
Computational Intelligence, Volume ??, Number 000, 20??

UNIVERSALITY AND PREDICTION IN BUSINESS RULES

OLIVIER WANG

CNRS LIX, Ecole Polytechnique and IBM France
IBM France, 9 rue de Verdun, 94250 Gentilly, France

CHRISTIAN DE SAINTE MARIE, CHANGHAI KE
IBM France, 9 rue de Verdun, 94250 Gentilly, France

LEO LIBERTI
CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

Business Rules have the form 〈if condition then action〉. A Business Rules program, which can be executed
by means of an interpreter, is a sequence of Business Rules. Motivated by IBM use cases, we look at the problem
of setting parameter values in a given Business Rules program so it will achieve a given average goal over all
possible instances. We explore the following fundamental question: is there a general learning algorithm which
addresses this issue? We prove the answer is negative. On the positive side, we derive operational semantics for
Business Rules programs. As a proof of concept, we show empirically that these can be used to detect potential
non-termination situations.

Key words: Business rules; Statistical learning; Operational semantics; Turing-completeness.

1. INTRODUCTION
Rules are among the oldest and best studied knowledge representation paradigms for

automated reasoning (Brachman and Levesque, 2004). Business Rules (BR) are a newer
concept, devised to allow corporations to digitally encode business process knowledge into
a centralized storage and into a manageable form.

A more complete definition, given in natural (rather than formal) language, is given in
the BR manifesto (Business Rules Group, 2017). The BR manifesto says, among other things,
that BRs are sentences in natural language, aimed at business people, but susceptible to be
parsed by a computer system into a BR management system. Their goal is to encode business
processes into a set of easily and automatically managed digital objects.

The fact that most BR Management Systems (BRMS) are also able to execute those
rules as if they were computer programs means that BRs, written by business people in
natural language, are eventually turned into formal sentences, as no computer-executed code
can ever be ambiguous at the machine level.

Here, we study the problem of parametrizing BRs so their output will conform to a
certain prescribed average behaviour. This is necessary when business strategies must be
constrained at the global level (by choice or regulatory necessity) without unduly influencing
any of the local business processes encoded by BRs. We show that it is impossible to find a
single computer algorithm which can solve this problem for any given BR, but we derive an
operational semantics for proving formal properties for some BR subsets.

E-Mail:olivier.wang@polytechnique.edu
E-Mail:{csma,changhai.ke}@fr.ibm.com
E-Mail:liberti@lix.polytechnique.fr

iC 20?? The Authors. Journal Compilation iC 20?? Wiley Periodicals, Inc.

2 COMPUTATIONAL INTELLIGENCE

1.1. Scope
In this paper we shall consider BRs in their (restricted) interpretation as formal sentences

of a programming language.
We note that there is no universally accepted “generic” language for expressing BR with

(von Halle, 2001; Ross, 2003; Giurca et al., 2009). Since most of the theoretical part of this
paper is concerned with an inexistence theorem, we do not need to concern ourselves with a
multitude of dialects. It suffices to consider a rather minimal BR language variant consisting
of BRs of the form “if condition then action”. The action clause assigns a sequence of values
to a corresponding sequence of variables, or executes a script which interacts dynamically
with the environment.

We already mentioned that most BRMSs come with execution platforms, called in-
terpreters. As for the BR languages themselves, there are many interpreters, more or less
powerful (Ligeza, 2006; Hanson and Hasan, 1993), the classic one being the Rete algorithm
(Forgy, 1982). For the same reasons as before, we do not need to consider all the variants; a
minimal interpreter will suffice.

The research content reported in this paper was commissioned and co-authored by IBM,
specifically the research group that develops and maintains the IBM BRMS, called Op-
erational Decision Manager (ODM). Our minimal BR language and interpreter are both
acceptable abstract models for the Rete-based engine used in ODM. While many users of
industrial BRMS do not exploit the sophisticated Rete-based engine, it is nonetheless used
by about twenty percent of BRMS applications, based on private IBM data. Example of
rules that use Rete chaining include: price computation, fraud detection, and route planning.
The fact that our work rests on an abstract model of ODM makes it relevant in most if not
all major BRMS (FICO Blaze, JBoss Rules, Oracle BRE), as they all have a similar Rete-
based engine. Similarly, some of the major free and/or open-source rule engines are also
Rete-based, such as CLIPS (Culbert and Riley, 2003), Jess (on which Oracle BRE is based)
(Friedman-Hill, 2003), or DROOLS (on which JBoss Rules is based) (Proctor, 2011). This
means that potentially up to twenty percent of the whole Business Rules market motivates
this work, and it is relevant for the whole of the field, not just IBM.

