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Abstract Given a set of entities associated with points in Euclidean space,
minimum sum-of-squares clustering (MSSC) consist in partitioning this set
into clusters such that the sum of squared distances from each point to the
centroid of its cluster is minimized. A column generation algorithm for MSSC
was given in du Merle et al. [15]. The bottleneck of that algorithm is resolution
of the auxiliary problem of finding a column with negative reduced cost. We
propose a new way to solve this auxiliary problem based on geometric argu-
ments. This greatly improves the efficiency of the whole algorithm and leads
to exact solution of instances with over 2300 entities, i.e., more than 10 times
as much as previously done.
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1 Introduction

Clustering is a basic chapter in data analysis. It adresses the following prob-
lem: given a set of entities find subsets, called clusters, which are homogeneous
and/or well separated (e.g. Hartigan [28]; Jain, Murty and Flynn [31]; Mirkin
[44]). Many different criteria are used in the literature to express homogeneity
and/or separation of the clusters to be found (see [22] for a survey). Among
them, a frequently used one is the minimum sum of squared Euclidean dis-
tances from each entity to the centroid of the cluster to which it belongs.
Partitioning n entities into k clusters with this criterion is known as minimum
sum-of-squares clustering (MSSC).

For k ≥ 2 and one dimensional data, MSSC can be solved in O(n3)
time [57]. The problem is NP-hard in the plane for general values of k [42].
In general dimension, MSSC is NP-hard even for k = 2 [1]. If both k and
dimension s are fixed, the problem can be solved in O(nsk+1) time [30], which
may be very time-consuming even for instances in the plane.

MSSC has several properties:

(i) It expresses both homogeneity and separation as explained in Späth’s
book [57], pages 60–61;

(ii) Given the assignments, the cluster centers are located in their centroids,
due to first order optimality conditions. These are determined by a simple
closed-form expression;

(iii) Given the centroids, each entity is assigned to its closest centroid, due to
local optimality. This just requires a few comparisons;

(iv) Clusters obtained are spheroidal due to minimization of squared Euclidean
distances. This may be desirable or not, depending on the problem consid-
ered.

Mathematical properties of MSSC are discussed in the books of Späth [57],
Mirkin [45] and Kogan [34]. Several hundred papers have been written on
heuristics for MSSC and several thousand on their applications in many do-
mains (see, for instance, Steinley’s half century synthesis [58]). The best known
heuristic for MSSC is k-means [41] (indeed MSSC is sometimes called the
k-means problem). This heuristic alternately applies properties (ii) and (iii)
above until a local optimum is reached. It has been shown by Hansen and
Mladenović [24] that while k-means usually gives good results for small number
of clusters its performance deteriorates, sometimes drastically, when this num-
ber increases. Modifying k-means by adding a jump move of a centroid to an
entity location gives a much better heuristic called j-means. Finally, combin-
ing j-means with a Variable Neighborhood Search (VNS) heuristic [25],[26],[46]
gives a heuristic which often provides optimal solutions or best known ones.
This empirical observation will be exploited in the algorithm presented below.

Other recent heuristics for MSSC include the global k-means method of
Likas, Vlassis and Verbeek [40], analyzed in [27] and modified by Bagirov [6],
Bagirov and Yearwood’s nonsmooth optimization algorithm [7], smoothing op-
timization algorithms due to Teboulle and Kogan [60] and Xavier et al. [64],
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Merz’s iterated local search [43], Pacheco’s scatter search [47], Pacheco and
Valencia’s hybrids [48], Taillard’s decomposition methods [59], Laszlo and
Mukherjee’s genetic algorithms [36][37], Christou’s restricted column gener-
ation and partitioning method [11], and the D.C. heuristic of An, Belghiti and
Tao [4]. A systematic comparison of twelve heuristics for MSSC was made by
Brusco and Steinley in [10].

Exact algorithms for MSSC are much less numerous than heuristics. To
the best of our knowledge, there are less than a dozen papers published on
that topic. However, the approaches followed are very diverse. Early branch-
and-bound algorithms are due to Koontz, Narendra and Fukunaga [35] and
Diehr [12]. Bounds depend on distances between entities assigned to the same
cluster and a limited look-ahead component.

A column generation method for MSSC was proposed by du Merle et al.
in [15]. It solved for the first time medium size benchmark instances (i.e.,
instances with 100-200 entities), including Fisher’s 150 Iris [19]. The master
problem is solved by the ACCPM interior point method of Goffin, Haurie,
and Vial [20]. The auxiliary of finding a column with negative reduced cost is
expressed by as a hyperbolic programming in 0-1 variables. It is solved by a
Dinkelbach-like algorithm [13] which relies on a branch-and-bound algorithm
for unconstrained quadratic 0-1 optimization. Another branch-and-bound on
the master problem leads, if needed, to an integer solution. Finally, VNS heuris-
tics are used both at the ouset to find a good initial solution together with
tentative bounds on the dual variables, as well as in the auxiliary problem to
accelerate its solution. The bottleneck of the algorithm lies in the resolution of
its auxiliary problem, and more precisely, in the unconstrained quadratic 0-1
optimization problem arising there. In this paper, we will propose an alternate
geometric-based approach for that step.

More recently, Xia and Peng [65] proved that the objective function of
MSSC is concave in the relaxed feasible domain. In their paper, they propose
an adaptation of Tuy’s [61] cutting plane method to solve it. Approximate
results are reported for a version where this algorithm is halted before global
convergence. Some experiments of ours showed that small instances with about
25 entities can be solved exactly with that approach.

MSSC can also be solved by non-serial dynamic programming as shown by
Jensen [32]. An improved implementation due to van Os and Meulman [62]
allows solutions of instances with about 28 entities.

Brusco [9] proposed a repetitive branch-and-bound procedure which, after
ordering the entities, solves by branch-and-bound the problem defined by the
k + 1 last ones, then the problem with k + 2 last ones, and so on, until the
problem with all given entities is solved. The bound used at any iteration of one
of those iterated branch-and-bound procedures comprises two components, i.e.,
an usual one corresponding to distances between already assigned entities and
a sophisticated look-ahead one which corresponds to distances in an optimal
solution for the set of unassigned entities. These much improved bounds led to
efficient solution of some well-known benchmark instances, including Fisher’s
150 iris [19], particularly when the number of cluster is small. Artificially
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generated examples with well-separated clusters and up to n = 220 entities
could be solved also.

The hardest task when devising exact algorithms for MSSC is to compute
good lower bounds in a reasonable amount of time. Sherali and Desai [56]
proposed to obtain such bounds by linearizing the model via the reformulation-
linearization technique [55]. They claim to solve instances with up to 1,000
entities by means of a branch-and-bound algorithm. However, these results
could not be reproduced and computing times in an attempted replication
of [3] were already high for real data sets with about 22 entities.

