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Abstract

Given an integer K and a simple edge-weighted undirected graph G = (V,E), the
Distance Geometry Problem questions the existence of a vertex realization function
V → R

K such that each vertex pair adjacent to an edge is placed at a distance
which is equal to the edge weight. This problem has many applications to science
and engineering, and many methods have been proposed to solve it. We propose
some new formulation-based methods.
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1 Introduction

The problem studied in this paper is the

Distance Geometry Problem (DGP). Given an integer K ≥ 1 and a simple,
edge-weighted, undirected graph G = (V,E, d), where d : E → R+, verify
the existence of a vertex realization function x : V → R

K such that:

∀{i, j} ∈ E ‖xi − xj‖ = dij. (1)
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A recent survey on the DGP with the Euclidean norm is given in [2]. The DGP
is NP-hard, by reduction from Partition. Three well-known applications are
to clock synchronization (K = 1), sensor network localization (K = 2), and
protein conformation (K = 3). A related problem, the Distance Matrix Com-

pletion Problem (DMCP), asks whether a partially defined matrix can be
completed to a distance matrix. The difference is that while K is part of the
input in the DGP, it is part of the output in the DMCP, in that a realization
into any Euclidean space which allows the computation of the missing dis-
tances provides a certificate. It is remarkable that, by virtue of this seemingly
minor difference, it is not known whether the Euclidean DMCP (EDMCP) is
in P or NP-hard. It is currently thought to be “between the two classes”.

In this short paper we sketch several new formulation-based methods for
solving the DGP.

2 MILP formulations for 1- and ∞-norms

To the best of our knowledge, no method for solving DGPs with the 1- and
∞-norm currently exists. 3 Yet, since both norms can be linearized exactly, it
is not difficult to derive Mixed-Integer Linear Programming (MILP) formula-
tions for either. We first re-write Eq. (1) as follows:

min
x

∑
{i,j}∈E

| ‖xi − xj‖� − dij |, (2)

for � ∈ {1,∞}. Then, for � = 1 we write:

min
x

∑
{i,j}∈E

∣∣∣∣∣
∑
k≤K

|xik − xjk| − dij

∣∣∣∣∣ ,
and equivalently for � = ∞. For � = 1, we apply some standard absolute value
reformulations to obtain a MILP. The case � = ∞ is slightly more involved, but
still easy to model. These formulations can be solved using any off-the-shelf
MILP solver.

3 We shall gladly take corrections to this statement!



3 SDP formulations for the 2-norm

Many Semidefinite Programming (SDP) formulations for the 2-norm case are
well known from the sensor network localization literature (see [2]). Note that
a realization x can be represented in matrix form by an n×K matrix where
n = |V |, and where each of the n rows is a vector xi ∈ R

K which places vertex
i ∈ V . The Euclidean DGP (EDGP) can be modelled as follows:

∀{i, j} ∈ E ‖xi − xj‖22 = xi · xi + xj · xj − 2xi · xj = d2ij. (3)

Since the EDGP involves sums xi · xj of quadratic terms for various i, j ∈ V ,
we can linearize these sums by replacing them with variables Xij organized
in an n × n matrix, i.e. X = xx�. This provides an easy reformulation of
Eq. (3):

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij

X =xx�.

The rank constraint X = xx� can be readily relaxed to X � xx�, which

in turn can be written as the Schur complement

(
IK x�

x X

)
� 0, yielding a

well-known pure feasibility SDP formulation. Usually, in an attempt to re-
duce the rank of the solution X, many papers propose the objective function
min trace(X). Some empirical experience suggests that this particular objec-
tive is suitable for instances from the sensor network localization application,
since the so-called “anchor nodes” are usually evenly scattered among the sen-
sors, and play a regularization role. For protein conformation instances, on
the other hand, trace minimization yields poor results. A better formulation
turns out to be:

min
X

∑
{i,j}∈E

(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2ij

X − xx� � 0.

For the EDMCP, where the rank is of no importance, we only require that
X should be the Gram matrix of a realization x (of any rank). Since Gram
matrices are exactly positive semidefinite (PSD) matrices, the formulation is
simplified to

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij
X � 0.



4 Diagonally dominant approximation

One serious drawback of SDP is that current solving technology is limited to
instances of fairly low sizes. A. Ahmadi recently remarked [1] that diagonal
dominance provides a useful tool for inner approximating the PSD cone. A
matrix (Yij) is diagonally dominant (DD) if

∀i ≤ n Yii ≥
∑
j �=i

|Yij|. (4)

It follows from Gershgorin’s theorem that diagonally dominant matrices are
PSD (the converse does not hold, hence the inner approximation). The crucial
observation is that Eq. (4) is easy to linearize as follows:

∀i ≤ n
∑
j �=i

Tij ≤ Yii

∀i, j ≤ n − Tij ≤ Yij ≤ Tij .

This yields a new LP formulation related to the EDGP:

min
X,Y,T

∑
{i,j}∈E

(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2ij(
IK x�

x X

)
= Y

∀i ≤ n+K
∑

j≤n+K
j �=i

Tij ≤ Yii

−T ≤ Y ≤ T.




(5)

Let D(U) = {U�MU | M is DD}. The approximation Eq. (5) can be itera-

tively improved by requiring that Y ∈ D(U) with U0 = I and Uh =
√
Ȳ h−1

for all h > 0, where Ȳ h−1 is the solution of Eq. (5) at the previous iteration
h− 1.
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