To summarize, we call a BR program a set of “if condition then action”-formatted BRs
executed by a basic BR interpreter. We call the union of all valid BR programs the BR
programming language.

1.2. Motivation and relevance of the main problem
In this paper we study the following problem: can a given BR program be parametrized

so that it behaves statistically according to a prescribed goal on every input? More precisely,
the question we answer is the following.

BUSINESS RULES WITH AVERAGE GOALS (BRAG).
Determine whether there exists an algorithm A which takes as an input:
• a BR program ρ = Pp(x), where p is a parameter vector, x is an input vector, and ρ is a scalar output,
• the set X of all possible inputs of P ,
• a prescribed set G of values for ρ,
and which returns, as an output, a vector p∗ = A(P,G,X) such that:

E(Pp∗(x) | x ∈ X) ∈ G, (1)

where E(·) denotes the expectation.

The BRAG problem arose out of the request of many users of the IBM ODM BRMS. Why
is this question important to industry? We answer by way of a case scenario proposed by the
IBM team which maintains ODM.

Consider a bank which has a process (encoded as a parametrizable BR program Pp) for
deciding whether to grant a loan to a given customer. The test conditions in Pp may verify

UNIVERSALITY AND PREDICTION IN BUSINESS RULES 3

anagraphic, work-related and credit ranking data about the customer (encoded in a vector
x), and p is usually given by acceptable thresholds for customer data or functions thereof.
The output ρ of Pp in this case might be a YES/NO/REVIEW type value, where REVIEW
corresponds to cases requiring a personalized follow-up by a financial advisor. Of course,
banks have to consider the volume of REVIEW outputs carefully. Accordingly, banks will
try to choose p so that Pp automates only a given fraction g ∈ [0, 1] of the decisions over
all loan requests on average. An obvious way to deal with the issue could be to pick an
appropriate training sample S and run some Machine Learning (ML) algorithm to learn the
BR program configuration parameter vector p so as to satisfy Eq. (1). This, finally, begs the
question above: is this direction even theoretically possible, in full generality? In this paper
we will argue that this is not possible in general.

To achieve this negative result, we look at the question from the point of view of the
expressiveness of the BR programming language. Within the panorama of programming
languages, one can distinguish two main categories: imperative and declarative. Since both
categories contain Turing-complete languages, a separation of the two categories according
to computational expressive power is impossible. On the other hand, by looking at three
basic building blocks present in all imperative languages (assignments, tests and loops),
we can informally segment programming languages more finely: purely imperative lan-
guages have explicit constructs for all three blocks, and purely declarative languages do not
have explicit constructs for any of those building blocks. One of the earliest computational
models, the lambda-calculus (Church, 1932), embodies loops within the language itself by
using recursion, while tests and assignments may be simulated using boolean variables and
arithmetic operators; the situation of Prolog (Clocksin and Mellish, 1987) is similar. Con-
straint Programming (Apt, 2003) and Mathematical Programming (Williams, 1999) appear
to be purely declarative, in the sense that the language itself does not provide constructs of
assignments, tests or loops. Perhaps the purest form of a declarative language is given by
systems of Diophantine equations, famously shown to be Turing-complete when Hilbert’s
10th problem was solved in the negative (Matiyasevich, 1993). In this taxonomy, the BR
language explicitly provides assignments and tests, but has no loop construct. Among the
other programming languages we mentioned, recursive functions have been famously proved
to be equivalent to Turing Machines (TM) by A. Turing himself (Turing, 1937). For inference
rules, including Prolog, we refer the reader to (Sneyers et al., 2005). For Mathematical
Programming, see (Liberti and Marinelli, 2014).

1.3. Contributions
This paper makes the following contributions: (a) it provides a constructive proof of

Turing-completeness for the BR language; (b) it formally shows that this language is unlearn-
able in the Probably Approximately Correct (PAC) framework (see Sect. 4), and therefore
that ML tools cannot be used in general to “learn the behavior” of BR programs statistically;
(c) it proposes an operational semantics for the BR language. As a token of the practical ap-
plicability of our ideas, we show that on a few small but interesting examples our operational
semantics can prove termination of entire sets of programs having some input parameter
ranging over a given interval. We note that the same operational semantics can also be used
to prove non-termination. Moreover, failure to prove termination can be taken as indicative
of a risk of non-termination.

With respect to (Wang et al., 2016), the Turing-completeness proof presented here,
the operational semantics, and the associated proof-of-concept implementation, are new.
We remark that since the BR language itself is Turing-complete, the termination of its
programs, which we claim can be computed by our operational semantics, is obviously an
undecidable problem. As a consequence, operational semantics can prove termination and

4 COMPUTATIONAL INTELLIGENCE

non-termination of some sets of programs, but not of every program. We also remark that, as
far as we could ascertain, ours is the first proof in the literature of the PAC-unlearnability of
BR programs.

1.4. Structure of the negative result
In order to prove that the BRAG problem has no solution, we argue that the dynamics of

a generic BR program cannot be machine-learned in a certain well-known abstract learning
model (PAC learning, see Sect. 4). We achieve this by showing that certain functions wit-
nessing non-PAC-learnability can be implemented using BR programs; and we prove this
latter property by showing that the BR programming language is Turing-complete.

That certain declarative rule-based languages are Turing-complete is already known
(Sneyers et al., 2005), but we provide here a new proof that also opens the door to the con-
struction of a positive result: an operational semantics for BRs that can be used empirically to
determine wether some given BR programs terminate or not (as mentioned above, since BRs
are Turing-complete, determining termination in general is impossible — our operational
semantics can prove termination/nontermination of certain instances, but certainly not all).

More specifically, our proof that the BR language is Turing-complete is centered around
the idea that BR programs, when executed via an appropriate execution algorithm, behave
like WHILE programs, which are known to be Turing-complete (Harel, 1980). From Turing-
completeness, we conclude that any computable function can be simulated by a (universal)
BR program, including functions that output pseudo-random numbers. This is the main
idea behind the proof of PAC-unlearnability. Our operational semantics for BR programs
is derived from the reduction from the WHILE language in the Turing-completeness proof.

1.5. Contents
The rest of this paper is organized as follows. Section 2 is used to formalize the notations

and concepts of BRs we use in this paper. Section 3 exhibits our constructive proof of Turing-
completeness, and recalls another, non-constructive one. Section 4 uses Pseudorandom Func-
tions (PRF) and a chaotic map to prove PAC-unlearnability in both a weak and a strong
sense. Section 5 showcases an operational semantics for BRs, discusses a proof-of-concept
implementation, and illustrates some of its possible applications on small number of test
cases.

2. PRELIMINARIES
Limited to the scope of this paper (Sect. 1.1), BR programming can be seen as program-

ming for non-programmers. The two most difficult computer programming concepts for a
layperson to understand appear to be loops and function calls. BR disposes of the former by
automatically executing programs over a loop construct embedded in the interpreter, and of
the latter by removing them entirely. In commercial BR management systems such as ODM
function calls are replaced by entities called “meta-variables”, which have no relevance to
the present discussion.

2.1. Formalization
A BR program simply consists of an ordered set of rules. Given a variable sequence x, a

rule is defined as shown in Alg. 1; T is the condition and A describes the action. While the
variables are sometimes typed, we dispense with this distinction in the general discussion.

UNIVERSALITY AND PREDICTION IN BUSINESS RULES 5

Algorithm 1 A Business Rule
if T (x) then

x← A(x)
end if

At least one of the variables, say x1 without loss of generality, is selected to be the output of
the BR program.

As stated in Sect. 1.1, there are many variations of BR interpreters, but we need only
employ a very basic one. Most deterministic interpreters are semantically equivalent to
the RIF formalization (de Sainte Marie et al., 2013). We therefore use the interpreter I0

consisting of the following algorithm:

(1) select the rules for which the condition is True, using the current values of the variables;
(2) execute the action of the first rule in the current selection or stop if there is no such rule;
(3) repeat from Step (1).

The selection of the rule to be executed in Step (2) is referred to as conflict resolution. Our
algorithm has a simplistic conflict resolution strategy: whenever more than one rule instance
could be executed, the one selected is obtained from a fixed total order on rule instances. An
example of the execution of such an algorithm is described in Fig. 1.

While we have used a very simple execution algorithm where conflict resolution is based
on a fixed ordering of rules, most BR execution algorithms are more complex. Any non-
trivial interpreter, however, can be simulated by the basic one I0 (except in extreme cases,
such as a conflict resolution strategy leading to a bounded number of execution loops).

The Variables
int x← 1

int age← 90

The Rules (in order)
In the total order considered by the algorithm, they are:
R1:

if(age > 1∧x = 2)

then(age← 0,x← 0)

R2:
if(x = 1)

then(x←x+1)

R3:
if(age > 60)

then(age←age+1)

The Execution

Iteration 1:
Truth value of conditions:
t(R1) = False
t(R2) = True
t(R3) = True

Rule instances selected (in order):R2

Rule executed:R2

Variable values:
x = 2

age = 90

Iteration 2:
t(R1) = True
t(R2) = False
t(R3) = True
Rules selected:R1, R3

Rule executed:R1

Variable values:
x = 0

age = 0

Iteration 3:
t(R1) = False
t(R2) = False
t(R3) = False
Rules selected: None
Rule executed: None

END

FIGURE 1. Example illustrating the execution algorithm

2.2. Some remarks on non-trivial BR program interpreters
The most common BR interpreters use an execution algorithm with a structure similar to

ours, but with a different conflict resolution strategy in step 2. Common conflict resolution
strategies combine at least the following three elements (de Sainte Marie et al., 2013):

• Refraction which prevents a rule instance from firing (being selected by the conflict reso-
lution algorithm) again unless its condition clause has been reset.

6 COMPUTATIONAL INTELLIGENCE

• Priority which is a kind of partial order on rules, leading of course to a partial order on
rule instances.
• Recency which orders rule instances in decreasing order of continued validity duration
(when rule instances are created at run time, it is often expressed as increasing order of rule
instance creation time).

We will see in the last section that these other interpreters do not preclude the use of the
operational semantics techniques we introduce in this paper.

3. TURING-COMPLETENESS

3.1. Basic notions
A Universal Turing Machine (UTM) is a Turing Machine (TM) which can simulate

any other TM on arbitrary input (Shannon, 1956; Turing, 1937). Let L be a programming
language for the UTM U , described for example by its formal grammar. By means of a
special program I called interpreter, programs written in L can be executed on U (Minsky,
1972). If a programming language L can be used to write all possible programs of a UTM
so they are executed via an interpreter, then L is said to be Turing-complete.

Definition 1 (Turing-completeness): Let U be a UTM, which takes as input a string (T, x)
consisting of a TM description and its input. A programming language L is Turing-complete
if there exists an interpreter I such that for each possible input (T, x) ofU there is a program
p in L with I (p) = (T, x).

Note that in Defn. 1, I is seen as a function that maps programs p in L to the input (T, x)
of the UTM U . It is assumed that U will then execute with (T, x) as input. The output of this
computation is the effect that the program p has when executed on U via the interpreter I .

We can replace “UTM” in Defn. 1 by any universal computer described in any Turing-
complete language L′, since interpreters can be composed via translators. Given two pro-
gramming languages L,L′ with interpreters I ,I ′ running on UTMs U,U ′, a translator is
a pair of functions (T , τ), where T maps programs of L to programs of L′ and τ maps valid
outputs of U ′ to valid outputs of U , such that:

∀p ∈ L U(I (p)) = τ(U ′(I ′(T (p)))). (2)

In other words, the effect of running p through I is related to the effect of running the
translation of p through I ′. Most commonly τ is the identity, i.e. we want the translated
program to yield the same output as the same program.

The type of translators we are interested in are the faithful ones, i.e. those for which T
is surjective and τ is bijective. The meaning of a surjective mapping T is technical (see the
proof of Thm. 1) and can be relaxed. In particular, if one were to write I ′ as a program p′

of L′, mapping every p to the interpreter p′ could suffice. The bijection on the ranges of the
UTMs, on the other hand, is essential, and ensures universality. Such translators allow the
“expressive power” of the corresponding languages to match. Next, we will state and prove
a theorem that formalizes the concept of translation needed in this paper.

Theorem 1: LetL be a Turing-complete programming language with interpreter I running
on a UTM U . Let L′ be another programming language, U ′ another UTM, and (T , τ) a
faithful translator from L to L′. Then there exists an interpreter I ′ of L′ on U ′ that makes
L′ Turing-complete.

Proof. Let (T ′, x′) be an input of U ′. Since τ is a bijection, there is an input (T, x) of U

UNIVERSALITY AND PREDICTION IN BUSINESS RULES 7

such that

U(T, x) = τ(U ′(T ′, x′)). (∗)

Since L is Turing-complete, there is a program p ∈ L such that I (p) = (T, x). Let p′ =
T (p), and define I ′(p′) = (T ′, x′). Since T is surjective, I ′ is defined for all p′ ∈ L′. Now
by definition of translator we have U(I (p)) = τ(U ′(I ′(T (p)))). Since I (p) = (T, x),
by (∗) the latter equality gives τ(U ′(I ′(p′))) = τ(U ′(T ′, x′)) which, since τ is a bijection,
implies U ′(I ′(p′)) = U ′(T ′, x′), which proves that the definition of I ′ is consistent with
an interpreter. We have shown that for each input (T ′, x′) of U ′ there is a program p′ of L′
that is interpreted to (T ′, x′), which makes L′ Turing-complete.

The computability concepts discussed above are at the basis of computability theory, and
have been well known for at least 60 years. Thm. 1 could also be proved using a result of
(Curtis, 1965), which states that since a UTM is defined as a TM which is able to simulate
any other TM, L can be proven Turing-complete by showing that for any TM, L can be
used to describe that TM via its interpreter. It would then suffice to give an explicit mapping
between the formal grammars of L and L′, leading to a semantics for L′ in terms of L. We
strongly suspect that even the statement and proof of Thm. 1 given above is not new, at
least in its main traits, though we could not find it in the (overwhelmingly rich) literature
on the matter. Most of these observations hold under the Church-Turing thesis (Church,
1936; Turing, 1939; Gandy, 1980), according to which any effectively computable function
is Turing-computable. In other words, no device or program can compute a function that a
UTM cannot.

3.2. WHILE programs
The Turing-completeness of WHILE-programs is well-known (Harel, 1980). We exploit

this fact and the previous results to prove the Turing-completeness of BR programs. We
show that any WHILE-program can be programmed using a set of BRs and the basic BR
interpreter. Furthermore, any non-trivial BR interpreter involving a loop is also Turing-
complete, as it can simulate the basic interpreter used in this article.

The WHILE programming language has been studied with or without a name as the
simplest form of imperative programming since 1969 (Hoare, 1969). It has three simple
syntactic elements: assignments, conditional actions (if. . . then blocks), and while loops.

A WHILE program has the canonical (recursive) form (Harel, 1980; Hirose and Oya,
1972):

while T0(x) do
ifblock1(T1,A1, x)
. . .
ifblockK(TK ,AK , x)

end while
where, for each k 6 K, ifblockk(Tk,Ak, x) is defined either as:

if T1
k(x) then
x← A1

k(x)
ifblock(Tk,Ak, x)

end if
or as an empty command. The interpretation of the symbols Tik(x) and Aik(x) is: T are
(possibly jagged) tensors of Boolean conditions on the variables x, which evaluate to True
or False, and A is a (possibly jagged) tensor of functions of x yielding values to be assigned
to the variables.

8 COMPUTATIONAL INTELLIGENCE

In other words, a WHILE program is a single conditional loop containing a sequence of
(possibly nested) test conditions followed by a conditional assignment action.

3.3. Translation of WHILE to BR
We prove that the BR language is Turing-complete (under the basic interpreter) by

providing a translation of WHILE programs using BRs.

Theorem 2: Any WHILE program is computable by an equivalent BR program.

We prove this by showing that a generic WHILE program can be interpreted into a BR
program. The only requirement of the interpretation is to be computable. We first prove
this for WHILE programs without nested if statements, then we describe a sequence of
syntactical steps on the symbols of a generic WHILE program which transforms it into a
WHILE program without nested if statements.

Lemma 1: Any WHILE program without nested if statement can be translated to a BR
program.

Proof. Given the following WHILE program without nested if statements:
1: while T0(x) do
2: if T1(x) then
3: x← A1(x)
4: end if
5: . . .
6: if TK(x) then
7: x← AK(x)
8: end if
9: end while

We can write an equivalent BR program with K + 1 rules:
1: if ¬B0(x1, ..., xn) then
2: Stop
3: end if
4: if B1(x1, ..., xn) then
5: x← A1(x)
6: end if
7: . . .
8: if BK(x1, ..., xn) then
9: x← AK(x)

10: end if
Using previous notations, rule R0 has T (x) = ¬B0(x) with Stop as action, while for k ∈
{1, ...,K} rule Rk has T (x) = Bk(x) and A(x) = Ak(x). This is obviously equivalent to
the WHILE program considered.

Lemma 2: Any WHILE program can be transformed into an equivalent WHILE program
without nested if statements.

Proof. This is an easy proof, as the lemma amounts to saying any nested if statements can be
unnested. A simple inductive reasoning on the depth of the nesting proves the result (possibly
adding boolean variables to store the value of intermediate levels tests). The property applied
to each ifblocks of a WHILE program transforms it into the form we want.

We summarize the discussion in the following proposition.

Proposition 1: There is a faithful translator (T , τ) from the WHILE language to the BR
language.

UNIVERSALITY AND PREDICTION IN BUSINESS RULES 9

Proof. Note that τ is the identity, which is a bijection.

Finally, we invoke Thm. 1.

Corollary 1: The BR language is Turing-complete.

3.4. A direct proof
While the above proof is sufficient to justify the Turing-completeness of BRs, we can

also use a much more direct proof by exhibiting a BR program that simulates a UTM. Such a
BR program is exhibited in Fig. 2. We use meta-variables to make the BR program readable,
as R1 would otherwise be written as Q× 3×Q× S distinct rules.

We suppose the variables include the following:
• many (static) state objects of type “state”: q1, . . . , qQ
• many (static) symbol objects of type “symbol”: s1, . . . , sS
• a (static) finite set of terminal states of type “terminal”: Ter
• a (static) blank symbol of type “symbol”: sb
• a (static) set of Turing rules of type “rules”, of the form
(stateinitial, symbolinitial, right|left|stay, statenext, symbolwritten):
R = {(qir, sir, actr, q

f
r , s

f
r) | actr ∈ {“left”, “right”, “stay”}}r

• the current state of type “state”: q
• the length of the visible tape data, of type “length”: l
• the current visible tape data of type “tape”: T = {(i, si) | i ∈ N, 0 6 i 6 l − 1} where l is the length of the visible tape
data
• the current place on the tape of type “position”: p
We use the following meta-variables in the BR program that simulates a UTM:
• αqf of type “state”
• αsf of type “symbol”
The BR program to simulate a UTM is then written in a compact form:

R1:
if

(q, T (p), act, αqf , αsf) ∈ R
then
q ← αqf
T ← (T \ {(p, T (p))}) ∪ {(p, αsf)}
αp ← (”position”, p± 1)(Depending on the value of act)
αl ← (”length”, l ± 1)(Depending on the respective values of act, p and l)

R2:
if

(q ∈ Ter)
then

Stop;

FIGURE 2. A UTM written in the BR language.

The UTM in Fig. 2 terminates correctly for any valid input (T, x) where T is a TM and
x is its input. We have made simplifications for the sake of clarity: R1 should clearly be
at least three different rules each replacing act with one of {“left”, “right”, “stay”}, and its
complete formally correct form would in fact have two more rules, to be able to increase the
length of the tape as needed (using the variable sb as necessary).

4. PAC-UNLEARNABILITY
Because BRs are Turing-complete, as shown in Sect. 3, their computability is undecid-

able. We now introduce the main feature concerning the BRAG problem: the parameters.

10 COMPUTATIONAL INTELLIGENCE

Suppose BRs have tuning parameters, such as the threshold for α1 in R1 from Fig. 1. A
common goal of BR users is to achieve an average result, such as having an average number
of manually treated loan requests for a BR modeling a loan application process. This begs
the following question: is there an algorithm for deciding the values of the parameters of a
BR program in such a way that it statistically behaves according to a given target? As BR
programs are Turing-complete, we know that this algorithm cannot exist in the most general
terms, since BR programs might not even terminate in finite time.

We now look at those BR programs which do terminate. The question can be considered
as a learnability problem. Does there exist an algorithmA that efficiently “learns” p, given as
input: (a) a class Pp of terminating BR programs parametrized over p, (b) a data distribution
D over its input domain X and (c) a goal g for the value of the average output ED(Pp)? We
prove that the answer is still negative.

4.1. Basics of computational learning theory
The first thing to establish is the exact meaning of the word “learns”, used informally

above. Describing ML algorithms and their applicability to different problems is the concern
of computational learning theory. There exist several approaches to this task, which can be
broadly divided in two: those that specify that a successful learning algorithm must learn
an unknown function f exactly from data observation, and those that accept learning an
approximation of f . We focus on the second category, and, among the several abstract
models of learning, we look at the well-established Probably Approximately Correct (PAC)
framework (Valiant, 1984).

A PAC learning algorithm aims at identifying a concept (i.e. a function X → {0, 1})
in a concept class C (i.e. a family of concepts). For a concept f ∈ C and a list S of data
points in X of length λ, an algorithm A is an (ε, δ)-PAC learning algorithm for C if for all
sufficiently large λ it outputs a function h such that:

P[h is an ε-approximation of f] > 1− δ.
We note that A has access to an oracle for f . Moreover:

• A is said to be efficient if the time complexity of A and h are polynomial in 1/ε, 1/δ and
λ;
• A is said to weakly learn C if there exist some polynomials pε(λ); pδ(λ) for which ε 6
1
2 −

1
pε(λ)

and δ 6 1− 1
pδ(λ)

.
• We say a concept class is PAC learnable if it is both efficiently and weakly learnable.
Otherwise, it is unlearnable.

The question is now whether the BRAG is PAC learnable, i.e. whether the correct parametriza-
tions of arbitrary BR programs leading to good control of the average can be learned weakly
and efficiently. We shall prove that the answer is negative in the general case. Within the same
notation and context, another question that arises is whether there even exists an algorithm
which learns p with ε < 1

2 and δ < 1. Again, the answer is negative in the general case.
The learning problem has been looked at within the context of other Turing-complete

languages. Algorithms for learning some restricted classes of programs exist for inductive
logic programming (Blockeel and De Raedt, 1998) or nonmonotonic inductive logic pro-
gramming (De Raedt and Džeroski, 1994). Here, similarly to (Wang et al., 2016), we wish
to examine the general case of learning in all terminating programs.

4.2. Pseudorandom Functions
Pseudorandom functions (PRF), introduced by Goldreich, Goldwasser and Micali (Gol-

dreich et al., 1986), are indexed families of functions Fp for which there exists a polynomial

UNIVERSALITY AND PREDICTION IN BUSINESS RULES 11

time algorithm to evaluate Fp(x), but no probabilistic polynomial time algorithm can distin-
guish the function from a truly random function Frand without knowing p, even if allowed
access to an oracle.

It is known that PRF are unlearnable using PAC algorithms (Goldreich et al., 1986;
Cohen et al., 2015). This allows us to prove that the general class of terminating BR pro-
grams is not PAC-learnable (i.e. that no PAC algorithm can learn the concept weakly and
efficiently). We will then use a known chaotic map, the logistic map (defined by fn+1(x) =
afn(x)(1 − fn(x)) with 0 6 a 6 4), to look at learnability in a stronger sense, and prove
that BR programs cannot be learned by PAC learning algorithms at all, in full generality.

In the rest of this section, we consider Fp to be a PRF, and denote by Evalp,x(Fp(x)) the
complexity of evaluating Fp(x).

4.3. Weak unlearnability
We call (Pp)p∈π a class of terminating BR programs indexed by p, S a list of items from

the input domain X with |S| = λ, and g a goal for the value of the average output ES(Pp).
We consider C to be the concept class whose members are f : (Pp)p∈π → {0, 1}.

Next, we prove that there is no practically viable algorithm that can learn a BR program
out of a class of BR programs in the general case, even with access to a perfect oracle. This
is a consequence of both the Turing-completeness of BR programs and the unlearnability of
PRF.

Proposition 2: The concept h ∈ C defined as h(p) = 1 iff ES(Pp) = g cannot be learned
using a PAC learning algorithm in the general case.

Proof. As BR programs are Turing-complete, we let the family (Pp)p∈π to consist of PRFs.
Any algorithm which learns C also learns (1f (p))p ⊂ C, where 1f (p) = 1 iff Pp = f .
Learning the latter is trivially the same as learning a PRF, which is impossible by (Cohen
et al., 2015).

Corollary 2: The concept class C is unlearnable.

Hence, it is impossible to provide a single algorithm that is able to adjust the average
behavior of BR programs according to a predefined goal.

Corollary 3: The BRAG is PAC-unlearnable.

4.4. Complete Unlearnability
We have used the fact that PRFs are not PAC learnable in the sense that no PAC algorithm

can efficiently and weakly learn a PRF. We now demonstrate an example of a concept class
that cannot be learned by PAC algorithms at all (i.e. not just because the “weakly” and
“efficiently” qualifiers do not apply). This example is based on the intuition that chaos cannot
be predicted, and so it cannot be learned.

We use the logistic map, as a known chaotic map. We note fn+1(x) = afn(x)(1 −
fn(x)), f0(x) = x and choose the parameter a = 4. We call Cn(x) the concept class such
that Cn(x) = 1 iff fn(x) > 0.5 and Cx(n) = 0 otherwise, where x ∈ [0, 1] follows
the arcsine distribution, i.e. the probability density function is p(x) = 1

π
√
x(1−x)

, and with

n ∈ N following the uniform distribution.

12 COMPUTATIONAL INTELLIGENCE

Theorem 3: The concept class Cn(x) cannot be learned with any accuracy. To be precise,
for all algorithms A calling the oracle Cn(x) a finite number of times, we have:

Pn∈N(Px∈X(A(Cn)(x) 6= Cn(x)) = 0.5) = 1.

Proof. The proof relies heavily on properties of the logistic map proved by Berliner (Berliner,
1992). From it, we know that as the logistic map is chaotic, each sequence (fn(x))n is
either eventually periodic or is dense in [0, 1]. We also know that as X follows the arcsine
distribution, the Cn(X) are independent identically distributed Bernoulli random variables,
such that Px∈X(Cn(x) = 1) = 0.5.

Suppose A calls Cn(x) for values of x ∈ {x1, . . . , xk}. We call n0 the value such that
A(Cn) = Cn0 . As Px∈X(Cn0(x) = 1) = 0.5 does not depend on n0, and the Cn(X) are
i.i.d., we have Px∈X(Cn0(x) 6= Cn(x)) = 0.5 iff n0 6= n and Px∈X(Cn0(x) 6= Cn(x)) = 0
otherwise. The theorem is thus the same as saying thatA almost certainly (in the probabilistic
sense) cannot match n0 to the exact value of n. We now prove that there almost always exists
n1 6= n which is indistinguishable from n by A, i.e. Cn1(x1) = Cn(x1), . . . , Cn1(xk) =
Cn(xk).

Let us call Y 1
i = Ci(x1), . . . , Y

k
i = Ci(xl) with i ∈ N. Some of the sequences Y j

are periodic after some rank, and some are not. Without loss of generality, we assume
Y 1, . . . , Y k1 are periodic, and Y k1+1, . . . , Y k are not. Notice that, almost certainly, (Y 1)i>n,
. . . , (Y k1)i>n are periodic (for n large enough). Using P ∈ N to denote the smaller common
multiple of the periods of those sequences, we also note that Cn+Pi(x1) = Cn(x

1), . . . ,
Cn+Pi(x

k1) = Cn(x
k1), and that yi = n+ Pi.

As the sequences Y k1+1, . . . , Y k are not periodic, we know that each sequence

(fn(x
k1+1))n, . . . , (fn(x

k))n

is dense in [0, 1]. Consequently, for any sequence of k − k1 bits, there exists a countable
number of n1 ∈ (Yi)i∈N such that it is equal to Y k1+1, . . . , Y k. In particular, if this sequence
is Cn(xk1+1), . . . , Cn(x

k), any of those n1 different from n proves the theorem.

Thm. 3 is a theoretical result: no practical application is ever likely to require the learning
this type of concept class. Chaotic behaviour, however, is exhibited by many practical algo-
rithms, so that results of this type (rather than this result) might have practical relevance. On
the other hand, a key part of the proof is allowing the concept class to be infinite and indexed
by an unbounded natural number. This is unlikely to happen in industrial settings. Another
difficulty is representing and computing with real numbers, which can be done using Real
RAM machines (Blum et al., 1989). In the case of the logistic map with parameter a = 4,
the task is made slightly easier by the existence of an exact solution, but other chaotic maps
would require expensive recursive computations. The existence of such extreme cases of
unlearnability is nevertheless something to be careful of: unlikely does not mean impossible.

5. OPERATIONAL SEMANTICS APPLICATION
While a non-constructive proof of the Turing-completeness of BR programs is trivial,

our constructive proof shows how easy it is to transition from BR programs to a more
standard programming language. Indeed, we only need to construct a canonical WHILE
form of BR programs to apply known operational semantics methods to BR programs, such
as the standard Structural Operational Semantics (SOS) described by Plotkin in (Plotkin,
1981).

Current operational semantics for BR mostly follow the structural approach introduced

UNIVERSALITY AND PREDICTION IN BUSINESS RULES 13

in that work in that they use small-step semantics. The standard semantics defined in W3C’s
Production Rule Dialect of the Rule Interchange Format (RIF-PRD) (de Sainte Marie et al.,
2013) is mostly used to specify different variants of BR interpreters. Other attempts at creat-
ing operational semantics for BRs have focused on being compatible with either declarative
semantics or ontologies (or both) (Rezk and Kifer, 2012; Zaniolo, 1994). Such semantics
keep the structure of the BR program divided into rules, which helps with making sense of
complex BR programs and creating better user experiences. On the other hand, existing BR
semantics are not suitable for proofs.

We can use WHILE programs to obtain a SOS interpretation that is not unique to a
syntax or execution algorithm. As shown in the rest of this section, using this semantics can
help in proving properties of rule programs such as termination (Cousot, 1981).

5.1. WHILE form of BR programs
A canonical WHILE program equivalent to a BR program is easy to establish using the

execution algorithm we consider. The main idea is to introduce an additional integer variable
x0 to serve as a control variable, and to write each rule instance explicitly in the WHILE
program itself. The Fig. 5 shows the WHILE form of the example in Fig. 1. Note that our
construction provides a “reverse translator” to the one used in Sect. 3.3.

For an ordered set of BRsR1, . . . , Rm with conditions T1, . . . , