a radius of only several kilometers.
2So called (N-1) considerations in the context of energy networks.

Greenhouse gas emissions are denoted by γi := fγ(φs, Ts) : D → R+ and correlate with the
chosen storage type.

The synthesis of energy converters implies the creation of an additional and directed3 edge
ec := eij = {(vi, vj) | vi ∈ Gk ∧ vj ∈ Gl ∧ k 6= l} for each converter. As a constraint, the
geometric distance ‖vi− vj‖2 of any two select vertices vi and vj must be less than constant Φ.
Otherwise, it would be required to extend the physical energy grid. We append ec with type
Tc := ‘v’ to G, i.e. G := (V (G), E(G)∪{eij}). Let C = (cij) ∈ Z|G|×|G|2 be an adjacency matrix
that indicates the current instantiation of converter devices. The upper bound for the number
of actual converters is the number of edges of the ξ-partite graph K|G1|,|G2|,...,|Gξ|. A converter
device is exclusively described by eij . It is attributed by a cost function kij,v(cij , Dji,v), a
linear energy conversion loss ηij,v (with ηij,v 6= ηji,v = 0), involves a construction attractive-
ness function βij,v(cij , Dij,v, vi) and greenhouse gas emissions γij,v(cij , Dij,v). The definition of
properties is the same as for storages, apart from naming conventions. In case of compound
conversion devices, i.e. n ∈ N input sources are converted to one output medium, the edges of
a complete bipartite graph K1,n are added. All other constraints and properties hold. Only
those vertices are selected that have a valid type combination, persisted in a device property
database.

Previous work in [4] describes a domain–specific language that introduces syntactical and
semantical structures to simplify modeling aspects.

2.1 Optimization Problem
The following equations define the optimization problem for GEGCP. The class is of Mixed-
Integer-Linear-Programming (MINLP)4. The objective function (2) minimizes fi from equation
(1). Our first objective f1 minimizes the construction costs for all storages and converters.
The sum of greenhouse gas emissions is calculated in f2. The sum of wasted energy w in form
of unused energy from renewable sources is defined in f3, with eq(a, b) the binary predicate
equals(a, b) := (a == b).

f1 =
∑

vi∈V
ki,s +

∑

eij∈E
kij,v, f2 =

∑

vi∈V
γi,s +

∑

eij∈E
γij,v, f3 =

∑

{vi∈V |eq(Ti,‘p‘)}
wi (1)

For multicriteria a priori methods (e.g. linear scalarization), all functions fi can be monetized;
e.g. via current energy marked prices and, if applicable, time factors.

Note that we omit the redeclaration of known variables, functions and assignments for the
constraints in equations (3) to (16). We define 0 ⇔ False, 1 ⇔ True and Ṽt := {vi ∈
V | eq(Ti, t)}. For better understanding, we partly use an algorithmic notation (indicated by
assignments of the form “:=”). Equations (3) to (12) ensure that all consumers are satisfied
at any time. We iterate over all producers by priority α (and then over all [partly] charged
storages ordered by β), so that renewable producers have the highest priority distributing
energy. Energy flows from producers ‘p’ (resp. ‘s’) to consumers ‘c’ via a shortest path that
correlates with η. To simplify the temporal aspects and considerations of energy storages, we
homogenize the device representation: a virtual current fill–level `i is defined for each vertex
vi. The level describes the current supply, demand or storage. Potential equalization tends
to equilibrium. For a better overview, we omit listing the constraint that storages behave like
consumers with a demand of φs.m−`s. Condition (13) ensures, that converters are only created,
if two sectors are geometrically close to each other. Inequality (14) fulfills a given trade–off
factor ψ that ensures that a given percentage of all consumed energy is supplied by renewable
sources. Equations (15) and (16) bound the converter throughput and the maximum storage
capacity, respectively.

Remark: one should add a tolerance to the determined storage capacity, outside of mathe-
matical programming.

3Gen. we abstract edges to be undirected, since e.g. consumers can also feed photovol. energy into the grid.
4We address Mixed-Int.-Quadratic-Programming, if all devices and cost functions are def. restrictively.

min
[
f1, f2, f3

]
(2)

s.t. ∀vi∈V : wi := 0; % := 0, σ := 0 (3)
∀[t] : (4)

∀vi∈V : `i := τ
(t)
i (5)

∀
pi∈
(

(Ṽ‘p’ , ≥α) ∪ (Ṽ‘s’ , ≥β)
) : (6)

∀cj∈ (Ṽ‘c’ , ≤SPP1−η(pi,cj)) : (7)

η̃ := Π[e(vi,vj)∈SPP1−η(pi,cj)] ηij (8)
∆` := min(`pi ,−`cj/η̃) (9)
`pi := `pi −∆` `cj := `cj + ∆` · η̃ (10)
% := %+ αi∆` σ := σ + (1− αi)∆` (11)

wi := wi + fwα(αi, `pi) (12)

∀i∈[n(G)],j∈[n(G)] : Cij ≤ 1−
[
‖vi − vj‖2 ≤ Φ ∧ vi ∈ Gl ∧ vj ∈ Gm ∧ l 6= m

]
(13)

% ≤ ψ · σ, ψ ∈ [0, 1] ∈ R (14)
∀{vi∈V,vj∈V |Cij} : fc,min(Dij,v) ≤ cij,v ≤ fc,max(Dij,v) (15)
∀{vi∈V |Si} : fφ,min(Di,s) ≤ φi,m ≤ fφ,max(Di,s) (16)

3 Conclusion and Perspectives
Since the number of vertices per real–world energy sector is in the range [103, 104] for (sub)urban
scenarios, exact algorithms are too expensive. NP–completeness of similar problems is proven in
[1]. In the talk, we will present a label correcting algorithm and heuristics as an approximation
approach and also define the class of approximation (APX, PTAS/PAS, FPTAS).

An extension to the problem definition would be to also consider an energy grid expansion
(adding edges for power lines), to bridge long distances. It is also conceivable to interconnect
single storages to multiple vertices vi ∈ V .

Acknowledgment
This work is part of the research project ES–

FLEX–INFRA; funded by the European Re-
gional Development Fund (EFRE–0800106).

References
[1] Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and

covering in the plane are np-complete. Information processing letters, 12(3):133–137, 1981.

[2] Brian Vad Mathiesen, Henrik Lund, David Connolly, Henrik Wenzel, Poul Alberg Øster-
gaard, Bernd Möller, Steffen Nielsen, Iva Ridjan, Peter Karnøe, Karl Sperling, et al. Smart
energy systems for coherent 100% renewable energy and transport solutions. Applied En-
ergy, 145:139–154, 2015.

[3] Sanjay Melkote and Mark S Daskin. Capacitated facility location/network design problems.
European journal of operational research, 129(3):481–495, 2001.

[4] Andreas Schwenk. Cempl: A new domain-specific language for rapid modeling of cross-
energy systems. In Energy and Sustainability Conference (IESC), 2017 International, pages
1–6. IEEE, 2017.

Modeling and Solving Combinatorial Optimization Problems
using Semidefinite Programming

Angelika Wiegele
Alpen-Adria-Universität Klagenfurt

Institut für Mathematik
Universitätsstr. 65-67, 9020 Klagenfurt am Wörthersee

angelika.wiegele@aau.at

Abstract

Semidefinite Programming (SDP) is an an extension of Linear Programming where
a matrix-variable is optimized over the intersection of the cone of positive semidefinite
matrices with an affine space. Semidefinite programming relaxations exist for a vari-
ety of combinatorial optimization problems, and many ways to tighten them have been
proposed.

In this talk we will show how to apply SDP to efficiently approximate two important
NP-hard combinatorial problems, namely the max-cut problem and the stable set prob-
lem. Besides modeling the problems as SDP, we will present a way to strengthen the
relaxation using exact subgraph constraints.

Linked to the question of modeling a problem using semidefinite programming is the
question of solving the resulting SDP. Standard methods like interior point algorithms are
not applicable already to medium-sized problems due to the number of constraints or the
size of the matrix. We will present alternative methods in order to obtain approximate
solutions to the SDP in reasonable time and using affordable memory requirements.

95

Graph partitioning using matrix differential equations

Eleonora Andreotti1, Dominik Edelmann2, Nicola Guglielmi1 and Christian Lubich2

1 Università degli Studi di L’Aquila, L’Aquila, Italy
eleonora.andreotti@graduate.univaq.it

guglielm@univaq.it
2 Eberhard Karls Universität, Tübingen, Germany

edelmann@na.uni-tuebingen.de
lubich@na.uni-tuebingen.de

Abstract

Given a connected undirected weighted graph, we are concerned with problems related
to partitioning the graph. First of all we look for the closest disconnected graph (the
minimum cut problem), here with respect to the Euclidean norm. We are interested in
the case of constrained minimum cut problems, where constraints include cardinality or
membership requirements, which leads to NP-hard combinatorial optimization problems.
These problems are restated as matrix nearness problems for the weight matrix of the
graph. A key element in the solution of these matrix nearness problems is the use of a
constrained gradient system of matrix differential equations.

Keywords : Constrained minimum cut, spectral graph partitioning, algebraic connectivity,
Fiedler vector, matrix nearness problem, constrained gradient flow, matrix differential equation,
graph theory

1 Introduction and problem formulation
We present a novel approach to partitioning a connected weighted undirected graph. Here
and in the following, a graph is a tuple (V , E ,W) of a vertex set V = {1, . . . , n}, an edge set
E ⊆ V × V and a matrix W = (wij) that collects positive weights wij associated with edges
(i, j) ∈ E (wij = 0 if (i, j) /∈ E).

We consider the Frobenius-norm minimum cut problem and allow for constraints such as
prescribing the minimum cardinality of connected components or assigning a priori selected
vertices to a component. The matrix nearness problem is thus to find a cut C, i.e., a set of edges
that yield a disconnected graph when they are removed from the edge set E of the given graph,
such that

∑
(i,j)∈C w

2
ij is minimized. This problem will further be considered with additional

constraints:

• Membership constraint: It is required that a given set of vertices V+ ⊂ V is in one
connected component and another given set of vertices V− ⊂ V is in the other connected
component, where V denotes the vertex set of the given graph.

• Cardinality constraint: It is required that each of the connected components has a pre-
scribed minimum number n of vertices.

It is known that cardinality constraints make the problem NP-hard [1, 2].
We use spectral graph theory as pioneered by Fiedler [3]: The second smallest eigenvalue

λ2 of the Laplacian matrix L = Lap(W) of the graph is zero if and only if the graph is
disconnected, and the corresponding eigenvector indicates the membership of vertices to the
connected components.

96

We formulate and use a gradient system of matrix differential equations to drive the smallest
nonzero eigenvalue of the Laplacian matrix to zero. This approach can be extended to other
partitioning problems beyond the constrained minimum cut problems considered here.

The approach takes basic ideas and techniques of recent algorithms for eigenvalue optimiza-
tion via differential equations, as given for example in [5, 4, 7, 6], to another application area.
A common feature is a two-level procedure, where on the inner level a gradient flow drives
perturbations to the original matrix of a fixed size into a (local) minimum of a functional
that depends on eigenvalues and possibly eigenvectors, and in an outer iteration the minimal
perturbation size is determined such that the functional becomes zero. Our approach in the
unconstrained case can be summarized as follows.

1. Given ε > 0, we look for a symmetric matrix E = (eij) ∈ Rn×n with the same sparsity
pattern as W (i.e., eij = 0 if wij = 0), of unit Frobenius norm, with W + εE ≥ 0 (with
component-wise inequality) such that the second smallest eigenvalue of Lap(W + εE) is
minimal. The obtained minimizer is denoted by E(ε).

2. We look for the smallest value of ε such that the second smallest eigenvalue of Lap(W +
εE(ε)) equals 0.

Once the weight matrix W ? of the disconnected graph is computed, the eigenvector corre-
sponding to the second smallest eigenvalue of Lap(W ?) indicates the membership of vertices
to the connected components and thus gives a partition of the graph.

In the constrained case, the functional in the inner level is more intricate: Let x = (xi) ∈ Rn

be the eigenvector to the second smallest eigenvalue λ2 of Lap(W + εE). Let V− and V+ be
the set of indices whose membership to different components of the cut graph is prescribed.
Let x− = (x−i) with x−i = min(xi, 0) and x+ = (x+

i) with x+
i = max(xi, 0) collect the negative

and positive components of x, respectively. Let n− and n+ be the numbers of negative and
nonnegative components of x, respectively. We denote the averages of x− and x+ by

〈x−〉 = 1
n−

n∑

i=1
x−i , 〈x+〉 = 1

n+

n∑

i=1
x+

i .

Motivated by the special form of the eigenvectors as given in Fiedler’s theorem, we consider
the functional

Fε(E) = λ2(Lap(W + εE)) + α

2
∑

i∈V−
(xi − 〈x−〉)2 + α

2
∑

i∈V+

(xi − 〈x+〉)2,

where α > 0 is a weight to be chosen. This functional is to be minimized under the inequality
constraints W + εE ≥ 0, the norm constraint ‖E‖ = 1 and the symmetry and the sparsity
pattern of E.

It is remarkable that the numerical approach as well as the methods remain the same with
the only difference that it is more sophisticated to compute the gradient of Fε in the constrained
case.

2 Example

Figure 1 shows the graph of character co-occurrence in Les Miserables [8]. This graph consists
of 77 vertices (representing characters). According to a standard Fiedler partitioning, 22 of
these belong to one part and the remaining 55 belong to the other part. Asking for the
partitioning of the graph with the cardinality constraint with threshold n̄ = 35, we obtain the
result shown in Figure 1.

FIG. 1: Les Miserables, cardinality-constrained graph partitioning

3 Conclusion
The presented algorithm performs remarkably well in the examples from the literature on which
we have tested it. As with the previous algorithms cited above, there are contrived examples
where our algorithm could get stuck in a local minimum that is not a global minimum.
As opposed to combinatorial algorithms, the algorithm presented here modifies all weights of

the graph as it proceeds, and only in the end arrives at the cut and the unchanged remaining
weights.

The proposed algorithm is an iterative algorithm, where in each step the second eigenvalue
and the associated eigenvector of the Laplacian of a graph with perturbed weights are com-
puted. In the cardinality- or membership-constrained cases, additionally a linear system with
an extended shifted Laplacian is solved in each step. For a large sparse connected graph (where
the number of edges leaving any vertex is moderately bounded), these computations can be
done in a complexity that is linear in the number of vertices. In the known (unconstrained)
minimum cut algorithms, the computational complexity is at least quadratic [9]. It is thus
conceivable that for large sparse graphs, the proposed algorithm can favorably compete with
the classical unconstrained minimum cut algorithms. In constrained cases, it appears that
the computational complexity is even more favorable in comparison with the existing heuristic
combinatorial algorithms as proposed in [2]. However, as of now no detailed comparisons of the
relative merits of the conceptually and algorithmically different approaches have been made.

References
[1] M. Bruglieri, M. Ehrgott, H. W. Hamacher, and F. Maffioli. An annotated bibliography

of combinatorial optimization problems with fixed cardinality constraints. Discrete Appl.
Math., 154(9):1344–1357, June 2006.

[2] M. Bruglieri, F. Maffioli, and M. Ehrgott. Cardinality constrained minimum cut problems:
Complexity and algorithms. Discrete Appl. Math., 137(3):311–341, March 2004.

[3] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23(98):298–305, 1973.

[4] N. Guglielmi, D. Kressner, and C. Lubich. Low rank differential equations for Hamiltonian
matrix nearness problems. Numer. Math., 129:279–319, 2015.

[5] N. Guglielmi and C. Lubich. Differential equations for roaming pseudospectra: paths to
extremal points and boundary tracking. SIAM J. Numer. Anal., 49:1194–1209, 2011.

[6] N. Guglielmi and C. Lubich. Matrix stabilization using differential equations. SIAM J.
Numer. Anal., page in press, 2018.

[7] N. Guglielmi, C. Lubich, and V. Mehrmann. On the nearest singular matrix pencil. SIAM
J. Matrix Anal. Appl., 38:776–806, 2017.

[8] D. E. Knuth. Stanford GraphBase: A Platform for Combinatorial Computing, The.
Addison-Wesley Professional, 1st edition, 2009.

[9] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM (JACM),
44(4):585–591, 1997.

An algorithm for computing lower bounds for the
Microaggregation problem

Jordi Castro1 , Claudio Gentile2 , Enrique Spagnolo3

1 Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Jordi
Girona 1-3, 08034 Barcelona, jordi.castro@upc.edu

2 Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, Consiglio Nazionale delle Ricerche
(IASI-CNR), Via dei Taurini 19, Rome, gentile@iasi.cnr.it

3 Kernel Analytics, C/Balmes 89, 6o 4a, 08008, Barcelona
enric.spagnolo@kernel-analytics.com

Abstract

Public use of microdata files requires preprocessing to protect privacy. Microaggre-
gation consists in aggregating data into clusters of size at least k such that the spread
between individuals’ and centroid cluster values is minimized. This paper proposes an
algorithm based on Column Generation to compute lower bounds on the spread.

Keywords : Microaggregation, Statistical Disclosure Control, Column Generation.

1 Introduction
Microdata consists of a file with individuals (people, companies, etc) and attributes for those
individuals. A microdata file is a mapping M : V ⊆ P → D(V1) × . . . × D(Vt), where P
is a population, V is a sample of the population and D(Vi) is the domain of the attribute
i∈{1, . . . , t}. Microdata files must be treated or “protected” before being released, otherwise
confidential individual information would be jeopardized. The set of methods for this task
form the field of Statistical Disclosure Control (SDC). Microaggregation (MA)—introduced in
[3]—is an SDC technique mainly for numeric variables related with k-anonymity [1].

Definition 1 Given k ∈ N, k ≥ 2, let M be a microdata with n individuals n ≥ k and t
attributes V1, . . . , Vt. Let g = (Vj1 , . . . , Vjm) be a subset of attributes, jq ∈ {1, . . . , t}, q =
1, . . . ,m. Then we say M is k-anonymous if for every possible value in D(Vj1)× . . .×D(Vjm),
there exist either 0 or at least k individuals in V with this value for the attributes in g.

MA intends to modify the values of a subset of attributes g, called quasi-identifier, so that
the microdata satisfies k-anonymity for g. Therefore, it first partitions the individuals into
subsets of size at least k, called clusters, and then substitutes the values for g in the cluster
with their centroid, to minimize the loss of information, called spread. In practical cases, the
value of k is relatively small (e.g., 3 ≤ k ≤ 5, see [3]). A widely used measure to evaluate the
spread is the sum of squared errors (SSE) [3]:

SSE =
q∑

s=1

ns∑

j=1
(asj − as)T (asj − as) =

q∑

s=1

ns∑

j=1
(asj − as)2, (1)

where q denotes the number of clusters, ns the size of cluster Cs = {asj | j = 1, . . . , ns},
and as = 1

ns

∑ns
j=1 asj its centroid, for s = 1, . . . , q. From now on, we will denote as feasible

clustering a partition into clusters of size at least k. There exist different papers about heuristic
algorithms that obtain feasible clusterings with reasonable SSE, e.g., [2, 3].

100

Proposition 1 [3] Any cluster belonging to an optimal microaggregation must have size less
than or equal to 2k − 1.
Example 1 Let g=(Employees, Surface) be a quasi-identifier for a microdata of factories.
Let k=2 and suppose that a MA procedure suggests us to join the factories in Table 1 in a
cluster. Its centroid is 55+48+41

3 =48 employees and 1410+1205+1120
3 =1245 m2 of surface. Thus,

in the published microdata, factories f1, f2, f3will all have 48 employees and 1245m2 of surface.

Factory Employees Surface (m2)
f1 55 1410
f2 48 1205
f3 41 1120

TAB. 1: Values for the attributes in g for factories f1, f2, and f3 in the original microdata.

2 A Formulation for the Microaggregation problem
We give an exact Integer Programming (IP) formulation for MA. Unfortunately, it is a fractional
nonconvex program with integer variables. We need the following preliminary result:
Proposition 2 Given a cluster Cs = {asj | j = 1, . . . , ns} with centroid as. Then,

ns∑

j=1
(asj − as)2 = 1

2ns

ns∑

i=1

ns∑

j=1
(asi − asj)2. (2)

Now, we can associate binary variables xij for all pairs i, j ∈ V × V, i 6= j: xij = 1, if and
only if ai and aj belong to the same cluster after microaggregation, and xij = 0 otherwise. To
simplify the writing we will index with i the corresponding individual ai and we will denote
with ni be the size of the cluster where ai belongs to. Using relation (2) we can easily derive
that

SSE = 1
2

n∑

i=1

∑n
j=1j 6=i(ai − aj)2xij

ni
. (3)

Moreover, ni =
∑n
j=1,j 6=i xij + 1, thus we get that the MA objective function is:

SSE = 1
2

n∑

i=1

∑n
j=1,j 6=i(ai − aj)2xij∑n

j=1,j 6=i xij + 1 . (4)

To force the variables to describe clusters, we must express two conditions. First, clusters
must be complete: if i and r are in the same cluster (i.e., xir = 1) and j and r are in the same
cluster too (xjr = 1), then it must be that i and j are in the same cluster (xij = 1). This can
be enforced by the following set of inequalities, named triangle inequalities:

xir + xjr − xij ≤ 1 i, j, r ∈ V, i 6= j, r 6= j, i 6= r. (5)
Second, we must force the clusters to have size ni at least k, for i ∈ V (size inequality):

n∑

j=1,j 6=i
xij ≥ k − 1 i ∈ V. (6)

Summing up, an IP formulation for MA is the following:
min (4) : (5), (6), xij = xji, xij ∈ {0, 1} i, j ∈ V, i 6= j. (7)

The most remarkable issue is that the objective function in (7) is nonconvex, so this model
cannot be used to provide an effective lower bound on MA. On the other hand, by Proposition 1,
a lower bound can be obtained by substituting ni in (3) with 2k − 1, but it would be loose
even for integer feasible solutions. With this transformation the problem can be reduced to
the Clique Partioning Problem with Minimum Clique Size Requirement (CPPMIN) [4].

3 Column Generation for Microaggregation
In this section, we introduce a Column Generation (CG) approach for the MA problem inspired
by [4]. We modify the weight of a cluster and more importantly the whole Pricing Problem
scheme for cluster generation. By Proposition 1 we define C∗ = {C ⊆ V : k ≤ |C| ≤ 2k − 1}
as the set of feasible clusters for MA. Let xC be the binary variable that indicates whether
cluster C ∈ C∗ is or not in the solution for MA. From (2) the weight wC of cluster C can be
computed as:

wC = 1
2

∑

i∈C

∑
j∈C(ai − aj)2

|C| =
∑

i,j∈C

(ai − aj)2

|C| . (8)

On account of this we can formulate the Microaggregation problem as follows:
min

∑
C∈C∗ wCxC∑

C∈C∗:v∈C xC = 1 v ∈ V
xC ∈ {0, 1} C ∈ C∗.

(9)

From (9) we can set the Master Problem (MP) by considering a subset C ⊆ C∗. The Pricing
Problem looks for a cluster C of size at least k that minimizes (8) minus the sum of the dual
prices λv associated with the individuals v ∈ C in the continuous relaxation of (9). In order to
take account of the size of the cluster, the problem is subdivided into k Pricing Subproblems
(PSP) for fixed size cluster η = k, . . . , 2k − 1:

min
C⊂V :|C|=η

wC , wC = wC −
∑

v∈C
λv =

∑

u,v∈C

(au − av)2

η
−

∑

v∈C
λv. (10)

When none of these k PSPs adds a cluster with negative reduced cost, either the MP solution
is binary and optimal for MA, or it is fractional and defines a lower bound on the optimal MA
objective function value that can be used in a Branch&Price scheme. Up to our knowledge,
this is the first approach in the literature for the computation of a lower bound for SSE.

In order to solve (10) we define a representation on the complete undirected graph Kn =
(V,E) with edge weights (ai − aj)2/η, e = ij ∈ E, and node weights λi, i ∈ V . We propose
a new ILP model considering only edge variables. Let k ≥ 2; hence η ≥ 2. Suppose C is the
solution of (10), we define variables zij , ij ∈ E such that: zij = 1 if and only if i, j ∈ C and
zij = 0 otherwise. The following size constraint enforces the cluster C to have size η:

∑

e∈E
ze = η(η − 1)

2 . (11)

Moreover, let i, j ∈ V , i 6= j, the following node-to-node inequality for i and j∑

e∈δ(i)\(i,j)
ze − (η − 2)zij ≥ 0, (12)

if zij = 1, requires that i is connected to at least η − 2 nodes different from i and j.
Proposition 3 [5] Let η ≥ 2, the binary feasible solutions satisfying nonnegativity constraints
and constraints (11), (12) represent clusters in Kn with size η.

If a node i ∈ C, then i will be adjacent to η−1 nodes in C. It follows that (
∑
e∈δ(i) ze)/(η−1)

is 1 when i ∈ C and 0 otherwise. In summary, the objective function in (10) is:
∑

ij∈E

(ai − aj)2zij
η

−
∑

i∈V
λi

∑
ij∈δ(i)

zij

η − 1 . (13)

From Proposition 3 and (13) we derive an ILP model of the PSP with fixed cluster size η ≥ 2:
min (13) : (11), (12), ze ∈ {0, 1} e ∈ E. (14)

In [5] the polyhedral properties of problem (14) have been deeply studied. We implemented
in a C++ code the CG scheme to compute the lower bound on SSE. The MP has been started
with the set of cluster C defined by the solution of the heuristic MDAV [2]. Formulation (14)
has been used to compute the solution of PSP when η ≥ 7. For η such that 2 ≤ η ≤ 6,
complete enumeration results to be more effective.

4 Computational Tests
The code of the CG scheme for Microaggregation (CGM), discussed in Section 3, has been
tested with two standard data sets in the Microaggregation literature: “Tarragona” (834 records
and 13 attributes) and “Census” (1080 records and 13 attributes). See, e.g., [3] for reference.
We extracted subsets of individuals in both microdata sets of size n equal to 30, 40, and 50
individuals and we considered three different minimal cluster sizes k equal to 3, 4, and 5.

For each combination n, k, we run CGM and obtained a lower bound on the SSE for MA.
On the other hand, we also applied CG to CPPMIN based model (substituting ni with 2k− 1
in (3)) and obtained another lower bound. We then computed the GAP of both lower bounds
by comparing each one against the SSE obtained by MDAV heuristic solution. Those GAPs
are noted as GAPCGM and GAPCPPM. In Table 2 the results are summarised. Column “Int?”
indicates with a “YES” or a “NO” if the eventual solution of the MP for CGM is integer or
not. In case the MP solution is integer, then it corresponds to an actual clustering and, thus,
the optimal MA has been achieved.

Tarragona Data Set Census Data Set
n k GAPCGM Int? GAPCPPM GAPCGM Int? GAPCPPM

30 3 14.25 NO 48.55 28.54 NO 57.12
30 4 22.96 NO 55.98 26.73 NO 58.13
30 5 23.94 YES 57.74 7.34 YES 48.52
40 3 8.49 NO 45.10 15.97 NO 49.58
40 4 18.38 NO 53.36 16.22 YES 52.13
40 5 16.75 NO 53.75 8.66 YES 49.26
50 3 12.35 NO 47.41 16.61 NO 49.97
50 4 15.55 NO 51.74 24.7 NO 56.97
50 5 12.77 YES 51.54 26.13 NO 58.96

TAB. 2: GAP comparison between new CG-based relaxation and CPPMIN-based relaxation

The GAP computation for the MDAV heuristic is a first result of this work, given that
this method is the first approach providing an effective lower bound for MA. Although we
need further developments to perform with larger instances, we have observed that the CGM
algorithm finds the optimal integer solution for MA concretely in 5 cases out of 18. Therefore
we expect that the lower bound provided by this approach is very close to the optimal integer
solution value. The assessment of this statement needs further work. On the contrary, the lower
bound provided by CPPMIN solution results to be very poor with respect to our algorithm
certainly because the cluster sizes are actually smaller than 2k − 1.

References
[1] L. Sweeney, k-anonymity: a model for protecting privacy. International Journal on Uncer-

tainty, Fuzziness and Knowledge-based Systems, 10, 557–570, 2002.

[2] J. Domingo-Ferrer, V. Torra, Ordinal, Continuous and Heterogeneous k-Anonymity
Through Microaggregation Data Mining and Knowledge Discovery, 11(2), 195–212, 2005.

[3] J. Domingo-Ferrer, J. M. Mateo-Sanz, Practical data-oriented microaggregation for statis-
tical disclosure control, IEEE Trans. Knowl. Data Eng., 14, 189–201, 2002.

[4] X. Ji, J. E. Mitchell, Branch-and-price-and-cut on the clique partitioning problem with
minimum clique size requirement. Discrete Optimization, 4, 87–102, 2007.

[5] E. Spagnolo, On the use of Integer Programming to pursue Optimal Microaggregation, BSc
Thesis, Univ. Politecnica de Catalunya, Sch. of Math. and Statistics, Barcelona, 2016.

Some polynomial special cases for the Minimum Gap Graph
Partitioning Problem

Maurizio Bruglieri1, Roberto Cordone2, Isabella Lari3, Federica Ricca3, Andrea Scozzari4
1 Politecnico di Milano

maurizio.bruglieri@polimi.it
2 Università degli Studi di Milano

roberto.cordone@unimi.it
3 Sapienza Università di Roma

{isabella.lari,federica.ricca}@uniroma1.it
4 Università degli Studi Niccolò Cusano, Roma

andrea.scozzari@unicusano.it

Abstract

We study various polynomial special cases for the problem of partitioning a vertex-
weighted undirected graph into p connected subgraphs with minimum gap between the
largest and the smallest vertex weight.

Keywords : Graph partitioning, min-sum gap optimization, min-max gap optimization.

1 Introduction

The Minimum Gap Graph Partitioning Problem (MGGPP) is a graph partitioning problem [1]
introduced in [2]. Let G = (V,E) be an undirected connected graph, wv an integer weight
coefficient defined on each vertex v ∈ V , and p ≤ |V | a positive integer. Given a vertex
subset U ⊆ V , we denote by mU = minu∈U wu and MU = maxu∈U wu the minimum and
maximum weight in U , respectively, and define the gap of U as γU = MU − mU (if U is a
singleton, γU = 0). The MGGPP consists in partitioning G into p vertex-disjoint connected
subgraphs Gr = (Vr, Er), r = 1, . . . , p. We consider also the nondegenerate problem (MG-
GPPnd), in which all subgraphs must have at least two vertices. The min-sum version of
both problems minimizes the sum of all gaps fMS =

∑p
r=1 γVr

, while the min-max version
minimizes fMM = maxr=1,...,p γVr

. The MGGPP is related to uniform graph partitioning [4]
which has applications, for example, in agriculture (divide a land into parcels with small height
difference [7]) and in social network analysis.

The computational complexity and the approximability of the MGGPP are studied in [2].
A Tabu Search metaheuristic and a Mixed Integer Linear Programming (MILP) formulation
for the min-sum version are proposed in [3]. We note that the min-max MGGPP can be seen
as a special case of the following more general graph partitioning problem. Given a graph G
and a n × n matrix of dissimilarities between any pair of vertices, find a partition of G into
p connected components that minimizes the maximum dissimilarity of a pair of vertices in
the same component. This problem is NP-complete even on star graphs [5]. However, the
min-max MGGPP might be easier because the dissimilarity for any given pair of vertices u
and v is computed as |wu − wv|.

In this paper, we investigate some polynomial cases of the MGGPP concerning special graph
topologies, such as paths, spiders, stars, caterpillars and complete graphs.

104

2 Polynomial cases
First of all, we introduce two useful properties of the MGGPP (but not of the MGGPPnd):

P1. the optimal value does not increase as the number p of components increases;

P2. given a partition π in p components with maximum gap equal to γ, another partition π′
with p′ > p components and a gap less than or equal to γ always exists.

These properties hold for both objectives, because a singleton with zero gap can always be
disconnected from a subgraph, increasing the number of components, but not the objective
value. On the basis of the above properties we are able to solve the min-max MGGPP by a
binary search over all the O(n2) possible values γ of the optimal maximum gap, that correspond
to the differences between pair of vertices’ weights. Therefore, we can follow an approach based
on the solution of a polynomial number of instances of the following auxiliary problem.

Definition 1 (Feasibility problem) Find, if any, a connected partition of G having the mini-
mum number q of components and such that each component has gap at most γ.

If q is greater than p, the value of γ must be increased; otherwise it must be decreased. At
the end of the binary search, the partition having the maximum q ≤ p is considered and in
case q < p, a partition in exactly p components with the same gap value is found by further
dividing some components of the partition until p components are obtained. The binary search
requires a pre-sorting of the O(n2) possible values of γ implying an overall time complexity of
O(n2 log n). This complexity can be reduced as follows. First sort the weights of the vertices,
in O(n log n); then consider implicitly the ordered matrix of the differences between weights
and apply the O(n) time procedure for finding the kth smallest value in a n×n matrix of reals
with sorted rows and columns [6]. With this approach the whole solution procedure requires
O(n log n+TF (G) log n) time, where TF (G) is the time for solving the feasibility problem. We
apply this approach to paths and spiders.

2.1 Paths
If G is a path, we assume its vertices to be numbered progressively considering an arbitrary
direction along the path: P = {v1, . . . , vn}. Every feasible solution is a partition into p vertex-
disjoint subpaths. Hence, the problem requires to identify and remove p− 1 edges from G.

Theorem 1 When G is a path, the min-max MGGPP can be solved in O (n log n) time.

Proof : For a given value γ, we find a partition of P into the minimum number of components
such that the gap is less than or equal to γ by scanning P and removing some edges. Starting
from one end vertex of P , say v1, edge (vi−1, vi) is removed as soon as a vertex vi is found such
that |wvi − wvj | > γ for at least one vertex vj in the current subpath. This procedure is then
repeated starting from vertex vi. Exploiting the general binary search approach the overall
time complexity is O (n log n). �

For the other versions, the following theorem provides a polynomial approach.

Theorem 2 When G is a path, all versions of the MGGPP can be solved in O
(
n2p

)
time.

Proof : (Sketch) We build an auxiliary directed graph with a source node u0, p nodes
uj,1, . . . , uj,p for each vertex vj of V , an arc from u0 to each node uj,1 and an arc (ui,r−1, uj,r)
for each pair of vertices vi and vj with i < j and for r = 2, . . . , p. The arcs correspond to
candidate subpaths and their costs to the corresponding gaps. Therefore, the optimum of the
MGGPP on G is equal to the minimum cost of a path from u0 to un,p on the auxiliary graph.
Since the graph is acyclic, this problem can be solved in O

(
n2p

)
. �

2.2 Spiders
A spider is a tree with at most one vertex of degree at least 3.

Theorem 3 When G is a spider, the min-max MGGPP can be solved in O(n log2 n) time.

Proof : We apply the procedure described in Theorem 1 to each of the d paths connecting the
leaves of G to the root (the only vertex of degree d ≥ 3), visiting G bottom-up. Let P1, . . . , Pd

be the last formed components in the partitions of such paths. We try to merge as many
subpaths as possible so that their gap is ≤ γ by first ordering them w.r.t. their maximum
and minimum vertex weights in O (n log n), and then checking the feasibility of the component
under construction with a data structure that scans all the ordered minima and maxima in
linear time. Considering the time required by the binary search, the overall time complexity
is O(n log2 n). �

2.3 Stars
A star is a connected graph with at most one vertex of degree at least 2.

Theorem 4 When G is a star, the MGGPP admits only degenerate solutions, and can be
solved in O (n log n) time.

Proof : Any solution is a partition of the star where p− 1 components are leaves (singletons)
and one component contains all the other vertices. An O(n log n) time algorithm can be
obtained as follows: i) sort the leaves by nonincreasing weights; ii) visit the leaves according
to such an ordering to detect a non-singleton component with minimum gap. �

2.4 Caterpillars
A caterpillar is a tree formed by a central path with n′ vertices and n′′ leaves attached to it.

Theorem 5 When G is a caterpillar, the MGGPP can be solved in O
(
n3p2 log n

)
time; the

MGGPPnd in O
(
n2p

)
time.

Proof : The MGGPPnd amounts to partitioning the central path {v1, . . . , vn′}. We build an
auxiliary graph similar to that used in Theorem 2. An arc represents a feasible subgraph, i.e., a
portion of the central path and all the attached leaves. Its cost is the gap of the subgraph. The
optimal min-sum or min-max path from u0 to un′p identifies the optimal solution. Building
the auxiliary graph, the cost function and detecting the optimal path take O

(
n2p

)
.

In the general case, the leaves can be isolated from the central path, but the auxiliary graph
can be modified accordingly, i.e. introducing also arcs between non consecutive layers. Each
arc represents a central subgraph including a portion of the central path and possibly some
leaves, plus some isolated leaves. The cost of an arc is the gap of the central subgraph. For each
arc, we determine the central subgraph with minimum gap adapting the O (n log n) algorithm
used to solve the MGGPP on stars. The optimal min-sum or min-max path from u0 to un′p

identifies the optimal solution. Detecting the optimal path takes O
(
n2p2), but computing the

arc costs requires an overall O
(
n3p2 log n

)
time. �

2.5 Complete graphs
In this case, the connectivity constraint is trivially satisfied. We sort the vertices by nonde-
creasing weights and rename them so that i < j ⇒ wvi ≤ wvj . Then, we can restrict the search
for the optimum to the solutions in which for every pair of subgraphs the vertices of one strictly
precede the vertices of the other. In fact, every other feasible solution can be transformed into
a non-worsening one of this family: for each pair of vertex subsets V ′ and V ′′ violating this
condition, merge the two subsets and split the result in two, assigning the first |V ′| elements to
the first subset and the last |V ′′| elements to the second. Given the path that visits all vertices
in nondecreasing weight order, the optimal solution can be detected as in Theorems 1 and 2.
However, the vertex ordering allows more efficient algorithms for some cases.

Theorem 6 When G is a complete graph, the min-sum MGGPP can be solved in O (n log n)
time. The min-sumMGGPPnd can be solved in O

(
min

(
n
√
n log γV , n

2 log n, n2p
))

time, where
γV is the gap of the whole graph.

Proof : Thanks to the ordering of the vertex weights, partitioning the auxiliary path into p
subpaths of minimum total gap is equivalent to selecting p− 1 edges such that the sum of the
weight differences between their extreme vertices is maximum. This can be done by saving in
a max-heap the weight differences between adjacent vertices and extracting from it the p − 1
largest differences. The dominating time is given by the weight ordering.

In the nondegenerate case, it is forbidden to select two consecutive edges. The problem
reduces to the search for a maximum weight matching of cardinality p − 1 on the path. The
Enhanced Capacity Scaling algorithm solves the problem in O (n

√
n log γV) time, while a re-

duction to the minimum cost flow problem solves it in O
(
n2 log n

)
time. Finally, the algorithm

of Theorem 2 solves it in O
(
n2p

)
time. �

3 Conclusions and perspectives
Table 1 summarizes the special cases discussed in this paper: “NA” marks the non applicable
cases (stars admit only degenerate solutions), “?” marks the open cases.

min-max min-sum
Topology MGGPP MGGPPnd MGGPP MGGPPnd
Stars O(n log n) NA O(n log n) NA
Paths O(n log n) O(n2p) O(n2p) O(n2p)
Spiders O(n log2 n) ? ? ?
Caterpillars O(n3p2 log n) O(n2p) O(n3p2 log n) O(n2p)
Complete O(n log n) O(n2p) O(n log n) O(min(n

√
n log γV , n

2 log n, n2p))

TAB. 1: Summary of the computational complexity results

References
[1] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, eds. Graph Partitioning and

Graph Clustering, v. 588 of Contemporary Mathematics. AMS, 2013.

[2] M. Bruglieri, R. Cordone Partitioning a graph into minimum gap components. Electronic
Notes in Discrete Mathematics, vol. 55: 33–36, 2016.

[3] M. Bruglieri, R. Cordone, V. Caurio A metaheuristic for the minimum gap Graph Parti-
tioning Problem. Proceedings of CTW2017, pp. 23–26, Cologne, Germany, June 6-8 2017.

[4] I. Lari, J. Puerto, F. Ricca, A. Scozzari Partitioning a graph into connected components
with fixed centers and optimizing cost-based objective functions or equipartition criteria.
Networks, vol. 67: 69–81, 2016.

[5] M. Maravalle, B. Simeone, R. Naldini Clustering on trees. Computational Statistics &
Data Analysis, vol. 24: 217–234, 1997.

[6] A. Mirzaian, E. Arjomandi Selection in X+Y and matrices with sorted rows and columns.
Information Processing Letters, vol. 20: 13–17, 1985.

[7] Li Xiao, Li Hongpeng, Niu Dongling, Wang Yan, and Liu Gang. Optimization of GNSS-
controlled land leveling system and related experiments. Transactions of the Chinese So-
ciety of Agricultural Engineering, 31(3):48–55, 2015.

Dual bounds for a Maximum Lifespan Tree Problem

Marco Casazza Alberto Ceselli
Dipartimento di Informatica, Università degli Studi di Milano, Italy

{marco.casazza,alberto.ceselli}@unimi.it

Abstract

We investigate a Maximum Lifespan Tree Problem arising in wireless sensor networks.
A network is given where each node represents a sensor; at each duty cycle they collect
data, and transmit it towards a sink node through multi-hop paths on wireless links.
Sensors are powered by a battery, which is partially consumed at each transmission. A
tree of links spanning all the sensors must be designed such that the lifespan of the entire
network, computed as the minimum lifespan among all nodes, is maximized. We study
three mathematical programming formulations and we propose a comparison of the dual
bounds obtained exploiting them. In particular, one of the formulations is path-based:
to optimize it we design ad-hoc column generation algorithms.

Keywords : combinatorial optimization, spanning tree, column generation, network design,
dual bounds, mobile sensors network.

1 Introduction
A wireless sensor network is composed by a set of low-energy, battery-powered sensor nodes
(sensors in the remainder). Sensor networks find many applications [4]; for instance they
are used to collect data from areas having no existing infrastructures, to a single edge node
connected to a backbone (sink in the remainder). Sensors connect one another by means of
wireless links of limited range: if the data collection area is wide, the underlying communication
network is sparse, preventing a direct connection of all sensors to the sink. Typical protocols
from the literature assume each sensor to forward data with a shortest path philosophy, always
to a single parent sensor [1] [5]. Therefore, for each sensor, a route (that is a sequence of sensors)
connecting to the sink must be found, such that each sensor of the route has both its predecessor
and its successor within the range of its wireless links, thereby allowing transmissions to be
possible. The set of all routes origins a spanning tree rooted in the sink node.

Sensors have clocks, making them to work in duty cycles: at each cycle the sensor receives
data by the set of its children sensors, and transmits data to its parent. Since batteries
replenishment is usually impossible or very expensive, the conservation of the battery energy
is a critical issue. While sensors consumes a negligible amount of energy when in standby, they
spend most of the energy during both transmitting and receiving operations. It follows that
the selection of the routes is critical, especially for those sensors belonging to several routes.
A combinatorial problem arises, that is finding the spanning tree maximizing the lifetime of
the network, defined as the number of duty cycles that can be performed without making any
sensor run out of battery.

In the literature such a problem is indeed known as Maximum Lifespan Tree Problem
(MLTP). It has been studied in [1], where the authors prove the NP-completeness of the
problem and provide a routing algorithm with worst case constant factor performance guaran-
tees. In [2] an approximation algorithm is proposed for a version of the problem where data is
not aggregated during transmission. In [5] and [3] two exact algorithms are presented to solve
both the MLTP with and without the aggregation of the messages. However, both algorithms
are strongly based on a technique that decomposes the network in independent and smaller

108

networks when there exist links that, if removed, leave the network disconnected. It follows
that their methodology is strongly dependent from the topology of a network.

In this paper we propose three different mathematical programming formulations for MLTP.
We then compare the dual bound which can be obtained by each formulation. Two are compact,
and allow to use cutting plane procedures of general purpose solvers. The third one is path-
based, requiring to rely on column generation: we study the corresponding pricing problem
and we provide ad-hoc algorithms for it.

2 Mathematical formulations
We model the MLTP as a problem on a directed graph G = (N0, A) given, where N0 =
{0, 1, . . . , n} is a set of nodes, representing the n sensors and the sink 0, while A ⊆ N0 ×
N0 is a set of arcs, each representing a link whose range allows communication between the
corresponding sensors. We also define as N = N0 \ {0} the set of sensor nodes only. For each
node i ∈ N0 we are also given a battery capacity bi > 0, that we assume infinite for the sink
(b0 = +∞). We assume messages of equal size at each duty cycle. Every time a message
is transmitted between sensors, the transmitter consumes et > 0 energy units of its battery,
while the receiver consumes er > 0. No sensor can send or receive messages if its battery is
empty, and we define as lifespan of a node the number of life cycles before the battery of the
corresponding sensor is fully drained.

A solution to MLTP is a spanning tree rooted in 0 that connects all nodes in N0. A solution
is also optimal if it maximizes the lifespan of the tree, computed as the minimum lifespan over
all nodes, that is

maximizemin
i∈N

⌊
bi

(et + er) · children(i) + et

⌋
(1)

where children(i) is a function computing the number of children of node i in the spanning
tree. The MLTP can be formulated, adapting [5], as follows:

(CM)

maximize min
i∈N

⌊
bi

(et + er) · yi + et

⌋

s.t.
∑

(j,i)∈A

zji =
{

1 if i 6= 0
0 otherwise

∀i ∈ N0

xij ≥ yj + 1− |N | · (1− zij) ∀(i, j) ∈ A
yi =

∑

(i,j)∈A

zij ∀i ∈ N0

zij ∈ B, xij ∈ N0 ∀(i, j) ∈ A
yi ∈ N0 ∀i ∈ N0

l ≥ 0

(2)

(3)

(4)
(5)

(6)
(7)
(8)

each variable zij is set to 1 if arc (i, j) is selected in the tree, and 0 otherwise, variable xij is
the number of messages travelling arc (i, j) at each life cycle. Each variable yi is the number
of descendants of node i in the tree, that is the number of messages collected by i at each duty
cycle. The objective function (2) maximizes the minimum lifespan. Constraints (3) ensure
that each node but the root has exactly one incoming arc. When zij = 0, constraints (4) have
no effect; when zij = 1, they enforce xij to take the number of messages going through arc
(i, j). Constraints (5) force yi to be set to the number of descendants of node i. Subtours are
avoided by the combination of (4) and (5).

As stressed in [5], such a formulation is nonlinear because the objective functions include (a)
a min operator (b) a floor operator (c) variables at the denominator. However, we observe
that

maximizemin
i∈N

⌊
bi

(et + er) · yi + et

⌋
=
⌊(

maximizemin
i∈N

bi

(et + er) · yi + et

)⌋
(9)

We therefore propose to obtain an equivalent linear formulation by introducing a continuous
variable l, and the following set of constraints l ≥ ((et + er) · yi + et)/bi for all i ∈ N , and by
changing the objective function to minimize l.

2.1 Flow formulation
We now propose an improved formulation, based on classic flow problems: let G′ = (N ′

0, A
′) be

a directed graph that extends G with an additional terminal node t, and where N ′
0 = N0 ∪ {t}

and A′ = A ∪ {(n, t),∀n ∈ N}. The MLTP can be formulated as follows:

(FM)

minimize l

s.t.
∑

(i,j)∈A′
xij −

∑

(j,i)∈A′
xji =

|N | , if i = 0
−|N | , if i = t

0 , otherwise
∀i ∈ N ′

0

l ≥ ((et + er) · (
∑

(j,i)∈A′
xji − 1) + et)/bi ∀i ∈ N

xij ≤
{

1 if j = t

|N | · zij otherwise
∀(i, j) ∈ A′

∑

(j,i)∈A′
zji ≤ 1 ∀i ∈ N0

xij ≥ 0, zij ∈ B ∀(i, j) ∈ A′

l′ ≥ 0

(10)

(11)

(12)

(13)

(14)

(15)
(16)

where each variable xij is the flow traversing arc (i, j), and each variable zij is set to 1 if any
unit of flow traverses arc (i, j), and 0 otherwise. The objective function (10) still minimises the
reciprocal of the lifespan. Constraints (11) ensure flow conservation. Constraints (12) force l to
take the maximum reciprocal of the nodes lifespan. Constraints (13) impose that no flow can
traverse (i, j) unless zij = 1 (except for the terminal). Constraints (14) impose single source
conditions.

2.2 Path formulation
Finally, we introduce an extended formulation. Let R be the set of elementary paths connecting
the root to any node of the graph, where each path r ∈ R has a pattern (w̄r, f̄r) ∈ B|N | · N|N |,
where w̄r

i is 1 if node i is visited in path r, and 0 otherwise, and f̄ r
i is the number of nodes

visited after node i in path r. The MLTP can be formulated as follows:

(PM)

minimize l

s.t.
∑

r∈R

w̄r
i · γr ≥ 1 ∀i ∈ N

((et + er) ·
∑

r∈R

f̄ r
i · γr + et)/bi ≤ l ∀i ∈ N

γr ∈ B ∀r ∈ R

(17)
(18)

(19)

(20)

where each variable γr is set to 1 if path r is selected in the solution and 0 otherwise. The
objective function (17) minimises the reciprocal of the lifespan. Constraints (18) impose that
each node is visited at least once, while constraints (19) force l to take the maximum reciprocal
of the lifespans.

Indeed our model has a number of variables that grows exponentially in the number of the
nodes. Therefore, we recur to column generation techniques to solve its continuous relaxation:
at each iteration of the column generation process we search for a minimum reduced cost path

instances CM FM PM
nodes arcs ratio (%) time (s) ratio (%) time (s) ratio (%) time (s)

31 105 320.78 0.02 5.46 0.01 0.79 0.00
36 139 568.59 0.03 4.78 0.02 2.42 0.00
41 182 375.56 0.03 2.42 0.03 0.00 0.01
46 213 586.73 0.04 3.50 0.05 0.00 0.06
51 258 633.67 0.04 1.24 0.05 0.00 0.11
56 326 661.42 0.05 0.59 0.08 0.00 0.25

TAB. 1: Average ratios between the dual bound of a formulation and the best dual bound found by
any formulation.

from the root node to any other node of the graph; the corresponding pricing problem is an
optimization problem where for each node we are given a profit λi when node i is visited and a
cost (et + er) ·µi paid for any node visited after i. For solving solve such a problem we devised
a dynamic programming algorithm (whose description is omitted).

3 Experimental analysis and conclusions
We implemented our formulations using CPLEX 12.6.3 for both CM and FM, and using an
ad-hoc column generation procedure in C++ for PM. CM can be considered as a benchmark,
being a slight improvement on those used in previous works like [3]. As a dataset we used
instances generated in [5] and [3], with at most 56 nodes. Each instance of the dataset differs
for number of nodes |N0| ∈ {31, 36, 41, 46, 51, 56} and number of arcs. All tests have been run
on a PC equipped with Intel(R) Core(TM) i7-6700K CPU and 32 GB or memory.

In Table 1 we report the average results obtained by the cutting planes procedure of CPLEX
at the root node of the branching tree for both CM and FM formulations, and the one obtained
by the continuous relaxation of PM. For each size of the graph, we report the average number
of arcs and, for each formulation, the average ratio between the dual bound provided by a
formulation and the best dual bound found by any of them and the computing time to compute
such dual bound.

On average PM provides the best dual bounds, while the one provided by CM is always the
worst. FM offers a compromise, being as fast as CM, but much more accurate. Combining
FM and PM seems promising to target the design of exact algorithms.

References
[1] C. Buragohain, D. Agrawal, and S. Suri. Power aware routing for sensor databases. In Pro-

ceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications
Societies., volume 3, pages 1747–1757 vol. 3, March 2005.

[2] J. Liang and T. Li. A maximum lifetime algorithm for data gathering without aggregation
in wireless sensor networks. Applied Mathematics & Information Sciences, 7(5):1705, 2013.

[3] X. Ma, X. Zhu, and B. Chen. Exact algorithms for maximizing lifetime of wsns using integer
linear programming. In 2017 IEEE Wireless Communications and Networking Conference
(WCNC), pages 1–6, March 2017.

[4] E. Tsiontsiou, B. Addis, Y. Q. Song, and A. Ceselli. Optimal probabilistic energy-aware
routing for duty-cycled wireless sensor networks. In 2016 8th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), pages 1–7, Nov 2016.

[5] X. Zhu, X. Wu, and G. Chen. An exact algorithm for maximum lifetime data gathering
tree without aggregation in wireless sensor networks. Wirel. Netw., 21(1):281–295, January
2015.

A star-based reformulation
for the maximum quasi-clique problem

Fabrizio Marinelli1, Andrea Pizzuti1, Fabrizio Rossi2
1 Università Politecnica delle Marche, Ancona, Italy,

fabrizio.marinelli@univpm.it, a.pizzuti@pm.univpm.it
2 Università degli Studi dell’Aquila, L’Aquila, Italy,

fabrizio.rossi@univaq.it

Abstract

Given a simple and undirected graph, the maximum γ-quasi-clique problem consists in
identifying the induced subgraph of maximum order and edge density of at least γ. In
this paper we propose a new extended formulation for such a problem obtained by de-
composing star inequalities. Preliminary computational results assess the quality of the
continuous relaxation with respect to the tightest formulation available in the literature.

Keywords : quasi-clique, mixed integer programming, integer reformulation.

1 Introduction
Given a simple and undirected graph G = (V,E), the well-known maximum clique problem
(MCP) consists in finding a maximum cardinality clique of G, i.e., a complete induced subgraph
of G of maximum order [3]. Since a clique provides a natural and ideal measure of cohesion, a
large number of applications where the degree of interaction between entities is of interest, e.g.,
social network analysis, coding theory, telecommunication and genetics just to mention a few,
require, at least in principle, the solution of the MCP. Indeed, the search for a overly structure
as a clique often prevents the discovery of worthy dense subgraph, and therefore several clique
relaxations have been taken into account and related discrete optimization problems studied
in the literature [4]. Among them, a pair of complementary (NP-hard) problems are the
maximum quasi-clique problem (γ-QCP) [5] and the k-densest subgraph problem (KDSP), the
former searching for the maximum-order induced subgraph of G with edge density of at least γ,
the latter the maximum-size induced subgraph of G of order k. To the best of our knowledge,
the reference exact methods for γ-QCP and KDSP are the MIP-based approach presented in [6]
and the branch-and-bound algorithm with semidefinite bounding procedure by [1], respectively.

In this paper we propose an integer reformulation [Dγ] of γ-QCP and a surrogate relaxation
[DS

γ] of [Dγ]. The former improves the quality of the dual bound provided by the tightest
formulation available in the literature. The latter, although being a surrogate relaxation, it
has almost the same dual bound of [Dγ] but contains a number of constraints linear in V (G).
Thus, it can be exploited on instances with large and dense graphs.

2 Problem reformulation
Let H = (Q,EQ) = G[Q] be the subgraph of G induced by the set of nodes Q ⊆ V . An
optimal solution of γ-QCP is an induced subgraph H of maximum order |Q∗| and at least
|EQ∗ | = γ

(|Q∗|
2
)
edges. Veremyev et al. [6] propose four MILP formulations for γ-QCP, the

tightest of which, reported in the following, consists of O(|V | + |E|) variables and O(|E|)
constraints. Let xi, i ∈ V , and ze, e ∈ E, be binary variables with xi = 1 iff i ∈ Q, and ze = 1

112

iff e ∈ EQ. Let moreover yk, k ∈ K = {kL, . . . , kU}, be the binary variable with yk = 1 if H is
of order k. The formulation reads as

[Cγ] : |Q∗| = max
∑

i∈V
xi (1)

ze ≤ xi, ze ≤ xj ∀e = {i, j} ∈ E (2)
∑

i∈V
xi ≤

∑

k∈K
kyk (3)

∑

k∈K
yk = 1 (4)

γ
∑

k∈K

k(k − 1)
2 yk ≤

∑

e∈E
ze (5)

xi, ze, yk ∈ {0, 1} ∀i ∈ V, ∀e ∈ E,∀k ∈ K (6)

Edge e = {i, j} belongs to the γ-quasi-clique H if (and only if) nodes i and j are both in Q,
see constraints (2). The order k of H is defined by constraints (3) and (4), and its density is
bounded from below to γ by constraint (5). A lower bound kL to |Q∗| is given by the order of
any clique of G. On the other hand, a basic upper bound kU to |Q∗| is

⌊
1
2 + 1

2

√
1 + 8|E|

γ

⌋
, see

[5]. At the expense of some negligible additional computation, a better upper bound k̄U can be
obtained as follows. Any γ-quasi-clique H = (Q,EQ) fulfils by definition |Q|(|Q| − 1) ≤ 2 |EQ|γ .
Moreover, |EQ| =

∑
i∈Q

dHi
2 ≤

∑
i∈Q

min{|Q|−1,di}
2 , where di is the degree of i in G and dHi is the

degree of i in H. Therefore

|Q|(|Q| − 1) ≤ 1
γ

∑

i∈Q
min{|Q| − 1, di} ≤

1
γ

|Q|∑

i=1
min{|Q| − 1, di}

where the last inequality holds if nodes of G are sorted by non-increasing degrees, i.e., di ≥ dj
for i < j. It easy to see that the largest integer Q that satisfies the above inequality is a valid
upper bound k̄U for |Q∗|, and that k̄U < kU for the |Q∗| < |V |.

Model [Cγ] can be reformulated by integer decomposition. Let S(i) be the star of i ∈ V ,
i.e., the set of incidence edges of node i. Clearly, the star constraint

∑

e∈S(i)
ze ≤ (kU − 1)xi (7)

is a valid inequality of [Cγ] for each node i. The set of integer points that satisfy (7) corresponds
to the set Si of all the partial stars {Si1, Si2, . . .} of i with less than kU edges. Let Sji ⊂ Si be
the partial stars including the edge {i, j} ∈ E. Then for any e = {i, j} ∈ E, the variables xi
and ze of [Cγ] can be rewritten as

xi =
∑

h∈Si
λih ze =

∑

h∈Sji

λih
∑

h∈Si
λih = 1 λih ∈ {0, 1},

resulting to the following extended MILP formulation:

[Dγ] : |Q∗| = max
∑

i∈V

∑

h∈Si
λih (8)

∑

h∈Si
λih ≤ 1 ∀i ∈ V (9)

∑

h∈Sji

λih −
∑

h∈Sij

λjh = 0 ∀e = {i, j} ∈ E (10)

∑

i∈V

∑

h∈Si
λih ≤

∑

k∈K
kyk (11)

∑

k∈K
yk = 1 (12)

∑

k∈K
dγk(k − 1)eyk −

∑

i∈V

∑

h∈Si
|Sih|λih ≤ 0 (13)

λih ∈ {0, 1} ∀i ∈ V, h ∈ {1, . . . , |Si|} (14)
yk ∈ {0, 1} ∀k ∈ K (15)

Variable λih is equal to 1 if the partial star Sih is selected, and 0 otherwise. At most one
partial star can be selected for each node, see constraint (9), and the selection of partial stars
must be consistent: if a partial star Sih is chosen and Sih contains the edge {i, j}, then a partial
star Sjp including the edge {j, i} must be selected too, see balance constraint (10). To this
purpose, the sign of the variable λih is positive for edges {i, j} ∈ Sih with i < j and negative
otherwise.

The dual bound provided by the continuous relaxation of [Dγ] is at least tight as that
computed by [Cγ] because [Dγ] is obtained by integer reformulation of [Cγ]. However, [Dγ]
consists of an exponential number in |E| of variables and therefore its solution requires a
column generation approach, where columns correspond to attractive partial stars and pricing
problems are solved for each node i. In particular, let σi, δ, ψ ∈ R+ and πe ∈ R be the values
of dual variables associated to constraints (9),(11),(13) and (10), respectively, and we a binary
variable equal to one if the edge e belongs to the partial star. The reduced cost of the most
profitable partial star of node i is

1− σi − δ + max
∑

e∈S(i)
(ψ + Γ(e)πe)we (16)

with Γ(e = {i, j}) = −1 if i < j and Γ(e) = 1 otherwise. The pricing problem looks for the set
of at most kU − 1 edges that maximize (16), a set that can be obtained by ranking the edges
of S(i) by non decreasing values of (ψ + Γ(e)πe).

Formulations [Cγ] and [Dγ] are not suitable for solving the γ-QCP on dense graphs due
their O(|E|) constraints; even the continuous relaxation can be difficult to solve for moderate
size instances. However, at the cost of a small loss in the quality of dual bounds, a surrogate
relaxation [DS

γ] of [Dγ] can be considered by replacing constraints (10) with the following ones:
∑

h∈Si
|Sih|λih −

∑

j∈S(i)

∑

h∈Sij

λjh = 0 ∀i ∈ V (17)

The pricing problem of [DS
γ] can be easily derived from (16) by appropriately replacing the

dual variables πe with those associated to the surrogate constraints (17).

3 Preliminary computational findings
The column generation algorithm was coded in C++ and all the linear programs were solved
by IBMr CPLEXr 12.5.0.0 on a Intelr Core2 Duo E8500 3.16 GHz machine with 8Gb RAM.

Experiments were performed on two groups of benchmark instances: 16 sparse graphs from [6]
(mean density = 0.008) and the 64 DIMACS instances [2] (mean density = 0.621). All tests
are made with γ = 0.9, kL = 2 and CPU time limit to 4 hours.

We compared formulation [DS
γ], i.e., the surrogate relaxation of [Dγ], with [Cγ]. We observed

that the continuous relaxation of [DS
γ] is solved much faster and is definitively more scalable:

on sparse graphs the required CPU time is on average 48.49% less than that spent for solving
the continuous relaxation of [Cγ]. Moreover, CPLEX reaches the time limit on 12 out of 64
DIMACS instances and takes 899.46 sec. on average on the remaining 52 graphs when used to
solve the continuous relaxation of [Cγ], whereas the column generation computes the bounds
in 2.23 sec. on average. On the other hand, in both class of instances the dual bound provided
by [DS

γ] is roughly the same of that computed by [Cγ]: on sparse graphs [DS
γ] is slightly worse

than [Cγ] (1.32% on average) whereas [DS
γ] performs slightly better (0.14% on average) on

dense graphs. Finally, though we assessed the tightness of formulation [Dγ] on small instances,
the current implementation of the column generation lacks of some technicalities, e.g., early
termination and stabilization strategies, and therefore running times are not yet competitive
for instances with more than 100 nodes.

4 Conclusions and perspective
In this paper a new extended MILP formulation [Dγ] for the γ-QCP has been presented and
some preliminary test were made to evaluate its performance. The bound provided by [Dγ] is as
good as that computed by the tightest formulation reported in the literature and experiments
show that also the surrogate relaxation [DS

γ] roughly provide the same bounds. However, [DS
γ]

seems to be more scalable since the column generation procedure is much faster especially
on dense graphs. In perspective, we look at the implementation of a full branch-and-price
procedure to solve the γ-QCP to optimality.

References
[1] Krislock, N., Malick, J. and Roupin, F.: Computational results of a semidefinite branch-

and-bound algorithm for k-cluster. Computers & Operations Research, 66: 153–159, 2016.

[2] Rossi, R.A. and Ahmed, N.K.: The network Data Repository with Interactive Graph Ana-
lytics and Visualization. Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015, http://networkrepository.com.

[3] Pardalos, P.M. and Xue, J.: The maximum clique problem. Journal of Global Optimization.
Optim. 4(3): 301–328, 1994.

[4] Pattilo, J., Youssef, N. and Butenko, S.: On clique relaxation models in network analysis.
European Journal of Operational Research. 226(1): 9–18, 2013.

[5] Pattilo, J., Veremyev, A., Butenko, S. and Boginski, V. On the maximum quasi-clique
problem. Discrete Applied Mathematics. 161: 244–257, 2013.

[6] Veremyev, A., Prokopyev, O.A., Butenko, S., and Pasiliao, E.L.: Exact MIP-based ap-
proaches for finding maximum quasi-cliques and dense subgraphs. Computational Opti-
mization and Applications, 64: 177–214, 2016.

A hybrid heuristic for multi-activity tour scheduling

Stefania Pan12, Mahuna Akplogan2, Lucas Létocart1,
Louis-Martin Rousseau3, Nora Touati2, Roberto Wolfler Calvo1

1 LIPN, UMR 7030 CNRS, Université Paris 13,
99 avenue Jean-Baptiste Clément 93430, Villetaneuse, France

pan@lipn.fr
2 Horizontal Software, 9 Rue de l’Isly, 75008 Paris, France.

3 CIRRELT - Polytechnique Montréal, CP6079 Succ Centre Ville,
Montréal, Canada, H3C3A8.

Abstract

This work investigates the tour scheduling problem with a multi-activity context,
a challenging problem that often arises in personnel scheduling. We propose a hybrid
heuristic, which combines tabu search and large neighborhood search techniques. We
present computational experiments on weekly time horizon problems dealing with up to
five work activities. The results show that the proposed approach is able to find good
quality solutions.

Keywords : Tabu search, large neighborhood search, multi-activity tour scheduling.

1 Introduction
Personnel scheduling problems consist of assigning employees to activities over a given time
horizon, taking into account organizational, legal and social constraints. Personnel schedul-
ing arises in different organizations. The specific requirements of different companies result
in quite diverse models and solution methods. Recently, Van den Bergh et al. [5] present a
comprehensive survey. This work focuses on the multi-activity tour scheduling problem, where
each employee has to be assigned to a schedule that covers a time horizon of one week. Fur-
thermore, for every time period, it must be specified if the employee is working on an activity,
having a break, or a rest. Under and over coverage are considered and minimized in the ob-
jective function. We propose a hybrid heuristic which combines Tabu Search (TS) and Large
Neighborhood Search (LNS). The first technique builds an initial solution satisfying workload
requirements, and aims at integrating a particular class of legal constraints by keeping the de-
mand satisfied. The second technique completely repairs all schedules making them feasible for
all legal constraints, and aims at minimizing under and over coverage. The literature exhibits
a wide range of models and solution techniques for solving personnel scheduling problems [5].

2 Problem Definition
The main elements and constraints of the multi-activity tour scheduling problem are presented
in Table 1. The problem can be modeled as a mixed-integer linear program. Let E be the set of
employees, A the set of work activities, and J the set of slots covering the whole time horizon.
We define xeja and xejb the decision variables taking value 1 if employee e is assigned to activity
a, respectively to break b in slot j. Furthermore, let xejā and xejs be the decision variables
taking value 1 if employee e is working, respectively on duty, in slot j. Due to lack of space we
do not report the complete formulation, we only remark a particular class of constraints that
will be considered later.

116

TAB. 1: Elements and constraints of the multi-activity tour scheduling

Main elements Constraints
Slots: time periods of equal length that divide the time
horizon.
Timeslot: sequence of activities performed consecu-
tively without breaks.
Daily shift: one or more timeslots assigned the same
day and divided by a break. During these slots, the em-
ployee is said to be on duty.
Schedule: sequence of working days and days-off cov-
ering all the time horizon.

Workload: a number bja of employees is required for
slot j and activity a.
Legal: (L1) Duration of activity a ∈ [la, ua].
(L2) Consecutive working time ∈ [lcw, uc

w].
(L3) Daily working time ∈ [ldw, ud

w].
(L4) Duration of breaks b ∈ [lb, ub].
(L5) Amplitude of daily shift ∈ [ls, us].
(L6) Weekly working time ∈ [lww , uw

w].
(L7) Rest between two daily shifts ≥ lr.

xeja + (z −
∑j+z

j′=j+1xej′a) + xe(j+z+1)a ≥ 1, ∀k, j, a ∈ A ∪ {ā, b, s}, ∀z ∈ {1, ..., la − 1}, (1)
∑j+ua

j′=j
xej′a ≤ ua, ∀e, j, a ∈ A ∪ {ā, b, s}. (2)

Constraints (1)-(2) impose min and max restrictions on consecutive assignments of activities.
These constraints include activities duration (L1) when a ∈ A, consecutive working time (L2)
(resp. break duration (L4), amplitude of daily shift (L5)), when we consider ā (resp. b, s).

3 A heuristic approach
This section describes the hybrid heuristic proposed. It essentially combines tabu search [1]
(TS) and large neighborhood search [4] (LNS). Starting from an initial solution satisfying work-
load requirements, TS aims at integrating constraints (1)-(2) by keeping the demand satisfied.
Then, LNS completely repairs all schedules making them feasible, and aims at minimizing the
under and over coverage.

Tabu Search. In the first phase, an initial greedy solution is built by assigning employees to
activities in order to satisfy workload demand, without checking violations to legal constraints.
Then, TS aims at integrating the particular class of constraints defined by (1) and (2), which
impose restriction on the consecutive assignment of activities. This heuristic explores the
solution space beyond local optimality, and it uses the notions of movement, neighbourhood
and tabu list. In the following we detail these features.
Neighborhood. The neighborhood of a solution is defined by the operator Swap. Given a

subset of consecutive slots J ′ = {j, j + 1, . . . } and two employees e1 and e2, the solution
obtained after applying Swap (e1, J ′, a1) → (e2, J ′, a2) is equal to the current solution except
that employees e1 and e2 exchange their activities in all the slots j in J ′. The neighborhood
N(p) of a solution p consists of all the solutions we can achieve by applying a Swap move on a
subset J ′ of slots of the most violated constraint. We remark that Swap moves ensure that all
the solutions in the neighborhood keep on satisfying workload constraints.
Tabu list. We employ a dynamic tabu list. We fix minimum and maximum lengths. The

tabu list increases when the best solution known does not improve after 10 iterations, while it
decreases when the best solution known improves. It is updated using a FIFO policy.

The basic TS is combined with intensification and diversification. The first deeply explores
N(p): when an improving Swap is found, moves in adjacent slots are evaluated and eventu-
ally applied. The second employs a perturbation operator when the best solution cannot be
improved within 100 iterations. Starting from the best solution known, it applies Swaps in all
slots with duration constraint violation. As a result, the new solution preserves part of the
best solution feasibility and differs where duration constraints are violated. Then, the basic
tabu search with intensification is restarted. Diversification is performed 2 times.

Large Neighborhood Search. In the second phase, we have a solution that satisfies
workload and has a low violation to constraints (L1), (L2), (L4), and (L5). We employ LNS to

integrate completely all legal constraints. For each employee, a new schedule is built in order
to be as close as possible to the current assigned schedule. The LNS technique iteratively
destroys part of the solution and repairs it in the hope of finding a better solution. Similarly
to [3], destroying here means choosing an employee and removing his schedule, while repairing
means assigning a new schedule to the selected employee for improving the global solution.

In the following, we explain how automata can model the schedule’s rules and can build
new feasible schedules. Firstly, activities are combined into timeslots, which are in turn used
to build daily shifts. Finally, daily shifts are combined to build feasible schedules. Legal
constraints are considered both by means of automata, and by solving resource constrained
shortest path problems on the expanded graphs. We refer to [2] for a review on the notions of
automata and expanded graph.
Build feasible timeslots. Timeslots are defined by constraints (L1) and (L2), and they can

be modeled by means of an automaton as show in Fig. 1a. Using this automaton, we build
the expanded graph in Fig. 1b. All paths from node q0

0 to a terminal node describe feasible
timeslots where the employee works 5 consecutive slots. We build timeslots for all possible
starting periods and all possible durations in [lcw, uc

w]. The goal is to have a pool of feasible
timeslots to be combined into daily shifts.

FIG. 1: Automaton 1a and expanded graph 1b to build timeslots

q0

q1 q2 q3

q4 q5

a

b

(a) Automaton accepting all timeslots with ac-
tivities a and b, with duration respectively in
[2, 3] and fixed to 2.

q0
0

q0
1

q0
2

q0
3

q0
4

q0
5

q1
0

q1
1

q1
2

q1
3

q1
4

q1
5

q2
0

q2
1

q2
2

q2
3

q2
4

q2
5

q3
0

q3
1

q3
2

q3
3

q3
4

q3
5

q4
0

q4
1

q4
2

q4
3

q4
4

q4
5

q5
0

q5
1

q5
2

q5
3

q5
4

q5
5

(b) Expanded graph associated with the au-
tomaton in Figure 1a.

Build feasible daily shifts. Daily shifts are defined by constraints (L3), (L4) and (L5). Sim-
ilarly to timeslots, they can be modeled by means of an automaton that essentially combines
timeslots with breaks. The only difference here is that we need to introduce two monotone
resources (the total working time rd

w and the amplitude of the daily shift rs) for each path from
node q0

0 to a terminal node in the expanded graph. Therefore, not all the resource constrained
paths are feasible, but only the ones such that rd

w ∈ [ldw, ud
w] and rs ∈ [ls, us]. We build daily

shifts for each day, all possible starting slots and amplitude. The goal is to have a pool of
feasible daily shifts to be combined into schedules.
Build feasible schedule. The constraints defining schedules are (L6) and (L7). They are

modeled by a directed acyclic graph G that combines daily shifts and days off over the time
horizon. For every day of the week, graph G has an associated level containing one node for
the day off, and one node for each daily shift. Nodes of consecutive levels are connected by
an edge if the rest period is satisfied. We introduce one resource rw

w (weekly working time).
Schedules are resource constrained paths from the source node to the sink node.

We define the cost of a schedule s associated to employee e as the sum of all activities costs:
ce

s =
∑

j∈J

∑
a∈A cjaxeja. We recall that after the TS phase, we have a solution that fulfill

the demand and partially satisfies legal constraints. The goal of the LNS is to build, for each
employee, a new feasible schedule that minimizes under-over coverage, by keeping the schedule
as close as possible to the already assigned one. To do this, we select an employee e and we set
cja = −1 for all (j, a) such that either xeja = 1 or is under covered, otherwise cja = 1. They are
used to build feasible timeslots of the minimum cost, by associating cja to the corresponding
arc of the timeslots expanded graph (Fig. 1b) and solving a shortest path problem. Then,
the costs of the timeslots obtained are given to the arcs of the daily shifts expanded graph,
and minimum cost daily shifts are built solving a resource constrained shortest path. Finally,
the costs of the daily shifts are associated to the arcs of the directed acyclic graph G, and the
minimum cost schedule is built solving a resource constrained shortest path.

4 Computational results
We perform the computational experiments on random instances generated by varying the
set of activities A (2 to 5), the number of employees |E| (10 to 60) and the slot time unit
(15 and 30 minutes). Workload demand is inspired by input from quick service restaurants,
defined so that an optimal solution without under and over coverage exists. Legal constraints
are set as follows: (L1) la and ua are respectively between 1h and 2h, and 3h and 4h; (L2)
lcw and uc

w are 2h and 6h; (L3) ldw and ud
w are 0h and 10h; (L4) lb and ub are 30min and 1h;

(L5) ls and us are 0h and 12h; (L6) lww and uw
w are 0h and 35h; (L7) lr is 11h. Instances are

labeled with the format E_A, where E and A represent the number of employees and activities
respectively. The tests were performed on Intel Xeon CPU E3-1220 v5 @3.00GHz 4GB of
RAM. The heuristic was implemented using C#. The mixed integer linear program has been
solved using CPLEX 12.7.0, which does not manage to solve any instance within 1 hour. The
following table reports the name of the instances (Inst), which are solved both with slots of
30min and 15min. For each instance and for both solving phases TS and LNS, we show the
violation to legal (vL) and workload (vW) constraints. More precisely, vL represents the legal

Inst

30min 15min

Inst

30min 15min
TS LNS time(s) TS LNS time(s) TS LNS time(s) TS LNS time(s)

vL% vW% vL% vW% vL% vW% vL% vW% vL% vW% vL% vW% vL% vW% vL% vW%
10_2 0.0 0.0 0.0 4.8 33.9 0.0 0.0 0.0 3.5 251.6 40_2 1.4 0.0 0.0 4.4 224.7 1.3 0.0 0.0 4.6 1245.4
10_3 0.0 0.0 0.0 4.6 30.3 0.0 0.0 0.0 3.8 217.2 40_3 0.4 0.0 0.0 5.1 199.8 0.4 0.0 0.0 4.8 1173.6
10_4 0.0 0.0 0.0 5.6 31.3 0.0 0.0 0.0 3.7 222.7 40_4 1.4 0.0 0.0 4.8 213.9 0.6 0.0 0.0 5.1 1089.3
10_5 0.0 0.0 0.0 1.2 29.8 0.0 0.0 0.0 0.8 211.6 40_5 0.7 0.0 0.0 4.0 222.1 0.7 0.0 0.0 4.0 1133.6
20_2 0.8 0.0 0.0 4.4 81.0 0.7 0.0 0.0 4.7 575.9 50_2 1.3 0.0 0.0 4.2 307.6 1.3 0.0 0.0 4.3 1629.2
20_3 0.3 0.0 0.0 4.9 90.3 0.0 0.0 0.0 5.9 501.9 50_3 1.0 0.0 0.0 4.3 238.2 0.9 0.0 0.0 5.3 1482.7
20_4 0.5 0.0 0.0 5.1 70.3 0.0 0.0 0.0 4.2 467.3 50_4 1.6 0.0 0.0 5.6 284.3 1.2 0.0 0.0 5.5 1497.2
20_5 2.3 0.0 0.0 4.8 81.5 1.4 0.0 0.0 4.4 480.6 50_5 3.7 0.0 0.0 4.8 373.7 4.3 0.0 0.0 4.7 1532.1
30_2 1.1 0.0 0.0 4.4 137.9 1.2 0.0 0.0 3.9 885.9 60_2 1.5 0.0 0.0 3.8 350.1 1.4 0.0 0.0 4.0 2016.3
30_3 0.0 0.0 0.0 4.8 120.9 0.1 0.0 0.0 5.1 781.9 60_3 0.9 0.0 0.0 4.5 314.5 1.0 0.0 0.0 4.8 1750.3
30_4 0.3 0.0 0.0 4.6 124.8 1.0 0.0 0.0 5.2 795.7 60_4 1.4 0.0 0.0 5.6 340.4 0.5 0.0 0.0 5.7 1967.8
30_5 3.4 0.0 0.0 5.5 130.8 3.4 0.0 0.0 4.8 797.2 60_5 1.3 0.0 0.0 4.3 343.2 1.3 0.0 0.0 4.8 1777.8

violation at the end of each solving phase compared with the one at the beginning (100 final
violation/initial violation). Furthermore, vW represents the workload violation defined as the
sum of under and over coverage over the total demand (100

∑
j

∑
a(uja + vja)/(

∑
j

∑
a bja)).

Due to the design of the heuristic, violation vW is always 0 for TS since it starts with a solution
satisfying workload, and it uses the Swap move. Analogously, violation vL is always 0 for the
LNS since it builds schedules which satisfy all legal constraints. The results show that the
proposed hybrid approach is able to find, in reasonable time, a solution satisfying all legal
constraints and violating workload demand of 4.5% in average.

References
[1] Fred Glover. Tabu search-part i. ORSA Journal on computing, 1(3):190–206, 1989.

[2] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, And Computation. Addison-Wesley, Boston, 3rd edizione edition, 2006.

[3] Claude-Guy Quimper and Louis-Martin Rousseau. A large neighbourhood search approach
to the multi-activity shift scheduling problem. Journal of Heuristics, 16(3):373–392, April
2009.

[4] Paul Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems. Lecture Notes in Computer Science, pages 417–431. Springer, Berlin,
Heidelberg, October 1998.

[5] Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester, and
Liesje De Boeck. Personnel scheduling: A literature review. European Journal of Opera-
tional Research, 226(3):367–385, May 2013.

Parallel machine scheduling with unit time distinct due
windows

Oliver Schaudt1, Stefan Schaudt2

1 RWTH Aachen University, Aachen, Germany
schaudt@mathc.rwth-aachen.de

2 TU Dortmund, Dortmund, Germany
stefan.schaudt@tu-dortmund.de

Abstract
We consider the problem of non-preemptively scheduling n jobs on m identical parallel

machines. Each job has an assigned due window of unit length. The objective is to decide
whether a schedule exists in which none of the jobs is either early or tardy.

We present a dynamic program to solve this problem. The running time is bounded
by O(

(
m+pmax

pmax

)2 · (pmax + m · n) · T), whereas pmax denotes the maximal processing
time over all jobs and T the time horizon. Our first computational results indicate that
the algorithm is significantly faster than solving the respective integer program with a
standard solver.

Keywords : Just-in-time scheduling, distinct due windows.

1 Introduction
We consider the problem of non-preemptively scheduling n jobs on m identical parallel ma-
chines, in which each job has a assigned due window of unit length. The objective is to decide
whether a schedule exists such that non of the jobs is either early or tardy. Recall that a job is
early if its completion time is less than the lower due window bound and tardy if it completes
after the upper bound. We present an exact algorithm to solve this problem.

A much more general problem is this: Is it possible to build a feasible schedule given n
jobs and m identical parallel machines, each job having a release date and a due date? This
problem is known to be strongly NP-complete. If the number of distinct release and due
dates is bounded by a constant, a pseudo-polynomial algorithm exists. The problems remains
NP-complete (in the ordinary sense) even if release and due dates can take only two distinct
values.

Another well-studied problem is the scheduling of unit time jobs based on release and due
dates for the case of a single machine or identical parallel machines. For the single machine case,
Steiner and Yeomans [3] presented a linear time solution algorithm. In the case of m identical
parallel machines, Simons and Warmuth [2] created an algorithm that runs in O(n2 ·m) time.

1.1 Motivation
Delivering parcels or food by using autonomous driving robots emerged in recent years and
the motivation of our problem stems from this application. In contrast to a common delivery
vehicle a robot might have only a capacity of one parcel. A typical robot delivery might look
as follows.1

Assume that there is a depot with at least one delivery robot and a customer who wants to
order. First, the customer places an order and decides to get the goods delivered by a robot.

1StarShip Technologies: https://www.starship.xyz

120

For this, she chooses an arrival window of the robot. Depending on this time window and the
location of the customer, a starting time of the robot can be calculated. Shortly before the
starting time is reached, the robot will be loaded at the depot. The customer gets a notification
when the robot is arriving. After the customer has taken out his order, the robot returns to
its depot.

The advantage is the free choice of the delivery window for the customer and the autonomy
of the robots. Assume that an operator receives requests from customers overnight. He wants
to find out whether there is a feasible schedule through the use of m robots, in which none of
the customers are served outside of their time window.

The transformation is not explained here because of the page restriction.

2 Preliminaries and definitions
Suppose we have given a set J of n jobs and a set of m identical parallel machines. Each job
j has an integer processing time, p(j) ∈ {1, . . . , pmax}, an integer lower due window bound,
dl(j), and an integer upper due window bound, du(j). It holds that for each jobs the difference
between these bounds is one, du(j) − dl(j) = 1. The time horizon is denoted by T , with
T = max

j∈J
du(j). Furthermore, J is partitioned into several job sets, denoted by Jt for t ∈

{0, . . . , T − 1}, whereas Jt contains all jobs with a lower due window bound of t. If job j is
starts at time t on machine m, it will be finished at time t + p(j). Meanwhile, machine m
is blocked for the interval [t, t + p(j)). The definition of a feasible schedule is similar to the
definition provided by Simons [1]. A feasible schedule is a mapping
g : {1, . . . , n} → {0, . . . , T −1}×{1, . . . , m}, whereas g(j) = (s(j), h(j)), 1 ≤ j ≤ n, such that:

• dl(j) ≤ s(j) + p(j) ≤ du(j) (every job has to complete in its due window),

• If h(j) = h(k) with j 6= k and s(j) ≤ s(k), then s(j) + p(j) ≤ s(k) (each machine can
execute at most one job at a time).

We define a partial schedule as a schedule in which not all jobs have been assigned yet. Finally,
preemption is not allowed, meaning that a job can not be interrupted.
Tuples
In the following, we consider the due windows separately in ascending order. Assume that

we already have a partial schedule up to time t. Furthermore, the machines are ordered in non
increasing order according to their maximal completion time cmax,i. To decide whether it is
possible to schedule set Jt, we are interested in the space that remains between time t and the
maximum completion time on each machine. This space is represented by a tuple of integers
with dimension pmax. The first entry corresponds to the number of jobs which completes at
time t. Additionally, the i’th entry represents the number of jobs with a completion time
between t− i + 1 and t. For each due window the number of tuples is bounded by

(m+pmax

pmax

)
.

Tuple vector
For simplicity, we define a vector ~v, which contains all possible tuples for m machines and

a maximal processing time of pmax. The first tuple of is (0, . . . , 0). The tuple in position i of
~v can be obtained by taking tuple at place i-1 and increasing the highest entry of the tuple,
which is not already m, by one. If this entry is not the last entry, all entries with a larger index
are equal to the increased entry. Hence, the last tuple of ~v is (m, . . . , m).
Partial order
Beside vector ~v, we can define a partial order to compare two tuples. Given two tuples, x

and y, with x = (x1, . . . , xpmax) and y = (y1, . . . , ypmax). It holds that x is preferred to y, short
x ≤ y, if xi ≤ yi ∀i ∈ {1, . . . , pmax}.
Machine tuples
Given a tuple (x0, x1, . . . , xn) for due window [t − 1, t], the corresponding machine tuple

is calculated by (x1, x2 − x1, . . . , xn − xn−1). This is denoted by (x̃1, . . . , x̃n), whereas x̃i

corresponds to the number of machines with a cmax of t− i .

3 Dynamic program

The dynamic program considers the due windows separately in ascending order, starting with
due window [0, 1]. In each iteration of the dynamic program it tries to extend the partial
schedule by one time unit. The frontier of the partial schedule is represented by a tuple, up
to time t. Assuming that tuples up to time t have been obtained, the first tuple is considered.
In the subroutine, jobs with a lower due window bound that is smaller than t are assumed
to be fix and will not be reassigned or shifted. Based on this tuple and the given set Jt, the
program tries to obtain all tuples from vector ~v. These tuples represent the new frontier up to
time t + 1. A detailed description of this procedure is given in subsection 3.1. Whenever it is
possible to obtain one of the tuples of vector ~v it will be marked, in case it is not marked yet.
This will then become one of the tuples for the next iteration. After all tuples of ~v have been
examined, the dynamic program continues by considering the next tuple.

Finally, if all tuples for time t have been considered, the next iteration starts for due window
[t + 1, t + 2]. In this iteration the program examines all marked tuples for time t + 1.

To start the dynamic program at least one marked tuple is needed. This tuple represents
the schedule up to time 0 and is denoted by (m, . . . , m).

There are two options for how a run can terminate. Either we have marked a tuple for time
T or there exists a point in time, in which none of the tuples is marked. In the first case, we
have found a feasible schedule which will be returned. Otherwise, there will be no schedule
which contains all jobs.

In the following we explain the subroutine to extend a partial schedule.

3.1 Subroutine

Assume we have given a job set Jt and two tuples x and y. Tuple x represents the frontier
of the partial schedule up to time t and y represents the new frontier, which we are trying
to obtain. The machines are sorted according to their cmax value in non increasing order. In
case the job set equals the empty set, Jt = ∅, it is only possible to obtain tuple x, whereas all
entries shifted by one to the right and a zero is added in first place, (0, x1, . . . , xn−1).

The extension works as follows, we transform x and y into machine tuples, denoted by
x̃ = (x̃1, . . . , x̃n) and respectively ỹ = (ỹ1, . . . , ỹn). We start by creating a new machine tuple
z̃. The entry z̃i represents the number of machines that are valid for jobs with a processing
time of at most i−1. It will be calculated by comparing x and y, z̃i = x̃i−1− ỹi∀i ∈ 3, . . . , n− 1
, z̃2 = x̃1, z̃1 = 0 and z̃n = x̃n + x̃n−1 − ỹn. If one of the entries of z̃ is negative, the procedure
terminates because based on tuple x it is impossible to obtain the new frontier.

Otherwise, the program tries to place the jobs of set Jt on the machines represented by
tuple z̃. This is done in non increasing order concerning the processing time and decreasing
order concerning the index of z̃. In the case a valid machine is found by the program, it tries
to place the job in a way that it is completion time equals the lower due window bound. A
special case are jobs with a processing time of one. The procedure considers to conditions,
first, place the job in a way that it is ending at the left bound of the due window and second,
the chosen machine has the highest cmax value under all considered machines. If this attempt
fails, it inserts the job in a way that it is completing at the right end of its due window bound.

After each placement of a job on a machine, we reduce the corresponding entry of z̃ by one.
If the job is placed completing at the left end of its due window, we increase the second entry
of z̃ by one. In the case it’s impossible to place a job, the procedure terminates because based
on tuple x it is impossible to obtain the new frontier.

After we have placed all jobs, we transform the new frontier into a tuple, denoted by s.
Finally, we have to do a feasibility check of s. If the first two entries of tuple s are less or
equal compared to y, si < yi for i ∈ {1, 2}, tuple s will be returned. Otherwise, the procedure
terminates. However, it can be that the returned tuple s is not tuple y. However, both tuples
are comparable and s will be preferred according to the partial order.

3.2 Running time
The number of iterations of the dynamic program is equal to the time horizon T . Moreover,
the number of tuples is bounded by

(m+pmax

pmax

)
for each point in time. In each iteration the

dynamic program calls the subroutine at most
(m+pmax

pmax

)2 times. This subroutine takes at most
pmax units for blocking machines and additional m · n units for assigning jobs to machines. In
conclusion the resulting running time is O(

(m+pmax

pmax

)2 · (pmax + m · n) · T).

3.3 First computational results
We compared the running time of the dynamic program to the running time of the integer linear
program formulation of this problem solved by Gurobi 7.0.2 . Both are implemented in Java.
Our test sets vary on the number of machines, the number of jobs, the maximal processing
time of a job and the time horizon T . The number of jobs is equal to 10, 20, . . . , 100 and the
maximal processing time and the number of machines takes values of 2, 3, . . . , 8. Based on
these 3 input parameters the time horizon was calculated. For each combination of parameters
we have calculated a time horizon, in a way that over 10000 runs the number feasible schedules
was as close as possible to 5000.

In each test set the processing time, pj , of each job is uniformly and discretely distributed
between 1 and pmax. Furthermore, the lower due window bound dl, is uniformly and discretely
distributed between 0 and T − 1. In the case that dl − pj is smaller than one, we set pj = dl.

With this generation procedure we generated in total 490 test sets. On average, the dynamic
program is 48 times faster than the integer linear problem formulation of this problem.

4 Outlook
Our approach can be used to deal with non-overlapping due windows of arbitrary size. This
model covers applications where the customer chooses a one hour slot for the delivery of her
parcel while the scheduler is able to plan with 15 minute slot resolution.

References
[1] B. Simons. Multiprocessor Scheduling of Unit-Time Jobs with Arbitrary Release Times and

Deadlines. SIAM Journal on Computing, 12(2):294-299, 1983.

[2] B. Simons and M. K. Warmuth. A fast algorithm for multiprocessor scheduling of unit-
length jobs. SIAM Journal on Computing, 18(4):690-710, 1989.

[3] G. Steiner and S. Yeomans. A note on "Scheduling unit-time tasks with integer release
times and deadlines". Information Processing Letters, 47(3):165-166, 1993.

Single machine scheduling with bounded job rearrangements

Arianna Alfieri1, Gaia Nicosia2, Andrea Pacifici3, Ulrich Pferschy4

1 Politecnico di Torino
arianna.alfieri@polito.it

2 Università degli studi “Roma Tre”
nicosia@ing.uniroma3.it

3 Università degli studi di Roma “Tor Vergata”
andrea.pacifici@uniroma2.it

4 University of Graz
ulrich.pferschy@uni-graz.at

Abstract

In operations scheduling, changes in the scenario predicted beforehand (due to, e.g.,
disruptions, breakdowns, realizations different from expected data values) make it often
necessary to revise a plan in order to meet the original objectives under the new cir-
cumstances and with the changed data. In this case, cost and/or stability issues require
the consideration of solutions which do not differ too much, i.e., that can be obtained
by a small number of modifications, from the original ones. In this paper we focus on a
single-machine scheduling setting where we need to “adjust” a given, predefined solution,
by re-sequencing jobs, but there are bounds on the number and type of allowed job shifts.
We propose mathematical programming models and possible solution approaches.

Keywords : single-machine scheduling, integer programming, dynamic programming

1 Introduction
In several application settings, scheduling decisions are often taken in multiple successive phases
(e.g., corresponding to different stages of a production facility) enabling real-time “corrections”
of the solution computed in the previous phase. For instance, rearrangement of a solution
schedule may be needed in order to account for possible different criteria at different stages
of a supply chain. This is quite a common scenario, in which the decision makers at various
levels of the supply chain have their own objectives and constraints that would lead to different
schedules (see e.g., [1]). As a consequence, as the orders proceed from one stage to the next—
since it is unlikely that the same schedule fits all the stages of the supply chain—re-sequencing
operations may be needed at intermediate buffers to consider new requirements.

Rearrangements could be also necessary in other settings: Consider a system with a single
objective function and subject to events that lead to a perturbation of the originally given or
estimated data, e.g., changes in the expected job durations or availabilities as in [2]. In this
case, the given, previously optimal, solution sequence is not performing so well anymore and
re-scheduling must be carried out.

In general, modifications of an already devised sequence (i.e., re-scheduling due to new
requirements or to disruptions or data changes) could be very expensive both in terms of costs
and operational complications associated to unstable solutions, as it happens in the well known
nervousness phenomenon [6]. As a consequence, when changing a solution schedule, cost and
stability issues become of primary importance. On these grounds, we aim at balancing the
cost for re-positioning the jobs and the improvement in the objective. In the following, we
specifically refer to the latter problem as scheduling with rearrangements.

124

2 Problem definition
Consider a deterministic single-machine environment where n jobs with given processing times
have to be scheduled according to a regular objective function C(σ) (e.g., minimization of the
total completion time, or minimization of the maximum tardiness, etc.), which depends on the
job sequence σ.

Without loss of generality, it is assumed that an initial sequence σ0 = 〈1, 2, . . . , n〉, of the
n jobs (representing an optimal or satisfactory solution for the original data) is given and
that job j is the job placed in the j-th position of σ0. Suppose now that, due to changed
conditions (e.g., altered processing times, different objective at the current supply chain stage,
etc.), σ0 is no more adequate in terms of the ongoing performance indicator C(·). In order
to get back to a satisfactory solution, it is possible to rearrange jobs, so that a new sequence
σ = 〈σ1, σ2, . . . , σn〉 is obtained which achieves a better performance. The problem we address
in this work is to determine a new job sequence σ such that:

(i) C(σ) is minimum (or, in any case, C(σ) ≤ C(σ0)) and
(ii) the value of a “distance function” between the new sequence σ and the initial sequence

σ0 is bounded.
Several different metrics are used in the literature to define distances between rankings.

Hereafter, the ranking of a job denotes its position in the sequence (e.g., the ranking of job j
in σ0 is j) and hence a permutation or sequence is completely described by the rankings of its
jobs. The classical metrics are Kendall’s tau [3] and Spearman’s footrule [5]. More recently,
several other metrics have been proposed; in [4] a number of them are surveyed and new ones
are proposed.

The metric we adopt in this paper is the number of moves necessary to reach σ starting
from σ0, where a move is the removal of a job from the current sequence and its insertion in
a successive position. By “successive position” we mean a position with larger index number,
i.e. further “to the right” of the sequence. This restricted notion of moves is motivated by
the real-world example of a machine which receives its input by a conveyor belt. Since the
conveyor keeps moving forward, it is not possible to insert a removed jobs in an earlier position
in the sequence, i.e., in front of the queue, see Figure 1 for an illustration. In this figure, the
new sequence σ is obtained in three moves. As the conveyor belt proceeds to the left, we can
remove jobs 1 and 2 to place them after 4 and 6, respectively. Doing so, 3 becomes the first
job of the new sequence. Note that, in this setting, we would not be allowed to move jobs 3
and 4 before job 1.

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 23 4 56 7

M

M

M

FIG. 1: As the conveyor belt proceeds leftward, three moves are performed.

Observe that even under our restricted definition of moves, every permutation of the jobs
can be obtained by a suitable sequence of feasible moves. Note also that in our metric we
do not care about the distance (i.e., number of positions) a job is moved, but we focus on
the number of moving operations. This is motivated by the practical situation where a job is
associated with an item (work piece, part of a machinery) and moving such an item entails, for
instance, a forklift to pick up the item and drive it to the new position. In this case, driving
distance is mostly negligible, while the pickup and placing operations are costly.

The following Lemma helps in determining the number of moves necessary to reach a given
sequence σ, starting from the initial sequence, say σ0. (Recall that, in σ0, the name of a job
indicates its position/ranking in the sequence.)
Lemma 1 Transforming a starting sequence σ0 into a new, given sequence σ by moves to
successive positions, a job j destined for a position i in σ must be moved from its original
position j in σ0, if and only if, there is a job k > j placed before the i-th position in σ.

For instance, in Figure 1, σ = 〈3, 4, 1, 6, 5, 2, 7〉, therefore 1, 5, and 2, have been re-positioned,
since they are preceded by higher ranking jobs, while 3, 4, 6, and 7 were not.

Let Sn indicate the set of all sequences (i.e. permutations) of the n jobs. We are now in the
position to give a formal definition of our problem.

Single-machine Scheduling with Rearrangements (SSRP)
Given: a set J = {1, 2, . . . , n} of jobs with nonnegative processing times pi, i =
1, . . . , n, an initial sequence of jobs σ0 = 〈1, 2, . . . , n〉, a regular objective function
C : Sn −→ R+ depending on the job sequence, and an integer k;
Find: a sequence σ ∈ Sn that can be reached in at most k moves from σ0 such
that C(σ) is minimum.

The job in position i in the sequence σ ∈ Sn is denoted by γσ(i) ∈ {1, 2, . . . , n} (e.g.., γσ0(i) =
i), while πσ(j) denotes the position of job j. If the context makes it clear which sequence we
are talking about, we omit the subscript σ and write, e.g., π(γ(i)) = i or γ(π(j)) = j.

3 Solution approaches and preliminary results
We propose integer linear programming models for three cases of our problem, corresponding
to three different objective functions. In addition, we present efficient procedures to solve
restricted versions of SSRP. These can be of use, as building blocks, in devising heuristic
solution algorithms for the general case.

3.1 Mathematical programming model
In our study we consider the minimization of the following objective functions C(σ). Here-
after we only sketch the idea behind the corresponding MIP models for our Single-machine
Scheduling with Rearrangements problem and omit the obvious details of the complete
formulations.

In all mathematical programs we use the assignment variables x ∈ {0, 1}n×n, where xj(i) = 1
indicates that job j is placed in position i in σ. The ILP models consider the following criteria:
• Total completion time. In this case the objective is

C(σ) =
n∑

i=1

i∑

h=1

n∑

j=1
xj(h)pj . (1)

• Maximum lateness. Here C(σ) = Lmax represents the maximum lateness:

C(σ) = Lmax ≥
i∑

h=1

n∑

j=1
pjxj(h)−

n∑

j=1
djxj(i) ∀ i = 1, . . . , n. (2)

• Number of tardy jobs

C(σ) =
n∑

i=1
Ui (3)

Here binary variables Ui ≥ 1
M

(∑i
h=1

∑n
j=1 pjxj(h)−∑n

j=1 djxj(i)
)
, i = 1, 2, . . . , n indi-

cate that job in position i is tardy when Ui = 1.

We observe that in order to model the number of moves, i.e. to “count” the number of jobs
that are to be repositioned, recalling Lemma 1, we may express the quantities γ(i) and π(j)
as functions of the x variables.

We performed a number of preliminary computational experiments on randomly generated
instance using the commercial ILP solver Gurobi. These tests show that Gurobi is able to
solve quite efficiently instances with up to 40 jobs and k = 3. As soon as n or k grows, the
time required to solve the problem becomes too large. So, we also implemented a few simple
greedy rules to detect the k jobs to be repositioned and on which positions to schedule them.
Such greedy rules are extremely fast (a few milliseconds for quite large instances), but poorly
effective when the number of jobs is small. Their performance improves when the number of
jobs becomes larger.

A few experiments were also performed to test how the value of k influences the objective
function values. In most cases, it turns out that it is possible to find the optimal solution as
soon as k reaches ≈ n

3 .

3.2 Restricted problems
We consider a restricted variant of SSRP in which the set of k jobs that we are allowed to move
is given as an input. For this restriction we are able to provide efficient solution algorithms.
More precisely, our contributions are:

• a dynamic programming algorithm for the problem in which we want to minimize the
number of late jobs;

• a modification to Lawler’s algorithm for solving the problem when the objective is the
minimization of the maximum lateness.

References
[1] A. Agnetis, N.G. Hall, and D. Pacciarelli. Supply chain scheduling: Sequence coordination.

Discrete Applied Mathematics, 154(15):2044–2063, 2006.

[2] N.G. Hall and C.N. Potts. Rescheduling for Job Unavailability. Operations Research, 58
(3):746-755, 2010.

[3] M.G. Kendall. A New Measure of Rank Correlation. Biometrika, 30(1–2):81–93, 1938.

[4] R. Kumar and S. Vassilvitskii. Generalized Distances Between Rankings. Proceedings of
the 19th International Conference on World Wide Web:571–580, 2010.

[5] C. Spearman. The Proof and Measurement of Association between Two Things. The Amer-
ican Journal of Psychology, 15(1):72–101, 1904.

[6] X. Wang and S.M. Disney. The bullwhip effect: Progress, trends and directions. European
Journal of Operational Research, 250(3):691–701, 2016.

A Generalized Turán Problem and its Applications

Lior Gishboliner1, Asaf Shapira2

1 School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
liorgis1@post.tau.ac.il

2 School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel
asafico@tau.ac.il ∗

Abstract

The investigation of conditions guaranteeing the appearance of cycles of certain lengths
is one of the most well-studied topics in graph theory. In this paper we consider a problem
of this type which asks, for fixed integers ` and k, how many copies of the k-cycle guarantee
the appearance of an `-cycle? Extending previous results of Bollobás–Győri–Li and Alon–
Shikhelman, we fully resolve this problem by giving tight (or nearly tight) bounds for all
values of ` and k.

We also present a somewhat surprising application of the above mentioned estimates
to the study of graph property testing. Prior to this work, all bounds for the query
complexity of testing graph properties were either polynomial or there was a tower-type
gap between the best known upper and lower bounds. We fill this gap by showing that
for every super-polynomial function f(ε), there is a monotone graph property P, such
that the query complexity of the optimal one-sided-error ε-tester for P is precisely given
by f(ε). We thus obtain the first examples of tight super-polynomial bounds for the one-
sided-error query complexity of graph properties. A special case of this result resolves a
problem of Alon and the second author, while another special case partially resolves a
problem of Goldreich.

1 The Generalized Turán Problem for Cycles
Turán’s Theorem, one of the cornerstone results in graph theory, determines the maximum
number of edges in an n-vertex graph that does not contain a Kt (the complete graph on t
vertices). Turán’s problem is the following more general question: for a fixed graph H and an
integer n, what is the maximum number of edges in an n-vertex H-free graph? This quantity is
denoted by ex(n, H). Estimating ex(n, H) for various graphs H is one of the most well-studied
problems in graph theory.

Alon and Shikhelman [4] have recently initiated the systematic study of the following nat-
ural generalization of ex(n, H); for fixed graphs H and T , estimate ex(n, T, H), which is the
maximum number of copies1 of T in an n-vertex graph that contains no copy of H. Note that
ex(n, H) = ex(n, K2, H). For the sake of brevity we refer the reader to [4] for more background
and motivation, as well as examples of some well-studied problems in extremal combinatorics
which can be cast in the setting of studying ex(n, T, H) for various pairs H and T .

Let Ck denote the cycle of length k. The problem of estimating ex(n, Ck, C`) has recently re-
ceived a lot of attention. Bollobás and Győri [5] proved that ex(n, C3, C5) = Θ

(
n3/2). Győri and

Li [11] extended this result by showing that Ω(ex(n, {C4, C6, . . . , C2`})) ≤ ex(n, C3, C2`+1) ≤
O`(ex(n, C2`)), where ex(n, {C4, C6, . . . , C2`}) is the maximal number of edges in an n-vertex
graph with no copy of C2t for any 2 ≤ t ≤ `. This result was also obtained by Füredi and

∗Supported in part by ISF Grant 1028/16 and ERC Starting Grant 633509.
1When counting copies of T in G we always mean unlabeled copies.

128

Özkahya [7], who in addition proved similar bounds for ex(n, C3, C2`). Our main result, stated
as Theorem 1, significantly extends the above results by giving asymptotically tight bounds
for ex(n, Ck, C`) for all fixed k, `.

Theorem 1 For distinct k, ` we have

ex(n, Ck, C`) =

Θk

(
nk/2) k ≥ 5, ` = 4,

Θk

(
`dk/2enbk/2c) ` ≥ 6 even, k ≥ 4,

Θk

(
`dk/2enbk/2c) k, ` odd, 5 ≤ k < `.

The implied constants in the theorem depend on k. Note that Theorem 1 covers all cases
except for those already resolved in [11, 7], and the trivial cases where either k is even and ` is
odd, or k and ` are both odd and k > `. In these cases a blow-up of Ck is C`-free, and hence
ex(n, Ck, C`) = Θ(nk).

2 Applications to Graph Property Testing
We would now like to describe somewhat surprising applications of Theorem 1 related to the
area of graph property testing. Let P be a monotone graph property, that is, a property
closed under removal of vertices and edges. We say that a graph G is ε-far from P if one must
remove at least εn2 edges to make G satisfy P . In the setting we will consider here, which
was first introduced in [10], one assumes that a (randomized) algorithm can sample a set of
vertices S from an input graph G, and based on the graph induced by this set should be able
to distinguish with probability at least 2/3 between the case that G satisfies a property P and
the case that G is ε-far from satisfying P . Such an algorithm is called an ε-tester for P . We
denote by q = qP(ε, n) the smallest integer for which there is an ε-tester for P that works by
randomly selecting a set of vertices S of size q from n-vertex graphs. The surprising fact is that
for many natural properties P there is a function qP(ε) satisfying qP(ε, n) ≤ qP(ε) for every
n, that is, there is an ε-tester for P which inspects an induced subgraph of size that depends
only on ε and not on |V (G)|.

Alon and the second author [3] proved that every monotone property P is testable with a
number of queries that depends only on ε. In fact, the tester is extremely simple: it accepts if
and only if the sample satisfies P . So what the authors of [3] actually proved is that for every
ε > 0 there is a (least) integer wP(ε) such that if a graph G is ε-far from P then a random
subset S ⊆ V (G) of wP(ε) vertices is such that G[S] (the subgraph of G induced by S) does
not satisfy P with probability at least 2/3. This result generalizes the famous graph removal
lemma [12], that can be stated as saying that if a graph G is ε-far from being H-free then a
randomly chosen set of vertices S of size wH(ε) is such that G[S] contains a copy of H with
probability at least 2/3.

Note that while testers might have 2-sided error2, the above tester for a monotone property
has 1-sided error, that is, it accepts graphs satisfying P with probability 1 (and rejects those
that are ε-far from P with probability at least 2/3). It is easy to see that a 1-sided tester of a
monotone property P cannot reject an input if G[S] satisfies P . Hence wP(ε) actually equals
the query complexity of the optimal 1-sided tester for P .

The aforementioned result of [3] is proved using Szemerédi’s regularity lemma, and hence
the bounds it supplies for wP(ε) are (at least) of tower-type. Unfortunately, there are prop-
erties for which no (significantly) better bounds are known. The prime example is triangle
freeness, for which, despite much effort, the best known bounds are (1/ε)c log 1/ε ≤ wP(ε) ≤
tower(O(log 1/ε)), where3 the lower bound was obtained in [12], and the upper bound was
obtained only recently by Fox [6].

2That is, the tester is allowed to err in both direction, i.e. reject graphs satisfying P with small probability
as well as accept graphs that are ε-far from P with small probability.

3tower(x) is the tower function, that is, a tower of exponents of height x.

Another notable result is that of [10], who showed that k-colorability is testable with
poly(1/ε) queries, thus improving upon an earlier tower-type bound of Rödl and Duke.

Prior to this work, all known bounds for the query complexity of monotone properties were
of the above two types, that is, they were either of the form wP(ε) = poly(1/ε) or there was
(at least) a tower-type gap between the best known lower and upper bounds. In light of this
situation, Goldreich [8] asked to exhibit a property for which the optimal query complexity is
21/ε. Here we apply Theorem 1 to partially answer this question, by exhibiting a property for
which the optimal 1-sided error query complexity is 2Θ(1/ε). In fact, we establish the following
general result:

Theorem 2 There is an absolute constant c such that for every decreasing function f : (0, 1)→
N satisfying f(x) ≥ 1/x, there exists a monotone graph property P satisfying f(ε) ≤ wP(ε) ≤
ε−14f(ε/c).

Theorem 2 can be considered a hierarchy theorem for query complexity of 1-sided ε-testers,
somewhat reminiscent of the famous time/space hierarchy theorems in computational com-
plexity theory.

We now turn to the second application of Theorem 1. In what follows, we use wk(ε) instead
of wP(ε), where P is the k-colorability property. Recall that the general bounds for wP(ε)
obtained by the aforementioned result of [3] are of tower-type (or even worse). A natural
problem, first raised already in [3] and later also by Goldreich [9] and Alon and Fox [2] is to
characterize the properties for which wP(ε) = poly(1/ε). Since this problem seemed (and still
seems) to be out of reach, [3] asked if one can at least solve the following (very) special case.
Given a set of integers L, let us say that a graph is L-free if it is C`-free for every ` ∈ L. The
problem of [3] then asks to characterize the sets L for which4 wL(ε) = poly(1/ε). The result of
[10] stating that w2(ε) = poly(1/ε) is then equivalent to the statement that if L consists of all
odd integers then wL(ε) = poly(1/ε). Another related result is due to Alon [1] who proved that
wL(ε) = poly(1/ε) if L contains at least one even integer, and that wL(ε) is super-polynomial
whenever L is a finite set of odd integers. Our second application of Theorem 1 solves all the
cases not handled by previous results.

Theorem 3 Let L = {`1, `2, . . .} be an infinite increasing sequence of odd integers. Then we
have wL(ε) = poly(1/ε) if and only if lim supj−→∞

log `j+1
log `j

<∞.

By the above theorem, as long as `j does not grow faster than 22j , one can get a polynomial
bound on wL(ε), while for any (significantly) faster-growing `j one cannot get such a bound.

We now turn to the last application of Theorem 1. It is natural to ask whether qP(ε) can be
significantly smaller that wP(ε), that is, if 2-sided testers have any advantage over 1-sided ones.
The simple answer is of course yes; for example, if P is the property of having edge density at
least 1/4 (i.e. having at least n2/4 edges) then it is easy to see that qP(ε) ≤ poly(1/ε) as one
can just estimate the edge density of the input. On the other hand, it is also easy to see that P
is not testable with 1-sided error using a number of queries that is independent of n. It is thus
more natural to restrict ourselves to graph properties that can be tested with 1-sided error,
and ask: to what extent are 2-sided testers more powerful than 1-sided testers for monotone
properties?

It is (perhaps) natural to guess that at least for monotone properties P , 2-sided testers do
not have any advantage over 1-sided testers, the explanation being that the only way one can be
convinced that a graph is far from satisfying a monotone property P is by finding a witness to
this fact in the form of a subgraph not satisfying P . As Theorem 4 below shows, this intuition
turns out to be false in a very strong sense. This theorem implies that 2-sided testers can be
arbitrarily more efficient than 1-sided testers, even for monotone graph properties. Prior to
this work, it was not even known that 2-sided testers can be super-polynomially stronger than
1-sided testers.

4We slightly abuse the notation here by using L in the notation wL also for the property of being L-free.

Theorem 4 For every decreasing function f : (0, 1) → N satisfying f(x) ≥ 1/x, there is a
monotone graph property P so that

• P has 1-sided error query complexity wP(ε) ≥ f(ε).

• P has 2-sided error query complexity qP(n, ε) = poly(1/ε) for every n ≥ n0(ε).

References
[1] N. Alon, Testing subgraphs in large graphs, Random Structures and Algorithms 21 (2002),

359-370.

[2] N. Alon and J. Fox, Easily testable graph properties, Combin. Probab. Comput. 24 (2015),
646-657.

[3] N. Alon and A. Shapira, Every monotone graph property is testable, SIAM Journal on
Computing 38 (2008), 505-522.

[4] N. Alon and C. Shikhelman, Many T copies in H-free graphs, Journal of Combinatorial
Theory, Series B, 121 (2016), 146-172.

[5] B. Bollobás and E. Győri, Pentagons vs. triangles, Discrete Math. 308 (2008), 4332-4336.

[6] J. Fox, A new proof of the graph removal lemma, Ann. of Math. 174 (2011), 561-579.

[7] Z. Füredi and L. Özkahya, On 3-uniform hypergraphs without a cycle of a given length.
Discrete Applied Mathematics, 216, pp.582–588, 2017.

[8] O. Goldreich, Contemplations on testing graph properties, ECCC Technical Report 2005.
Also, Studies in Complexity and Cryptography 6650 (2011), 547-554.

[9] O. Goldreich, Introduction to Property Testing, Forthcoming book, 2017.

[10] O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning
and approximation, J. ACM 45 (1998), 653-750.

[11] E. Győri and H. Li, The maximum number of triangles in C2k+1-free graphs, Combina-
torics, Probability and Computing 21 (2012), 187-191.

[12] I.Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles,
in Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, Volume II, 939–945.

On the spectra of general random mixed graphs

Dan Hu1,3, Hajo Broersma1, Jiangyou Hou2, Shenggui Zhang3

1 Faculty of EEMCS, University of Twente, Enschede, The Netherlands
hudan@mail.nwpu.edu.cn, h.j.broersma@utwente.nl

2 School of Mathematics, Northwest University, Xi’an, China
jiangyonghou@nwu.edu.cn

3 Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, China
sgzhang@nwpu.edu.cn

Abstract

A mixed graph is a graph that can be obtained from a simple undirected graph by
replacing some of the edges by arcs in precisely one of the two possible directions. The
Hermitian adjacency matrix of a mixed graph G of order n is the n× n matrix H(G) =
(hij), where hij = −hji = i (with i =

√
−1) if there exists an arc from vi to vj (but no arc

from vj to vi), hij = hji = 1 if there exists an edge (and no arcs) between vi and vj , and
hij = 0 otherwise (if vi and vj are neither joined by an edge nor by an arc). We study
the spectra of the Hermitian adjacency matrix and the normalized Hermitian Laplacian
matrix of general random mixed graphs, i.e., in which all arcs are chosen independently
with different probabilities (and an edge is regarded as two oppositely oriented arcs joining
the same pair of vertices). For our first main result, we derive a new probability inequality
and apply it to obtain an upper bound on the eigenvalues of the Hermitian adjacency
matrix. Our second main result shows that the eigenvalues of the normalized Hermitian
Laplacian matrix can be approximated by the eigenvalues of a closely related weighted
expectation matrix, with error bounds depending on the minimum expected degree of the
underlying undirected graph.

Keywords : general random mixed graphs; random Hermitian adjacency matrix; random
normalized Hermitian Laplacian matrix; spectra.

1 Introduction
Spectra of the adjacency matrix and the normalized Laplacian matrix of graphs have many
applications in graph theory. For example, the spectrum of the adjacency matrix of a graph is
related to its connectivity and the number of occurrences of specific subgraphs, but also to its
chromatic number and its independence number. The spectrum of the normalized Laplacian
matrix is related to diffusion on graphs, random walks on graphs and the Cheeger constant.
For more details on these notions, and for more applications of spectra of the adjacency matrix
and the normalized Laplacian matrix, we refer the interested reader to two monographs [1, 7].

Also for random graphs, spectra of their adjacency matrix and their normalized Laplacian
matrix are well-studied (See, e.g., [2, 3, 5, 6, 8, 11, 12]). Füredi and Komlós [12] studied the
asymptotic behaviour of the spectra of Erdős-Rényi random graphs, giving the separation of
first and remaining eigenvalues of the adjacency matrices of random graphs. These results
were extended to sparse random graphs [8, 14]. Friedman et al. [9, 10, 11] studied the second
largest eigenvalue (in absolute value) of random d-regular graphs. Chung, Lu, and Vu [3]
studied spectra of the adjacency matrix of random power law graphs, and spectra of the
normalized Laplacian matrix of random graphs with given expected degrees. Their results on
random graphs with given expected degree sequences were supplemented by Coja-Oghlan et al.
[5, 6] for sparse random graphs. Lu and Peng [16, 17] studied spectra of the adjacency matrix

132

and the normalized Laplacian matrix of edge-independent random graphs, as well as spectra of
the normalized Laplacian matrix of random hypergraphs. Oliveira [18] considered the problem
of approximating the spectra of the adjacency matrix and the normalized Laplacian matrix of
random graphs. His results were improved by Chung and Radcliffe [4].

In this talk we focus on the spectra of the Hermitian adjacency matrices and the normalized
Hermitian Laplacian matrices of general random mixed graphs.

2 Preliminaries
A graph is called a mixed graph if it contains both directed and undirected edges. We use
G = (V (G), E(G), A(G)) to denote a mixed graph with a set V (G) of vertices, a set E(G) of
(undirected) edges, and a set A(G) of arcs (directed edges). We define the underlying graph of
G, denoted by Γ(G), as the graph with vertex set V (Γ(G)) = V (G), and edge set

E(Γ(G)) = {vivj | vivj ∈ E(G) or (vi, vj) ∈ A(G) or (vj , vi) ∈ A(G)}.

We adopt the terminology and notation of Liu and Li in [15], and define the Hermitian
adjacency matrix of a mixed graph G of order n to be the n × n matrix H(G) = (hij)n×n,
where

hij =

1, if vivj ∈ E(G);
i, if (vi, vj) ∈ A(G) and (vj , vi) /∈ A(G);
−i, if (vi, vj) /∈ A(G) and (vj , vi) ∈ A(G);

0, otherwise.

Here, i =
√
−1. This matrix, that is indeed Hermitian, as one easily sees, was also intro-

duced independently by Guo and Mohar in [13]. We denote by λi(H(G)) the i-th largest
eigenvalue of H(G) (multiplicities counted). We use {λ1(H(G)), λ2(H(G)), . . . , λn(H(G))} to
denote the spectrum of H(G) in nonincreasing order. The set of these eigenvalues is called
the Hermitian adjacency spectrum (or briefly H-spectrum) of G. Let V (G) = {v1, v2, . . . , vn},
and let D(G) = diag(d1, d2, . . . , dn) be a diagonal matrix, in which di is the degree of the
vertex vi in the underlying graph Γ(G). Then the matrix L(G) = D(G) − H(G) is called
the Hermitian Laplacian matrix of G, and the matrix L(G) = I − D(G)− 1

2H(G)D(G)− 1
2 is

called the normalized Hermitian Laplacian matrix of G. Here I is the n × n identity matrix.
We denote by λi(L(G)) the i-th largest eigenvalue of L(G) (multiplicities counted). We use
{λ1(L(G)), λ2(L(G)), . . . , λn(L(G))} to denote the spectrum of L(G) in nonincreasing order.
The set of these eigenvalues is called the normalized Hermitian Laplacian spectrum of G.

If we regard (replace) each edge vivj ∈ E(G) in G = (V (G), E(G), A(G)) as (by) two
oppositely directed arcs (vi, vj) and (vj , vi), then G is a directed graph. Throughout this talk,
we regard mixed graphs as directed graphs, in the above sense. Next, we give the definition
of a general random mixed graph Ĝn(pij). Let Kn be a complete graph on n vertices. The
complete directed graph DKn is the graph obtained from Kn by replacing each edge of Kn by
two oppositely directed arcs. Let pij be a function of n such that 0 < pij < 1 (i 6= j). We
always assume that pii = 0 for all indices i. The random mixed graph model Ĝn(pij) consists
of all random mixed graphs Ĝn(pij) in which each arc (vi, vj) with i 6= j is chosen randomly
and independently, with probability pij from the set of arcs of DKn, where we let the vertex
set be {v1, v2, . . . , vn}. Here the probabilities pij for different arcs are not assumed to be equal,
that is, Ĝn(pij) is an arc-independent random mixed graph of order n. Then the Hermitian
adjacency matrix of Ĝn(pij), denoted by H(Ĝn(pij)) = (hij) (or Hn, for brevity), satisfies that:

• Hn is a random Hermitian matrix, with hii = 0 for 1 ≤ i ≤ n;

• the upper-triangular entries hij , 1 ≤ i < j ≤ n are independent random variables, which
take value 1 with probability pijpji, i with probability pij(1 − pji), −i with probability
(1− pij)pji, and 0 with probability (1− pij)(1− pji).

If A is a random n × n matrix, we write E(A) to denote the coordinate-wise expectation of
A, so E(A)ij = E(Aij). Similarly, If A is a random n × n Hermitian matrix, then Var(A) =
E((A − E(A))2). We use EHn as shorthand for E(Hn), and note that it is obvious that
(EHn)ij = E(hij) = pijpji + i(pij − pji).

In [4], Chung and Radcliffe give a short proof for the following expression that applies to
random graphs.
Theorem 1 ([4]) Let X1, X2, . . . , Xm be independent random n×n Hermitian matrices. More-
over, assume that ‖Xi − E(Xi)‖ ≤ c for all i. Let X =

∑m
i=1 Xi. Then for any a > 0,

Pr(‖X − E(X)‖ ≥ a) ≤ 2n exp
(
− a2

2‖∑m
i=1 Var(Xi)‖+ 2ac/3

)
.

2.1 Our results
We recently proved the following strengthened version of Theorem 1.

Theorem 2 Let X1, X2, . . . , Xm be independent random n × n Hermitian matrices. More-
over, assume that ‖Xi‖ ≤ c for all i. Let X =

∑m
i=1 Xi. Then

Pr(λmax(X) ≥ a) ≤ n exp
(
− (a− ‖E(X)‖)2

2‖∑m
i=1 E(X2

i)‖+ 2c
3 (a− ‖E(X)‖)

)
for a > ‖E(X)‖.

In particular,

Pr(‖X‖ ≥ a) ≤ 2n exp
(
− (a− ‖E(X)‖)2

2‖∑m
i=1 E(X2

i)‖+ 2c
3 (a− ‖E(X)‖)

)
for a > ‖E(X)‖.

For the proofs of our main results below, we express the random Hermitian adjacency matrix
and random normalized Hermitian Laplacian matrix by sums of independent random Hermitian
matrices, and make use of the above inequalities. Our two main results can be stated as follows.

For the first theorem, we use ∆(Γ(Ĝn(pij))) to denote the maximum expected degree of
the underlying graph of Ĝn(pij). Hence, by straightforward calculations, ∆(Γ(Ĝn(pij))) =
max1≤i≤n

∑n
j=1(pij + pji − pijpji).

Theorem 3 Let Ĝn(pij) and Hn = (hij) be defined as above, and let ∆ = ∆(Γ(Ĝn(pij))). Let
ε > 0 be an arbitrarily small constant, chosen such that for n sufficiently large, ∆ > 4

9 ln(2n/ε).
Then with probability at least 1− ε, for n sufficiently large, the eigenvalues of Hn satisfy

|λi(Hn)| ≤ max
1≤i≤n

n∑

j=1

√
p2

ijp
2
ji + (pij − pji)2 + 2

√
∆ ln(2n/ε)

for all 1 ≤ i ≤ n.

In the next theorem, we assume that V (Ĝn(pij)) = {v1, v2, . . . , vn}, and we letDn = diag(d1, d2, . . . , dn)
denote the diagonal matrix in which di is the degree of the vertex vi in the underlying
graph of Ĝn(pij). We let EDn denote the coordinate-wise expectation of Dn. Recall that
Ln = In−D−1/2

n HnD
−1/2
n denotes the normalized Hermitian Laplacian matrix of Ĝn(pij), where

In denotes the n×n identity matrix. We let δ(Γ(Ĝn(pij))) denote the minimum expected degree
of the underlying graph of Ĝn(pij). Hence, δ(Γ(Ĝn(pij))) = min1≤i≤n

∑n
j=1(pij + pji − pijpji).

Theorem 4 Let Ĝn(pij), Hn, Dn and Ln be defined as above, and let δ = δ(Γ(Ĝn(pij))). Let
ε > 0 be an arbitrarily small constant. Then there exists a constant k = k(ε) such that if
δ > k lnn, then with probability at least 1− ε, the eigenvalues of Ln and L̃n satisfy

|λi(Ln)− λi(L̃n)| ≤ 7

√
ln(4n/ε)

δ

for all 1 ≤ i ≤ n, where L̃n = In − (EDn)−1/2(EHn)(EDn)−1/2.

During the talk, we will discuss the main ideas behind the proofs of these results, as well as
the relevance of the results for the field.

References
[1] F. Chung, Spectral graph theory, AMS publications, 1997.

[2] F. Chung, L. Lu, V.H. Vu, Eigenvalues of random power law graphs, Ann. Combin.,7
(2003), 21–33.

[3] F. Chung, L. Lu, V.H. Vu, Spectra of random graphs with given expected degrees, Proc.
Nat. Acad. Sci. USA, 100(11) (2003), 6313–6318.

[4] F. Chung, M. Radcliffe, On the Spectra of General Random Graphs, Electron. J. Combin.,
18 (2011) P215, 14 pp.

[5] A. Coja-Oghlan, On the Laplacian eigenvalues of G(n, p), Combin. Probab. Comput., 16
(2007), 923–946.

[6] A. Coja-Oghlan, A. Lanka, The spectral gap of random graphs with given expected degrees,
Electron. J. Combin., 16 (2009), R138.

[7] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Theory and Applications, Academic
Press, 1980.

[8] U. Feige, E. Ofek, Spectral techniques applied to sparse random graphs, Random Struct.
Alg., 27(2) (2005), 251–275.

[9] J. Friedman, A Proof of Alon’s Second Eigenvalue Conjecture and Related Problem, Mem-
oirs of the American Mathematical Society 2008, 100 pp.

[10] J. Friedman, On the second eigenvalue and random walks in random d-regular graphs,
Combinatorica, 11(4) (1991), 331–362.

[11] J. Friedman, J. Kahn, E. Szemerédi, On the second eigenvalue in random regular graphs,
in Proc. 21st ACM Symp. Theory of Computing, 1989, 587–598.

[12] Z. Füredi, J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica,
1(3) 1981, 233–241.

[13] K. Guo, B. Mohar, Hermitian adjacency matrix of digraphs and mixed graphs, J. Graph
Theory, 85 (2017), no. 1, 217–248.

[14] M. Krivelevich, B. Sudakov, The largest eigenvalue of sparse random graphs, Combin.
Probab. Comput., 12 (2003), 61–72.

[15] J. Liu, X. Li, Hermitian-adjacency matrices and Hermitian energies of mixed graphs,
Linear. Algebra. Appl., 466 (2015) 182–207.

[16] L. Lu, X. Peng, Loose Laplacian spectra of random hypergraphs. Random Struct. Alg.,
41 (2012), no. 4, 521–545.

[17] L. Lu, X. Peng, Spectra of edge-independent random graphs, Electron. J. Combin.,20
(2013), Paper 27, 18 pp.

[18] R. Oliveira, Concentration of the adjacency matrix and of the Laplacian in random graphs
with independent edges, http://arxiv.org/abs/0911.0600.

Probabilistic Analysis of Optimization Problems on
Generalized Random Shortest Path Metrics

Stefan Klootwijk, Bodo Manthey, Sander K. Visser
University of Twente, Department of Applied Mathematics, Enschede, The Netherlands

Abstract

A graph G = (V,E) satisfies the α, β-cut-property if the fraction of edges present in each
cut of the graph lies between α and β. The Erdős-Rényi random graph G(n, p) satisfies
this property w.h.p. for α = (1 − ε)p and β = (1 + ε)p whenever p is sufficiently large
and ε is a suitably chosen constant.
We study the behavior of random shortest path metrics applied to graphs G that satisfy
the α, β-cut-property. These random metrics are defined as follows: Let w(e) be inde-
pendently drawn random edge weights for all e ∈ E, and define d(u, v) to be the shortest
path distance between u and v in G with respect to the weights w.
Using the ideas of Bringmann et al. (Algorithmica, 2015), who studied random shortest
path metrics on the complete graph, i.e., the graph that satisfies the 1, 1-cut-property, we
derive some properties of the metric and obtain a clustering of the vertices. Using this,
we conduct a probabilistic analysis of some simple heuristics on these random shortest
path metrics.

Keywords : Random shortest paths, Random metrics, Approximation algorithms, Erdős-
Rényi random graph

1 Introduction
Large-scale optimization problems, such as the traveling salesman problem, show up in many
applications and domains all around us. Often it is not possible to solve those problems exactly,
since that would take too much time. In practice often ad-hoc heuristics are being used that
provide solutions that come quite close to the optimal solutions. In many cases those, often
simple, heuristics show a remarkable performance, even though the theoretical results about
those heuristics are way more pessimistic.

In order to explain this difference, the method of probabilistic analysis has been widely
used over the last decades. In this method, the performance of the heuristics is analysed with
respect to a random instance. However, it is not trivial to come up with a good model for such
random instances. So far, in almost all cases either Euclidean space has been used to generate
instances, or independent, identically distributed edge lengths were used.

However, both approaches fall short of explaining the average-case performance of heuristics
on general metric instances. In order to overcome this, Bringmann et al. [2] used the following
model for generating random metric spaces, which had been proposed by Karp and Steele
[6]. Given an undirected complete graph, start by drawing random edge weights for each edge
independently and then define the distance between any two vertices as the total weight of the
shortest path between them, measured with respect to the random weights.

Bringmann et al. called this model random shortest path metrics. This model is also known
as first-passage percolation, introduced by Hammersley and Welsh as a model for fluid flow
through a (random) porous medium [4, 5].

Our goal is to further broaden the knowledge of metric spaces that can be used to generate
random instances, with special interest to the probabilistic analysis of algorithms on those

136

random metric spaces. By making extensive use of the ideas of Bringmann et al. [2] we will
extend their results to random shortest path metrics on a class of graphs that naturally arises
when considering the Erdős-Rényi random graph G(n, p). To be more precise, we consider
arbitrary (fixed) graphs that satisfy what we called the α, β-cut-property.

Definition 1 Let 0 < α ≤ β ≤ 1. A finite simple graph G = (V,E) satisfies the α, β-cut-
property if for all ∅ ⊂ U ⊂ V it holds that αµU ≤ |δ(U)| ≤ βµU , where µU := |U |(|V | − |U |)
is the maximum number of possible edges in the cut defined by U .

Note that the complete graph satisfies the α, β-cut-property for β = 1 and any value of α ≤ 1,
so in particular for α = β = 1. Moreover, for sufficiently large p and suitably chosen constant
ε, it follows that the Erdős-Rényi random graph G(n, p) w.h.p. satisfies the α, β-cut-property
for α = (1 − ε)p and β = (1 + ε)p. So, the Erdős-Rényi random graph G(n, p) satisfies the
α, β-cut-property w.h.p. for α, β with β/α = O(1).

2 Model and Clustering
Let G = (V,E) be a graph on n vertices that satisfies the α, β-cut-property. Let w : E → R≥0
denote the random weights of the edges, independently drawn from the standard exponential
distribution. And let d : V × V → R≥0 denote the shortest path distances with respect to G
and w. Note that d defines a metric on V . Also observe that having α > 0 ensures that G is
connected; this allows us to define d as we did, without having to be careful in case G is not
connected and some shortest paths do not exist.

Using of the ideas of Bringmann et al. [2] we find a clustering of the vertices in generalized
random shortest path metrics. This clustering is a very helpful tool for the probabilistic analysis
of the simple heuristics in the next section.

Lemma 1 Consider a random shortest path metric on a graph G that satisfies the α, β-cut-
property and let ∆ ≥ 0. The expected number of clusters needed to partition the instance into
clusters, each of diameter at most 6∆, is O(1 + n/ exp(β∆n/5)).

3 Results
Greedy matching. The greedy algorithm for the minimum-weight perfect matching prob-
lem1 iteratively adds the edge between the two closest unmatched vertices to the matching.
Reingold and Tarjan showed that the worst-case approximation ratio for greedy matching on
metric instances is Θ(nlog2(3/2)) [7]. We show that the greedy matching outputs a matching
with expected costs at most O(β/α). On the other hand, the optimum matching has a total
length of Ω(1). So, we obtain an expected approximation ratio of O(β/α).

Theorem 1 The greedy algorithm for minimum-length perfect matching has an expected ap-
proximation ratio of O(β/α) on generalized random shortest path metrics.

The main idea of the proof is to divide the algorithm into several phases defined by the length
of the edges that are added to the matching. For the first phases we can bound the maximum
number of edges hat is being added in that phase by making use of the clustering property,
and we can show that the total expected contribution of the last phases is negligible, in order
to obtain the result.

Nearest-neighbor algorithm for TSP. The nearest-neighbor algorithm for the traveling
salesman problem starts building a tour from an arbitrary vertex, and then iteratively adds
the edge that connects the last added vertex to its closest unvisited vertex (and finally closes
the tour by adding the edge that connects the last vertex to the first vertex). Ausiello et

1Within our terminology, minimum-distance perfect matching might be a better name for this problem.

al. showed that the worst-case approximation ratio for nearest-neighbor on metric instances
is O(log(n)) [1]. We show that nearest-neighbor outputs a tour of length at most O(β/α) in
expectation. On the other hand, the optimum tour has a total length of Ω(1). So, we obtain
an expected approximation ratio of O(β/α).
Theorem 2 The nearest-neighbor algorithm for the traveling salesman problem has an expected
approximation ratio of O(β/α) on generalized random shortest path metrics.
The main idea of the proof is to partition the used edges into several groups defined by the
length of the edges. For the groups with the shortest edges we can bound the maximum number
of edges in those groups by making use of the clustering property, and we can show that the
total expected contribution of the groups with the longest edges is negligible, in order to obtain
the result.

Insertion heuristics for TSP. An insertion heuristic for the traveling salesman problem
starts building a tour from a small initial tour on a few vertices and then iteratively adds the
other vertices to this tour according to some rule. Rosenkrantz et al. showed that the worst-
case approximation ratio for any insertion heuristic on metric instances is O(log(n)) [8]. We
show that all insertion heuristics output a tour of length at most O(β/α) in expectation. On
the other hand, the optimum tour still has a total length of Ω(1). So, we obtain an expected
approximation of O(β/α).
Theorem 3 Any insertion heuristic heuristic for the traveling salesman problem has an ex-
pected approximation ratio of O(β/α) on generalized random shortest path metrics.
The main idea of the proof is to show that the initial tour has small expected costs and then to
partition the partition the added vertices into several groups defined by the additional length
added to the tour when the vertex was added to it. We bound the number of vertices in each
group, in order to obtain the result.

Running time of 2-opt for TSP. The 2-opt heuristic for the traveling salesman problem
starts with an initial tour and then improves this tour by so-called 2-exchanges until no further
improvement is possible. A 2-exchange consists of selecting two edges {u, v} and {x, y} from
the tour, removing those edges from the tour and replacing them by the edges {u, x} and {v, y}
to obtain a shorter tour. Even on metric instances, the number of iterations that 2-opt needs
to terminate can be Ω(2n), as was shown by Englert et al. [3]. We show that the expected
number of iterations of 2-opt is polynomially bounded for random shortest path metrics on
graphs with the α, β-cut-property.
Theorem 4 The expected number of iteration that 2-opt needs to find a local optimum is
bounded by O(n10 ln3(n)) on generalized random shortest path metrics.
The main idea of the proof is to use tail bounds for the maximum length of the initial tour and
for the minimum improvement made by any 2-exchange. The number of iterations of 2-opt is
bounded by the ratio of these values.

k-Median. The k-median problem is to find a subset U ⊆ V with |U | = k such that∑
v∈V minu∈U d(u, v) is minimized. We consider the (trivial) heuristic that selects the k vertices

of U randomly, independent of the metric space, e.g., U = {v1, . . . , vk}. We call the solution
that this heuristic outputs the trivial solution to the k-median problem. In general this trivial
solution can be arbitrarily bad, even if we only consider metric instances. However, we show
that this trivial heuristic yields an O(β/α) approximation in expectation whenever k is not
too large.
Theorem 5 If k ≤ (1 − ε)n for some constant ε > 0, then the trivial solution to the k-
median problem has an expected approximation ratio of O(β/α) on generalized random shortest
path metrics. Moreover, for sufficiently small k this expected approximation ratio is given by
(β/α)(1 +O(ln ln(n/k)/ ln(n/k))).

References
[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.

Complexity and Approximation: Combinatorial Optimization Problems and Their Approx-
imability Properties. Springer-Verlag Berlin Heidelberg, 1999. ISBN 978-3-642-63581-6.
doi: 10.1007/978-3-642-58412-1.

[2] K. Bringmann, C. Engels, B. Manthey, and B.V.R. Rao. Random shortest paths: Non-
euclidean instances for metric optimization problems. Algorithmica, 73(1):42–62, 2015. doi:
10.1007/s00453-014-9901-9.

[3] M. Englert, H. Röglin, and B. Vöcking. Worst case and probabilistic analysis of the 2-opt
algorithm for the TSP. Algorithmica, 68(1):190–264, 2014. doi: 10.1007/s00453-013-9801-4.

[4] J.M. Hammersley and D.J.A. Welsh. First-passage percolation, subadditive processes,
stochastic networks, and generalized renewal theory. In J. Neyman and L.M. Le Cam,
editors, Bernoulli 1713 Bayes 1763 Laplace 1813, Anniversary Volume, Proceedings of an
International Research Seminar Statistical Laboratory, University of California, Berkeley
1963, pages 61–110. Springer Berlin Heidelberg, 1965. doi: 10.1007/978-3-642-49750-6_7.

[5] C.D. Howard. Models of first-passage percolation. In H. Kesten, editor, Probability
on Discrete Structures, pages 125–173. Springer Berlin Heidelberg, 2004. doi: 10.1007/
978-3-662-09444-0_3.

[6] R.M. Karp and J.M. Steele. Probabilistic analysis of heuristics. In The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization, chapter 6, pages 181–205. John
Wiley & Sons Ltd., 1985. ISBN 978-0-471-90413-7.

[7] E.M. Reingold and R.E. Tarjan. On a greedy heuristic for complete matching. SIAM
Journal on Computing, 10(4):676–681, 1981. doi: 10.1137/0210050.

[8] D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis II. An analysis of several heuristics for
the traveling salesman problem. SIAM Journal on Computing, 6(3):563–581, 1977. doi:
10.1137/0206041.

Edge Domination in subclasses of bipartite graphs

B.S.Panda, Shaily Verma
Indian Institute of Technology, Delhi, INDIA

bspanda@maths.iitd.ac.in, shailyverma048@gmail.com

Abstract

An edge dominating set of a graph G = (V,E) is a set of edges D such that every
edge not in D is adjacent to some edge in D. The minimum cardinality of any edge
dominating set of G is called edge domination number of G and is denoted by γ′(G).
Given a graph G and an integer k, 1 ≤ k ≤ n, the Edge Dominating Set Problem is
to decide whether γ′(G) ≤ k. It is known that the problem is NP-complete for bipartite
graphs. In this paper, we show that this problem remains NP-complete even for perfect
elimination bipartite graphs and star-convex bipartite graphs. We have given a linear
time algorithm to find the minimum edge domination set of a chain graph.

Keywords : Edge domination, Perfect Elimination bipartite graphs, star-convex bipartite
graphs, chain graphs, NP-completeness, Polynomial time algorithms.

1 Introduction
A set of edges D of a graph G = (V,E) is said to be an edge dominating set if every edge
in E − D is adjacent to some edge in D. The edge domination number of G, γ′(G) is the
cardinality of a minimum edge dominating set of G. The set of edges D is said to be an
independent edge dominating set if D is an edge dominating set and no two edges in D are
adjacent. The concept of edge domination and independent edge domination was introduced
by Mitchell and Hedetniemi [1] in 1977. In [1], they have given a linear time algorithms to
find minimum edge dominating set as well as minimum independent edge dominating set for
trees. Later, it has been shown that the size of minimum edge dominating set of a graph G is
equal to the size of independent edge dominating set. The decision problem associated with
edge domination is as follows:

Edge Dominating Set Problem
Instance: A graph G = (V,E) and a positive integer k
Question: Does G have an edge dominating set with size at most k.
Yannakakis and Gavril [3] in 1980 has showed that the problem remains NP-complete even

for planar graphs or bipartite graphs with maximum degree 3. A. Srinivasan, et.al, [2] gave a
O(nm+n2)-time algorithm to find a minimum edge dominating set of a bipartite permutation
graph in 1995.

2 Preliminaries
All the graphs considered in this paper are simple and undirected. For a graph G = (V,E), the
sets N(v) = {u ∈ V (G)|uv ∈ E} denotes the open neighborhood and closed neighborhood of a
vertex v, respectively. The degree of a vertex v in graph G is |N(v)| and is denoted by dG(v).
If dG(v) = 1, then v is called a pendant vertex. An edge incident on some pendant vertex is
called a pendant edge. A graph G = (V,E) is said to be bipartite if V (G) can be partitioned
into two disjoint sets X and Y such that every edge of G joins a vertex in X to another vertex

140

b

b

b

b

b

b

b

bbb

b b b

bbb

G

G′

y1

y2

y3

u2

u3

v2

v3

w2

w3

x1

x2

x3

x4

w1v1u1

FIG. 1: An example of construction of the graph G′

in Y . Such a partition (X, Y) of V is called a bipartition. A bipartite graph with bipartition
(X, Y) of V is denoted by G = (X, Y,E).

Let G = (X, Y,E) be a bipartite graph. An edge e = xy is called bisimplicial edge if
G[N(x) ∪ N(y)] is a complete bipartite graph. Let σ = (x1y1, x2y2, . . . , xkyk) be a sequence
of pairwise nonadjacent edges of G. Denote Sj = {x1, x2, . . . , xj} ∪ {y1, y2, . . . , yj} and let
S0 = ∅. Then σ is said to be a perfect edge elimination ordering for G if each edge xj+1yj+1 is
bisimplicial in G = [(X ∪ Y) \ Sj] for 0 ≤ j ≤ k − 1 and G = [(X ∪ Y) \ Sk] has no edge. A
graph for which there exists a perfect edge elimination ordering is a perfect elimination bipartite
graph. A bipartite graph G = (X, Y,E) is a chain graph if the neighborhoods of the vertices
of X form a chain, that is, the vertices of X can be linearly ordered, say x1, x2, . . . , xn1 such
that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xn1). A bipartite graph G = (X, Y,E) is called a tree-convex
bipartite graph, if a tree T = (X,EX) can be defined such that for every vertex y in Y , the
neighborhood of y induces a subtree of T . If T is a star, then G is called star-convex bipartite
graph.

3 NP-Completeness
It is shown that Edge Dominating Set Problem is NP-complete for bipartite graphs [3].
In this section, we prove that the problem remains NP-complete even for perfect elimination
bipartite graphs and star-convex bipartite graphs, which are proper subclasses of bipartite
graphs.

Theorem 1 Edge Dominating Set Problem for the perfect elimination bipartite graphs
is NP-complete.

Proof : The reduction has been shown from the Edge Dominating Set Problem in
bipartite graphs, which has known to be NP-complete [3]. Let G = (X ∪ Y,E) be a bipartite
graph with |X| = m and |Y | = n. Construct the graph G′ from graph G as follows:

For each vertex, yi ∈ Y , take a copy of P3 say, uiviwi and add the edge yiui, for all
i, 1 ≤ i ≤ n.

The constructed graph G′ is a perfect elimination bipartite graph, as α = (v1w1, y1u1, v2w2,
y2u2, . . . , vnwn, ynun) is a perfect edge elimination ordering of G′. An example of the construc-
tion of G′ has been shown in Figure 1.

Claim: G has an edge dominating size of at most k if and only if G′ has an edge dominating
set of size at most n+ k.

�Next, we will show that the problem remains NP-complete for star-convex bipartite graphs.

b

b

b

b

b

b

b

G

G′

y1

y2

y3

x1

x2

x3

x4

bx

FIG. 2: An example of the construction of the graph G′

Theorem 2 Edge Dominating Set Problem for the star-convex bipartite graphs is NP-
complete.

Proof : The reduction is from the Edge Dominating Set Problem in bipartite graphs,
which has known to be NP-complete [3]. Let G = (X∪Y,E) be a bipartite graph with |X| = m
and |Y | = n. Construct the graph G′ from graph G as follows:

Take a new vertex x in the partite set X and make it adjacent with every vertex in partite
set Y .

Now, we can define a star S = (X ∪ {x}, E′) on the partite set X together with vertex x,
such that the vertex x is the centre of the star S. Since every vertex y, y ∈ Y is adjacent to
x, N(y) induces a star, which is a subgraph of S. Thus, the constructed graph G′ is a star
convex bipartite graph, and the construction of G′ has been shown in Figure 2. Next, we have
to prove the following claim:

Claim: G has an edge dominating size of at most k if and only if G′ has an edge dominating
set of size at most k + 1.

�As the star convex bipartite graph is a proper subclass of tree convex bipartite graphs, the
next corollary follows immediately:

Corollary 1 Edge Dominating Set Problem remains NP-complete for the tree convex
bipartite graphs.

4 A linear-time algorithm for chain graphs
Recall that, A. Srinivasan, et.al, [2] gave an algorithm to find a minimum edge dominating
set of a bipartite permutation graph in 1995 with complexity O(nm + n2). In this section we
improve the complexity for chain graph, which is a subclass of bipartite permutation graph.
We propose a linear time algorithm to find edge dominating set of a chain graph.

Lemma 1 Let G = (X ∪ Y,E) be a chain graph and σ(X) = (x1, x2, . . . , xn1) and σ(Y) =
(y1, y2, . . . , yn2) be the chain ordering of X and Y . Then there exists a minimum edge domi-
nating set of G such that y1xn1 ∈ E(G).

Proof : Let D be a minimum edge dominating set of chain graph G with |D| = k. By the
definition of chain graph, y1xn1 ∈ E(G). By the definition of edge dominating set, at least one
end point of each edge should be in V (D). Now if y1xn1 ∈ D, then we are done. Suppose that
y1xn1 /∈ D. Then there are three cases:

Case I: y1 ∈ V (D), xn1 ∈ V (D).
Since y1, xn1 ∈ V (D) and y1xn1 /∈ D, there exist some edges in set D which are incident on y1

and xn1 , say y1xj ∈ D and yixn2 ∈ D, for some xj ∈ X and yi ∈ Y . Now if yixj ∈ E(G), then

D \ {y1xj , yixn1} ∪ {yixj , y1xn1} is also an edge dominating set. Suppose that yixj /∈ E(G).
Let D′ = D \ {y1xj , yixn1} ∪ {y1xn1}. Now if E(G − V (D′)) = ∅, then D′ would be an edge
dominating set of G with smaller size, which is a contradiction. Therefore E(G− V (D′)) 6= ∅.
Suppose that there exists a pair of edges e1, e2 ∈ E(G− V (D′)) such that e1 is incident on xj

but not on vertex yi and the edge e2 is incident on yi but not on xj . Let e1 = yxj and e2 = yix,
where x ∈ X and y ∈ Y . Then by the chain property of X, yx ∈ E(G). If yx ∈ E(G−V (D′)),
then the edge yx is not dominated by the edge dominating set D also, which is a contradiction.
So yx ∈ D, but in that case edges e1 and e2 also dominated by edge xy ∈ D, which is again a
contradiction. Therefore, all the edges e ∈ E(G− V (D′)), are either incident on xj only or on
yi only. So, any one edge e ∈ E(G−V (D′)) together with the set D′, dominate all the edges of
the graph G. Hence, D′ ∪ {e} is an edge dominating set of G of size k with required property.

Case II: y1 ∈ V (D) but xn1 /∈ V (D).
Since y1 ∈ V (D) and y1xn1 /∈ D, there exists an edge in set D which is incident on y1, say

y1xj ∈ D, for some xj ∈ X. Since xn1 /∈ V (D), every neighbor of xn1 must belong to V (D).
But N(xn1) = Y . Therefore, the set D′ such that D′ = D \ {y1xi} ∪ {y1xn1} is also an edge
dominating set with size k as every edge incident on xj will dominate by some edge in D′ as
Y ⊂ V (D). Hence D′ is a minimum edge dominating set with required property.

Case III: xn1 ∈ V (D) but y1 /∈ V (D).
Since xn1 ∈ V (D) and y1xn1 /∈ D, there exists an edge in set D which is incident on xn1 , say

yixn1 ∈ D, where yi ∈ Y . Since y1 /∈ V (D), every neighbor of y1 must belong to V (D). Now
N(y1) = X. Therefore D′ = D \ {yixn1} ∪ {y1xn1} is also an edge dominating set with size k
as every edge incident on yi will dominate by some edge incident on x ∈ V (D). Hence D′ is a
minimum edge dominating set with required property.

�
Theorem 3 Let G = (X ∪ Y,E) be a chain graph and σ(X) = (x1, x2, . . . , xn1) and σ(Y) =
(y1, y2, . . . , yn2) be the chain ordering of X and Y . Then, D = {yixn1+1−i ∈ E(G) | 1 ≤ i ≤
min(n1

2 ,
n2
2)} is a minimum edge dominating set of G.

Proof : By Lemma 1, there exists a minimum edge dominating setD ofG such that y1xn1 ∈ D.
Now G1 = G − {y1, xn1} is again a chain graph. If y2xn1−1 /∈ E(G), D = {y1xn1} is a
minimum edge dominating set of G. Otherwise, again by Lemma 1, there exists a minimum
edge dominating set D1 of graph G1 such that y2xn1−1 ∈ D1 and so y2xn1−1 ∈ D. Let i
be the minimum index such that yixn1−i /∈ E(G), where 2 ≤ i ≤ min(n1

2 ,
n2
2). In that case,

D = {y1xn1 , y2xn1−1, . . . , yi−1xn1−(i−1)} will be an edge dominating set of G of minimum size.
�Next corollary immediately follows by Theorem 3.

Corollary 2 The minimum edge dominating set of a chain graph G = (X, Y,E) can be com-
puted in O(n+m) time.

References
[1] S. Mitchell, S. T. Hedetniemi. Edge domination in trees. Congressus Numerantium. 19:

489–509, 1977.

[2] A. Srinivasan, K. Madhukar, P. Nagavamsi, C. Pandu Rangan and Maw-Shang Chang.
Edge domination on bipartite permutation graphs and cotriangulated graphs. Information
Processing Letters. 56: 165–171, 1995.

[3] M. Yannakakis, F. Gavril. Edge Dominating sets in graphs. SIAM J. Appl. Math. 38(3):
364–372, 1980.

Listing Conflicting Triples in Optimal Time

Mathias Weller
CNRS, LIGM, Université Paris Est, Marne-la-Vallée, France

Abstract

Different phylogenetic studies might tell different stories about the evolutionary his-
tory of a given set of species. This leads to phylogenetic trees that “disagree” on triples
of taxa (“conflict triples”). An efficient enumeration of all conflicts exhibited by a pair of
phylogenetic trees on n taxa can help inferring phylogenetic trees more efficiently. As it
is possible that a significant part of the

(
n
3
)
triples are in conflict, the trivial θ(n3)-time

algorithm that checks for each triple whether it constitutes a conflict, was considered
optimal. In this work, we show how to enumerate all d conflict triples between a pair of
phylogenetic trees in O(n+d) time. Since any deterministic algorithm has to spend Ω(n)
time reading the input and Ω(d) time writing the output, no deterministic algorithm can
solve this task faster than we do (up to constant factors).

Keywords : phylogenetic trees, parameterized algorithms, enumeration, total linear time

1 Introduction
Evolutionary (“phylogenetic”) trees are fundamental when studying the development of species
on earth. However, depending on the source, they might imply different evolutionary histories
of the same taxa. Such contradictions manifest themselves as “conflict triples” (or “conflicts”
for short), that is, three taxa a, b, c such that one phylogenetic tree P implies that a common
ancestor of a and b split off the common lineage of a, b and c before splitting into a and
b while another tree Q implies that a common ancestor of b and c split off the common
lineage before splitting into b and c. More formally, LCAP (ab) 6= LCAP (abc) and LCAQ(bc) 6=
LCAQ(ab) = LCAQ(abc). Conflict triples are essential ingredients to building, reconciling, and
comparing phylogenetic trees [3, 4, 7, 8]. While counting the number of conflicts has received
some attention in the past [2], not much work has been done on enumerating them. Such
development might have been discouraged by the fact that a significant portion of the

(n
3
)

triples of taxa might be in conflict, in which case the trivial algorithm that tests each triple of
taxa for being a conflict would be optimal. This work emerged from the question whether we
can do better if only few triples are actually in conflict. Indeed, we show how to enumerate
all d conflict triples of a pair (P, Q) of phylogenetic trees on n taxa in O(n + d) time (“total
linear time”). Since all algorithms solving this problem need to read the input (size Θ(n)) and
write the output (size Θ(d)), this is asymptotically “best possible”.

2 Preliminaries
A (phylogenetic) tree T is a rooted, binary outbranching whose leaves L(T) are bijectively
labeled by a set X (of taxa) and we refer to its root by r(T). Since the labeling is bijective,
we use leaves and labels interchangeably. If some vertex v of T is a strict ancestor of a vertex
u in T , we write u <T v and we abbreviate ∀v∈Z v <T u to Z <T u. We also abbreviate
sets of leaves (or labels) by the concatenation of their names, that is, abc refers to {a, b, c}.
The least common ancestor of two leaves (or labels) a and b in T is the minimum among
all u with ab <T u and we write LCAT (ab) = u. The subtree of T rooted at u is denoted

144

Procedure ListSubtreeConflicts
Input: Tree T , leaf subset Z ⊆ L(T) in post-order.
Output: Triples abc with a, b ∈ Z, and c ∈ L(T) \ Z, and ab6 |T c

1 if Z 6= ∅ then
2 foreach c ∈ L(T) \ Z do
3 T ′ ← T |Z∪{c};
4 y ← parent of c;
5 while y 6= r(T ′) do
6 x← sibling of y in T ′;
7 foreach a ∈ L(T ′y) \ {c} and b ∈ L(T ′x) do list abc;
8 y ← parent of y in T ′;

by Tu and the restriction T |L of T to a set L ⊆ L(T) is the unique tree on the vertex set
{LCAT (x, y)|x, y ∈ L} such that <T is an extension of <T |L . In this work a triple abc in T is
a set of three labels abc ⊆ X. We say that abc touches LCAT (abc) and omit the mention of T
if it is clear from context. We say a triple abc is ab-biased in T if LCAT (ab) 6= LCAT (abc) and
we write ab|T c to indicate this fact. A triple abc is called a conflict of a pair (P, Q) of trees
if, for some xy ⊆ abc, we have that abc is xy-biased in exactly one of P and Q. Recall that
abc and cab refers to the same conflict, so when claiming that abc is not listed twice, this also
means that no two permutations of abc are listed. For two vertices u ∈ V (P) and v ∈ V (Q),
we define u u v := L(Pu) ∩ L(Qv) and u o v := L(Pu) \ L(Qv). Note that u is symmetrical
while o is not. Also note that, for children uP , vP of r(P) and children uQ, vQ of r(Q), we have
uP o uQ = uP u vQ = vQ u uP = vQ o vP .

In the following, we call a tree T LCA-enabled if the LCA of any two vertices in T can be
found in constant time. Note that we can LCA-enable any tree in linear time [1, 6]. In the
algorithm, we will want to compute the subtree T ′ of a tree T that is induced by a set Z of leaves.

Observation 1 ([5, Section 8]) Let T be an LCA-enabled tree and let Z ⊆ L(T) be in post-
order. Then, T |Z can be computed in O(|Z|) time.

Let P and Q be trees and let u ∈ V (P) and v ∈ V (Q). To verify L(Pu) = L(Qv) in constant
time, we use an O(|P |+ |Q|)-time preprocessing: first, construct a mapping m : V (P)→ V (Q)
such that m(x) := LCAQ(L(Px)) using the recursion m(x) = LCAQ(m(x′), m(x′′)) where x′

and x′′ are the children of x in P . Second, store the number of leaves below each vertex in P
or Q. Then, L(Pu) = L(Qv) can be tested as |L(Pu)| = |L(QLCAQ(L(Pu))|.

Observation 2 With an O(|P | + |Q|)-time preprocessing, we can decide L(Pu) = L(Qv) in
constant time for each u and v.

3 The Algorithm
In this section, we assume that we are given a pair (P, Q) of phylogenetic trees on the label-set
X. Our algorithm starts off by arbitrarily pairing the children of r(P) with the children of r(Q)
and we let {(uP , uQ), (vP , vQ)} be this pairing. Observe that any conflict triple abc that does
not touch r(T) is completely contained in TuT

or TvT
for any T ∈ {P, Q}. Thus, all conflicts

that touch neither r(P) nor r(Q) are in one of uP uuQ, uP u vQ, vP uuQ, or vP u vQ and these
sets are disjoint. Thus, our algorithm will first list all conflict triples abc that touch r(P) or
r(Q) and then recurse into the subtrees of P and Q induced by these sets.

Root-touching conflicts. In the following, we consider a conflict abc touching r(P) and,
without loss of generality, suppose that abc is ab-biased and let xP ∈ {uP , vP} such that
ab <P xP . Further, let xQ ∈ {uQ, vQ}.

y

A B C D E F

y

A B C D E F

FIG. 1: An example illustrating the tree T ′ in two steps of ListSubtreeConflicts (gray = vertex y,
black = leaf c with label C). Left: first step (y is the parent of c), listing DAC and DBC. Right:
second step, listing all abC, with a ∈ {A,B,D} and b ∈ {E,F}.

First, suppose that abc also touches r(Q). Then, exactly one of ab is in QxQ
since, otherwise,

abc is either not a conflict or not touching r(Q). Thus, we can suppose without loss of generality
that a ∈ xP u xQ, b ∈ xP o xQ, and c /∈ L(PxP

). Hence, we can list all conflicts touching
r(P) and r(Q) by listing all elements of (xP u xQ) × (xP o xQ) × (X \ L(xP)) for all pairs
(xP , xQ) ∈ {(uP , vP), (uQ, vQ)}.

Second, suppose that abc touches r(P) but not r(Q) and let yP ∈ {uP , vP} − xP . Then,
abc is either in QuQ

or in QvQ
. In the first case, a, b ∈ uQ u xP and c ∈ uQ o xP and, in the

second case, a, b ∈ vQ u xP and c ∈ vQ o xP . Equivalently, in the second case, a, b ∈ vQ o yP and
c ∈ vQ u yP and, in the first case, a, b ∈ uQ o yP and c ∈ uQ u yP . Thus, the elements of

⋃

(xP ,xQ)∈{(uP ,uQ),(vP ,vQ)}

(
(xQ u xP)2 × (xQ o xP)

)
∪
(
(xQ o xP)2 × (xQ u xP)

)

are independent of the initial matching between the children of r(P) and r(Q) and we list all
triples a, b, c contained in this set for which ab6 |Qc. To stay within our running-time bounds,
however, we have to make sure that we can compile this list in output-linear time. To this end,
we use ListSubtreeConflicts to list all the triples abc with a, b ∈ xQ u xP and c ∈ xQ o xP

(or vice versa), and ab6 |Qc in constant time per listed triple (see Figure 1 for an illustration).
The idea is (i) to focus on the subtree Q′ of Q that is rooted at LCAQ(xQ u xP), (ii) to pick
any leaf c ∈ xQ o xP and, (iii) for each y on the unique path from c to r(Q′), listing all triples
abc for which a, c <Q y and b 6<Q y, thereby ensuring LCAQ(ac) 6= LCAQ(abc).

Lemma 1 ListSubtreeConflicts is correct, that is, it outputs a triple abc if and only if
a, b ∈ Z, c /∈ Z, and ab6 |T c. Further, the procedure takes O(d) time (where d is the total
number of listed triples) and no triple is listed twice.

Bounding Set-Computations. With Lemma 1, we can finally list all dr conflict triples abc
with LCAP (abc) = r(P) or LCAQ(abc) = r(Q) in O(dr) time. Thus, our algorithm completes
the following tasks in the mentioned times.
Task (a): list all conflict triples touching r(P) or r(Q): O(dr) time;
Task (b): compute common and uncommon leaves: O(|X|) time;
Task (c): compute the subtrees induced by these leaf-sets: O(|X|) time;
Task (d): preprocess these subtrees for the recursive calls: O(|X|) time;
Task (e): make recursive calls
The algorithm in its current form has a worst-case running time of O(|X|2). In the following,
we show how to avoid the costly computations of (b), (c), and (d) if they are not necessary and
bound their running-time in O(dr) if they are. To this end, note that our algorithm outputs

|uP u uQ| · |uP o uQ| · (|vP u vQ|+ |vP o vQ|) ≤ dr

unique conflicts touching both roots. Thus, if uP u uQ 6= ∅ and uP o uQ 6= ∅, then

|X| = |uP u uQ|+ |uP o uQ|+ |vP u vQ|+ |vP o vQ|
≤ |uP u uQ| · |uP o uQ| · (|vP u vQ|+ |vP o vQ|) + 2 ≤ dr + 2

and we can thus bound the time spent for (b), (c), and (d) in O(dr). By symmetry, the same
holds if vP u vQ 6= ∅ and vP o vQ 6= ∅. It remains to explore the cases that one of uP u uQ and
uP o uQ and one of vP u vQ and vP o vQ is empty.
First, uP o uQ = vP u vQ = ∅. Then all leaves of PuP

are leaves of QuQ
and all leaves of PvP

are not leaves of QvQ
. Thus, QvQ

does not have any leaves, contradicting the fact that
P and Q are binary trees. Symmetrically, uP u uQ = vP o vQ = ∅ cannot happen.

Second, uP o uQ = vP o vQ = ∅. Then, L(PuP
) = L(QuQ

) and L(PvP
) = L(QvQ

). This situa-
tion can be detected in constant time, given a linear-time preprocessing of P and Q that
links a node xP of P to a node xQ of Q if and only if PxP

and QxQ
have the same leaf-set

(see Observation 2). In this case, there are no root-conflicts and none of the costly steps
(b)–(d) are necessary.

Third, uP u uQ = vP u vQ = ∅. Then, changing the root-child pairing to (uP , vQ) and (vP , uQ)
gives the previous case. The same preprocessing allows us to detect and deal with this.

Theorem 1 Given phylogenetic trees P and Q on the same set of n taxa, we can enumerate
all d conflict triples in O(n + d) time and no triplet is output more than once.

4 Conclusion
We have shown how to list all d conflicts between two phylogenetic trees in O(n+d) time where n
is the number of taxa and d is the number of listed conflicts. This improves the previously used,
trivial Θ(n3)-time algorithm that tests for each leaf-triple abc for being a conflict. The presented
algorithm is fastest-possible (up to constant factors), since all algorithms solving the problem
must at least read the input and write the output. A simple next step is to extend the algorithm
to non-binary outbranchings. More challengingly, we want to reconsider other polynomial-time
enumeration problems parameterized by the length of the output list in hope to produce more
“fastest-possible” algorithms. We also plan to analyze real-world phylogenetic trees to see
whether the parameter is sufficiently smaller than n3 to make it worth implementing in practice.

Acknowledgments Big thanks go to the Institut de Biologie Computationelle for funding
my research, as well as Krister Swenson and Celine Scornavacca for fruitful discussions.

References
[1] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In LATIN 2000: Theoretical Informat-

ics, 4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings, volume
1776 of LNCS, pages 88–94. Springer, 2000.

[2] G. S. Brodal, R. Fagerberg, T. Mailund, C. N. Pedersen, and A. Sand. Efficient algorithms for computing
the triplet and quartet distance between trees of arbitrary degree. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1814–1832. Society for Industrial and
Applied Mathematics, 2013.

[3] J. Byrka, S. Guillemot, and J. Jansson. New results on optimizing rooted triplets consistency. Discrete
Applied Mathematics, 158(11):1136 – 1147, 2010. ISSN 0166-218X. doi: 10.1016/j.dam.2010.03.004.

[4] C. Chauve, M. Jones, M. Lafond, C. Scornavacca, and M. Weller. Constructing a consensus phylogeny
from a leaf-removal distance. under review, 2017.

[5] R. Cole, M. Farach-Colton, R. Hariharan, T. Przytycka, and M. Thorup. An o(n log n) algorithm for the
maximum agreement subtree problem for binary trees. SIAM Journal on Computing, 30(5):1385–1404,
2000.

[6] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal on
Computing, 13(2):338–355, 1984.

[7] J. Jansson, N. B. Nguyen, and W.-K. Sung. Algorithms for combining rooted triplets into a galled phylo-
genetic network. SIAM Journal on Computing, 35(5):1098–1121, 2006. doi: 10.1137/S0097539704446529.

[8] V. Ranwez, A. Criscuolo, and E. J. Douzery. Supertriplets: A triplet-based supertree approach to phy-
logenomics. Bioinformatics, (26):i115–i123, 2010.

How to exploit structural properties of dynamic networks to
detect nodes with high temporal closeness

Marwan Ghanem1, Clémence Magnien1, Fabien Tarissan2

1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris,
France

firstname.lastname@lip6.fr
2 Université Paris-Saclay, CNRS, ENS Paris-Saclay, ISP UMR 7220, France

fabien.tarissan@ens-paris-saclay.fr

Abstract

The ability to detect important nodes in temporal networks has been investi-
gated lately. This has been a challenge on both the theoretical aspects as well as
computational ones. In this study we propose and evaluate different strategies to
detect nodes that have high temporal closeness.

Keywords : Temporal closeness, Sampling, Dynamic network

1 Introduction and definitions
Evaluating the importance of nodes in complex networks has been an interesting question
for a long time. Several measures of importance have been introduced, such as degree,
closeness or betweenness centrality. As complex networks have grown in size, approxima-
tion methods have been introduced. One of the first method to approximate centrality
was introduced in [6]. They consider k source nodes selected randomly, from which they
compute the shortest-paths with all other nodes of the network. Since then, several meth-
ods have been proposed to help selecting the source nodes [4] or the target nodes [8]
in order to reduce the computation required to estimate the closeness and betweenness
centrality Those studies all consider a single and static network. However, most of real
application involve networks whose structure evolves with time. This led the community
to propose adaptation of centrality metrics to assess the importance of nodes through
time [7, 11]. This temporal dimension makes the computation more demanding, making
methods for approximating centrality metrics even more essential. In this study, we study
how structural properties of dynamic networks can be exploited to detect nodes that have
a high temporal closeness centrality [7].
More precisely, let G = (V,E) be a dynamic network composed of a set V of nodes
and a set E of temporal links of the form (u, v, t) where u, v ∈ V and t is a times-
tamp. A temporal path from u to v starting at time ts is given by a sequence of links
(u, v0, t0), (v0, v1, t1), . . . , (vk−1, v, tk) such that t0 > ts and, for all i, i = 0..k−1, ti < ti+1.1

148

Such a path is a shortest path if it has the least duration (tk − ts) among all paths from
u to v starting at time ts. The (temporal) distance from u to v at time ts is then the
duration of such a shortest path (denoted dts(u, v))1. Following the classical definition of
the closeness of a node in a static network, the temporal closeness of a node u at time t
is defined by:

Ct(u) =
∑

v 6=u

1
dt(u, v)

It measures the importance of node u at time t in the dynamic network. In order to assess
what nodes are important at time t, one can rank the nodes according to their temporal
closeness at time t and consider for instance the top 25% rankings. This enables in turn
to compute for each node u its total duration spent in the top 25% rankings (denoted by
Durtop(u)). It measures the global importance of node u in G. The purpose of the present
study is to propose strategies to detect which nodes are globally important without relying
on the exact computation of the temporal closeness of all nodes at all time instant.

2 Strategies and results
In order to detect globally important nodes, we propose to first compute global properties
of the nodes that can easily be extracted either from the aggregated graph GA = (V,EA)
(with EA = {(u, v)|∃t, (u, v, t) ∈ E}) or from an analysis of the temporal activity. For
every node u, we compute its closeness centrality CC(u), its degree centrality DC(u) and
its number of links NL(u) – all computed on GA – as well as its duration of activity
DU(u)2 and its average inter-contact duration time LD(u)3. Then we propose:
Parameter based strategy (P1/P2): we consider the rankings given by mixing the
importance measured by P1 and P2 defined by: R(u) = α × rank(P1(u)) + (1 − α) ×
rank(P2(u)) with α ∈ [0 : 1]4 and where rank(P) is the rank provided by property P .
Parameterless strategy (PS): we only take into account the number of links and the
duration of activity: R(u) = rank(NL(u)×DU(u)).
In order to assess the relevance of each strategy (and for any α), we compute the number
of nodes correctly detected as important5 in the top k nodes (for k ∈ [1..n]) and denote
this vector as the hit rate vector. The hit rate vector of a perfect strategy would then be
equal to [1, 2, .., n]. From these vectors we can compute the distance between any strategy
and the perfect strategy and normalize it by the worse case strategy. Formally, we define
the score of a strategy by: score(S) = 1− distance(perfect_strategy,S)

distance(perfect_strategy,worse_case)
Figure 1 shows the scores for all the strategies (with different values for α) when applied
on nine datasets whose characteristics are provided in Table 1. We observe that in most
cases NL/DU ,DU/LD and PS score higher than other combinations as well as any pure
static centralities. They are much closer to a perfect strategy or ground truth than any

1dts (u, v) = ∞ if there is no path between u and v.
2the difference between that last and the first activity.
3the average time between two consecutive links involving u.
4note that α = 1 implies that only P1 is considered.
5we consider the exact computation of the temporal closeness as the ground truth.

Datasets Type #Nodes #Edges Duration Ref
Enron Email 151 47 088 3 years [10]
Radoslaw Email 168 82 876 9 months [9]
DNC Email 1891 39 264 2.6 years [1]
HashTags Social Network 3 048 100 429 22 days -
Facebook Social Network 8 977 66 153 1 year [12]
Article Tags Social Network 2902 571 877 10 years -
Reality Mining Movement 96 1 M 9 month [5]
Taxi Rome Movement 158 241 736 1 day [3]
Primary Movement 242 125 773 1.5 days [2]

TAB. 1: Dataset, Type, Number of nodes, Number of links, Duration

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Enron

S
c
o

re

CC/NL

CC/DU

CC/LD

DC/NL

DC/DU

DC/LD

NL/DU

NL/LD

DU/LD

PS
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Radoslaw
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

DNC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

HashTags

S
c
o

re

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Facebook
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Articles

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Reality Mining

S
c
o

re

alpha

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Taxi

alpha

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Primary

alpha

FIG. 1: Score for each strategy on the nine datasets

other strategies. In addition, we can observe that datasets of same nature lead to similar
α value for the best strategies.

3 Conclusions
In this study we proposed different strategies that rely on global properties of nodes
to detect nodes with high temporal closeness centrality. In most cases, three strategies
present the best results. They all take into account temporal properties of the nodes.

This work is a first step to adapt recent technics [6, 4, 8] to approximate the importance
of nodes in dynamics networks.

Acknowledgements
This work is funded in part by the European Commission H2020 FETPROACT 2016-
2017 program under grant 732942 (ODYCCEUS), by the ANR (French National Agency
of Research) under grants ANR-15-CE38-0001 (AlgoDiv) and ANR-13-CORD-0017-01
(CODDDE), by the French program "PIA - Usages, services et contenus innovants" under
grant O18062-44430 (REQUEST), and by the Ile-de-France program FUI21 under grant
16010629 (iTRAC).

References
[1] Dnc co-recipient network dataset – KONECT, September 2016.
[2] A.L. Barabasi. The origin of bursts and heavy tails in human dynamics. Nature, 435(7039):207–211,

2005.
[3] Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul Amici, and Antonello

Rabuffi. CRAWDAD dataset roma/taxi (v. 2014-07-17). Downloaded from https://crawdad.org/
roma/taxi/20140717, July 2014.

[4] Ulrik Brandes and Christian Pich. Centrality estimation in large networks. International Journal
of Bifurcation and Chaos, 17(7):2303–2318, 2007.

[5] Nathan Eagle and Alex (Sandy) Pentland. CRAWDAD dataset mit/reality (v. 2005-07-01). Down-
loaded from https://crawdad.org/mit/reality/20050701, July 2005.

[6] David Eppstein and Joseph Wang. Fast approximation of centrality. In Proceedings of the Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, pages 228–229, Philadelphia,
PA, USA, 2001. Society for Industrial and Applied Mathematics.

[7] Clémence Magnien and Fabien Tarissan. Time evolution of the importance of nodes in dynamic
networks. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining 2015, ASONAM ’15, pages 1200–1207, New York, NY, USA, 2015.
ACM.

[8] Arun S. Maiya and Tanya Y. Berger-Wolf. Online sampling of high centrality individuals in social
networks. In Proceedings of the 14th Pacific-Asia Conference on Advances in Knowledge Discovery
and Data Mining - Volume Part I, PAKDD’10, pages 91–98. Springer-Verlag, 2010.

[9] Radosław Michalski, Sebastian Palus, and Przemysław Kazienko. Matching organizational structure
and social network extracted from email communication. In Lecture Notes in Business Information
Processing, volume 87, pages 197–206. Springer Berlin Heidelberg, 2011.

[10] Jitesh Shetty and Jafar Adibi. Discovering important nodes through graph entropy the case of Enron
email database. In Proceedings of the 3rd international workshop on Link discovery - LinkKDD ’05,
pages 74–81, New York, New York, USA, August 2005. ACM Press.

[11] Taro Takaguchi, Yosuke Yano, and Yuichi Yoshida. Coverage centralities for temporal networks.
The European Physical Journal B, 89(2):35, 2016.

[12] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi. On the evolution of
user interaction in Facebook. In Proc. Workshop on Online Social Networks, pages 37–42, 2009.

Temporal matching in link stream: kernel and approximation

Julien Baste1 Binh-Minh Bui-Xuan1

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France
[julien.baste,buixuan]@lip6.fr

Abstract

A link stream is a sequence of pairs of the form (t, {u, v}), where t ∈ N represents
a time instant and u 6= v. Given an integer γ, the γ-edge between vertices u and v,
starting at time t, is the set of temporally consecutive edges defined as {(t′, {u, v}) | t′ ∈
Jt, t+ γ − 1K}. We introduce the notion of temporal matching of a link stream to be a
set of pairwise non overlapping γ-edges belonging to the link stream. Unexpectedly, the
problem of computing a temporal matching of maximum size turns out to be NP -hard.
We provide a kernelization algorithm parameterized by the solution size for the problem.
As a byproduct we also depict a 2-approximation algorithm.

Keywords : graph, parameterized algorithm, link stream.

1 Introduction
The question of mining data stemming from human activities not only comes from an old and
well studied topic of social science. In the recent years, mining human data is also moved by
the sheer amount of applications in web analytics, graph mining statistics, criminology graph
visualization and so on. An important, yet not quite well understood, feature of graph data
collected by such tools comes from the time dimension: edges here are timestamped edges.
They come ordered by the time interval where they are effectively active. We call this kind of
data a link stream, in the sense of [3, 4].

A link stream L is a sequence of pairs of the form (t, {u, v}) where {u, v} is an edge, in
the sense of classical loopless undirected simple graphs, and t ∈ N is an integer representing
a discretized time instant. If every pair (t, {u, v}) in L satisfies t = t0 for some fixed t0,
then we say that link stream L is constant. A constant link stream is equivalent to the
formalism of a graph in the classical sense. Given an integer γ, a time instant t, and two
distinct vertices u and v, we define the γ-edge between u and v starting at time t as the set
{(t′, {u, v}) | t′ ∈ Jt, t+ γ − 1K}. Two γ-edges are compatible when they are not overlapping
(cf. formal definition in Section 2). Finally, a γ-matching of link stream L is a set of compatible
γ-edges where each γ-edge contains exclusively edges from L. We consider the problem of
computing a maximum γ-matching of an input link stream, that we call γ-matching. When
γ = 1, this problem can be solved by a slight extension of the notorious polynomial time
algorithm given in [2].

Unfortunately, we found that γ-matching on arbitrary input is NP -hard, as soon as
γ > 1. We address the question of pre-processing, in polynomial time, an input instance of
γ-matching, in order to reduce it to an equivalent instance of smaller size, in the sense of
kernelization algorithms introduced by [1]. We show that γ-matching when parameterized
by the solution size admits a quadratic kernel. On the way to do so, we also depict a procedure
which turns out to define a 2-approximation algorithm for γ-matching. Our paper is organised
as follows. We first introduce the notion of temporal matching (Section 2), before presenting
our algorithmic tools (Section 3) in order to obtain our main result, the kernelization algorithm
(Section 4). We close the paper with concluding remarks and directions for further research
(Section 5).

152

2 Temporal matching
We denote by N the set of nonnegative integer. Given two integers p and q, we denote by Jp, qK
the set {r ∈ N | p ≤ r ≤ q}. A link stream L is a triple (T, V,E) such that T ⊆ N, V is a
set, and E ⊆ T × (V2

)
. The elements of V are called vertices and the elements of E are called

(timed) edges. A temporal vertex of L is a pair (t, v) such that t ∈ T and v ∈ V .
Given an integer γ, a γ-edge between two vertices u and v at time t, denoted Γγ(t, u, v), is

the set {(t′, {u, v}) | t′ ∈ Jt, t+ γ − 1K}. We say that a γ-edge Λ is incident to temporal vertex
(t, v) if there exists a vertex u ∈ V such that (t, {u, v}) ∈ Λ. We say that two γ-edges are
compatible if there is no temporal vertex (t, v) that is incident to both of them. A γ-matching
M of a link stream L is a set of pairwise compatible γ-edges. We say that a γ-edge Λ is
incident with a vertex v ∈ V if there exist a vertex u ∈ V and an integer t ∈ T such that
Λ = Γγ(t, u, v). We say that an edge e ∈ E is in a γ-matchingM if there exists Λ ∈ M such
that e ∈ Λ.

This paper focus on the following problem.

γ-matching
Input: A link stream L and an integer k.
Output: A γ-matching of L of size k or a correct answer that such a set does
not exist.

Property 1 γ-matching is NP-hard.

Sketch of the proof. We reduce from 3-Sat, that is well known to be NP-hard. Let ϕ be a
formula with n variables x1, . . . , xn and m clauses C0, . . . , Cm−1 such that each clauses is of
size at most 3. Without loss of generality, we assume that a clause does not contain twice the
same variable. We call X the set containing the n variables and C the set containing the m
clauses.

We define the linkstream L = (T, V,E) in the following way: T = J0, (m+ 1)γ − 1K, V =
{x−, x=, x+ | x ∈ X} ∪ {x++

t , x−−t | x ∈ X, t ∈ J0,m− 1K} ∪ {c}, and E = Evar ∪ Ecla where:

Evar = {(t, {x=, x+}), (t, {x=, x−}) | t ∈ J0, (m+ 1)γ − 1K , x ∈ X}
∪ {(t, {x+, x++

i }), (t, {x−, x−−i }) | t ∈ J1,mγK , x ∈ X, i =
⌊
t− 1
γ

⌋
}

Ecla = {(t, {c, x++
i }) | t ∈ Jiγ + 1, (i+ 1)γK , i ∈ J0,m− 1K , x ∈ X, x appears positively in Ci}

∪ {(t, {c, x−−i }) | t ∈ Jiγ + 1, (i+ 1)γK , i ∈ J0,m− 1K , x ∈ X, x appears negatively in Ci}.

We depict in Figure 1 the linkstream build for γ = 3 and ϕ = (w ∨ x ∨ y) ∧ (w ∨ x ∨ z). In
order to finish the proof of the property, it is sufficient to show the equivalence between above
gadget and the original instance of 3-Sat, that is:

Claim 1 There is an assignment of the variables that satisfies ϕ if and only if L contains a
γ-matching of size (2m+ 1)n+m.

Due to space limit, we omit the formal proof of Claim 1. Intuitively, the edge between
(0, {x=, x+}) and (0, {x=, x−}) that is in the requested γ-matching determines if the variable
x is set to true or false. Moreover, the size of the requested γ-matching ensures that if the edge
(0, {x=, x+}) (resp. (0, {x=, x−})) is in the γ-matching, then every edge (t, {x=, x+}) (resp.
(t, {x=, x−})), t ∈ J0, (m+ 1)γ − 1K, and every edge (t, {x−, x−−i }) (resp. (t, {x+, x++

i })),
t ∈ J1,mγK}, i =

⌊
t−1
γ

⌋
, are in the γ-matching as well. Finally, during the time interval

Jiγ + 1, (i+ 1)γK, we check that the clause Ci is satisfied.

w−−1 w−−0 w− w= w+ w++
0 w++

1 x−−1 x−−0 x− x= x+ x++
0 x++

1 y−−1 y−−0 y− y= y+ y++
0 y++

1 z−−1 z−−0 z− z= z+ z++
0 z++

1c

0 • • •• • •• • •• • ••
1 • • •• • •• • •• • ••
2 • • •• • •• • •• • ••
3 • • •• • •• • •• • ••
4 • • •• • •• • •• • ••
5 • • •• • •• • •• • ••
6 • • •• • •• • •• • ••
7 • • •• • •• • •• • ••
8 • • •• • •• • •• • ••

• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •

FIG. 1: The constructed linkstream L when ϕ = (w ∨ x∨ y)∧ (w ∨ x∨ z) and γ = 3. Here T = J0, 8K
and an edge (t, {u, v}) of L is depicted by a bold line, following the horizontal line corresponding to
time t, going from the vertical line corresponding to u to the vertical line corresponding to v. For
readability, the edges incident with c are not drown. Instead, we have circled the temporal vertices
that are neighbors of c.

3 Approximation algorithm
In this section, we adopt the greedy approach in order to provide a 2−approximation algorithm
for γ-matching. Let L = (T, V,E) be a link stream. Let P be the set of every γ-edges of L.
Let � be an arbitrary total ordering on the elements of P such that for any two elements of
P , Λ1 = Γγ(t1, u1, v1) and Λ2 = Γγ(t2, u2, v2) such that t1 < t2, we have Λ1 � Λ2.

We denote by A the following greedy algorithm. The algorithm starts withM = ∅, Q = P ,
and a function ρ : V × T → {0, 1} such that for each (t, v) ∈ T × V , ρ(t, v) = 0. The purpose
of ρ is to keep track of the temporal vertices that are incident to a γ-edge ofM. As long as
Q is not empty, the algorithm selects Λ, the γ-edge of Q that is minimum for �, and removes
it from Q. Let K be the set of the 2γ temporal vertices that are incident to Λ. If, for each
(t, v) ∈ K, ρ(t, v) = 0, then the algorithm adds Λ toM and for each (t, v) ∈ K, it sets ρ(t, v)
to 1, otherwise it does nothing at this step. When Q = ∅, the algorithm returnsM.

As P can be determined in a sorted way in timeO(m), this algorithm runs in timeO(nτ+m),
where τ = |T |, n = |V |, m = |E|, and where γ is a constant hidden in the O.

Given a γ-matchingM, we define the bottom temporal vertices ofM, denoted bot(M), as
the set {(t + γ − 1, u), (t + γ − 1, v) | Γγ(t, u, v) ∈ M}. Lemma 1 shows the crucial role of
the bottom temporal vertices of the matching returned by A. We omit the proof of Lemma 1
because of the space restriction.

Lemma 1 Let γ be a positive integer, let L be a link stream, and let M be a γ-matching
returned by A when applied to L. If M′ is a γ-matching of L, then every γ-edge of M′ is
incident to, at least, one temporal vertex of bot(M).

Lemma 1 plays a cornerstone role in the proof of subsequent Theorem 2. As a byproduct,
we also obtain the following result.

Theorem 1 A is a 2-approximation of the γ-matching problem.

4 Kernelization algorithm
We now show a kernelization algorithm for γ-matching by a direct pruning process based on
Lemma 1. The main idea is as follows. First, we compute the set S of all bottom temporal
vertices of a γ-matching produced by previously defined algorithm A. Then, we prune the
original instance by only keeping edges that belong to a γ-edge incident to a temporal vertex
of S. More precisely, we prove the following result.

Theorem 2 There exists a polynomial-time algorithm that for each instance (L, k), either
correctly determines if L contains a γ-matching of size k, or returns an equivalence instance
(L′, k) such that the number of edges of L′ is 2(k − 1)(2k − 1)γ2.
Proof : Let L = (T, V,E) be a link stream and k be an integer. We first run the algorithm
A on L. LetM be the γ-matching outputed by the algorithm and let ` = |M|. If ` ≥ k, then
we already have a solution and then we return a true instance. If ` < k

2 , then, by Theorem 1,
we know that the instance does not contains a γ-matching of size k, and then we return a false
instance. We now assume that k

2 ≤ ` < k.
Lemma 1 justifies that we are now focusing on the temporal vertices of bot(M) in order

to find the requested kernel. We construct a set P of γ-edges and we show that any edge
e, that is not in a γ-edge of P , is useless when looking for a γ-matching of size k. For each
(t, u) ∈ bot(M), and for each t′ such that max(0, t−γ+1) ≤ t′ ≤ t, we consider the set S(t′, u)
of every γ-edge, existing in L, with the form Γγ(t′, u, v) with v ∈ V . If the set S(t′, u) is of size
at most 2k − 1, we add every element of S(t′, u) to P . Otherwise, we select 2k − 1 elements
of S(t′, u) that we add them to P . In both cases, we denote by S ′(t′, u) the set of elements
of S(t′, u) that we have added to P . This finish the construction of P . As |bot(M)| = 2`
and for each element of bot(M) we have added at most (2k − 1)γ γ-edges to P , we have that
|P| ≤ 2`(2k − 1)γ ≤ 2(k − 1)(2k − 1)γ.

We now prove that if L contains a γ-matching M′ of size k, then it also contains a γ-
matchingM′′ of size k such thatM′′ ⊆ P . LetM′ be a γ-matching of L of size k such that
p = |M′ \ P| is minimum. We have to prove that p = 0. Assume that p ≥ 1. Let Λ be a
γ-edge inM′ \ P . Let (t, u) be a temporal vertex of bot(M) that is incident to Λ. We know
by Lemma 1 that this temporal vertex exists. Assume that Λ = Γγ(t′, u, v) for some v ∈ V and
some t′ such that max(0, t − γ + 1) ≤ t′ ≤ t. As Λ 6∈ P , we have that Λ ∈ S(t′, u) \ S ′(t′, u),
and so |S ′(t′, u)| = 2k− 1. Let NS′(t′, u) be the set of vertices w of V \ {u} such that a γ-edge
of S ′(t′, u) is incident to w. AsM′ \ {Λ} is of size k − 1, the γ-edges that it contains can be
incident to at most 2k − 2 vertices. This means that there exists w ∈ NS′(t′, u) such that no
γ-edge ofM′ \ {Λ} is incident to w. Thus (M′ \ {Λ}) ∪ {Γγ(t′, u, w)} is a γ-matching of size
k. As Λ 6∈ P and Γγ(t′, u, v) ∈ P , this contradicts the fact that p is minimum.

We now can define the link stream L′ = (T, V,E′) such that E′ = {e ∈ E | ∃Λ ∈ P :
e ∈ Λ}. As |P| ≤ 2(k − 1)(2k − 1)γ and every element of P is a γ-edge, we have that
|E′| ≤ 2(k − 1)(2k − 1)γ2. The theorem follows. �

5 Conclusion and perspectives
We introduce the notion of a temporal matching in a link stream. Unexpectedly, the problem
of computing a temporal matching, called γ-matching, turns out to be NP -hard. We then
show a kernelization algorithm for γ-matching parameterized by the size of the solution.
Our process produces quadratic kernels. On the way to obtaining the kernelization algorithm,
we also provide a 2-approximation algorithm for γ-matching. We believe that the same
techniques extend to a large class of hitting set problems in the link streams.

References
[1] R.G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[2] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[3] M. Latapy, T. Viard, and C. Magnien. Stream graphs and link streams for the modeling
of interactions over time. 2017. https://arxiv.org/abs/1710.04073.

[4] T. Viard, M. Latapy, and C. Magnien. Computing maximal cliques in link streams. Theo-
retical Computer Science, 609:245–252, 2016.

A Modular Overlapping Community Detection Algorithm:
Investigating the “From Local to Global” Approach

Maximilien Danisch1, Noé Gaumont2, Jean-Loup Guillaume3

1 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, Paris F-75005, France
2 Complex Systems Institute of Paris Ile-de-France (ISC-PIF), Paris, France, CAMS, CNRS -

EHESS, Paris, France
3 Laboratoire Informatique, Image et Interaction (L3i), Université de La Rochelle, La Rochelle,

France

Abstract
We propose an overlapping community detection algorithm following a “from local

to global approach”: our algorithm finds local communities one by one by repetitively
optimizing a quality function that measures the quality of a community. Then, as some
extracted local communities can be very similar to each-other, a cleaning procedure is
applied to obtain the global overlapping community structure. Our algorithm depends
on three modules: (i) a quality function, (ii) an optimization heuristic and (iii) a cleaning
procedure. Various such modules can be independently plugged in. We show that, using
default modules, our algorithm improves over a state-of-the-art method on some real-
world graphs with ground truth communities. In the future we would like to study which
combination of modules performs best in practice and make our code parallel.

1 Introduction
The Web graph (web pages connected by hyperlinks), Facebook (profiles connected by friend-
ships), Internet (computers connected by Internet connections) and a human brain (neurons
connected by synapses) are only a few examples of graphs extracted from the real world.

Designing practical algorithms to find relevant groups of nodes in such graphs has applica-
tions ranging from web search to drug design. However, designing such community detection
algorithms is an extremely challenging task, indeed most real-world graphs are huge making
any quadratic time algorithm not practical. In addition, community detection is an ill-defined
problem, indeed there is no clear definition of what is a community, i.e. a relevant set of nodes.

In this paper we propose a generic and modular algorithm, called MOCDA for Modular
Overlapping Community Detection Algorithm, that allows to compute a set of overlapping
communities. This algorithm is based on a "local to global" approach (seed-centric approach)
[4] where local communities are expanded around seeds by the repeated addition of nodes. A
function is used to assess the quality of each community and an optimisation heuristic is used
to optimize it. As two local communities could differ by only a small number of nodes, all the
local communities are cleaned to remove the noise caused by similar communities and provide
the global overlapping structure of the network. All steps are modular: the quality function,
the optimization itself and the cleaning procedures can be modified to fit the needs of the user.

The rest of the paper is organized as follows: in Section 2 we present the algorithm and the
different modules, in Section 3 we benchmark our algorithm against existing state-of-the-art
method and we conclude in Section 4.

2 Algorithm
We detail here our modular algorithm for detecting overlapping communities that relies on
three modules: (i) the definition of a function that evaluates the quality of a community,
(ii) an optimization heuristic and (iii) a cleaning procedure. An efficient C implementation
is available at https://github.com/maxdan94/mocda in which options are available to chose
different strategies for the three modules. 1

156

2.1 Quality functions
A quality function is a function that evaluates if a given set of nodes is a good community or
not. As there are several definitions of a good community, there are several ways to evaluate a
set of nodes, such as the clustering coefficient or the conductance. We narrow the set of possible
quality functions in MOCDA to those relying on local features to evaluate a given set of nodes
or very simple global fatures. Indeed, a quality function actually does not need a complete
knowledge of the graph to evaluate to what extent a set of nodes is a good community.

Formally, we consider quality functions that can be expressed as a function f(φ) where φ is
a set of features among the following:
• n: number of nodes in the graph.
• m: number of links in the graph.
• t: number of triangles in the graph.
• s: number of nodes in the community.
• l2: number of links with both end nodes in the community.
• l1: number of links with exactly one node in the community.
• t3: number of triangles with three nodes in the community.
• t2: number of triangles with exactly two nodes in the community.
• t1: number of triangles with exactly one node in the community.

Many quality functions of the literature can be written under that form such as conductance
φ = l1

min(2·l2+l1,2·m−2·l2−l1) or cohesion C = t3
(s

3)
× t3

t3+t2
[3].

The reason we bound our algorithm to these features is practical: we will optimize the input
function in a greedy way by adding or removing nodes one at a time starting from a small set
of nodes, we thus need to be able to evaluate the increase or decrease of the function extremely
quickly and these parameters allows to do it. In particular, for the features related to triangles,
we rely on the compact-forward algorithm detailed in [5] which allows to list all triangles in
very-large real world graphs.

2.2 Optimization heuristics
We focus only on greedy and stochastic approaches. Given a node of interest u and a quality
function f , a possible optimization heuristic consists in the following three steps that can be
changed independently in our program.
• Initialization: start from a community containing only one node, or two linked nodes,

or a node and all its neighbors.
• Optimization: at each iteration, add a randomly chosen node, neighbor of the commu-

nity C, that increases the quality f . It is also possible to add the node that leads to the
highest increase and/or to authorize the removal of a node.
• Stop: stop when the quality function can no longer be increased, i.e., when a local

maximum has been reached. It is also possible to add the least quality-decreasing node
with the hope that it will improve even more afterwards and return the set of nodes of
highest quality obtained.

Therefore, given a quality function and a seed community, the optimization grows this seed
to a full community. Since the optimization step is stochastic, two execution starting from the
same seed community can give different results.

2.3 Cleaning procedures
Since the optimization is to be repeated several times using different seed communities and as
two different optimizations can lead to similar final communities, it is important to clean these
obtained sets of nodes. There are several ways to do that, which all require to compute the
similarity between two sets of nodes. For this we use the F1 similarity: given two sets a and b
the similarity is given by F1(a, b) = 2 |a∩b|

|a|+|b| . We say that two sets are similar if their similarity
is higher than a given threshold. We use the following cleaning procedures depending on the
order the communities are examined: (i) process the obtained sets of nodes on-the-fly or (ii)
process the obtained sets of nodes in decreasing order of quality. In both cases a new set of
nodes is kept if and only if it is not similar to a previously processed set of nodes.

Amazon DBLP Youtube LiveJournal Orkut
0.0

0.1

0.2

0.3

0.4

0.5

S
co

re

SCD NMI
MOCDA NMI
SCD F1
MOCDA F1

FIG. 1: Favr
1 and NMI scores using ground truth

Note that other cleaning procedures could also be investigated such as doing the intersection
or union of found communities in some way, rather than simply removing sets.

Once the communities are cleaned, the algorithm only outputs the communities that were
found to be similar to another one k or more times. This redundancy test states that a
community found only once may be less relevant than a community found a large number of
times.
Implementation details. Several solutions had to be found in order to obtain a program
efficient in terms of time and memory. We were able to check whether a quality function of
the type f(n,m, t, s, l1, l2) (resp. f(n,m, t, s, l1, l2, t1, t2, t3)) increases or decreases under the
addition or deletion of a node u in constant time and proceed to the actual addition or deletion
in O(du) time (resp. O(

∑
v∈N(u) dv)) in case f indeed increases while using linear memory. For

the cleaning procedure, we were able to compute the maximum F1-score between the new
community and an already found one in time O(s · t) in the worst case, where s is the size of
the found community and t is the maximum number of communities a node belongs to. Note
that s and t are, in practice, very small compared to the size of the graph leading to a nearly
linear cleaning procedure in terms of the number of communities.

3 Experimental evaluation
A wide range of methods have been designed to detect communities in graphs and we refer to
the following reviews of existing methods [1, 9, 4, 2]. We compared our algorithm using default
options to several algorithms including the Louvain method, BIGCLAM and OSLOM but we
report the results only for SCD [8] as it performed better and faster than the other methods.
SCD has been shown to lead to a non-overlapping and non-exhaustive community structure
that is more similar to the real overlapping community structure of some real-world networks
than the overlapping community structure unfolded by some state-of-the-art algorithms.

We tried 16 quality functions such as conductance, average degree, edit distance to an
isolated clique and cohesion among others. The quality function leading to the best results on
all networks was l2

n1.5 . We also tried several optimization heuristics and cleaning procedures and
the best trade-off between time and accuracy is obtained by a stochastic optimization allowing
removal of nodes (we do 2 · n optimizations, each time starting from a randomly chosen node)
and on-the-fly cleaning (simply outputting all unique communities found at least twice).

To test our algorithm we applied our method on networks with a known community struc-
ture [6]. In order to compare the ground truth and the structure found by MOCDA and SCD,
we used the Normalized Mutual Information (NMI) [7] and the Favr

1 [8]. Figure 1 shows the
NMI and the Favr

1 [8]. The larger are these metrics the more similar are the two community
structures. Table 1 shows the running time on a laptop with a CPU Intel i7-6500U at 2.50GHz
and 16Go of RAM. As we can see, even though our algorithm is slower than SCD, it outper-
forms it on four of the five datsests. Note that SCD has been shown to be a very competitive
method, our algorithm relying on these three simple modules is thus a very promising tool.

Algorithm Amazon DBLP Youtube LiveJ. Orkut
SCD 4.5 sec 4 sec 23 sec 8.5 min 41 min

MOCDA 4.9 sec 10.2 sec 19.1 min 83.1 min 37.9 h

TAB. 1: Running time comparison

4 Conclusion
We proposed a generic and modular algorithm to extract overlapping communities in large
networks using a local-to-global approach. This algorithm, using default options, gives better
results in most real-world graphs than a state-of-the-art algorithm, even though it is slower.

For future work, we first plan to parallelize the algorithm since the optimization procedure
can be performed independently from several seed communities. Furthermore, we want to
add more complex features, such as cliques of size more than 3 or others motifs that can be
computed efficiently on large networks. We also plan to study in depth the impact of these
parameters on the obtained results.

Learning which combinations of modules (quality function, optimization heuristic and clean-
ing procedure) perform best in an automatic way is also an interesting research perspective.

More important still, the modular design of MOCDA enables anybody to create and test its
own quality function which will meet its needs.

References
[1] Santo Fortunato. Community detection in graphs. Physics reports, 486(3):75–174, 2010.

[2] Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics
Reports, 2016.

[3] Adrien Friggeri, Guillaume Chelius, and Eric Fleury. Triangles to capture social cohesion.
In SocialCom, pages 258–265. IEEE, 2011.

[4] Rushed Kanawati. Seed-centric approaches for community detection in complex net-
works. In International Conference on Social Computing and Social Media, pages 197–208.
Springer, 2014.

[5] Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-law))
graphs. Theoretical Computer Science, 407(1):458–473, 2008.

[6] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[7] Aaron F McDaid, Derek Greene, and Neil Hurley. Normalized mutual information to
evaluate overlapping community finding algorithms. arXiv preprint, 2011.

[8] Arnau Prat-Pérez, David Dominguez-Sal, and Josep-LLuis Larriba-Pey. High quality, scal-
able and parallel community detection for large real graphs. In WWW, pages 225–236.
ACM, 2014.

[9] Jierui Xie, Stephen Kelley, and Boleslaw K Szymanski. Overlapping community detection
in networks: The state-of-the-art and comparative study. Acm computing surveys (csur),
45(4):43, 2013.

Total k-rainbow Domatic Number

Pavitra Kumbargoudra1, S. S. Shirkol2

1The Oxford College of Engineering, Bangalore, India
pavitra2504@gmail.com

2SDM College of Engineering and Technology, Dharwad, India
shailajashirakol@gmail.com

Abstract

The Total k-rainbow domination number is defined by considering
k types of guards or set of k colors. A location which does not have
any type of guard (color) assigned, should have all type of guards
(colors) in its immediate surrounding location to protect it. For a
positive integer k, a function f : V (G)→ P ({1, 2, . . . , k}) is said to be
a total k-rainbow dominating function if ∀v ∈ V (G),∪u∈N [v]f(u) =
{1, 2, . . . , k}, where f(u) is nonempty subset of {1, 2, . . . , k} and N [v]
is a closed neighborhood of v. A set {f1, f2, . . . , fd} of total k-rainbow
dominating function of a graph G with the property that

∑d
i=1 |fi(v)|

≤ k for each v ∈ V (G), is called a total k-rainbow dominating family
(functions) on G. The maximum number of functions in a total k-
rainbow dominating family (TkRD family) on G is called the total
k-rainbow domatic number of G, is denoted by dtrk(G). In this paper
we initiate the study of total k-rainbow domatic number in graphs
and we obtain dtrk(Kn) = min{n, k}, dtrk(Cn) ≤ 3. We also proved
some bounds for dtrk(G).

Keywords : k-rainbow domination number, Total k-rainbow domination
number, k-rainbow domatic number, Total k-rainbow domatic number.

1 Introduction

Let G be a simple graph with vertex set V = V (G) and the edge set E =
E(G). The number of vertices in the graph G is known as order of G and
is denoted by n = n(G). For any vertex v ∈ V (G), the open neighborhood

160

N(v) is the set {u ∈ V (G)|uv ∈ E(G)} and the closed neighborhood of v is
the set N [v] = N(v)∪ {v}. The degree of a vertex v(G), d(v), is the number
of edges incident on the vertex v . The minimum and maximum degree of a
graph G are denoted by δ = δ(G) and ∆ = ∆(G) respectively. Tree T is a
connected acyclic graph. We write Kn for complete graph of order n, Cn for
a cycle of length n, Pn for path of length n and Wn for wheel graph of order
n. We follow [1] and [2] for notation and graph theory terminology.

M. A. Henning [2] introduced the concept of k-rainbow domination number
by considering mathematical model of assigning guards to each location from
k different type of guards. According to him a location which is not having
any type of guards needs to have all type of guards in its neighboring location.

Definition 1.1. Let G be a graph and f be a function that assigns to each
vertex a set of guards chosen from the set {1, 2, . . . , k} i.e. f : V (G) →
P ({1, 2, . . . , k}). If for each vertex v ∈ V (G) such that f(V) = ∅ we have

∪u∈N(V)f(u) = {1, 2, . . . , k},

then f is called the k-rainbow dominating function(kRDF) [4]. The weight
w(f) of k-rainbow domination number is defined by, w(f) =

∑
v∈V |f(v)|.

The minimum weight a kRDF is called k-rainbow domination number and is
denoted by γrk(G).

The study of total k-rainbow domination number is introduced by P.
Kumbargoudra and J. V. Kureethara. According to total k-rainbow domi-
nating function each and every location is secured by all type of guards. A
location which is not having any type of guards should have that type of
guard in its immediate neighboring location.

Definition 1.2. For a positive integer k, a total k-rainbow dominating func-
tion (TkRDF) of a graph G is defined in [3] as a function f : V (G) →
P ({1, 2, . . . , k}) that assigns to each vertex a nonempty subset of a set
S = {1, 2, . . . , k} i.e.

∀v ∈ V (G), ∪u∈N [v]f(u) = S.

The weight w(f) of total k-rainbow domination number is defined by,

w(f) =
∑

v∈V
|f(v)|.

The minimum weight of a TkRDF is known as total k-rainbow domination
number and is denoted by γtrk(G).

2

Later S. M. Sheikholeslami and L. Volkmann [9] defined k-rainbow domatic
number drk(G). They found 2-rainbow domatic number for Pn, Cn and they
found some bounds for 2-rainbow domatic number.

In this paper we introduce total k-rainbow damatic number and initiated
the study of the total k-rainbow domatic number of some classes of graphs.
We obtain basic bounds for the total k-rainbow domatic number of a graph.

Definition 1.3. A set {f1, f2, . . . , fd} of total k-rainbow dominating func-
tions of a graph G with the property that

∑d
i=1 |fi(v)| ≤ k for each v ∈ V (G),

is called a total k-rainbow dominating family (functions) on G. The maxi-
mum number of functions in a total k-rainbow dominating family (TkRD
family) on G is called the total k-rainbow domatic number of G, is denoted
by dtrk(G).

The total k-rainbow domatic number is well defined and

dtrk ≥ 1, for all graph G, (1)

since the set consisting of any total k-rainbow dominating function (TkRDF)
forms a TkRD family on G.

2 Properties of Total k-rainbow Domatic Num-

ber

Proposition 2.1. If Kn is a complete graph of order n ≥ 3, then dtrk(Kn) =
min{n, k}.
Proposition 2.2. If Wn is a Wheel graph of order n then, dtrk(Wn) = 3.

Proposition 2.3. If T is a tree then, dtrk(T) = 2.

Theorem 2.4. If G is graph, then dtrk(G) = 1 if and only if G is empty.

Theorem 2.5. For any graph G, 2 ≤ dtrk ≤ k.

Theorem 2.6. Let G be a graph with δ = 1 then, dtrk(G) = 2.

Theorem 2.7. If G is graph of order n, then γtrk(G) · dtrk(G) ≤ kn.
If γtrk(G)·dtrk(G) = kn, then for each TkRD family {f1, f2, . . . , fd} on G with
d = dtrk(G), each function fi is a γtrk(G)−function, and

∑d
i=1 |fi(v)| = k for

all v ∈ V.
Theorem 2.8.

For n > 2, dtrk(Cn) =

{
3 If n ≡ 0 (mod 3)
2 Otherwise.

3

3 Conclusion and perspectives

We conclude this paper with the following open problems.

Open Problem 3.1. Caclculate dtrk(Pn�Pm), dtrk(Cn�Cm) and dtrk(Pn�Cm).

Open Problem 3.2. Calculate dtrk(P (n, k)) where P (n, k) is generalized
Peterson graph.

Open Problem 3.3. If G be any graph with given δ and ∆ then dtrk(G) =?

Open Problem 3.4. For which classes of graphs is drk(G) = dtrk(G) for
every graph G of a class?

References

[1] M. A. Henning and S. T. Hedetniemi, “Defending the Roman Empire—A
new strategy,” in Discrete Applied Mathematics, vol. 266, pp. 239-251,
2003.

[2] M. A. Henning, “Defending the Roman Empire from multiple attacks,”
in Discrete Applied Mathematics, vol. 271, pp. 101-115, 2003.

[3] P. Kumbargoudra and J. V. Kureethara, “Total k-rainbow Domination
in Graphs,” in IJCIET, 8, pp. 867-875, 2017.

[4] B. Bresar, M. A. Henning and D. F. Rall, “Rainbow domination in
graphs,” Taiwanse Journal of Mathematics, vol. 12, pp. 213-225, 2008.

[5] L. Volkmann and B. Zelinka, “Signed domaic number of graphs”, Discrete
Mathematics 150 (2005), 261-267.

[6] D. Meierling, L. Volkmann and S. Zitzen “The signed domatic number of
some regular graphs”, Discrete Mathematics 157 (2009), 1905-1912.

[7] M. Atapour, S. M. Sheikholeslami, A. N. Ghameshloub and L. Volk-
mannc, “Signed star domatic number of a graph”, Discrete Mathematics
158 (2010), 213-218.

[8] S. M. Sheikholeslami and L. Volkmann, “The Roman domatic number of
a graph”, Applid Mathematics letters 23 (2010), 1295-1300.

[9] S. M. Sheikholeslami and L. Volkmann, “THE k-RAINBOW DOMATIC
NUMBER OF A GRAPH”, Discussiones Mathematicae Graph Theory
32 (2012), 129-140.

4

Sufficient degree conditions for traceability
of claw-free graphs

Tao Tian1,2, Hajo Broersma2, Liming Xiong3

1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, PR China
taotian0118@163.com

2 Faculty of EEMCS, University of Twente, Enschede, The Netherlands
h.j.broersma@utwente.nl

3 School of Mathematics and Statistics, Beijing Key Laboratory on MCAACI,
Beijing Institute of Technology, Beijing, PR China

lmxiong@bit.edu.cn

Abstract

We present new results on the traceability of claw-free graphs. In particular, we consider
sufficient minimum degree and degree sum conditions that imply that these graphs admit
a Hamilton path, unless they have a small order or they belong to well-defined classes
of exceptional graphs. Our main result implies that a 2-connected claw-free graph G of
sufficiently large order n with minimum degree δ(G) ≥ 22 is traceable if the degree sum
of any set of t independent vertices of G is at least t(2n−5)

14 , where t ∈ {1, 2, . . . , 7}, unless
G belongs to one of a number of well-defined classes of exceptional graphs depending on
t. Our results also imply that a 2-connected claw-free graph G of sufficiently large order
n with δ(G) ≥ 18 is traceable if the degree sum of any set of six independent vertices is
larger than n− 6, and that this lower bound on the degree sums is sharp.

Keywords : Claw-free graph, traceable graph, line graph, spanning trail, closure.

1 Introduction
In this talk, we are mainly interested in degree and neighborhood conditions for traceability
of 2-connected claw-free graphs, motivated by recent results on counterparts for hamiltonicity,
and in an attempt to unify several existing results.

We consider finite, undirected and loopless graphs only, but we allow multiple edges. A graph
is called a multigraph if it may contain multiple edges; otherwise, it is called a simple graph or
simply a graph. For a vertex x of a (simple) graph G, we denote by NG(x) the neighborhood
of x in G, i.e., the set of vertices adjacent to x in G, and by dG(x) = |NG(x)| (or simply d(x))
the degree of x in G. We let σ2(G) = min{d(u) + d(v) | uv ∈ E(G)}. The circumference of G,
denoted by c(G), is the length of a longest cycle of G. A graph G is hamiltonian (traceable)
if it has a Hamilton cycle (path), i.e., a spanning cycle (path). A graph is claw-free if it has
no induced subgraph isomorphic to K1,3. A graph is triangle-free if it contains no cycle with
exactly 3 vertices. The independence number of a graph G is denoted by α(G).

An edge-cut X of G is called essential if G − X has at least two non-trivial components,
i.e., components that contain at least one edge. For an integer k ≥ 1, a graph G is said to be
essentially k-edge-connected if G does not admit an essential edge-cut X with |X| < k. The
line graph of a graph G, denoted by L(G), has E(G) as its vertex set, and two vertices in L(G)
are adjacent if and only if the corresponding edges in G have a vertex in common. Note that
a graph G is essentially k-edge-connected if and only if L(G) is k-connected (or complete).

In the context of investigating the hamiltonicity or traceability of claw-free graphs, Ryjáček
[5] defined the closure cl(H) of a claw-free graph H, obtained by recursively adding edges to

164

H that join two nonadjacent vertices in the neighborhood of any locally connected vertex of
the current graph as long as this is possible. A graph H is said to be closed if H = cl(H). The
following theorem summarizes the basic properties of cl(H).

Theorem 1 ([5]). Let H be a claw-free graph. Then

(i) cl(H) is well-defined;

(ii) there is a triangle-free graph G such that cl(H) = L(G);

(iii) H and cl(H) have the same circumference.

Later, this result was extended to an analogous statement for traceability of claw-free graphs.

Theorem 2 ([1]). A claw-free graph H is traceable if and only if cl(H) is traceable.

The above results have been the key ingredient for proving many results on hamiltonicity and
traceability of claw-free graphs, in combination with the concepts defined in the next section.

2 Trails, contractions and neighborhood conditions
Another key ingredient is the following equivalence between dominating (closed) trails in graphs
and traceability (hamiltonicity) of their line graphs. We only state the result on traceability.
Here, a (closed) trail Ψ of G is called a dominating (closed) trail (DT and DCT for short) of
G if E(G− V (Ψ)) = ∅.

Theorem 3 ([4]). Let G be a graph with |E(G)| ≥ 1. Then the line graph L(G) of G is
traceable if and only if G has a DT.

Let G be a connected multigraph. For X ⊆ E(G), the contraction G/X is the graph obtained
from G by successively identifying the two end vertices of each edge e ∈ X and deleting the
resulting loops. Note that, in general G/X is a multigraph, also in case G is a simple graph.
If Γ is a connected sub(multi)graph of G, then we write G/Γ for G/E(Γ); in this case, we
use vΓ to denote the only remaining vertex of Γ in G/Γ, i.e., the vertex in G/Γ to which Γ is
contracted, and we call this vertex vΓ a contracted vertex if Γ ̸= K1 in order to distinguish it
from the remaining vertices of G.

Let t be a positive integer and let H be a graph. We define σt(H) and Ut(H) as follows. If
t ≤ α(H), then:

• σt(H) = min{∑t
i=1 dH(vi) : {v1, v2, . . . , vt} is an independent set of H};

• Ut(H) = min{|∪t
i=1 NH(vi)| : {v1, v2, . . . , vt} is an independent set of H}.

If t > α(H), we set σt(H) = Ut(H) = ∞. Obviously, δ(H) = σ1(H) = U1(H), and σt(H) ≥
Ut(H). We let Ω(H) = {σt(H), Ut(H)}.

For dt(H) ∈ Ω(H), we consider claw-free graphs H that satisfy the following condition:

dt(H) ≥ t(n+ ϵ)
p

. (1)

Here t ≥ 1 and p ≥ t are positive integers, and ϵ is a given real number. Depending on the values
of p and ϵ, we define N(p, ϵ) = max {36p2−34p−ϵ(p+1), 20p2−10p−ϵ(p+1), (3p+1)(−ϵ−4p)}.
In the next two results, we let H be a k-connected claw-free graph of order n > N(p, ϵ) with
k ∈ {2, 3}.

3 Main results
In [2], Chen proved the following hamiltonicity result.

Theorem 4 ([2]). If δ(H) ≥ 3 and dt(H) ≥ t(n+ϵ)
p , then either H is hamiltonian or cl(H) =

L(G), where G is an essentially k-edge-connected triangle-free graph without a DCT and G
satisfies one of the following:

(i) k = 2 and G is contractible to a graph in Q0(c, 2), where c ≤ max {4p− 5, 2p+ 1};

(ii) k = 3 and G is contractible to a graph in Q0(c, 3), where c ≤ max {3p− 5, 2p+ 1}.

Here Q0(c, k) denotes a well characterized class of graphs that we do not specify here due to
the page limit. We recently obtained the following traceability counterpart of Theorem 4.

Theorem 5 If δ(H) ≥ 3 and dt(H) ≥ t(n+ϵ)
p , then either H is traceable or cl(H) = L(G),

where G is an essentially k-edge-connected triangle-free graph without a DT and G satisfies
one of the following:

(i) k = 2 and G is contractible to a graph in R0(c, 2), where c ≤ max{4p − 5, 2p + 1} and
p ≥ 4;

(ii) k = 3 and G is contractible to a graph in R0(c, 3), where c ≤ max{3p − 5, 2p + 1} and
p ≥ 7.

Here R0(c, k) denotes a class similar to Q0(c, k). As an application of Theorem 4, the following
special case was obtained in [2] as an illustration.

Theorem 6 ([2]). Let H be a 2-connected claw-free graph of sufficiently large order n with
δ(H) ≥ 3. If dt(H) ≥ tn

4 for t ∈ {1, 2, 3, 4}, then either H is hamiltonian or cl(H) belongs to
a family of well characterized graphs.

1
F

2
F

FIG. 1: The graphs F1 and F2.

For each F ∈ {F1, F2}, let D2(F) = {v1, v2, . . . , v6} denote the vertices with degree 2, and let
F(n, s) be the family of essentially 2-edge-connected graphs obtained from F by replacing each
vi ∈ D2(F) by a connected triangle-free graph Φi of size si ≥ s such that n = 12+

∑6
i=1 si. Let

F1(n, s) denote the subfamily of F(n, s) in which each Φi is isomorphic to K1,si . Furthermore,
let RF (n, s) = {H = L(G) : G ∈ F(n, s)}, and let R1

F (n, s) = {H = L(G) : G ∈ F1(n, s)}.
These classes have been used by Tian et al. in [6] to characterize the exceptional cases for

traceability of claw-free graphs satisfying the following degree sum condition in terms of σ2 for
pairs of adjacent vertices.

Theorem 7 ([6]). Let H be a 2-connected claw-free graph of sufficiently large order n with
δ(H) ≥ 3. If σ2(H) ≥ 2n−5

7 , then either H is traceable or σ2(H) ≤ n−6
3 and cl(H) ∈

RF (n, 2n−19
14).

As an application of Theorem 5, we obtain the following results.

Theorem 8 Let H be a 2-connected claw-free graph of sufficiently large order n with δ(H) ≥
22. If dt(H) ≥ t(n−2.5)

7 with t ∈ {1, 2, . . . , 7}, then either H is traceable or cl(H) ∈ RF (n, 1).

Theorem 9 Let H be a 2-connected claw-free graph of sufficiently large order n with δ(H) ≥
22. If dt(H) ≥ t(n−2.5)

7 with t ∈ {1, 2, . . . , 7}, then either H is traceable or cl(H) = L(G),
where G is an essentially 2-edge-connected triangle-free graph that can be contracted to either
F1 or F2, in such a way that all vertices of degree two are nontrivial.

Theorem 10 Let H be a 2-connected claw-free graph of sufficiently large order n with δ(H) ≥
18. If σ6(H) ≥ n− 6, then either H is traceable or σ6(H) = n− 6 and cl(H) ∈ R1

F (n, 1).

We also obtained the following known result as a corollary.

Corollary 1 ([6]). Let H be a 2-connected claw-free graph of sufficiently large order n. If
δ(H) ≥ n−6

6 , then either H is traceable or δ(H) = n−6
6 and cl(H) ∈ R1

F (n, n−12
6).

The proofs of the above results all use the equivalences that are demonstrated in Theorems 1,
2 and 3. We aim to present sketches of some of these proofs in our talk. We will also discuss
examples to show the asymptotically sharpness of the bound n−2.5

7 in Theorems 8 and 9.
Our results also extend earlier results that are based on the notion of the generalized t-

degree, as introduced in [3] by Faudree et al. The generalized t-degree, δt(H), of a graph H
is defined as δt(H) = min{|∪t

i=1 NH(vi)| : {v1, v2, · · · , vt} is a t-subset in H}. Since obviously
σt(H) ≥ Ut(H) ≥ δt(H), the statements in Theorems 5, 8, 9 and 10 are also valid if we replace
dt(H) by δt(H).

References
[1] S. Brandt, O. Favaron, and Z. Ryjáček. Closure and stable hamiltonian properties in claw-

free graphs. J. Graph Theory, 34(1):30–41, 2000.

[2] Z.-H. Chen. Degree and neighborhood conditions for hamiltonicity of claw-free graphs. Dis-
crete Math., 340(12):3104–3115, 2017.

[3] R. Faudree, R. Gould, L. Lesniak, and T. Lindquester. Generalized degree conditions for
graphs with bounded independence number. J. Graph Theory, 19(2):397–409, 1995.

[4] D. Li, H. Lai, and M. Zhan. Eulerian subgraphs and Hamilton-connected line graphs.
Discrete Appl. Math., 145(3):422–428, 2005.

[5] Z. Ryjáček. On a closure concept in claw-free graphs. J. Combin. Theory Ser. B, 70(2):
217–224, 1997.

[6] T. Tian, L. Xiong, Z.-H. Chen, and S. Wang. Degree sums of adjacent vertices for trace-
ability of claw-free graphs. Submitted.

Star forest polytope on complete graphs

Lamia Aoudia1, Zohra Aoudia2, Viet Hung Nguyen3, Méziane Aider1

1 LaROMaD, Fac. Maths, USTHB, PB 32, 16111 Bab Ezzouar, Algeria
laoudia@usthb.dz ; m-aider@usthb.dz

2 LaMOS, University Abderrahmane Mira, Béjaia, Algeria
zo.aoudia@gmail.com

3 Sorbonne Universités, UPMC, Lip6, Paris, France
hung.nguyen@lip6.fr

Abstract

Given a complete graph, a star is a subgraph where one specific node is incident to
all the edges of the subgraph. A star forest is a subgraph in G where each connected
component is a star. The maximum weighted spanning star forest problem consists on
finding a star forest with maximum total weight on its edges. It can be formulated as
an integer linear program. We consider the convex hull of all its solutions, this defines
a polyhedron with integer extreme points. The aim of the present work is to provide a
description of this polyhedron by means of a system of linear inequalities.

Keywords : Support graph, star forest, valid inequalities.

1 Introduction
Let Kn = (Vn, En) be a complete graph on n nodes without loops and multiple edges, i.e.
every two different nodes Kn are linked by exactly one edge. A star in a G is a subgraph
S = (VS , ES) where there is one node which is either an isolated node or incident to every
edge in ES . This node is called the center of the star. A star forest is a spanning subgraph
F = (Vn, EF) where each component is a star. A maximum weighted spanning star forest
problem (for shortMWSFP) is the task to find, given a complete graph Kn with edge weights
ce ∈ R for e ∈ En, a spanning star forest F ∗ = (Vn, EF ∗) such that c(F ∗) =

∑
e∈EF

ce has
maximum value.
The spanning star forest problem is a combinatorial optimization version of the clustering
problem in data analysis with many interesting applications, among others, computational
biology, automobile industry (see for instance [2] and [1]). This problem is NP-hard [2]. In
order to solve an instance coming up from practical applications, Nguyen et al. proposed in [2]
a linear time algorithm when the graph is a tree, and a 1

2 -approximation algorithm in general
case.
In what follows, we use the standard graph theory terminology.
A graph is denoted by G = (V,E), where V is the node set and E the edge set of G. For the
propblem under consideration, loops and multiple edges are irrelevant, so we assume throughout
the paper, that all graphs considered are simple. If H = (W,F) and G = (V,E) are graphs
withW ⊆ V and F ⊆ E, then H is called a subgraph of G. We use the symbol Vn for the node
set and the symbol En for the edge set of Kn. For v ∈ V , G− v denotes the graph obtained
from G by removing the vertex v. For W ⊆ V , G[W] is the subgraph of G induced by W .
It will be convenient to use the following notation, where S, T, S1, . . . , Sk ⊆ V and F ⊆ E.
E(S) = {uv ∈ E|u, v ∈ S},
δ(S) = {uv ∈ E|u ∈ S, v /∈ S}
V (F) = {v ∈ V |v is the end node of some edge in F} .

168

A cycle C of length k is an edge set of the form {v1v2, v2v3, . . . , vk−1vk, v1vk}, where vi 6= vj

if i 6= j. For k ≥ 4, the set C̄ = {vivi+2|i = 1, . . . , k − 2} ∪ {v1vk−1, v2vk} is called the set of
2-chords of C. A triangle is a cycle of length 3. A graph G = (V,E) is bipartite if its node
set can be partitioned into two nonempty subsets V1, V2 such that all edges of G have one end
node in V1 and the other in V2. Every partition of V with this property is called a bipartition
of V . If G1 = (V1, E1) and G2 = (V2, E2) are two graphs then the graph (V1 ∪ V2, E1 ∪ E2) is
called the union of G1 and G2 and is denoted by G1 ∪G2. We assume that the union edges do
not produce multiple edges, so G1 ∪G2 is a simple graph.

2 The star forest polytope
To formulate the maximum weighted spanning star forest problem (MWSFP) in polyhedral
and linear programming terms, we consider the associated polyhedron.
Let REn denote the real vector space where every component xe of a vector x ∈ REn is indexed
by an edge e of the complete graph Kn = (Vn, En). To avoid triviality, we assume throughout
the paper that n ≥ 3. For every edge set F ⊆ En, that is a star forest, X F ∈ REn denotes the
incidence vector of F in Kn. The convex hull of the set of these vectors is denoted by Pn i.e.,

Pn = conv{X F ∈ REn |F is a star forest of Kn}

Since the vertices of Pn are in one to one correspondence with the star forests of Kn, it
follows immediately that the MWSFP can be formulated as the problem:

maximize cTx,

subject to x ∈ Pn.

This is a linear program in the sense that a linear objective function is to be minimized
over a polytope. To apply LP -techniques, this formulation is of no-use unless Pn can be
represented by a system of linear inequalities. Since the maximum weighted spanning star
forest problem(MWSFP) is NP-hard, it follows from general results of complexity theory
that this linear representation does not exist unless P = NP . Here, we determine a large class
of valid and facet defining inequalities for Pn.
Recall that an inequality aTx ≤ α is called valid for Pn if Pn ⊆ {x ∈ REn |aTx ≤ α}. A valid
inequality aTx ≤ α is said to define a facet of Pn if the face Fa = {aTx ≤ α} of Pn is a
facet, i.e., if Fa is a face of dimension one less than the dimension of Pn(the dimension of a set
S is the cardinality of the largest set of affinely independent points in S minus one). If S is
a subset of En then we use the symbol x(F) as a short hand notation for the sum

∑
e∈F x(e).

We have the following results :

Theorem 1 Pn is a monotone full dimensional polytope.

Theorem 2 The trivial inequalities

0 ≤ x(e) ≤ 1 for all e ∈ E

define facets of Pn.

A star forest is a subgraph with no cycle of length > 2 and no path of length > 2. Let Pk

(resp. Ck) The collection of all paths of length k − 1 (resp. of length k), then we have the
following proposition:

Proposition 1 The following inequalities

x(P) ≤ 2 for all P ∈ P4, (1)
x(C) ≤ 2 for all C ∈ C3, (2)

are valide for Pn.

Call inequality (1) 3-path-inequality and the inequality (2) a 3-cycle inequality. The following
proposition summarizes a few structural properties of facet defining inequalities of Pn:

Proposition 2 Let aTx ≤ α be a nontrivial facet-defining inequality for Pn and let Ea = {e ∈
En|ae 6= 0} the following holds.

(a) α ≥ 0,

(b) a has positive entries,

(c) The subgraph H = (Vn(Ea), Ea) of Kn is connected.

Notice that the subgraph H = (Vn(Ea), Ea) is called the support graph of the inequality
aTx ≤ α.

Theorem 3 • Every 3-cycle inequality defines a facet of Pn and,

• No 3-path inequality define a facet of Pn.

Theorem 4 Every 4-cycle inequality defines a facet of Pn.

Let H = (VH , EH) be a graph defined as 3-cycle plus one pendent edge. We call H a paw.
Let us write EH = CH ∪ {eH} and let MH be a perfect matching on H. We define the paw
inequality as follows:

x(CH) + x(MH) ≤ 3. (3)

Theorem 5 The paw inequality (3) is valid and define a facet of Pn.

Now we would like to prove useful lifting theorem that shows that every inequality defining a
facet Pk (and satisfies a condition) defines a facet of Pn, n > k.

Theorem 6 (Lifting theorem). Suppose ∑
e∈Ek

aex(e) ≤ α define a non trivial facet of Pk,
then this inequality also defines a facet of Pn for all n > k provided the following condition is
satisfied:

(L) There exists a star forest F of Kk with a star centered at v such that∑
e∈Ek

aex
F (e) = α. for all v ∈ V (Kk).

Condition (L) in theorem 6 always holds. Theorem 6 which is a trivial lifting, allows to
propagate the facet defining inequality on Pn to Pn′ for all n′ ≥ n

2.1 Hp inequalities
Let Hp be the graph obtained from a cycle C4 by replacing a given vertex v by a clique Kp

and creating an edge between every vertex of Kp with the neighbors of v.

FIG. 1: Construction of Hp from C4, (p = 4).

We have the following inequality :
x(Hp) ≤ p+ 1. (4)

We call it the Hp inequality. Then we have the result stated below:

Theorem 7 The Hp inequality defines a facet for Pn with n ≥ p+ 3.

2.2 H ′p-inequalities
Let H ′p be the graph obtained from a paw graph by applying the following operation: From a
graph with the structure of a paw. Choose a vertex with a maximum degree v′ and clone i.e.,

• Create a vertex that is clone (identical) of v′, and another clone for the pendent vertex
adjacent to v′.

• Create an edge between the clone of v′ and the vertex v′.

• Create an edge between the clone of v′ and the non-pendent vertices neighbors of v′.

FIG. 2: Construction of H ′
p from a paw, (p = 3)

This leads to the graph H ′1. We apply the same operation iteratively on H ′i. H ′p is obtained at
the end of the pth iteration.

Remark 1 • The graph H ′p contains one p+ 3-clique and p+ 1 pendent edges.

• H ′p has a perfect matching consisting on the p + 1 pendent edges and one edge from the
p+ 3-clique.

We define perfect a matching M ′ on H ′ and S′ be the set of all non pendent vertices. We
define the H ′-inequality as follows:

x(E(S′)) + x(M ′p) ≤ |M ′p|+ 1. (5)

Theorem 8 The H ′p-inequalities are valid and define facets for Pn when n ≥ 2p+ 3.

As a conclusion we have the following result:

Theorem 9 P4 is completely characterized by the following inequalities :

x(C) ≤ 2 for all C ∈ C3 ∪ C4 in K4,

x(CH) + x(MH) ≤ 3 for all paw H in K4,

0 ≤ x(e) ≤ 1 for all e ∈ E4.

References
[1] A. Agra, D. Cardoso, O. Cerdeira, E. Rocha, A spanning star forest model for the diversity

problem in automobile industry, 2005.

[2] C.T. Nguyen, J. Shen, M. Hou, L. Sheng, W. Miller, L.Zhang: Approximating the spanning
star forest problem and its applications to genomic sequence alignment. SIAM Journal of
Computing. 38(3), pages 946-962 , 2007.

[3] V. H. Nguyen. The maximum weight spanning star forest problem on cactus graphs. Dis-
crete Mathematics, Algorithms and Applications, Vol.07, No.02, 2015.

Decomposition Methods for Quadratic Programming

Enrico Bettiol1, Alberto Ceselli2, Lucas Létocart1, Francesco Rinaldi3, Emiliano Traversi1
1 University of Paris 13

99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France
{enrico.bettiol,lucas.letocart,emiliano.traversi}@lipn.univ-paris13.fr

2 University of Milan
Via Bramante, 65 26013 Crema, Italy

alberto.ceselli@unimi.it
3 University of Padova

Via Trieste, 63 35121 Padova - Italy
rinaldi@math.unipd.it

Abstract

In this work we present two decomposition methods for quadratic problems.
First, we propose a methodological analysis on a family of reformulations combining
Dantzig-Wolfe decomposition and Quadratic Convex Reformulation principles for binary
quadratic problems. As a representative case study, we apply them to a cardinality
constrained quadratic knapsack problem.
Secondly, we analyze a simplicial decomposition like algorithmic framework that handles
convex quadratic programs in an effective way. In particular, we propose two tailored
strategies for solving the master problem and we describe a few techniques for speeding
up the solution of the pricing problem. We report extensive numerical experiments on
both real-world and generic quadratic programs.

Keywords : Mathematical Programming, Decomposition Methods, Quadratic Optimization.

172

Column Generation for the Energy-Efficient in Multi-Hop
Wireless Networks Problem

Sonia Vanier
SAMM, Université Paris1 Panthéon-Sorbonne

Sonia.Vanier@univ-paris1.fr

Abstract

Energy-efficient designs are one of the most outstanding challenges in wireless com-
munication networks. Saving energy in multi-hop wireless networks usually consists in
maximizing the lifetime of the network. This can be done by using the minimum number
of nodes to route the traffic and turning of the maximum number of nodes. This problem
was studied in [1] using integer programming and simulation methods.
We present a new model based on the arc-path formulation of the unsplittable multicom-
modity flow problems. We propose a column generation approach to solve the problem.
Then we introduce new classes of valid inequalities, and give separation algorithms for a
branch-and-cut-and-price framework.

Keywords : Mixed Integer Linear Programming, Network Optimization, Column Generation,
Graph theory, Valid Inequalities.

1 Problem Formulation
Given a network G = (V, E) defined by a set of nodes V and a set of arcs E, each arc has
a capacity yij . Let D denote the set of commodities. Each commodity has an origin s, a
destination t and a flow value to route M st. We would like to concurrently route every demand
on a single path from s to t without violating the capacities and interference constraints.
Interferences can be avoided if we can prohibit interfering nodes to transmit at the same time
[3][4]. More precisely, we can consider a transmission from node i to node j as succeeded if
the distance between those nodes is lower then the distance between j and any other node
transmitting at the same time than i. For the interferences we use the model based on conflict
graph G′ proposed in [1] [2].

Let ℘st be the set of all possible simple paths for commodity st in the graph G and C the
set of all cliques of the conflict graph G′.

Our problem can be described using a binary flow variable xst
p for each commodity st and

each path p ∈ ℘st that takes value of 1 if the commodity uses the path p, 0 otherwise.
We introduce also the binary variable xi for each node i of the network that takes value of 1
if the node i is used and 0 otherwise.

To respect the clique’s utilization rate, we have the following residual capacity constraint for
each clique c of G′:

∑

st∈D

∑

p∈℘st

∑

(i,j)∈p∩c

M st

yij
xst

p ≤ 1 ∀c ∈ C

173

The goal is to minimize the number of used nodes min
∑
i∈V

xi.

The node i is used if ∃p ∈ ℘st such that i ∈ p and xst
p > 0.

Using this notations the Energy-Efficient in Multi-Hop Wireless Networks problem can be
formulated as the following integer linear program:

z = min
∑
i∈V

xi

∑
st∈D

∑
p∈℘st

∑
(i,j)∈p∩c

M st

yij
xst

p ≤ 1 ∀c ∈ C (1.1)
∑

p∈℘st

xst
p = 1 ∀st ∈ D (1.2)

− ∑
st∈D

∑
p∈℘st,i∈p

M stxst
p + (max

j
yij + max

j
yji) xi ≥ 0 ∀i ∈ V (1.3)

∑
st∈D

∑
p∈℘st,i∈p

M stxst
p − (min

st∈D
M st) xi ≥ 0 ∀i ∈ V (1.4)

xi ∈ {0, 1}∀i ∈ V, xst
p ∈ {0, 1} ∀st ∈ D, ∀p ∈ ℘st

Constraints (1.1) are capacity constraints for each clique c ∈ C of the conflict graph. Con-
straints (1.2) are unsplittable demand contraints, while contraints (1.3) and (1.4) ensure that
a node i is used if it receives or sends traffic.

We have developed a column génération approach to solve the problem, introduced new
classes of valid inequalities, and gived separation algorithms for a branch-and-cut-and-price
framework.

References
[1] Alexandre Laubé, Phd Thesis, Agrégation de trafic pour réduire la consommation énergé-

tique globale dans les réseaux sans fil multi-sauts, 2017.

[2] Alexandre Laubé, Steven Martin, Dominique Quadri, Khaldoun Al Agha, Guy Pujolle.
A Flow Aggregation Metric for Shortest Path Routing Algorithms in Multi-hop Wireless
Netwoks. WCNC, San Francisco, 1-6, 2017.

[3] V. Padmanabhan K.Jain, J.Padhye and L.Qiu. Impact of interference in Multi-hop Wireless
Netwok performance. MobiCom ACM, 2003.

[4] J. Musacchio, R. Gupta and J. Walrand Sufficient rate constraint for QoS flows in ad-hoc
netwoks. Ad hoc Networks, ACM, vol. 5, 429-443, 2006.

A Multiplicative Weights Update Algorithm for a Class of
Pooling Problems

Luca Mencarelli1

CNRS, UMR 7161, LIX, École Polytechnique
Palaiseau, France

mencarelli@lix.polytechnique.fr

Abstract

In this short paper, we give several intuitions about the application of the Multiplica-
tive Weights Update Algorithm to a broad class of Pooling Problem without inter-layers
flows. First, we describe two different pointwise reformulations for the Pooling Problem.
Secondly, we employ the Multiplicative Weights Update Algorithm in order to determine
a solution whose grade of infeasibility is relatively small. We compare the performances of
the Multiplicative Weights Update Algorithm against the standard MultiStart Algorithm.

Keywords : Pooling Problem, Multiplicative Weights Update Algorithm, Heuristic Algorithms.

1 The Pooling Problem
The Pooling Problem (PP) identifies a well-known class of non-convex non-concave optimization
problem arising in blending industries where the set of final products is the result of the
mixture of several input raw materials. Given is a network topology consisting in a graph
whose nodes are partitioned into three sets: the set [I] := {1, . . . , I} of the input nodes, the
set [L] := {1, . . . , L} of the pools, and the set [J] := {1, . . . , J} of the output nodes. The
topology of the network is also described by the set TX of arcs (i, `) connecting input i and
pool ` and the set TY of arcs (`, j) connecting pool ` and output j. A fraction of each input
flows through the pool where it is blended with the other raw materials, and, finally, composes
the final output, whose quality attributes k ∈ {1, . . . , K} =: [K] are monitored. For a survey
about the PP we refer the interested reader to the excellent paper by Misener and Floudas [7],
from which we borrow the mathematical notation.

In this extended abstract we consider the following (restrictive) assumptions:

(i) the pools define a single layer in the network topology,

(ii) there is no inter-layers flow, i.e., all flows are intra-layers, and

(iii) there is no flow bypassing the pools.

Let xi` and y`j be the decision variables representing the flow from input i to pool ` and the
flow from pool ` to output j, respectively. Moreover, let p`k be the decision variables indicating
the quality level of the attribute k in the pool `. The following mathematical formulation

min
∑

(i,`)∈TX

ci xi` −
∑

(`,j)∈TY

dj y`j (1)

s.t.
∑

i:(i,`)∈TX

xi` ≤ S` ∀` ∈ [L] (2)

175

∑

`:(`,j)∈TY

y`j = Dj ∀j ∈ [J] (3)

∑

i:(i,`)∈TX

xi` −
∑

`:(`,j)∈TY

y`j = 0 ∀` ∈ [L] (4)

∑

i:(i,`)∈TX

Cik xi` = p`k

∑

j:(`,j)∈TY

y`j ∀` ∈ [L], ∀k ∈ [K] (5)

∑

`:(`,j)∈TY

p`k y`j ≥ PL
jk

∑

`:(`,j)∈TY

y`j ∀j ∈ [J], ∀k ∈ [K] (6)

∑

`:(`,j)∈TY

p`k y`j ≤ PU
jk

∑

`:(`,j)∈TY

y`j ∀j ∈ [J], ∀k ∈ [K] (7)

is generally referred to as the P -formulation for the PP. The objective (1) aims at minimiz-
ing the overall net cost, while the constraints represent the topological characteristics of the
network and the technological limitations. Equations (2) and (3) represent the pool capacity
and the product demand constraints, respectively. Constraints (4) impose the flow conserva-
tion for each pool, while Equations (5) force the quality balance for each attribute in each
pool, and finally Equations (6)-(7) take into account the level quality of each attribute in the
composition of the final product.

Ben-Tal et al. [2] introduce a new decision variable qi` representing the flow rate from input
i to pool `, and defined as followed,

xi` = qi`

∑

j:(`,j)∈TY

y`j ∀(i, `) ∈ TX , (8)

giving rise to the so-called Q-formulation for the PP:

min
∑

(i,`)∈TX

(`,j)∈TY

ci qi` y`j −
∑

(`,j)∈TY

dj y`j (9)

s.t.
∑

i:(i,`)∈TX

xi` ≤ S` ∀` ∈ [L] (10)

∑

`:(`,j)∈TY

y`j = Dj ∀j ∈ [J] (11)

∑

`:(`,j)∈TY

i:(i,`)∈TX

Cik qi` y`j ≥ PL
jk

∑

`:(`,j)∈TY

y`j ∀j ∈ [J], ∀k ∈ [K] (12)

∑

`:(`,j)∈TY

i:(i,`)∈TX

Cik qi` y`j ≤ PU
jk

∑

`:(`,j)∈TY

y`j ∀j ∈ [J], ∀k ∈ [K] (13)

∑

i:(i,`)∈TX

qi` = 1 ∀` ∈ [L] (14)

0 ≤ qi` ≤ 1 ∀i ∈ [I], ∀` ∈ [L] (15)

Finally, Quesada and Grossmann [8] and Tawarmalani and Sahinidis [9] add the following
RLT-based contraint to the Q-formulation, obtaining the PQ-formulation:

∑

i:(i,`)∈TX

qi` y`j = y`j ∀` ∈ [L], ∀j ∈ [J]. (16)

2 The Multiplicative Weights Update Algorithm
The Multiplicative Weights Update (MWU) Algorithm is a stochastic procedure where a deci-
sion maker has to choose between a set of decisions each of them characterized by an unknown

payoff. The goal of the decision maker consists in limiting the resulting losses up to the overall
payoff obtained by repeatedly taking the best decision. The MWU Algorithm has a very broad
range of application from Machine Learning to Game Theory. We refer the interested reader
to the survey [1]. In [6] the MWU Algorithm was extended to the Mixed Integer Nonlinear
Programming (MINLP). The authors proposed a two-phase algorithm: in the first phase a
solution point is generated by solving the so-called pointwise reformulation, a reformulation
of the original problem where several terms are substituted by a fixed parameter θ; while, in
the second (optional) phase, the refinement, the original problem was solved starting from the
solution obtained in the previous step.

3 Pointwise Reformulations
In the formulation (9)-(13), the decision variables are clearly partitioned into two sets: the qi`

variables and the y`j variables, indicating the flow ratio from the input i to pool ` and the
absolute flow from pool ` to output j, respectively. Therefore, we explore two possible pointwise
reformulations involving the terms where the variables occour nonlinearly, i.e., the bilinear
terms in the objective function (9), and the constraints (12)-(13). In the first reformulation we
replace the first class of decision variables by parameters θ, while in the other one we operate
the same substitution for the second class of variables.

In the pointwise reformulation we should add slack variables to each constraint, since we are
fixing several variables to a given numerical value: this operation might generate infeasibilities.
We could also consider slack variables in the original problem: this choice allows us to deal
with cases in which the original PP instance is infeasible. The pointwise reformulation is
characterized by two conflicting targets: optimality and feasibility. Hence, we apply standard
scalarization approach, such as, e.g., Weighted Sum technique [4], setting, as objective function,
the convex combination between the original objective function and the maximum slack. Let
δ ∈ [0, 1] be a given penalty parameter. For instance, the first pointwise reformulation can be
written as follows:

min (1− δ)

∑

(i,`)∈TX

(`,j)∈TY

ci θi` y`j −
∑

(`,j)∈TY

dj y`j

 + δ s (17)

s.t.
∑

i:(i,`)∈TX

xi` ≤ S` + s1,` ∀` ∈ [L] (18)

∑

`:(`,j)∈TY

y`j = Dj + s2,j ∀j ∈ [J] (19)

∑

`:(`,j)∈TY

i:(i,`)∈TX

Cik θi` y`j ≥ PL
jk

∑

`:(`,j)∈TY

y`j − s3,jk ∀j ∈ [J], ∀k ∈ [K] (20)

∑

`:(`,j)∈TY

i:(i,`)∈TX

Cik θi` y`j ≤ PU
jk

∑

`:(`,j)∈TY

y`j + s4,jk ∀j ∈ [J], ∀k ∈ [K] (21)

∑

i:(i,`)∈TX

qi` = 1 + s5,` ∀` ∈ [L] (22)

∑

i:(i,`)∈TX

θi` y`j = y`j + s6,`j ∀` ∈ [L], ∀j ∈ [J] (23)

0 ≤ qi` ≤ 1 ∀i ∈ [I], ∀` ∈ [L] (24)
s1,` ≥ 0 ∀` ∈ [L] (25)
s3,jk ≥ 0 ∀j ∈ [J], ∀k ∈ [K] (26)
s4,jk ≥ 0 ∀j ∈ [J], ∀k ∈ [K] (27)

s ≥ s1,` ∀` ∈ [L] (28)
s ≥ s2,j ∀j ∈ [J] (29)
s ≥ −s2,j ∀j ∈ [J] (30)
s ≥ s3,jk ∀j ∈ [J], ∀k ∈ [K] (31)
s ≥ s4,jk ∀j ∈ [J], ∀k ∈ [K] (32)
s ≥ s5,` ∀` ∈ [L] (33)
s ≥ −s5,` ∀` ∈ [L] (34)
s ≥ s6,`j ∀` ∈ [L], ∀j ∈ [J] (35)
s ≥ −s6,`j ∀` ∈ [L], ∀j ∈ [J] (36)

4 Computational Experiments
We compare the two possible pointwise reformulations, considering for each of them several
approaches to compute the costs/gains for the MWU Algorithm. Furthermore, we add slack
variables to the original problem in the refinement phase since we would like to handle pos-
sibly infeasibilities in the PP instances. The benchmark we consider consists in the standard
MultiStart (MS) Algorithm, in which a starting point is randomly generated and a local algo-
rithm, i.e., a procedure producing solutions with local optimal certificate, is applied from the
starting point. We use Ipopt [5] as local solver for both MWU and MS and Couenne [3] as
global solver. For both the local solver and the global one we maintain the default settings.
Preliminary computational experiments show that the MWU Algorithm is able to recover a
solution to which a lower value of the slack variable is associated; on the contrary the MS
produces a worse solution in terms of feasibility and optimality.

References
[1] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: A meta-

algorithm and applications. Theory of Computing, 8:121–164, 2012.

[2] A. Ben-Tal, G. Eiger, and V. Gershovitz. Global minimization by reducing the duality gap.
Mathematical Programming, 63(1–3):193–212, 1994.

[3] Couenne. URL https://projects.coin-or.org/Couenne.

[4] M. Ehrgott. Multicriteria Optimization. Springer-Verlag, Berlin, 2005.

[5] Ipopt. URL https://projects.coin-or.org/Ipopt.

[6] L. Mencarelli, Y. Sahraoui, and L. Liberti. A multiplicative weights update algorithm for
MINLP. EURO Journal on Computational Optimization, 5(1–2):31–86, 2017.

[7] R. Misener and C.A. Floudas. Advances for the pooling problems: Modeling, global opti-
mization, and computational studies. Applied Mathematics and Computation, 8(1):2–22,
2009.

[8] I. Quesada and I.E. Grossman. Global optimization of bilinear process networks with mul-
ticomponent flows. Computers & Chemical Engineering, 19(12):1219–1242, 1995.

[9] M. Tawarmalani and N.V. Sahinidis. Convexification and global optimization in continuous
and mixed-integer nonlinear programming: Theory, applications, software, and applications.
Nonconvex Optimization and Its Applications. Kluwer Academic Publishers, Norwell, MA,
USA, 2002.

Implicit heavy subgraph conditions for hamiltonicity
of almost distance-hereditary graphs

Wei Zheng1,2, Hajo Broersma1, Ligong Wang2

1 Faculty of EEMCS, University of Twente, Enschede, The Netherlands
zhengweimath@163.com,h.j.broersma@utwente.nl

2 Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, China
lgwangmath@163.com

Abstract

We recently proved two new results on the hamiltonicity of almost distance-hereditary
graphs, involving implicit degree conditions on claws, i.e., induced subgraphs isomorphic
to K1,3. A graph G of order n is called implicit 1-heavy if at least one of the end vertices
of each induced claw of G has implicit degree at least n/2, and G is called implicit
claw-heavy if each induced claw of G has a pair of end vertices with implicit degree
sum at least n. A graph G is said to be almost distance-hereditary if each connected
induced subgraph H of G has the property dH(x, y) ≤ dG(x, y) + 1 for any pair of
vertices x, y ∈ V (H). We recently proved that every 2-connected implicit claw-heavy
almost distance-hereditary graph is hamiltonian, and that every 3-connected implicit 1-
heavy almost distance-hereditary graph is hamiltonian. These results improve two recent
results due to Chen and Ning.

Keywords : Implicit degree, (almost) distance-hereditary graph, Hamilton cycle, induced claw,
claw-heavy.

1 Introduction
The general motivation for our research is to obtain new results in hamiltonian graph theory
that improve or extend earlier results. Hamiltonicity has been one of the central and well-
studied concepts in graph theory since the early results involving sufficient degree conditions
due to Dirac and Ore, that date back to the 1950s and 1960s. These results have been gen-
eralized and extended in many different ways, and the subject still attracts a lot of attention.
From our perspective of studying hamiltonicity, claw-free graphs or conditions on claws are
particularly interesting. One of the reasons is that during the last decades many results have
demonstrated that sufficient degree conditions for guaranteeing hamiltonicity of general graphs
can be substantially relaxed if one restricts oneself to claw-free graphs or puts conditions on
claws. We refer the interested reader to the surveys [2, 4, 8] for more background and details
about claw-free graphs and line graphs.

A natural way of extending known results on claw-free graphs is to put restrictions on claws
instead of forbidding them as induced subgraphs. The most popular way of relaxing the claw-
freeness, has been to impose restrictions on the degrees of the end vertices of induced claws.
We refer the interested reader to the papers [3, 5, 11] as examples in which this approach
was explored successfully by imposing Dirac-type and Ore-type degree conditions on the end
vertices of induced claws. We have established more recent examples of this approach, in which
the degree conditions were further relaxed by replacing them by implicit degree conditions. Our
new results are based on the concept of implicit degree that was introduced by Zhu, Li, and
Deng [15].

179

To put our new results in the right perspective, we will first focus on some earlier results
in which the class of claw-free graphs is narrowed down by adding other structural conditions,
in particular the condition that the graphs are almost distance-hereditary. We first introduce
some of the essential terminology and notation.

2 Preliminaries

We use the textbook of Bondy and Murty [1] for any terminology and notation not defined
here. Let G be a connected graph. Then, for any two vertices u, v ∈ V (G), the distance
between u and v in G, denoted by dG(u, v), is the length of a shortest (u, v)-path in G. The
graph G is called almost distance-hereditary if each connected induced subgraph H of G has
the property dH(x, y) ≤ dG(x, y) + 1 for any pair of vertices x, y ∈ V (H). Considering the
intersection of the classes of almost distance-hereditary graphs and claw-free graphs, about ten
years ago Feng and Guo [9] proved the following result.

Theorem 1 Every 2-connected almost distance-hereditary claw-free graph is hamiltonian.

By relaxing the condition of being claw-free by putting different degree conditions on the end
vertices of every induced claw, several results on hamiltonicity of almost distance-hereditary
graphs were obtained. A vertex v of a graph G on n vertices is called heavy if the degree
d(v) ≥ n/2. The graph G is called 1-heavy (respectively 2-heavy) if at least one (respectively
two) of the end vertices of each induced claw of G are heavy. By using this concept of a 2-heavy
graph, Feng and Guo [10] extended Theorem 1 in the following way.

Theorem 2 Every 2-connected almost distance-hereditary 2-heavy graph is hamiltonian.

Replacing the Dirac-type degree condition by an Ore-type degree condition, Fujisawa and
Yamashita [11] introduced the notion of a claw-heavy graph. A graph G on n vertices is called
claw-heavy if each claw of G has a pair of end vertices with degree sum at least n. Chen and
Ning [7] recently used the above notions to obtain the following two results related to Theorems
1 and 2.

Theorem 3 Every 2-connected almost distance-hereditary claw-heavy graph is hamiltonian.

Theorem 4 Every 3-connected almost distance-hereditary 1-heavy graph is hamiltonian.

Our aim was to improve the above two results by further relaxing the degree conditions to
implicit degree conditions. We first recall the definition of the concept of implicit degree due
to Zhu et al. [15]

For a vertex v ∈ V (G), let N(v) = {u ∈ V (G) | uv ∈ E(G)}, let N2(v) = {u ∈ V (G) |
d(u, v) = 2}, and let M2(v) = max{d(u) | u ∈ N2(v)}. Suppose that d(v) = ℓ + 1 for some
integer ℓ ≥ 0. If N2(v) ̸= ∅ and d(v) ≥ 2, then let d1 ≤ d2 ≤ d3 ≤ . . . ≤ dℓ ≤ dℓ+1 ≤ . . . denote
the degree sequence of the vertices of N(v) ∪ N2(v). Define d∗(v) = dℓ+1 if dℓ+1 > M2(v),
and d∗(v) = dℓ otherwise. Then the implicit degree of v, denoted by id(v), is defined as
id(v) = max{d(v), d∗(v)}. If N2(v) = ∅ or d(v) ≤ 1, then we define id(v) = d(v).

Clearly, by the definition id(v) ≥ d(v) for every vertex v. Replacing the degree conditions
in the above definitions by implicit degree conditions, we say that a graph G on n vertices is
implicit 1-heavy if at least one end vertex of each claw of G is implicit heavy, i.e., has implicit
degree at least n/2. We call G implicit claw-heavy if each claw of G has a pair of end vertices
with implicit degree sum at least n.

3 Our results
We have recently proved the following two improvements of Theorems 3 and 4.

Theorem 5 Every 2-connected almost distance-hereditary implicit claw-heavy graph is hamil-
tonian.

Theorem 6 Every 3-connected almost distance-hereditary implicit 1-heavy graph is hamilto-
nian.

In the presentation, we will sketch the key ingredients of the proofs of these two new results.
It is obvious that the implicit degree conditions in the statements of Theorems 5 and 6 cannot

be omitted. The complete bipartite graphs Km,m+1 show that a large connectivity together
with the condition of almost distance-hereditary cannot guarantee a graph to be hamiltonian.

By the following examples, we present an infinite class of graphs that do not satisfy the
conditions of Theorems 3 and 4, but that can be easily verified to be hamiltonian using Theorem
5 or 6.

Let k be a nonnegative integer. For any m ≥ k + 1, let Gm denote the join of a complete
graph K2m and a graph H, where H is the disjoint union of a K4 and m copies of a K2. Then
Gm is a 2m-connected graph of order n = 4m + 4, and it is easy to check that Gm is almost
distance-hereditary and hamiltonian. The degrees and implicit degrees of the vertices of Gm

can also be determined in a straightforward way. For any vertex u belonging to the m copies
of a K2 of H, we obtain that d(u) = 2m + 1 < n

2 and id(u) = 2m + 3 > n
2 ; for any vertex v

belonging to the K2m, we obtain that id(v) ≥ d(v) = 4m+ 3 > n
2 ; for any vertex w belonging

to the K4 of H, we obtain that id(w) ≥ d(w) = 2m+3 > n
2 . Using this, it is easy to check that

Gm is implicit claw-heavy (and so implicit 1-heavy) but not 1-heavy (and so not claw-heavy)
for all m ≥ 3.

References
[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Macmillan London and

Elsevier, New York, 1976.

[2] H.J. Broersma, On some intriguing problems in hamiltonian graph theory – a survey.
Discrete Math., 251:47–69, 2002.

[3] H.J. Broersma, Z. Ryjáček, and I. Schiermeyer, Dirac’s minimum degree condition restricted
to claws. Discrete Math., 167/168:155–166, 1997.

[4] H.J. Broersma, Z. Ryjáček, and P. Vrána, How many conjectures can you stand – a survey.
Graphs Combin., 28(1):57–75, 2012.

[5] R. Čada, Degree conditions on induced claws. Discrete Math., 308(23):5622–5631, 2008.

[6] J. Cai and Y. Zhang, Fan-type implicit-heavy subgraphs for hamiltonicity of implicit claw-
heavy graphs. Inform. Process. Lett., 116:668–673, 2016.

[7] B. Chen and B. Ning, Hamilton cycles in almost distance-hereditary graphs. Open Math.,
14:19–28, 2016.

[8] R.J. Faudree, E. Flandrin, and Z. Ryjáček, Claw-free graphs – a survey. Discrete Math.,
164:87–147, 1997.

[9] J. Feng and Y. Guo, Hamiltonian problem on claw-free and almost distance-hereditary
graphs. Discrete Math., 308(24):6558–6563, 2008.

[10] J. Feng and Y. Guo, Hamiltonian cycle in almost distance-hereditary graphs with degree
condition restricted to claws. Optimization, 57(1):135–141, 2008.

[11] J. Fujisawa and T. Yamashita, Degree conditions in induced subgraphs for hamiltonicity.
Discrete Math., Preprint.

[12] X. Huang, Hamilton cycles in implicit claw-heavy graphs. Inform. Process. Lett., 114:676–
679, 2014.

[13] H. Li, W. Ning, and J. Cai, An implicit degree condition for cyclability in graphs. FAW-
AAIM 2011, LNCS 6681:82–89, 2011.

[14] M. Matthews and D. Sumner, Hamiltonian results in K1,3-free graphs. J. Graph Theory,
8:139–146, 1984.

[15] Y. Zhu, H. Li, and X. Deng, Implicit-degrees and circumferences. Graphs Combin., 5:283–
290, 1989.

On matching and distance property of m-barrele Fullerene

Afshin Behmaram1, Cédric Boutillier2

1 Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
behmaram@tabrizu.ac.ir

2 Laboratoire de Probabilités et Modèles Aléatoires, UPMC Univ. Paris 06, 4 place Jussieu,
F-75005 Paris, France

cedric.boutillier@upmc.fr

Abstract

A connected planar cubic graph is called m-barrel fullerene and denoted by F (m, k),
if have the following structure: The first circle is an m-gon. Then m-gon is bounded by
m pentagons. After that we have additional k layers of hexagon. At the last circle m-
pentagons connected to the second m-gon.In this paper we enumerate asymptotic perfect
matching number in m-barrel fullerene graphs by two different methods and show that
the results are equal.then we show some distance property of m-barrel fullerene.

Keywords : Perfect matching, distance, fullerene graph, m-barrel fullerne.

1 Introduction

The m-barrel fullerene with k layers of hexagons, denoted by F (m, k), can be defined as a
sequence of concentric layers as follows: the first circle is an m-gon. This m-gon is bounded by
m pentagons. After that we have additional k layers of m of hexagon. Then one again has a
circular layer with m-pentagons connected to the second m-gon, represented by the outer face.
m-barrell fullerenes can be neatly represented graphically using a sequence of k+ 3 concentric
circles with monotonically increasing radii such that the innermost and the outermost circle
each have m vertices (representing, hence, two m-gons), while all other circles have 2m vertices
each, connecting alternatively to vertices of the larger or smaller circle to create hexagonal an
pentagonal faces. An example is shown in Figure 1.

The m-barrel fullerenes are the main subjects of the present paper, since their highly sym-
metric structure allows for obtaining good bounds and even exact results on their quantitative
graph properties. For example Kutnar and Marušič in [2] studied Hamiltonicity and cyclic
edge-conectivity of F (5, k). See also [1] for some structural results about m-barrel fullerene
graphs, such as the diameter, Hamiltonicity and the leapfrog transformation. A matching M
in a graph G is a collection of edges of G such that no two edges of M share a vertex. If
every vertex of G is incident to an edge of M , the matching M is said to be perfect. A perfect
matching is also often called a dimer configuration in mathematical physics and chemestry.
Perfect matchings have played an important role in the chemical graph theory.

The goal of this paper is to compute the growth constant ρ(m) for the number of perfect
matchings for the family of graphs F (m, k) for a fixed m, as k goes to infinity:

ρ(m) = lim
k→∞

Φ(F (m, k))1/k. (1)

then we proved some distance property of m-barrel Fullerene.

183

FIG. 1: The m-barrel fullerene F (8, 2).

1.1 Figures, equations and theorems
Theorem 1 Let m ≥ 3. The growth constant for the family of m-barrel fullerenes is equal to

ρ(m) =
⌊m+1

3 ⌋∏

j=1

(
2 cos π(2j − 1)

m

)2
. (2)

References
[1] Afshin Behmaram , Tomislav Doslic, Shmuel Friedlsnd. Matchings in generalized Fullerene.

Ars Mathematica contemporanea ,Vo11, No2 (2016), pp 301-311.

[2] K. Kutnar, D. Marušič, On cyclic edge-connectivity of fullerenes. Discrete Appl. Math,
156 (2008) 1661–1669.

Solving the Green Vehicle Routing Problem with Capacitated
Alternative Fuel Stations

Maurizio Bruglieri1, Simona Mancini2, Ornella Pisacane3

1 Dipartimento di Design, Politecnico di Milano, Milano, Italy
maurizio.bruglieri@polimi.it

2 Diparimento di Matematica e Informatica, Universitá degli Studi di Cagliari, Cagliari, Italy
simona.mancini@unica.it

3 Dipartimento di Ingegneria dell’Informazione, Universitá Politecnica delle Marche, Ancona,
Italy

pisacane@dii.univpm.it

Abstract

The Green Vehicle Routing Problem (GVRP) aims to efficiently route a fleet of
Alternative Fuel Vehicles (AFVs), in order to serve a set of customers, minimizing
the total travel distance. Each AFV leaves from a common depot, serves a subset of
customers and returns to the depot, without exceeding a maximum duration. Due
to their limited driving range, the AFVs may need to refuel one or more times at
the Alternative Fuel Stations (AFSs), along their route. In this work, we introduce
the GVRP with Capacitated AFSs (GVRP-CAFS) in which only a limited number of
AFVs can refuel at the same time at each AFS to account for their limited capacity.
In order to solve the GVRP-CAFS, we propose an exact approach in which a route is
the composition of paths, each handling a subset of customers without intermediate
stops at AFSs. Firstly, all feasible non-dominated paths are generated. Secondly, via
a path-based Mixed Integer Programming model, the paths are selected and properly
combined each other to generate the routes of the optimal GVRP-CAFS solution. To
reduce the computational times, a relaxed version of the path-based model is solved
and then, the violated constraints are iteratively added. Some preliminary results are
also discussed.

Keywords : Vehicle Routing Problem, Alternative Fuel Vehicles, Mixed Integer Program-
ming

1 Introduction and statement of the problem

Nowadays, the transportation companies are requested to provide more competitive services
in a more sustainable way, through efficient trip planning, smart distribution systems and
the use of new technologies. Among the latter, the Alternative Fuel Vehicles (AFVs), i.e.,
vehicles that use alternative fuel (e.g., methanol and electricity), play a key role, contributing

185

to reduce both the CO2 emissions and the noise pollution. However, purchasing an AFV
still remains very expensive. Moreover, the AFV driving range is still limited and, in fact, it
may require several stops at the Alternative Fuel Stations (AFSs) in a trip. In addition, the
AFSs are currently not widespread on the territory. Therefore, it becomes very significant
to properly plan the AFV trips in order to prevent drivers remaining without enough fuel
to either reach the closest AFS or return to the depot.

A relatively new operational research area is focused on the Green Vehicle Routing Prob-
lem -GVRP ([1]), introduced in [2]. It aims to route a fleet of m AFVs, based on a common
depot (denoted by 0), minimizing the total travel distance. Each route starts/ends from/to
0, handling a subset of customers within the time limit Tmax and refueling (even more
than once) at AFSs. The GVRP is formally represented on a complete directed graph
G = (N,A), where the set of the nodes N = I

⋃
F

⋃{0} contains the set I of customers and
the set F of AFSs while A indicates the arc set. For each (i, j) ∈ A, both the travel time and
distance, tij and dij , are known. Moreover, for each s ∈ F and for each i ∈ I, the refueling
time ps and the service time pi are given. For each AFV, both the maximum fuel capacity
Q and the average speed v are known. The fuel consumption is linearly proportional to
the travel distance through the fuel consumption rate r. Due to the limited fuel capacity,
the maximum distance Dmax an AFV can travel without stopping at any AFS is given by
Q/r. Each AFV is supposed to leave the depot fully refueled and to be fully refueled when
it stops at an AFS. Finally, each AFS s is assumed to have an infinite capacity, i.e., there
is no limit on the number of AFVs that can simultaneously refuel at s. But, really, the
AFSs have a limited number of refueling docks. Neglecting this aspect, during the route
planning, may yield long waiting times at the AFSs with a significant negative impact on
the solution, especially when the refueling time is high (e.g., in the case of electric vehicles)
and/or Tmax is very tight. In these cases, omitting AFSs capacity may produce infeasible
route plans. To overcome this issue, we introduce a new variant of the GVRP, i.e., the
GVRP with Capacitated AFSs (GVRP-CAFS), in which only a limited number of AFVs
can refuel at the same time at the same AFS. Without loss of generality, we assume that the
capacity ηs of each AFS s is unitary. In fact, the case ηs > 1 can be reduced to the one with
ηs = 1 by properly adding clones of s with unitary capacity. We solve the GVRP-CAFS
through the exact approach described in Section 2.

2 An exact approach for the GVRP-CAFS

Each route in a GVRP solution can be seen as the composition of paths, each handling a
subset of customers without intermediate stops at AFSs. Each path can be between: 0 and
AFS, AFS and 0, two AFSs and finally, 0 and itself (complete route). Moreover, for each
path k, the origin (starting node) sk, the destination (arrival node) ak, the travel distance
dk and the duration γk are known. In particular, γk is the sum of the travel times and the
service times at the nodes of k. In the GVRP solution in Figure 1, where C1, C2, C3, C4
denote the customers, the route {0, C1, C2, C3, AFS2, C4, 0} is the composition of the paths
{0, C1, C2, C3, AFS2} and {AFS2, C4, 0}.

The proposed solution approach is then based on two steps. Firstly, the set K of all

FIG. 1: A solution feasible for a GVRP.

feasible non-dominated paths is generated. A path k is feasible (feasibility rules) if: dk ≤
Dmax and γk + t0sk

+ tak0 + pak
≤ Tmax. Moreover, a feasible path k1 dominates a feasible

path k2 (dominance rules) if: sk1 = sk2 , ak1 = ak2 , they handle the same customers and
dk2 ≥ dk1 . From the set K, the set P of all the pairs of paths is generated. Given k1, k2 ∈ K,
a pair (k1, k2) exists (compatibility rules) if: ak1 = sk2 , sk2 6= 0, the set of customers handled
in the two paths are disjoint and t0sk1

+ γk1 + γk2 + pak1
+ tak2 0 ≤ Tmax. In the second step,

a path-based Mixed Integer Programming (MIP) model is used to select the paths and
properly combine them to generate the routes of the optimal GVRP-CAFS solution. A
coverage parameter, cik, is then introduced, equal to 1 if i ∈ I is handled in k ∈ K, 0
otherwise. The refueling time pak

needed at ak is equal to 0 if ak = 0. The following
decision variables are introduced: zk, equal to 1 if k ∈ K is selected, 0 otherwise; xkl, equal
to 1 if l ∈ K is covered just after k ∈ K, 0 otherwise and finally, τk, a positive variable
representing the starting refueling time at ak of k ∈ K. The path-based MIP model is given
in the following.

min
∑

k∈K

dkzk (1)

∑

k∈K

cikzk = 1 ∀i ∈ I (2)

∑

k∈K

x0k ≤ m (3)

∑

k1∈K:(k1,k2)∈P

xk1k2 =
∑

k1∈K:(k2,k1)∈P

xk2k1 ∀k2 ∈ K (4)

∑

k1∈K:(k1,k2)∈P

xk1k2 = zk2 ∀k2 ∈ K|k2 6= 0 (5)

τk2 ≥ τk1 + pak1
+ γk2 − Tmaxxk1k2 ∀(k1, k2) ∈ P (6)

|τk1 − τk2 | ≥ pak1
∀k1, k2 ∈ K|ak1 = ak2 , ak1 6= 0 (7)

γk ≤ τk ≤ Tmax − pak
+ Tmax(1− zk) ∀k ∈ K (8)

zk ∈ {0, 1} ∀k ∈ K (9)

xk1k2 ∈ {0, 1} ∀(k1, k2) ∈ P (10)
The objective function (1) concerns the minimization of the total travel distance. Each
customer has to be visited exactly once (2) and the number of routes selected does not
exceed the number of available AFVs (3). Route continuity is ensured by constraints (4).
A path can be inserted in a route only if it is selected (5). If xk1k2 = 1, τk2 cannot start
before both the refueling operation at ak1 is completed and k2 is performed (6). Two AFVs
cannot simultaneously refuel at the same AFS (7). The refueling of the AFV in the path
k cannot start before the time necessary to travel the path and it cannot finish after Tmax

(8). Constraints (7) are linearized by (11)-(14), through auxiliary variables ξ and µ. In the
Linear MIP (MILP) model, constraints (13) avoid overlapped refueling operations.

ξk1k2 ≥ −
1

Tmax − pak1

(τk1 − τk2 − pak1
) ∀k1, k2 ∈ K|ak1 = ak2 , ak1 6= 0 (11)

µk1k2 ≥ −
1

Tmax − pak1

(τk2 − τk1 − pak1
) ∀k1, k2 ∈ K|ak1 = ak2 , ak1 6= 0 (12)

ξk1k2 + µk1k2 ≤ 3− zk1 − zk2 ∀k1, k2 ∈ K|ak1 = ak2 , ak1 6= 0 (13)
ξk1k2 , µk1k2 ∈ {0, 1} ∀k1, k2 ∈ K|ak1 = ak2 , ak1 6= 0 (14)

For limiting the amount of time required by our approach, a relaxation of the GVRP-
CAFS (RP) generated by omitting (11)-(14) is solved. On each iteration, we solve RP to
optimality and check if any of those constraints are violated in the optimal RP solution. If
this is the case, ∀(k1, k2) ∈ P for which those constraints are violated, i.e., for which the
related refueling operations overlap, we add to the RP the corresponding violated constraints
(11)-(14) and we reiterate; otherwise, we stop because the current optimal RP solution is
optimal for the GVRP-CAFS too. This approach allows us strongly limiting the number of
constraints involved to address the capacity issue.

3 Results and conclusions

We introduced the GVRP-CAFS, a more realistic variant of the GVRP, in which the AFS
capacity, i.e., the number of AFVs that can simultaneously refuel at the same AFS, is limited.
For the GVRP-CAFS, we formulated a MILP model and we proposed an exact method to
solve it in more reasonable time. Preliminary tests were carried out on a set of challenging
instances with tight AFS capacity and on average 15 customers and 3 AFSs. The proposed
exact approach solved to optimality all the instances within an average computational time
of 22 seconds against an average of 557 seconds of the MILP model.

References

[1] Bektaş, T. and Demir, E. and Laporte, G. (2016), “Green vehicle routing”, Green
Transportation Logistics, 243-265, Springer International Publishing.

[2] S. Erdoğan and E. Miller-Hooks, “A green vehicle routing problem”, Transportation
Research Part E: Logistics and Transportation Review 48(1),100-114, 2012.

The Electric Vehicle Relocation Problem in Carsharing Systems
with Collaborative Operators

Maurizio Bruglieri1, Fabrizio Marinelli2, Ornella Pisacane2

1 Politecnico di Milano, Milano, Italy
maurizio.bruglieri@polimi.it

2 Universitá Politecnica delle Marche, Ancona, Italy
{marinelli,pisacane}@dii.univpm.it

Abstract

We address the problem of balancing the demand and the availability of vehicles be-
tween stations in urban one-way electric carsharing systems through operator relocations.
Unlike the previous papers, we assume that the operators can collaborate among them
through the carpooling, i.e., giving a lift to the others when moving an EV from a pick-up
request station to one of delivery. For this new problem, we propose a Mixed Integer
Linear Programming formulation and a column generation based heuristic solution ap-
proach.

Keywords : Mixed Integer Linear Programming, column generation, Pick-up and Delivery
Problem with Time Windows, operator based relocation, one-way carsharing.

1 Introduction
The carsharing systems allow users renting cars by paying a charge that depends on the actual
time of use (also a fraction of an hour) eliminating the fixed costs due to both the ownership
and the maintenance of the vehicles. However, the one-way carsharing systems, in which a user
can deliver the vehicle to a station different from the one of pick-up, pose the management
problem of balancing the demand and the availability of vehicles between the stations [4].
Moreover, when the carsharing fleet is made up of Electric Vehicles (EVs), the relocation is
more complicated due to their recharge needs.

We address the operator-based EV relocation problem in urban one-way carsharing systems
assuming that: the requests are known in advance (exact predictive relocation); the operators
directly drive the EVs from stations with exceeding EVs (pick-up requests) to stations that
need EVs (delivery requests); they move from the latter to the former by folding bicycles as
introduced in [1]. A revenue is associated with each relocation request as well as a fixed cost
with each operator used. The objective is to maximize the total profit given by the difference
between the total revenue due to the requests satisfied and the total cost of the operators
employed, as introduced in [2, 3].

Unlike the previous papers, where the operators do not interact with each other, we assume
that they can collaborate among them through the carpooling, i.e., giving a lift to other opera-
tors when moving an EV from a pick-up request station to one of delivery. We assume that the
lift is given with no intermediate stop, i.e., all the passengers can get out of the EV only at the
driver’s delivery station. We call this new version of the Electric Vehicle Relocation Problem
(E-VReP), the E-VReP with Collaborative Operators.

For this problem, we propose a Mixed Integer Linear Programming (MILP) formulation and
a column generation based solution method.

189

2 Statement of the problem and MILP formulation

Let L be the maximum distance a fully recharged EV can cover. When the EV is not fully
recharged, such distance is supposed linearly proportional to its residual battery charge. Al-
though the charging time function depends on the battery technology used, it is assumed to
be linear and Γ is the time necessary for a full recharge. We assume that each parking station
has a charger to which an EV is always connected when it is unused.

Let K be the number of operators available and C the cost associated with their employ-
ment. Let D and P be the set of delivery requests (i.e. EVs delivery to try to prevent a station
from running out of EVs) and of pick-up requests (i.e, to try to prevent a station from being
full of EVs), respectively. For each relocation request r ∈ P ∪D, the parking location vr, the
residual battery charge ρr, the earliest and the latest time allowed to carry out r, [τminr , τmaxr],
are known. We assume that the requests are not mandatory and a revenue πr is obtained if the
request r is satisfied. Since the carsharing fleet is supposed homogeneous, each request r ∈ D
can be satisfied bringing to vr an EV of a pick-up request, compatible for both time window
and the battery charge level.

We want both to route and to schedule the operators, leaving from a common depot (0), at
two different times, t′0 and t′′0, e.g., corresponding to the start of the Morning Shift (MS) and
of the Afternoon Shift (AS), in order to maximize the total profit. In each route, a request of
pick-up is always alternated to a one of delivery. Moreover, since we assume that the operators
can collaborate through the carpooling with no intermediate stop, their routes can share some
ordered pairs of pick-up and delivery requests. The same pair can be shared in at most C̃
routes, being C̃ the capacity of an EV.

The problem is represented on a directed graph G = (N,A) where N = P ∪ D ∪ {0} and
arc set A is the union of the arcs AEV traveled by EV, and those of AB traveled by bike.
Arcs (i, j) ∈ AEV , with i ∈ P and j ∈ D, model the action of an operator that goes from a
station of pick-up to one of delivery by EV, also possibly giving a lift to other operators. Arcs
(j, i) ∈ AB, with j ∈ D and i ∈ P , model the action of an operator that moves from a station
of delivery to one of pick-up by bike. For each (i, j) ∈ AEV , dij is the length of the shortest
path from vi to vj by EV, while cij is the corresponding operational time taking into account
the time to load the bike in the EV trunk, to go from i to j by EV, to park the EV and to take
the bike from the EV trunk. Instead, ∀(i, j) ∈ AB, cij is the time to go from i to j by bike.

The problem is mathematically modeled by introducing the following decision variables: xij ,
number of operators traversing (i, j) ∈ A; yij , equal to 1 if (i, j) ∈ A is traveled by at least
one operator, 0 otherwise; ti, the latest arrival time at i ∈ N and ξr equal to 1 if r ∈ P ∪D is
handled in the MS, 0 if it is served in the AS.

max
∑

(i,j)∈AEV

(πi + πj)yij −
∑

j∈δ+(0)
Cx0j (1)

∑

j∈δ+(0)
x0j ≤ K (2)

∑

j∈δ+(i)
yij ≤ 1 ∀i ∈ P (3)

∑

i∈δ−(j)
yij ≤ 1 ∀j ∈ D (4)

∑

j∈δ+(i)
xij −

∑

j∈δ−(i)
xji = 0 ∀i ∈ N (5)

xij ≤ C̃yij ∀(i, j) ∈ A (6)
yij ≤ xij ∀(i, j) ∈ A (7)

t′0ξj + t′′0(1− ξj) + c0jy0j ≤ tj ∀j ∈ δ+(0) (8)
ti + cijyij − T (1− yij) ≤ tj ∀(i, j) ∈ A : i 6= 0, j 6= 0 (9)

ti + ci0yi0 − t′0ξi − t′′0(1− ξi) ≤ T ∀i ∈ δ−(0) (10)
ξi − ξj ≤ 1− yij ∀(i, j) ∈ A : i 6= 0, j 6= 0 (11)
ξj − ξi ≤ 1− yij ∀(i, j) ∈ A : i 6= 0, j 6= 0 (12)
τmini ≤ ti ≤ τmaxi ∀i ∈ P ∪D (13)

L(ρi + ti − τmini

Γ) ≥ dijyij ∀(i, j) ∈ AEV (14)

ρi + ti − τmini

Γ − dij
L
yij ≥ ρj−

τmaxj − tj
Γ − (ρj + 1)(1− yij) ∀(i, j) ∈ AEV (15)

1− dij
L
yij ≥ ρj−

τmaxj − tj
Γ − (ρj + 1)(1− yij) ∀(i, j) ∈ AEV (16)

xi,j ≥ 0, integer, yij ∈ {0, 1}, ∀(i, j) ∈ A, ti ≥ 0 ∀i ∈ N (17)

where δ−(i) and δ+(i) denote the ingoing and outgoing arcs in/from i ∈ N , respectively. The
objective function (1) represents the total profit to be maximized. Constraint (2) ensures that
no more than K operators are employed. Constraints (3) avoid that the same picked up EV
is used to satisfy more than one delivery request. Vice versa, constraints (4) avoid that more
than one pick-up request are used to satisfy the same delivery request. Conditions (5) ensure
the flow conservation on x.

The x variables are linked to the y ones in (6) and (7): these constraints ensure that if
yij = 1, the arc (i, j) ∈ A can be traversed by at most C̃ operators; otherwise, it cannot be
traveled. In each route, the arrival times at both the first node visited and the next ones are
ruled by constraints (8) and (9), respectively.

The total duration of a route cannot exceed T thanks to (10). Constraints (11) and (12)
ensure that, if two requests are served in the same route, they are served in the same time shift
too. The time window of each request i ∈ P ∪D is imposed in conditions (13). The distance
traveled by each EV is proportional to its residual battery level (14) and each EV is delivered
satisfying the required battery level (15)-(16).

3 A Column Generation based heuristic
Since the model described in the previous section can solve in reasonable time only instances
of few tens of requests through a state of the art MILP solver (CPLEX), we propose a different
solution method based on column generation.

For this purpose, let Ω the set of all feasible routes for the E-VReP. The following route-
based formulation models a relaxation of the original problem (1)-(17) since no synchronization
constraint is imposed on the routes that share the same arcs.

It is based on the binary variables θω = 1 if the route ω is chosen, 0 otherwise and on binary
variables yij = 1 if arc (i, j) ∈ A is chosen in at least one route, 0 otherwise:

max
∑

(i,j)∈AEV

(πi + πj)yij − C
∑

ω∈Ω
θω (18)

∑

ω∈Ω
θω ≤ K (19)

∑

ω∈Ω
aijωθω ≤ C̃yij ∀(i, j) ∈ A (20)

yij ≤
∑

ω∈Ω
aijωθω ∀(i, j) ∈ AEV (21)

∑

j∈δ+(i)
yij ≤ 1 ∀i ∈ P (22)

∑

i∈δ−(j)
yij ≤ 1 ∀j ∈ D (23)

θω ∈ {0, 1} ∀ω ∈ Ω, yij ∈ {0, 1} ∀(i, j) ∈ A (24)

where the parameter aijω is equal to 1 if the pair of requests (i, j) ∈ A is served in route
ω, 0 otherwise. Indeed constraints (19) guarantees that no more than K operators are used;
constraints (20) ensure that no more than C̃ operators are carpooling along each arc, at the
same time; while (21) guarantee the coherency between variables θω and yij , i.e., if yij = 1
then at least one route ω containing the arc (i, j) must be selected; (22) ensure that with the
vehicle picked up from i only one delivery request can be satisfied; vice versa, (23) guarantees
that a delivery request j can only one be satisfied by one pick-up request; finally, (24) model
the variables nature.

The continuous relaxation of the route-based formulation (18)-(24) is solved through a col-
umn generation approach. Then, an integer solution is heuristically detected by solving (18)-
(24) restricted to the only ”good” routes found (i.e., those selected along the column generation)
and possibly adding other routes. However, such integer solution could not satisfy the synchro-
nization constraints among the operators, relaxed in the formulation (18)-(24). This solution
is then heuristically repaired according to the synchronization infeasibilities, through proper
forward and/or backward shifts of the relocation request execution times.

We notice that in this procedure we have to guarantee not only that each route satisfies the
time windows of the requests handled after the shifts, but we also have to carefully consider
the battery charge levels. Indeed, if an EV is picked up too early then it may have not enough
battery recharge to reach the next delivery request. Vice versa, if it is picked up too late then
it may arrive to the delivery request just before the maximum allowed time window without
the required battery level since there is not enough time to recharge it at the delivery station.

4 Results and conclusions
In this work, we extended the E-VReP problem concerning the relocation of electric vehicles in
a carsharing system, allowing the operators to collaborate among them through the carpooling,
i.e., giving a lift to other operators when moving an EV from a pick-up request station to one
of delivery. The problem was formulated by MILP and solved in more efficient way through a
column generation based heuristic. Preliminary results show that thanks to the collaboration
among the operators not only it is possible to decrease the distance covered via bike by the
operators, but sometimes also to increase the total profit.

References
[1] M. Bruglieri, A. Colorni, A. Luè, “The vehicle relocation problem for the one-way electric

vehicle sharing”, Networks, 64 (4), 292–305, 2014.

[2] M. Bruglieri, F. Pezzella, O. Pisacane, “Heuristic algorithms for the operator-based relo-
cation problem in one-way electric carsharing systems”, Discrete Optimization, 23, 56–80,
2017.

[3] M. Bruglieri, F. Pezzella, O. Pisacane, “An Adaptive Large Neighborhood Search for
Relocating Vehicles in Electric Carsharing Services”, Discrete Applied Mathematics, DOI:
10.1016/j.dam.2018.03.067, 2018.

[4] G. Laporte, F. Meunier, R., Wolfler Calvo, “Shared mobility systems”, 4OR-Q J Opera-
tional Research, 13:341–360, 2015.

Make or Buy: Revenue Maximization in Stackelberg Scheduling
Games

Toni Böhnlein1, Oliver Schaudt2, Joachim Schauer3

1 Universität zu Köln, Institut für Informatik, Weyertal 80, 50931 Köln,
boehnlein@zpr.uni-koeln.de

2 RWTH Aachen, Institut für Mathematik, Pontdriesch 10, 52062 Aachen,
schaudt@mathc.rwth-aachen.de

3 University of Graz, Department of Statistics and Operations Research, Universitätsstr. 15, 8010
Graz,

joachim.schauer@uni-graz.at

Abstract

In a Stackelberg pricing game a distinguished player, the leader, chooses prices for a
set of items, and the other player, the follower, seeks to buy a minimal cost feasible subset
of the items. The goal of the leader is to maximize her revenue, which is determined
by the sold items and their prices. Typically, the follower is given by a combinatorial
covering problem, e.g., his feasible subsets are the edges of a spanning tree or the edges of
an s-t-path in a network.

We initiate the study of Stackelberg pricing games where the follower solves a maxi-
mization problem. In this model, the leader offers a payment to include her items in the
follower’s solution.

Our motivation stems from the following situation: assume the leader has a set of jobs
1, . . . , k to complete. A job i may either (a) be executed for a given cost b(i) using her
own resources or (b) offered to the follower at a variable price p(i) to complete it for her.
The objective function to be maximized by the leader is the sum of the margins b(i)− p(i)
over those jobs i that are completed by the follower. Informally, the question is which
jobs should be outsourced and what profit the leader has to offer. Our main result says
that the problem can be solved to optimality in polynomial-time when the jobs have fixed
starting and terminating times and the follower solves a maximum weight scheduling on a
single machine.

To show that the situation changes when the follower is given by other optimization
problems, we prove APX-hardness for a scheduling problem that can be modeled as a
bipartite maximum weight matching problem. Moreover, we show APX-hardness in the
case of the maximum weight spanning tree problem.

On a more general note, we prove Σp
2-completeness if the follower has a general

combinatorial optimization problem given in the form of a finite ground set and a feasibility
oracle. This shows that while the follower’s problem is NP-complete, the leader’s problem
is hard even if she has an NP-oracle at hand.

Keywords : Algorithmic pricing, Stackelberg games, Revenue maximization.

1 Introduction
Suppose an agent seeks to complete a set of jobs 1, . . . , k. Job i may either (a) be executed
for a given fixed cost b(i) using the agent’s own resource or (b) offered to a manufacturer at a
variable price p(i) to carry it out for him. If the manufacturer finishes an offered job i, the agent
pays the price p(i). The agent’s objective is to maximize the sum of the margins b(i) − p(i)

193

over those jobs i that are finished by the manufacturer. Typically, this is called a make or buy
decision.
Whether it is profitable to outsource a job or not, depends on the manufacturer’s offer

situation. The agent might have competitors who also offer a payment to the manufacturer to
carry out their jobs. Moreover, the manufacturer’s schedule has to obey a number of constraints.
For instance, it might be impossible to execute two jobs in the same time window since the
manufacturer only has one machine available.
When setting the prices, the agent is aware of the competitors’ jobs, the constraints they

imply and the offered payments. After prices are set, the manufacturer selects a feasible subset
of all jobs offered by the agent and her competitors. His objective is to maximize the income.
We study the problem of computing prices that are optimal for the leader, for different types of
constraints of the manufacturer’s schedule.

This class of pricing problems features a hierarchical dependency. First, the agent sets prices;
then the manufacturer selects a set of jobs. In the literature, such problems are captured by a
game-theoretic model called Stackelberg Pricing Games. Originally, in a Stackelberg Pricing
Game one player chooses prices for a number of items. After that, one or several other players
are interested in buying these items. Following the standard terminology, the player to choose
the prices is called the leader while the other players are called followers. The goal of the leader
is to maximize her revenue while followers want to minimize their costs. Depending on the
follower’s preferences, computing optimal prices can be a highly non-trivial problem.

A major line of research studies Stackelberg Pricing Games where the follower’s preferences
are given by a combinatorial optimization problem. Labbé et al. [5] model road-toll setting
problems by a Stackelberg Pricing Game based on the shortest path problem. In this game,
the leader sets prices for a subset of priceable edges of a network graph while the remaining
edges have fixed costs. Each follower has a pair of vertices (s, t) and buys a minimum cost path
from s to t. The cost of a path depends on both the fixed cost and the prices set by the leader.
Roche et al. [7] show that the problem is NP-hard, even if there is only one follower, and it
has later been shown to be APX-hard [1, 4]. More recently, other combinatorial optimization
problems were studied in their Stackelberg Pricing Game version. For example, Cardinal et
al. [2, 3] investigate the Stackelberg Minimum Spanning Tree Game, proving APX-hardness
and giving some approximation results. Our contribution is a model to capture scenarios where
the follower solves a maximization problem.
To model the make or buy problem sketched above, we introduce a Stackelberg Pricing

Game that is based on the well-known Interval Scheduling Problem. In this problem, there
is one machine and a set of weighted jobs I. Each job i has a fixed starting time si ∈ R and
terminating time ti ∈ R. Hence, a job can be represented by an interval [si, ti] on the line.
We say that two intervals overlap if their intersection is non-empty. The objective is to find a
subset of non-overlapping intervals of maximum total weight. On the left-hand side of Figure 1
we have an instance of an interval scheduling problem if we only consider the solid intervals
a, b, c, d. An optimal solution is the set {a, b} with a total weight of 7. According to every
algorithms textbook, this problem can be solved efficiently via dynamic programming.
We call the agent leader and the manufacturer follower. In our Stackelberg Pricing Game,

the solid intervals a, b, c, d represent the jobs of the competitors. The dashed lines x, z, y are the
jobs of the leader with their respective costs 4, 3, 5. First, the leader has to set prices px, py and
pz. Higher prices are more appealing to the follower. However, lower prices are more profitable
for the leader. On the right hand side of Figure 1 the prices px = 3, py = 0, pz = 4 are set. The
follower selects the jobs c, x, z with total weight 9. Note that the prices px and pz are optimal
in the following sense: if either of px or pz is decreased by some ε, the intervals x or z are not
selected by the follower. The leader obtains a margin of 2 under these prices.
The optimal prices px = 1, py = 2, pz = 0 yield margin 4. Under these prices the solutions
{b, c, x, y} and {a, b} are optimal for the follower; both have a weight of 7. A common assumption
for Stackelberg Pricing Games is that the follower is cooperative: he always chooses the optimal
solution which is most profitable for the leader.

2
5

4

pz/5
py/3

px/4

2
2

5
4

4/5
0/3

3/4

2a b
c d

x
y

z

a
c d

b

z
y

x

FIG. 1: An instance of the Stackelberg Interval Scheduling Game

Another scheduling problem that fits into our scenario can be formalized as a matching
problem. Here, the follower has m machines, and there are n jobs. Each machine can execute
at most one job in total. This situation can be modeled by a bipartite graph G = (U ∪ V, E).
The vertices in U correspond to the m machines and the vertices in V to the n jobs. If the
follower receives a payment to execute job i on machine j, there is an edge connecting the
respective vertices with the payment as its weight. Hence, the follower solves a maximum
weight matching problem to maximize his income. We extend this to a Stackelberg Pricing
Game, as follows. Say k of the n jobs belong to the leader. An edge e which is incident to the
corresponding vertices is a priceable edge and has cost b(e). The leader’s objective is to set
prices p(e) that maximize the sum of the margins p(e)− b(e) over the priceable edges that are
part of a maximum weight matching computed by the follower.

Our results. To make things more formally, we use a slightly different notion as in the
introductory scenario. We say the leader receives a benefit b(i) if job i is executed by the
follower. The leader’s objective is to maximize her revenue, the sum of the margins b(i)− p(i)
over the jobs i executed by the follower.

Our main result is a polynomial time algorithm that solves the Stackelberg Interval Scheduling
Game. Since it will be more handy later on, we restate this game in terms of an independent set
problem in an interval graph. Associated with an instance of the interval scheduling problem
I we construct the corresponding interval graph G = (V, E) with vertex weights. For each
interval i ∈ I there is a corresponding vertex vi ∈ V with weight w(vi) = w(i). If two intervals
i, j overlap, there is an edge (vi, vj) ∈ E.

Recall that an independent set in a graph is a subset of mutually non-adjacent vertices. The
interval scheduling problem on I is equivalent to finding a maximum weight independent set of
G.

Stackelberg Interval Scheduling (SIS)
Input: An interval graph G = (V, E) with priceable vertices P ⊆ V and |P | = k.
For every v ∈ P there is a benefit b(v) ∈ R and for every u ∈ F = V \ P there is a
fixed weight w(u) ∈ R.
Objective: Find a price function p : P → R≥0 maximizing

max{b(S ∩ P)− p(S ∩ P) | S is a maximum weight independent set},

where the weight of an independent set S is defined as w(S ∩ F) + p(S ∩ P).

The objective might seem a bit odd. But the formulation correctly reflects the cooperative
behavior of the follower. The assumption that the follower picks a solution maximizing the
leader’s revenue is common for such pricing games and made to avoid technicalities (cf. [6]).

The main result of our paper reads as follows.

Theorem 1 The SIS problem can be solved in time O(k3 (|V (G)|+ |E(G)|)) given an instance
(G, P, w, b) with |P | = k.

The proof builds on a careful analysis of the structure of an optimal price function. It relies
on a linear programming formulation of a restricted version of the SIS problem. Based on these

insights we use dynamic programming to solve the full problem. We remark that our theorem is
one of the few cases in which one can solve a Stackelberg Pricing Game based on a non-trivial
optimization problem to optimality.

As a complementary result, we show that the second scheduling problem mentioned above–
the one that is based on a matching problem–is APX-hard. We formulate the corresponding
Stackelberg Pricing Game for general graphs.

Stackelberg Matching Game
Input: A graph G = (V, E) with priceable edges P ⊆ E where k = |P |. For every
e ∈ P there is a benefit b(e) ∈ R and for every e ∈ F = E \ P there are fixed
weights w(e) ∈ R.
Objective: Find a price function p : P → R≥0 maximizing

max{b(M ∩ P)− p(M ∩ P) |M is a maximum weight matching},

where the weight of a matching M is defined as w(M ∩ F) + p(M ∩ P).

The main result is that this problem is hard to approximate, unless P=NP.

Theorem 2 The Stackelberg Matching Game is APX-hard even when the graph G is
bipartite, w(f) ∈ {1, 2} for all f ∈ F , and b(e) = 4 for all e ∈ P .

As we will see in the proof of the theorem, the graph used for the reduction covers the
model of the second scheduling problem. Therefore, it belongs to the class of APX-hard
problems. Moreover, the theorem shows that the Stackelberg Interval Scheduling Game on
perfect graphs–instead of interval graphs–is APX-hard. The matching problem on a graph is
equivalent to the independent set problem on its line graph. Line graphs of bipartite graphs
are perfect graphs.

We can also show that a maximization version of the Stackelberg Pricing Game for spanning
trees is APX-hard. This follows readily with the proof by Cardinal et al. [2] for the minimization
version. Yet, it shows that a Stackelberg Pricing Game based on a maximization problem is
hard if the follower optimizes over a matroid. This theorem and its proof are not presented in
the extended abstract.
Finally, we take a step back from our example problems and study the complexity of the

Stackelberg Pricing Game in its own right. It turns out that there are combinatorial optimization
problems in NP such that the corresponding Stackelberg Pricing Problem is Σp

2 complete. In
other words, such a pricing problem is computationally difficult even if an NP oracle is provided,
unless the polynomial hierarchy collapses to the second level.

References
[1] Patrick Briest, Parinya Chalermsook, Sanjeev Khanna, Bundit Laekhanukit, and Danupon

Nanongkai. Improved Hardness of Approximation for Stackelberg Shortest-Path Pricing. In
Internet and Network Economics, pages 444–454. Springer, 2010.

[2] J. Cardinal, E.D. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, and O. Weimann.
The Stackelberg Minimum Spanning Tree Game. Algorithmica, 59:129–144, 2011.

[3] Jean Cardinal, Erik D Demaine, Samuel Fiorini, Gwenaël Joret, Ilan Newman, and Oren
Weimann. The Stackelberg Minimum Spanning Tree Game on Planar and Bounded-
Treewidth Graphs. Journal of combinatorial optimization, 25(1):19–46, 2013.

[4] Gwenaël Joret. Stackelberg Network Pricing is Hard to Approximate. Networks, 57(2):117–
120, 2011.

[5] M. Labbé, P. Marcotte, and G. Savard. A Bilevel Model of Taxation and Its Application to
Optimal Highway Pricing. Management Science, 44:1608–1622, 1998.

[6] Martine Labbé and Alessia Violin. Bilevel programming and price setting problems. Annals
OR, 240(1):141–169, 2016.

[7] S. Roche, G. Savard, and P. Marcotte. An approximation algorithm for Stackelberg network
pricing. Networks, 46:57–67, 2005.

Two Stackelberg Knapsack games

Gaia Nicosia1, Andrea Pacifici2, Ulrich Pferschy3, Joachim Schauer3

1 Università degli studi “Roma Tre”
nicosia@ing.uniroma3.it

2 Università degli studi di Roma “Tor Vergata”
andrea.pacifici@uniroma2.it

3 University of Graz
{ulrich.pferschy, joachim.schauer}@uni-graz.at

Abstract

We consider a bilevel decision problem, namely a Stackelberg strategic game in a
knapsack setting. One player, the leader L, may control the weights or profits of a subset
of all the items (the L-items). The second player, the follower, selects—according to a
publicly known strategy—a solution consisting of a subset of all items, in order to utilize
a bounded resource and to maximize the overall profit. The leader obtains a payoff from
the L-items included in the solution so it may alter the parameters in order to maximize
its revenues.

Two variants of the problem are considered, depending on whether the leader is able
to control (i) the weights of its items or (ii) their profits. For each version of the problem
we analyze the leader’s problem for three natural strategies of the follower and discuss
the complexity of the corresponding problems.

Keywords : Stackelberg game, Knapsack problem, Dynamic programming

1 Introduction
A Stackelberg game (named after the market model [8] due to Heinrich Freiherr von Stack-
elberg) is a strategic game in which there are two interacting players at two distinct levels.
First, one player, called the leader L, makes its choice by choosing some elements or by set-
ting certain parameters. Then, in view of the leader’s decision, the other player F , called the
follower, chooses its response. Both players aim at optimizing their own objectives, which are
usually conflicting or at least not positively correlated. To this purpose the leader needs to
anticipate the optimal response of the follower. In this setting, one usually assumes that the
players have complete and mutual knowledge about each other’s models.

Stackelberg games may be viewed as special bilevel programming problems (BP), that is,
optimization problems in which some of the decision variables in an upper level problem must
be optimal to some other, lower level problem. BP is, in general, computationally hard to solve:
Jeroslow [5] showed that this problem is NP-hard even when the objective and constraints are
linear functions.

In the Stackelberg context, the upper level optimization problem is commonly referred to
as the leader’s problem, while the lower level one as the follower’s problem. For Stackelberg
games it is frequently assumed in the literature that the follower has polynomially bounded
computation power for deriving its optimal solution, see, for instance, [1, 2].

In this work we analyze a Stackelberg-type leader-follower scenario for the classical binary
knapsack problem (KP). In KP we are given a discrete finite set N of items, each having a
positive integer weight and a profit, and a knapsack with bounded weight-capacity c. One asks
for a subset of items with maximum total profit and total weight not exceeding the capacity
of the knapsack (a comprehensive collection of results on KP can be found in [6]). We also

198

provide additional results concerning the sub set sum case in which weight and profit of an
item are equal, which corresponds to the well-known subset sum problem (SSP) [7]. Besides its
importance in a huge number of both theoretical and practical applications, KP has been also
investigated under a game theoretic perspective, as witnessed by several studies (see e.g. [4].)

The following leader-follower situation is considered: A given subset of items L ⊂ N is
controlled by the leader L, who may alter the parameters (either weights or profits) of all
items in L. After L has fixed these parameters, the follower F computes a solution set S
of the knapsack problem over all items in N aiming at the maximization of the total profit,
irrespective of whether an item is in L or not. The leader receives a payoff only from its own
items which are included in the solution, i.e., from items in S ∩ L. Thus, L has a strong
incentive to choose the parameters of its items so that these are more likely to be included in
the solution computed by F . However, the payoff of an item in L for the leader is inversely
correlated to its chances of being included in the solution set.

A related problem has been studied in [1], where the authors address a Min-Knapsack game
in which the follower seeks to purchase a min-cost selection of objects of some bounded (from
below) weight. They show that when F uses a greedy 2-approximation algorithm the problem
is strongly NP-hard but admits a polynomial-time (2 + ε)-approximation algorithm for the
leader’s revenue maximization problem. An overview and complexity results for various bilevel
knapsack problems are given in [3].

In this work, we consider two variants of our Stackelberg Knapsack Problem where the leader
controls (and receives a payoff associated to) either the weights (SKPW) or the profits (SKPP)
of the items included by F in the solution and, moreover, we also address their corresponding
subset sum variantes SSPW and SSPP1.

In the first version, SKPW, L may set the weights of the items in L. Its payoff is the total
weight of the items in S∩L. Thus, the larger L sets the weights, the larger its potential payoff,
but the smaller the chances that an item is included in S. This setting corresponds to the
practical situation where the follower has a fixed investment budget (knapsack capacity) for
buying assets and wants to maximize the total utility or profit gained from these assets. The
leader is offering certain assets with a given utility and wants to maximize its total revenue,
i.e. the total price (that is the weight) paid by the follower for its assets.

In the second version, SKPP, L can set new profits for the items in L. F computes its solution
based on the new profit values while L receives as payoff the difference between original and
new profit values. If L chooses small new profits, it would gain large profit differences, but
its items would be less likely to be included in S, and vice-versa. In this case, the new profits
represent a fee or price, which the leader is offering to the follower as a reward for including
an item of L in S. These values compete with the profits given for the other items in N \ L.
Naturally, for any item of L the fee offered to F reduces the profit to be gained by L.

Clearly, in both variants of the addressed problem, the optimization task faced by the follower
would require the solution of an NP-hard knapsack problem. As pointed out above, it is
frequently assumed in the literature that the follower can only apply polynomially bounded
algorithms. Thus, we restrict the selection procedure of F to natural, possibly suboptimal,
greedy-type strategies, which are also known to L. In particular we study three possible
strategies adopted by the follower.

1. The classical Greedy algorithm considers the items in non-increasing order of profit-
weight ratio and packs each item into the knapsack if the remaining capacity suffices to
do so.

2. If F is allowed to solve the LP-relaxation of the underlying knapsack problem, we
are not considering an integer problem anymore but the follower may split items in

1In the subset sum problem an item’s profit equals its weight, hence the two variants SSPW and SSPP
differ as that parameter of the L-items may be altered only in the knapsack constraint or in the objective
function, respectively.

its solution set. It is well-known that the LP-relaxation can be computed by starting
the Greedy algorithm and packing a fractional part of the first item which does not fit
completely. This is called the split item.

3. The Greedy-split algorithm reports an integer solution by simply taking the LP-
relaxation and removing any split item (“rounding down” the LP-solution).

2 Our contributions
The main results of our contribution are summarized hereafter.

• When the follower F adopts Greedy, both variants of the leader’s problem SKWP
and SKPP cannot admit a polynomial time approximation algorithm with a constant
approximation ratio (unless P = NP).

• Both the previous negative results still hold for the special subset sum variants SSPW
and SSPP.

• For SSPW and SSPP, we may however devise solution algorithms based on dynamic
programming and running in O(n3/2c) and O(nc2), respectively.

• If the follower selects the solution set using the LP-relax strategy, it is possible for the
leader to optimally select weights or profits (i.e., in both the variants of the problem) in
polynomial time. The complexity, for the corresponding subset sum variants becomes,
in this case, linear.

• Surprisingly enough, the computational complexity of SKPW and SKPP is different when
F follows Greedy-split. In this case, the weight selection problem is polynomially
solvable. Conversely, setting the optimal profits value for the leader is NP-hard.

• While we are not aware of an ILP formulation when the solution set is selected by the
follower F with an exact algorithm, for all the above cases, we may provide (mixed
integer) linear programming formulations.

References
[1] P. Briest, M. Hoefer, L. Gualà, and C. Ventre. On Stackelberg Pricing with Computation-

ally Bounded Consumers. Networks, 60(1):31–44 , 2012.

[2] P. Briest, M. Hoefer, and P. Krysta. Stackelberg Network Pricing Games. Algorithmica,
62:733–753, 2012.

[3] A. Caprara, M. Carvalho, A. Lodi, and G.J. Woeginger. A study on the computational
complexity of the bilevel knapsack problem. SIAM Journal on Optimization, 24(2):823–838,
2014.

[4] L. Ensthaler and T. Giebe. Bayesian optimal knapsack procurement. European Journal
of Operational Research, 234(3):774–779, 2014.

[5] R.G. Jeroslow. The polynomial hierarchy and a simple model for competitive analysis.
Mathematical Programming, 32(2):146–164, 1985.

[6] H. Kellerer, U.Pferschy, and D. Pisinger. Knapsack Problems, Springer, 2004.

[7] U. Pferschy, G. Nicosia, and A. Pacifici. On a Stackelberg Subset Sum Game. CoRR
abs/1801.03698, 2018.

[8] H.F. von Stackelberg. Marktform und Gleichgewicht (Market and Equilibrium). Verlag
von Julius Springer, 1934.