Recently, Peng and Xia [51] proved the equivalence of MSSC and a model
called 0-1 semidefinite programming (SDP), in which eigenvalues are binary.
On the basis of these results, the present authors developed in [2] a branch-
and-cut SDP-based algorithm for MSSC with lower bounds obtained from the
LP relaxation of the 0-1 SDP model. This algorithm obtains exact solutions
for fairly large data sets, i.e., n = 202 and k ≥ 9, with computing times
comparable with those obtained by the column generation method proposed
by du Merle et al. [15].

This paper is organized as follows. Section 2 revisits the formulation of the
problem and the column generation approach. In Section 3, we show how the
auxiliary problem can be solved for MSSC instances in the Euclidean plane
by taking advantage of its geometric properties. This is made by a connexion
with the Weber problem with limited distances [14]. Section 4 shows how
the geometric reasoning can be further exploited to solve auxiliary problems
arising from the resolution of MSSC instances in general Euclidean space.
Computational experiments for instances commonly used in the literature are
reported in Section 5. Finally, conclusions are given in Section 6.

2 Column generation algorithm revisited

A mathematical programming formulation of MSSC is as follows:

min
x,y

n
∑

i=1

k
∑

j=1

xij‖pi − yj‖2

subject to
k
∑

j=1

xij = 1, ∀i = 1, . . . , n

xij ∈ {0, 1}, ∀i = 1, . . . , n; ∀j = 1, . . . , k.

(1)

The n entities {o1, o2, . . . , on} to be clustered are at given points pi = (pr
i , r =

1, . . . , s) of R
s for i = 1, . . . , n; k cluster centers must be located at unknown

points yj ∈ R
s for j = 1, . . . , k; the norm ‖ · ‖ denotes the Euclidean distance

between the two points in its argument in the s-dimensional space under con-
sideration. The decision variables xij express the assignment of the entity oi

to the cluster j. We assume that the number of entities n is greater than k,
otherwise the problem is trivially solved by locating one cluster center at the
position of each entity.



5

If y is fixed, the condition xij ∈ {0, 1} can be replaced by xij ∈ [0, 1], since
in an optimal solution for the resulting problem each entity belongs to the
cluster with the nearest center. Besides, for a fixed x, first order conditions on
the gradient of the objective function require that at an optimal solution

n
∑

i=1

xij(y
r
j − pr

i ) = 0, ∀j, r, i.e., yr
j =

n
∑

i=1

xijp
r
i

n
∑

i=1

xij

, ∀j, r. (2)

Hence, the optimal cluster centers are always at the centroids of the clusters.
Partitioning problems in cluster analysis can also be mathematically for-

mulated by considering all possible clusters. Let us consider any cluster Ct for
which

ait =

{

1 if entity oi belongs to cluster Ct

0 otherwise,

and let us denote by yt the centroid of points pi such that ait = 1. Thus, the
cost ct of cluster Ct can be written as

ct =

n
∑

i=1

‖pi − yt‖2ait.

An alternative formulation for MSSC is then given by

min
z

∑

t∈T

ctzt

subject to
∑

t∈T

aitzt = 1, ∀i = 1, . . . , n
∑

t∈T

zt = k

zt ∈ {0, 1} ∀t ∈ T,

(3)

where T = {1, . . . , 2n − 1}. The zt variables are equal to 1 if cluster Ct is in
the optimal partition and to 0 otherwise. The first set of constraints state that
each entity belongs to one cluster, and the following constraint expresses that
the optimal partition contains exactly k clusters. Without loss of generality,
they can be replaced by

∑

t∈T

aitzt ≥ 1, ∀i = 1, . . . , n, and
∑

t∈T

zt ≤ k

This is a large linear partitioning problem with a size constraint, for which
the number of variables is exponential in the number n of entities. Therefore,
it cannot be explicitly written and solved in a straightforward way unless
n is small. The column generation method proposed in [15] works with a
reasonably small subset T ′ ⊆ T of the columns in (3), i.e., with a restricted
master problem. The method is combined with branch-and-bound in order
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to solve exactly (3) for medium size (about 100-200 entities) to fairly large
instances (1000 entities or more).

Resolution of (3) is iteratively done by augmenting the number of columns
in the restricted master problem until optimality is proved with the columns
at hand. Entering columns are found by solving an auxiliary problem, i.e.,
finding the list of entities of a cluster whose associated variable in (3) has
negative reduced cost. Since a standard column generation method for solving
the linear relaxation of the formulation (3) suffers from very slow convergence
due to high degeneracy, two strategies for stabilizing column generation [16]
were used and compared in [15]. That one for which the linear relaxation is
solved by an interior-point algorithm, i.e., the weighted version of the analytic
center cutting plane method (ACCPM) of Goffin, Haurie, and Vial [20], was
found to be the best.

Once the linear relaxation of the problem is solved, the integrality of the
obtained solution is checked (and often found to hold for small to medium size
problems with few clusters). Then, if the solution is not integer, branching is
needed. The branching rule used in [15] is the standard one, due to Ryan and
Foster [54], i.e., branching by imposing in one hand that two entities belong
to the same cluster and on the other hand that at most one of these entities
belongs to any given cluster.

2.1 Auxiliary problem

The biggest obstacle for an efficient exact resolution of the MSSC via column
generation is the difficulty of the auxiliary problem. The dual of the formula-
tion (3) is expressed by

max − kσ +
n
∑

i=1

λi

subject to

−σ +
n
∑

i=1

aitλi ≤ ct ∀t ∈ T

λi ≥ 0 i = 1, . . . , n
σ ≥ 0,

(4)

where the λi for i = 1, . . . , n and σ are dual variables associated with the
covering constraints and with the cardinality constraint.

Problem (4) is solved using a cutting plane method, starting with a relax-
ation and adding constraints as necessary. In classical Kelley’s cutting plane
method [33], cuts are generated at an extreme point of the relaxed dual formu-
lation. However, Kelley’s method is known to slow down considerably in the
presence of degeneracy [16]. ACCPM tackles this shortcoming by generating
cuts at an analytic center of the current dual feasible region (cf. [18]). In both
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cases, given dual values λ, σ, a violated cut is searched to be added to the
relaxed dual problem. The violation πt of a constraint is given by

πt = ct + σ −
n

∑

i=1

λiait.

Since we are interested in finding violated constraints πt < 0. The auxiliary
problem is then given by π∗ = mint πt. Although the enumeration of πt for all
t ∈ T is too expensive, the value of π∗ can be found by solving

π∗ = σ + min
yv∈Rs,v∈Bn

n
∑

i=1

(‖pi − yv‖2 − λi)vi. (5)

with yv denoting the centroid of points pi for which vi = 1. If π∗ < 0, then
the optimal solution v∗ to (5) is added as a cut to the relaxed dual problem
(in the primal, this is equivalent to adding a column to the restricted master
problem together with its associated primal variable). Otherwise, problem (4)
(or equivalently, problem (3)) is solved optimally.

From Huygens’ theorem (e.g., Edwards and Cavalli-Sforza [17]), which
states that the sum of squared distances from all entities of a given cluster
to its centroid is equal to the sum of squared distances between pairs of en-
tities of this cluster divided by its cardinality, problem (5) can be expressed
by

π∗ = σ + min
v∈Bn

n−1
∑

i=1

n
∑

j=i+1

‖pi − pj‖2vivj

n
∑

i=1

vi

−
n

∑

i=1

λivi

= σ + min
v∈Bn

n−1
∑

i=1

n
∑

j=i+1

(‖pi − pj‖2 − λi − λj)vivj −
n
∑

i=1

λivi

n
∑

i=1

vi

. (6)

It is a hyperbolic (or fractional) program in 0-1 variables with quadratic numer-
ator and linear denominator. This problem is solved in [15] by an adaptation to
binary variables of Dinkelbach’s algorithm [13]. This algorithm begins with a
temptative value for (6) then reduces the problem to unconstrained quadratic
0-1 optimization by multiplying both sizes by the denominator and regrouping
terms. If a positive value is obtained for the optimal solution of this last prob-
lem its corresponding value in (6) is computed and the procedure iterated. Its
most expensive step is the resolution of a sequence of unconstrained quadratic
0-1 programs, which are solved in [15] by a VNS heuristic until optimality
must be checked by a branch-and-bound algorithm.
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3 A geometric approach

The auxiliary problem (5) can be viewed as minimizing the sum of functions
equal to squared distances from the cluster center yv to each of the entities, but
with a limit on each of the distances, after which the corresponding function
does not increase anymore. Clearly, for a given location yv, vi is equal to 1
if ‖pi − yv‖2 ≤ λi, and to 0 otherwise. Geometrically, in the plane, this is
equivalent to the condition that vi = 1 if yv belongs to a disc with radius

√
λi

centered at pi, and 0 otherwise.
A branch-and-bound algorithm based on the vector v would consider im-

plicitly all 2n subproblems generated by branching on binary variables vi for
i = 1, . . . , n, while adding constraints ‖pi − yv‖2 ≤ λi and ‖pi − yv‖2 ≥ λi to
the resulting subproblems. However, the resulting problems pertain to D.C.
programming and are difficult to solve. Another possibility is to focus on com-
ponents vi of v which are equal to 1. We then consider subproblems of the
following type:

miny

∑

i∈S ‖pi − y‖2

subject to
‖pi − y‖2 ≤ λi ∀i ∈ S,

(7)

where S ⊆ {1, 2, . . . , n} is a non-empty set. Suproblems of type (7) are convex
programming problems. Proposition 1 shows that an optimal solution for (5)
is guaranteed to be an optimal solution to a subproblem of type (7).

Proposition 1 Let (y∗
v , v∗) be the optimal solution to (5). Then, y∗

v is the
optimal solution to a subproblem of type (7) with a set S for which ‖pi−y∗

v‖2 >
λi for all i /∈ S.

Proof Define S∗ as the index set of all points pi such that ‖pi − y∗
v‖2 ≤ λi.

Thus, for i /∈ S∗, ‖pi−y∗
v‖2 > λi. Now let y′ be the optimal solution for (7) with

S∗ and suppose that y∗
v is not the optimal solution for it. Since, ‖pi − y∗

v‖2 >
min{‖pi − y′‖2, λi} for all i /∈ S∗, the cost of (y′, v∗) is smaller than that of
(y∗

v , v∗) in (5), which is a contradiction. ⊓⊔

The auxiliary problem (5) still has another very important property which
states that at optimal solution (v∗v , v∗), y∗

v is at the centroid of points pi for
which v∗i = 1. Given a subproblem of type (7) with index set S, this implies
that if the centroid of the points pi such that i ∈ S is not a feasible solution,
then we conclude that the subproblem does not contain the optimal solution
to (5). In the plane, it amounts to say that the centroid must belong to the
intersection of all discs with index i ∈ S (which includes the particular case
where S is a singleton).

Let us define A as the set of discs whose boundaries intersect at least one
other boundary of a disc in two points, and B as the set of discs that do
not belong to A. They include isolated discs and nested discs (i.e., discs that
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contain another discs in their interior and discs that are entirely contained
into other ones). An useful result is shown by the following proposition:

Proposition 2 The number T of distinct regions which are intersection of
discs ‖pi − y‖2 ≤ λi is bounded by 2n(n − 1).

Proof The total number of points of intersection among discs in A is at most
|A|(|A|−1). Since each one of them can be associated with at most 4 different
regions, and as each of these regions contains at least two of these points,
the number of regions rA which are delimited by discs in A is bounded by
2|A|(|A| − 1).

Each one of the discs in B can delimit at most one region. Consequently,
the number of regions rB delimited by discs in B is equal to |B|.

Thus,

T = rA + rB ≤ 2|A|(|A| − 1) + |B|
≤ 2(|A| + |B|)(|A| + |B| − 1)

≤ 2n(n − 1)

⊓⊔

Proposition 2 implies that the number of subproblems of type (7) that
need to be solved in order to obtain an optimal solution to (5) is polynomially
bounded.

An algorithm was proposed in [14] for a similar problem in location theory,
i.e., the 1-center Weber problem with limited distances. The only difference
between this problem and (5) lies in the fact that Euclidean distances are used
instead of squared ones. The algorithm proceeds by considering all intersection
points between discs in the plane, and then solves, for each one of these points,
the subproblems of type (7) corresponding to the four possible regions which
are adjacent to the point. For instance, suppose that p is an intersection point
between discs centered at points pi and pj, then the four possible non-empty
index sets corresponding to regions for which p can be a vertex are formed
by: Sa = {ℓ : ‖pℓ − p‖2 ≤ λℓ, ℓ 6= i, j}; Sb = {i} ∪ Sa; Sc = {j} ∪ Sa; and
Sd = {i, j} ∪ Sa .

It appears that the algorithm of [14] implicitly assumes that regions de-
limited by discs in B either do not exist or can be discarded for evaluation.
However, this is not true either for the 1-center Weber problem with limited
distances or for (5), which makes the algorithm proposed in [14] incomplete.

Figure 1 exhibits an auxiliary problem configuration which appears after
11 iterations of our column generation algorithm while clustering the 10 points
described at the top of Figure 1 into 3 clusters. The shaded region (2) in the
figure corresponds to the optimal solution of the auxiliary problem while region
(1) is the solution provided if the algorithm of [14] is used instead.

Algorithm 1 presents the new algorithm obtained after completing the
algorithm of [14] in order to consider sets S corresponding to regions delimited
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p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

690 190 823 73 782 338 287 410 769 962
166 887 695 125 979 894 340 263 768 831√

λ 382.78 360.47 203.34 379.22 208.24 168.79 211.61 198.70 138.14 332.88

1
2

Fig. 1 Configuration of convex regions experimentally obtained

by discs of B. This algorithm requires O(n3) time since there are O(n2) possible
intersection points and step 4 takes O(n) time per subproblem. Additional
operations due to steps 6-8 are performed in O(n2) time.

Algorithm 1

1. Enumerate all intersection points of pairs of convex regions in the plane as
well as all discs whose boundary does not intersect any other one. Let L1

and L2 be the corresponding lists.
2. For each intersection point p ∈ L1 defined by discs centered at points pi

and pj , find the set S of all k such that k 6= i, j and ‖pk − p‖2 ≤ λk.
3. Consider four sets: S, S ∪ {i}, S ∪ {j}, and S ∪ {i, j}.
4. Solve subproblems of type (7) defined by each of these sets.
5. Update the best solution if an improving one is found.
6. For each disc in L2 find the set S′ composed of its own index and the

indices of all discs containing it.
7. Solve subproblems of type (7) defined by each S′.
8. Update the best solution if an improving one is found.
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The simple following condition holds if two discs associated to points pi

and pj intersect

‖pi − pj‖ ≤
√

λi +
√

λj ,

one disc being contained in the other if

‖pi − pj‖ ≤ |
√

λi −
√

λj |.

Based on these conditions, an acceleration procedure for Algorithm 1 is to
build for each point pi, i = 1, . . . , n a list of non-decreasing distances to any
other point. In step 1 of Algorithm 1, each point pi is tested in turn with all
other points pj for j = 1, . . . , n, such that j > i, in order to know if their
respective discs intersect. Indeed these points can be considered in the order
given by the sorted list of pi and the search for intersections halted as soon as

‖pi − pj‖ >
√

λi +
√

λmax,

where λmax = max{λi} for i = i + 1, . . . , n. Note that exactly the same test
can be used in order to speed up step 2 of the algorithm.

3.1 Branching

The classical branching rule is applied whenever branching is needed to solve
(3). It consists on finding two rows i1, i2 such that there are two columns t1
and t2 with fractional values at the optimum and such that ai1t1 = ai2t1 = 1
and ai1t2 = 1, ai2t2 = 0. Then, constraints are introduced in the auxiliary
problem of both subproblems in the form (i) vi1 = vi2 for one branch, and
(ii) vi1 + vi2 ≤ 1 for the other one. Problem (5) in the presence of branching
constraints can be expressed as

min

n
∑

i=1

(‖pi − yv‖2 − λi)vi

s.t. vi + vj ≤ 1 for (i, j) ∈ I1 (8)

vi = vj for (i, j) ∈ I2

vi ∈ B for i = 1, . . . , n

where I1, I2 are the index sets of pairs of entities involved in constraints of
form (i) and (ii), respectively.

Algorithm 1 is not able to solve problem (8), since optimal solutions may
now be associated to index sets which do not correspond directly to a region in
the plane. In fact, Proposition 1 is no longer valid in the presence of branching
constraints. A very simple example consists of two points pi, pj whose discs
of radius

√
λi and

√

λj do not intersect while a constraint states that points
pi and pj must be together. In this case, none of the index sets S scanned by
Algorithm 1 is able to provide a feasible solution to the problem.
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Fortunately, Proposition 3 below shows that Algorithm 1 can be slightly
modified in order to solve problem (8) exactly. Let us first define three index
sets associated with any vector yv

– S1(yv) is the index set of points pi for which ‖pi−yv‖2 ≤ λi, and for which
(i, j) ∈ I1 or (i, j) ∈ I2 with j ∈ S1(yv) ∪ S2(yv);

– S2(yv) is the index set of points pi for which ‖pi−yv‖2 > λi, and for which
(i, j) ∈ I1 with j ∈ S1(yv);

– S3(yv) is the index set of points pi for which ‖pi−yv‖2 ≤ λi, and such that
i /∈ S1(yv).

Proposition 3 Let (y∗
v ,v∗) be the optimal solution of (8) and let v̄∗ = (vi | i ∈

S1(y
∗
v) ∪ S2(y

∗
v)). Then, (y∗

v , v̄∗) is the optimal solution of a subproblem given
by

min
∑

i∈S1∪S2

‖pi − y‖2vi +
∑

i∈S3

‖pi − y‖2

s.t. ‖pi − y‖2vi ≤ λi ∀i ∈ S1

‖pi − y‖2 ≤ λi ∀i ∈ S3 (9)

vi ∈ B ∀ ∈ S1 ∪ S2

v ∈ X

y ∈ R
s

with sets S1, S2, S3 ⊆ {1, . . . , n} and where X is the polyhedron of branching
constraints.

Proof From the definition of S1(y
∗
v), S2(y

∗
v) and S3(y

∗
v), ‖pi − y∗

v‖ > λi for all
i /∈ S1(y

∗
v) ∪ S2(y

∗
v) ∪ S3(y

∗
v).

Now let (y′
v, v̄

′) be the optimal solution to (9) regarding S1 = S1(y
∗
v),

S2 = S2(y
∗
v) and S3 = S3(y

∗
v), and suppose that the optimal solution of (8)

(y∗
v , v̄∗) is not optimal for (9). Then, we can construct v′ as:

– v′i = v̄′i, ∀i ∈ S1 ∪ S2;
– v′i = 1, ∀i ∈ S3;
– v′i = 0, otherwise;

such that the cost of (y′
v, v′) is smaller than that of (y∗

v , v∗) in (8), which is a
contradiction. ⊓⊔

The importance of Proposition 3 lies in the fact that, given the optimal y∗
v ,

the optimal subproblem of type (9) with sets S1 = S1(y
∗
v), S2 = S2(y

∗
v) and

S3 = S3(y
∗
v) is by definition associated to the region in the plane originated

from the intersection of discs ‖pi−y∗
v‖2 ≤ λi. This fact implies that the number

of subproblems of type (9) which need to be considered in order to solve (8)
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is polynomially bounded. However, (9) is a problem with binary variables for
which an enumeration method of resolution is needed.

Algorithm 1 can be modified to solve subproblems of type (9). For each
region in the plane, sets S1, S2 and S3 are determined to form a subproblem
of type (9) (remark that any location y in a given region of the plane defines
the same sets S1(y), S2(y) and S3(y)). Then, the subproblem is solved by a
branch-and-bound procedure. Note that whenever S1, S2 = ∅, subproblem (9)
turns out to be equivalent to subproblem (7), and therefore, enumeration is
not needed.

Decisions in the branch-and-bound algorithm are made by presence-absence
dichotomy on variables vi, for ∀i ∈ S1 ∪ S2. Lower bounds are calculated in
each node as the difference of two values:

1. the cost of the node solution, which is calculated with respect to the cen-
troid of points pi for which decision vi = 1 is fixed;

2. the sum of the prices λi of the free variables vi.

When (8) contains a few branching constraints, sets S1 and S2 have small
cardinality by definition. So, the given branch-and-bound method to solve (9)
performs very well in practice. In the presence of a larger number of branching
rules, solving (9) becomes a more difficult task. To this purpose, we remark
that (9) can be reformulated exactly (in the sense of [39]) by introducing
parameters:

Mi ≥ max
j

‖pi − pj‖2 ∀i ∈ S1 ∪ S2,

decision variables:
ωi ∈ [0, Mi] ∀i ∈ S1 ∪ S2,

and constraints:

‖pi − y‖2 ≤ ωi + (1 − vi)Mi ∀i ∈ S1 ∪ S2

to (9). We then replace constraints ‖pi − y‖2vi ≤ λi ∀i ∈ S1 by

‖pi − y‖2 ≤ λi + (1 − vi)Mi ∀i ∈ S1,

and the terms ‖pi − y‖2vi for i ∈ S1 ∪ S2 in the objective function by ωi. We
thus obtain the reformulated problem:

min
∑

i∈S1∪S2

ωi +
∑

i∈S3

‖pi − y‖2

s.t. ‖pi − y‖2 ≤ λi + (1 − vi)Mi ∀i ∈ S1

‖pi − y‖2 ≤ ωi + (1 − vi)Mi ∀i ∈ S1 ∪ S2

‖pi − y‖2 ≤ λi ∀i ∈ S3 (10)

vi ∈ B ∀i ∈ S1 ∪ S2

v ∈ X

y ∈ R
s

ωi ∈ [0, Mi] ∀i ∈ S1 ∪ S2
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which is a convex MINLP, for which there exist practically efficient algorithms
(e.g. [8,38]). We also remark that its continuous relaxation is a continuous
NLP which can be solved in polynomial time [63].

Finally, note that Algorithm 1 can be used without modifications to provide
approximate solutions to (8). This can be done up to the moment that the
exact resolution of (8) is required to prove that (3) was in fact optimally solved.

4 Generalization to the Euclidean space

Let us consider a graph G = (N, E) for which there is a node ni ∈ N corre-
sponding to each point pi, for i = 1, . . . , n. Besides, an edge eij exists in G if
and only if

‖pi − pj‖ ≤
√

λi +
√

λj ,

i.e., eij ∈ E if and only if the hyperspheres G centered at pi and pj with radius√
λi and

√

λj intersect.
The following result allows us to generalize the geometric approach in the

plane by considering the intersection graph of hyperspheres centered at the
points pi, for i = 1, . . . , n.

Proposition 4 If a solution (y∗
v , v∗) is optimal to (5) then the elements of

the set N∗ = {ni|v∗i = 1} form a clique in G.

Proof Let us suppose that (y∗
v , v∗) is the optimal solution of (5) and that the

elements of N∗ do not form a clique in G. Hence, there are two nodes ni, nj in
N∗ for which eij /∈ E, i.e., the hyperspheres centered at pi and pj with radius√

λi and
√

λj do not intersect. In such a case, y∗
v is certainly located outside

at least one of these hyperspheres. Suppose ‖pi − y∗
v‖ >

√
λi, then a reduction

in the cost of the solution is obtained by setting v∗i = 0, which contradicts the
optimality of (y∗

v , v∗). ⊓⊔

The number of distinct regions resulting from the intersection of hyper-
spheres is not polynomially bounded in n only. However, Proposition 4 allows
to better exploit (6) above. Indeed it can be written as

σ + min
vi∈{0,1}

n−1
∑

i=1

n
∑

j=i+1

(d2
ij − λi − λj)vivj −

n
∑

i=1

λivi

n
∑

i=1

vi

,

where dij represents the Euclidean distance between the entities associated
to variables vi and vj . Coefficients d2

ij − λi − λj of the product vivj can be

made arbitrarily large in (6) if dij >
√

λi +
√

λj due to Preposition 4, since
vi = vj = 1 does not occur in the optimal solution.
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4.1 Branching

As proposed in [15], branching constraints of type vi = vj can be added to
the auxiliary problem (6) by reducing by one the number of its variables and
updating coefficients accordingly. In the case of branching constraints of type
vi +vj ≤ 1, it suffices to set coefficient d2

ij −λi−λj to an arbitrary large value.
Thus, the auxiliary problem is expressed by

σ + min
v

i′
∈{0,1}

n′−1
∑

i′=1

n′

∑

j′=i′+1

(d2
i′j′ − wj′λi′ − wi′λj′ )vi′vj′ −

n′

∑

i′=1

(wi′λi′ − d2
i′i′)vi′

n′

∑

i′=1

wi′vi′

,

(11)
where wi′ is the number of variables merged in variable vi′ . Note that the form
of the auxiliary problem is not changed. It is still a fractional program in 0-1
variables with quadratic numerator and linear denominator.

An observation must be made when setting coefficients based on the in-
tersection graph of hyperspheres in the presence of branching constraints of
type vi = vj . Suppose entities oi and oj for which there is a constraint stating
that vi = vj . Consequently, variables vi and vj are merged together in a single
variable vi′ of (11). Let us consider now vk′ the variable associated to entity
ok, then coefficient d2

i′k′ − λi′ − 2λk′ is set to an arbitrary large value in (11)
only if

dik >
√

λi +
√

λk and djk >
√

λj +
√

λk,

i.e., only if

di′k >
√

λi′ + 2
√

λk′ .

This can be generalized to any pair of variables vi′ , vj′ in the follwong manner.
If

di′j′ > wj′

√

λi′ + wi′

√

λj′

then d2
i′j′ − wj′λi′ − wi′λj′ can be set to an arbitrary large value in (11).

4.2 Solving by cliques

Moreover, Proposition 4 permits to exactly solve the auxiliary problem by
directly searching for cliques in G. Algorithm 2 presents the steps to compute
the optimal solution to (11) from the intersection graph of hyperspheres G =
(N, E).

Algorithm 2

1. While G is not empty
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(a) Find a vertex ni with smallest degree in G.
(b) Consider Gi = (N i, Ei) the subgraph composed by ni and its adjacent

vertices.
(c) Solve (11) for variables vℓ such that nℓ ∈ Gi.
(d) Save the clique obtained if it is the best found so far.
(e) Remove ni and its adjacent edges from G.

2. Return the best clique found.

Clearly, Algorithm 2 is more efficient for sparse graphs G than for dense
ones as subproblems (11) solved in (c) tend to have less variables Indeed, the
sparsity of G depends on the dual values λ, which tends to decrease with
the number of clusters. This is due to the fact that when k is large, entities
are likely to be close to their second-closest centroids in the optimal solution.
Consequently, a second copy of an entity has little impact on the objective
function value which means that the values λ of the dual variables are small.

5 Computational results

Computational experiments were performed on a AMD 64 bits platform with
a 2 GHz clock and 10 Gigabytes of RAM memory. The algorithms were im-
plemented in C++ and compiled by gcc 3.4. Unconstrained 0-1 quadratic
programs are solved by the algorithm proposed in [23] which was observed to
perform better than CPLEX 10.1. Eleven real-world data sets were used in
our numerical experiments. They are briefly listed in Table 1 together with
references to where more information about them can be found.

Table 1 List of data sets

Data sets n s

Ruspini’s data [53] 75 2
Grötschel and Holland’s 202 cities coordinates [21] 202 2
Grötschel and Holland’s 666 cities coordinates [21] 666 2
Reinelt’s hole-drilling data [52] 1060 2
Padberg and Rinaldi’s hole-drilling data [49] 2392 2
Fisher’s Iris [5] 150 4
Glass identification [5] 214 9
Body measurements1 [29] 507 5
Indian Telugu vowel sounds [50] 871 3
Concrete compressive strength [5,66] 1030 8
Image segmentation [5] 2310 19
1the attributes used are: weight, height, chest girth, waist girth and hip girth

For all experiments reported here, initial solutions are obtained by j-
means [24]. They are used to add initial cuts to model (4) as well as to estimate
initial dual bounds (c.f. [15]) which may be adjusted throughout execution if
necessary.
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5.1 Results in the plane

In this subsection we compare the column generation of [15], denoted accpm-

vns-qp, with two improved ones, i.e., (i) accpm-a1 which uses Algorithm 1 to
exactly solve all auxiliary problems, and (ii) which uses one iteration of heuris-
tic VNS (which reachs the largest neighboord once) to provide approximate
solutions to auxiliary problems until optimality must be proved by Algorithm
1. Note that it is not worthwhile to use VNS for many iterations since Algo-
rithm 1 is polynomially bounded in O(n3).

The results are also compared to those of two other methods proposed
in the literature, i.e., the repetitive branch-and-bound algorithm (rbba) of
Brusco [9] and the best branch-and-cut SDP-based algorithm (bb-sdp) of [2].

Tables 2–7 show results for data sets in the plane. They present in the
first column the number k of clusters, and optimal solution values fopt are
reported in the second column. The values associated to each algorithm refer to
their respective CPU times (in seconds) spent on solving exactly the instance.
Finally, a last column is included to present gap values between upper and
lower bounds obtained at the root node, denoted UB0 and LB0 respectively,
which are calculated as (UB0 − LB0)/LB0. The letter ’i’ indicates that no
initial gap exists, i.e., the problem is already solved by the accpm algorithms
at the root node, without branching. Otherwise, the number of branch-and-
bound nodes is given in parenthesis.

Table 2 shows that all methods perform well or very well for Ruspini’s data
set with n = 75 entities. Algorithm rbba is particularly efficient for small values
of k, while its performance quickly deteriorates as k increases. This is due to
the fact that the number of branchs in RBBA is O(kn). For k ≥ 5, algorithms
accpm-a1 and accpm-vns-a1 are always faster than the other methods.

Table 2 Results for Ruspini data set with 75 entities

k fopt rbba bb-sdp accpm-vns-qp accpm-vns-a1 accpm-a1 gap(%)
2 0.893378e+05 0.01 3.56 0.55 0.24 0.39 i
3 0.510634e+05 0.28 8.34 0.57 0.20 0.42 i
4 0.128810e+05 0.01 0.48 0.53 0.14 0.07 i
5 0.101267e+05 0.17 0.57 0.59 0.16 0.10 i
6 0.857541e+04 21.97 1.03 0.91 0.27 0.18 i
7 0.712620e+04 181.90 0.98 1.12 0.28 0.18 i
8 0.614964e+04 2921.93 7.27 1.04 0.44 0.23 0.01(3)
9 0.518165e+04 > 1h 2.87 1.20 0.30 0.17 i
10 0.444628e+04 > 1h 2.39 1.17 0.26 0.12 i

Table 3 presents results obtained in less than 12 hours of CPU time for the
Grötschel and Holand’s data set with n = 202. Algorithm rbba is not able to
solve even the problem with k = 2 clusters in less than 12 hours. So, we do not
refer to its results in the subsequent tables. As empirically observed in [2], the
performance of algorithm bb-sdp deteriorates as k decreases, in contrast with
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algorithm rbba. It is unable to solve problems for k ≤ 8 in less than 12 hours.
It also appears that it is better to approximately solve the auxiliary problems
by VNS up to k = 15. For k ≥ 20, the sparsity of the discs in the plane,
which is implied by small dual values, makes Algorithm 1 more efficient than
VNS to solve the auxiliary problems. So, algorithm accpm-a1 performs better
than accpm-vns-a1 for these values of k. The sparsity effect also appears to
be advantageous to the unconstrained 0-1 quadratic programming solver since
the algorithm is faster for instances with larger number of clusters.

Table 3 Results for Grötschel and Holland’s data set with 202 entities

k fopt bb-sdp accpm-vns-qp accpm-vns-a1 accpm-a1 gap(%)
2 0.234374e+05 > 12h > 12h 19.85 61.54 i
3 0.153274e+05 > 12h > 12h 19.64 79.65 i
4 0.114556e+05 > 12h > 12h 21.87 82.89 i
5 0.889490e+04 > 12h > 12h 15.62 63.95 i
6 0.676488e+04 > 12h > 12h 26.33 69.97 i
7 0.581757e+04 > 12h > 12h 33.79 85.56 i
8 0.500610e+04 > 12h 1526.63 48.80 65.56 i
9 0.437619e+04 48885.38 1334.06 33.79 47.87 i
10 0.379249e+04 23680.84 496.85 16.42 35.84 i
15 0.232008e+04 39756.23 41.49 18.43 30.71 i
20 0.152351e+04 3839.77 59.90 18.87 17.75 i
25 0.108556e+04 1915.05 33.95 18.24 11.05 i
30 0.799311e+03 1060.77 27.03 17.78 5.96 i

Regarding the results for the Grötschel and Holand’s data set with n = 666
entities presented in Table 4, a CPU time limit of 1 day was established, which
proved not to be enough for algorithms bb-sdp and accpm-vns-qp. Therefore,
the results of these algorithms will not be reported from now on since they
demand too much time to exactly solve instances of the largest data sets.
Table 4 shows that algorithm accpm-a1 is faster than accpm-vns-a1 from k ≥ 4.

Table 4 Results for Grötschel and Holland’s data set with 666 entities

k fopt accpm-vns-a1 accpm-a1 gap(%)
2 1.754012e + 06 1179.68 2723.48 i
3 0.772707e + 06 1525.10 1758.92 i
4 0.613995e + 06 3585.39 3290.45 i
5 0.485088e + 06 3277.55 2410.83 i
6 0.382676e + 06 3162.39 1909.23 i
7 0.323283e + 06 3082.65 1909.49 i
8 0.285925e + 06 4314.00 2469.90 i
9 0.250989e + 06 4134.31 2162.06 i
10 0.224183e + 06 3131.41 2108.38 i
20 0.106276e + 06 10504.30 4819.84 0.00(3)
50 0.351795e + 05 6161.84 447.48 i
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The results in Table 5 show that accpm-a1 is faster than accpm-vns-a1

from k ≥ 7. The algorithms appear to be scalable for larger values of k due
to increasing sparsity of discs in the auxiliary problems. It is worthwhile to
mention that some of the state-of-art heuristics proposed in [11,24,36,37,47,
59] did not report the optimal solutions found here for the Reinelt’s drilling
data set with n = 1060 entities and k = 120, 150. To the best of our knowledge,
this is the first time that such solutions are reported in the literature.

Table 5 Results for Reinelt’s drilling data set with 1060 entities

k fopt accpm-vns-a1 accpm-a1 gap(%)
2 0.983195e + 10 7417.92 13657.78 i
3 0.670578e + 10 17897.19 30016.73 i
4 0.475197e + 10 13429.61 26921.27 i
5 0.379100e + 10 15966.45 26049.23 i
6 0.317701e + 10 15128.71 19970.91 i
7 0.270386e + 10 39966.71 22289.93 i
8 0.226315e + 10 24863.21 19942.57 i
9 0.198104e + 10 21810.90 16438.40 i
10 0.175484e + 10 349793.97 56625.07 0.01(3)
100 0.963178e + 08 17017.10 496.85 i
110 0.848396e + 08 14930.74 373.54 i
120 0.755366e + 08 8165.25 393.21 i
130 0.675542e + 08 8296.29 301.77 i
140 0.611196e + 08 13886.32 299.75 i
150 0.559082e + 08 4998.90 292.37 i
200 0.361572e + 08 4234.54 229.74 i

Finally, algorithms accpm-vns-a1 and accpm-a1 were tested for Padberg and
Rinaldi’s data set with n = 2392 entities. From the geometric interpretation
of the auxiliary problem corroborated by the results presented in the previous
tables, we concluded that algorithm accpm-vns-a1 is more efficient for instances
with small number of clusters. Therefore, Table 6 presents only the results
of accpm-vns-a1 for 2 ≤ k ≤ 10. Note that these instances require a lot of
computing time to be exactly solved (e.g. more than one week was necessary
to solve the instance with k = 9).

Table 6 Results for Padberg and Rinaldi’s data set with 2392 entities for 2 ≤ k ≤ 10

k fopt accpm-vns-a1 gap(%)
2 0.296723e + 11 180581.30 i
3 0.212012e + 11 393564.16 i
4 0.141184e + 11 298724.00 i
5 0.115842e + 11 416314.64 i
6 0.948900e + 10 218403.68 i
7 0.818180e + 10 565361.77 i
8 0.701338e + 10 482525.96 i
9 0.614600e + 10 663595.15 i
10 0.532491e + 10 478613.29 i
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Table 7 presents the results obtained by algorithm accpm-a1 for the Pad-
berg and Rinaldi’s data set with n = 2392 entities using large values of k. For
these instances, approximately 3-5% of the total computing time is spent solv-
ing the auxiliary problems, revealing that at this point (≈ 2000 entities) the
resolution of the restricted master problem by ACCPM is the most expensive
step of the algorithm. Note that the largest CPU time reported in Table 7 is
of approximately 29 hours for k = 150.

Table 7 Results for Padberg and Rinaldi’s data set with 2392 entities for large values of k

k fopt accpm-a1 gap(%)
100 0.404498e + 09 21528.56 i
150 0.245685e + 09 106160.43 0.01(7)
200 0.175431e + 09 18918.16 i
250 0.132352e + 09 16460.46 i
300 0.101568e + 09 35939.04 0.00(3)
350 0.804783e + 08 8131.32 i
400 0.657989e + 08 9336.05 i

5.2 Results in general Euclidean space

Two other algorithms were implemented in order to check the computational
effect of the geometric arguments in general Euclidean space. They are: (i)
accpm-vns-qp+, which is similar to accpm-vns-qp proposed in [15] except that
some coefficients are modified to arbitrarily large values in the auxiliary prob-
lem following the geometrical arguments presented in Section 4, and (ii) accpm-

vns-a2, which uses one iteration of VNS to obtain approximate solutions to
auxiliary problems until optimality is certified by Algorithm 2.

Table 8 shows CPU times spent by the different algorithms in order to
solve exactly instances of the Fisher’s Iris data set with n = 150 entities in
s = 4 dimensions. The results shows that again rbba is very efficient for small
number of clusters, though its performance deteriorates very fast as k increases.
Moreover, except for k = 2, algorithm accpm-vns-qp+ performs better than
accpm-vns-qp. Finally, since the auxiliary problems are small for this data set
(n = 150), Algorithm 2 is not very advantageous for solving them. In fact, for
the instance with k = 2, algorithm accpm-vns-a2 is much less efficient than the
others.

The results in Table 9 give CPU times spent on solving exactly instances
of the Glass identification data set with n = 214 in s = 9 dimensions. We
notice that instances with k ≤ 10 cannot be solved in less than 1 day of
computation. In particular, algorithm rbba takes more than 1 day to solve
even its most favourable case with k = 2. Therefore, the next tables will not
refer to its results. Likewise, results of algorithm bb-sdp will not be reported
in the following tables since it is clearly outperformed by ACCPM algorithms.
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Table 8 Results for Fisher’s Iris with 150 entities in 4 dimensions

k fopt rbba bb-sdp accpm-vns-qp accpm-vns-qp+ accpm-vns-a2 gap(%)
2 0.152348e+03 0.05 169.44 251.04 486.62 1958.06 i
3 0.788514e+02 2.10 283.24 83.09 19.88 19.55 i
4 0.572285e+02 136.29 240.19 138.85 32.71 17.22 i
5 0.464462e+02 1699.75 145.54 42.00 6.52 8.80 i
6 0.390400e+02 > 12h 147.51 15.50 11.70 10.47 i
7 0.342982e+02 > 12h 742.83 10.50 7.83 6.65 i
8 0.299889e+02 > 12h 108.73 7.82 6.41 6.74 i
9 0.277861e+02 > 12h 70.04 6.44 6.11 7.48 i
10 0.25834e+02 > 12h 59.66 8.51 8.38 9.03 i

Table 9 Results for the Glass identification data set with 214 entities in 9 dimensions

k fopt bb-sdp accpm-vns-qp accpm-vns-qp+ accpm-vns-a2 gap(%)
15 0.155766e+03 > 1 day > 1 day 37714.82 7983.52 i
20 0.114646e+03 > 1 day > 1 day 30065.43 13365.79 0.02(3)
25 0.842515e+02 > 1 day > 1 day 24568.26 19011.65 0.00(3)
30 0.632478e+02 49831.18 269.36 52.80 39.50 i
35 0.492386e+02 25629.86 22.60 16.33 18.87 i
40 0.394983e+02 6272.84 27.87 16.85 18.32 i
45 0.320395e+02 17437.27 43.27 29.37 32.21 0.00(3)
50 0.267675e+02 10032.09 21.69 20.51 21.46 i

From the results om Table 9, algorithm accpm-vns-qp+ outperforms accpm-

vns-qp in all tested instances. Since this is also true for the computational
experiments on the other data sets, we will not report the results of accpm-

vns-qp from now on. This fact confirms the benefits derived from the geometric
interpretation of the auxiliary problem. Moreover, algorithm accpm-vns-a2 was
more efficient than accpm-vns-qp+ for the instances with the most difficult
auxiliary problems (i.e., 15 ≤ k ≤ 30), showing that solving (11) by isolating
cliques is a good strategy in these cases.

Taking into account the increasing computing times spent by VNS as the
value of n increases, one may ask if it would not be better to solve exactly
the auxilary problems at each iteration of ACCPM. In order to answer this
question, two other algorithms are considered for comparison in Tables 10, 11,
12. They differ only in the way that auxiliary problems are dealt with. While
accpm-qp+ always uses Dinkelbach’s algorithm to solve the auxiliary problems,
accpm-a2 uses Algorithm 2 instead, i.e., using Dinkelbach’s algorithm on each
clique.

From Table 10, we notice that the algorithms that solve auxiliary problems
by cliques (i.e., accpm-vns-a2 and accpm-a2) perform usually better than their
counterparts that solve the auxiliary problems by considering the whole inter-
section graph of hyperspheres (accpm-vns-qp+ and accpm-qp+, respectively).
In particular accpm-a2 is the best algorithm from k ≥ 60. The same conclu-
sions can be extended to Tables 11 and 12, except that for these larger data
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Table 10 Results for the Body measurements data set with 507 entities in 5 dimensions

k fopt accpm-vns-qp+ accpm-qp+ accpm-vns-a2 accpm-a2 gap(%)
30 0.195299e+05 79819.81 > 2 days 12433.74 > 2 days 0.00(3)
40 0.162318e+05 3981.92 25196.16 3954.62 13396.05 0.00(3)
50 0.139547e+05 26991.10 > 2 days 22945.66 67178.35 0.04(11)
60 0.121826e+05 2847.94 3284.43 2242.53 1860.72 0.00(3)
70 0.107869e+05 2606.16 2421.93 2534.06 1329.71 0.00(3)
80 0.964873e+04 5565.30 5026.03 6191.68 2705.14 0.01(5)

sets accpm-a2 is very often the best algorithm for the instances that can be
exaclty solved within a CPU time limit of 2 days.

Table 11 Results for the Indian Telugu vowel sounds data set with 871 entities in 3 di-
mensions

k fopt accpm-vns-qp+ accpm-qp+ accpm-vns-a2 accpm-a2 gap(%)
40 0.636653e+07 10232.80 8209.48 i
50 0.524020e+07 14304.07 4314.11 2450.54 i
60
70 0.375286e+07 7439.66 6524.48 1726.57 0.00(3)
80 0.324801e+07 2538.37 2320.29 2389.09 323.95 i
90 0.285069e+07 2227.94 1929.68 1980.14 282.73 i
100 0.251058e+07 5717.78 1606.62 5054.39 195.53 0.00(3)

Table 12 Results for the Concrete compressive strength data set with 1030 entities in 9
dimensions

k fopt accpm-vns-qp+ accpm-qp+ accpm-vns-a2 accpm-a2 gap(%)
50
60 0.288107e+07 > 2 days > 2 days 93018.98 114291.96 i
70 0.247893e+07 32524.80 33373.40 8671.61 2825.70 i
80 0.215791e+07 5622.55 7538.82 5717.15 1405.62 i
90
100 0.168778e+07 3330.97 3530.60 3773.60 380.75 i

We have still obtained results for a larger data set consisting of 2310 entities
in 19 dimensions taken from [5] by means of algorithm accpm-a2. The results
presented in Table 13 shows that instances with a ratio of n/k ≈ 10 can
be exactly solved in a reasonable amount of time by the column generation
algorithm, which is a new record for benchmark data sets of this magnitude
(n = 2310) and this dimension (s = 19).
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Table 13 Results for the Image segmentation data set with 2310 entities in 19 dimensions

k fopt accpm-a2 gap(%)
230
250 0.421018e+06 10864.30 i
300 0.338072e+06 25693.02 0.00(3)
350 0.276957e+06 7036.09 i
400 0.230310e+06 99554.55 0.00(11)
450 0.195101e+06 66655.32 0.00(7)
500 0.157153e+06 36772.86 0.01(5)

5.3 Comparison of approaches in the plane and in general Euclidean space

Finally, we compare our approach in the plane with that tailored for problems
in general Euclidean space. Since the superiority of the approach in the plane
for a small number of clusters is obvious, we decided to focus this comparison
on instances with large values of k. The best algorithm regarding each one of
the approaches is then selected for comparison, i.e., accpm-a1 from the class
of algorithms which tackles exclusively instances in the plane and accpm-a2

from the class of algorithm dealing with instances in general Euclidean space.

In the graph of Figure 2, we plot the percentage of CPU time spent by
algorithm accpm-a2 in excess of the CPU time spent by algorithm accpm-a1

when solving different instances of the Reinelt’s planar data set with 1060
entities.
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Fig. 2 Percentage of CPU time spent by algorithm accpm-a2 in excess of the CPU time
spent by algorithm accpm-a1 for instances of the Reinelt’s planar data set with 1060 entities



24

From the graph, we notice that accpm-a1 tends to be increasingly better
than accpm-a2 as k augments, though the computing times are smaller for
instances with a large number of clusters.

6 Conclusions

MSSC is a central problem in cluster analysis. Numerous heuristics as well as
a variety of exact algorithms have been proposed for its solution. These last
ones include the column generation algorithm of du Merle et al. [15] which is
the point of departure of this paper. The bottleneck step of that algorithm
appeared within the auxiliary problem and was the solution of unconstrained
0-1 quadratic programs. Based on geometric reasoning, a different and more
efficient way of solving this auxiliary problem is proposed in this paper. It ex-
ploits systematically the property that far apart points will not belong to the
same cluster. This property is made precise by proving that it is the case when
their mutual distance exceeds the sum of square roots of the corresponding
dual variables at the current iteration. Geometrically, solutions in the plane
correspond to a quadratic number of regions which are determined by a O(n2)
algorithm. This leads to solution of the auxiliary problem in O(n3), at least
when there is little branching in the master problem which appears to be most
often the case. Finding all similar regions in a higher dimensional space would
be time consuming. However, the way to solve the auxiliary problem can still
be improved by replacing by a large value coefficients in the unconstrained 0-1
quadratic programs corresponding to far apart entities. This has led to sub-
stantially increase the size of instances solved exactly. In the plane, instances
with n up to 2392 entities and k ≥ 2 have been solved exactly most of them
for the first time. The increase in the size of the instances exactly solved has
thus been multiplied by more than 10. In general Euclidean space problems
with up to n = 2310 and k = 250 clusters in 19 dimensions have been solved.
However, it appears that the number of entities per cluster should be small,
i.e. n/k roughly equal to 10, in order to solve such instances in reasonable
time.
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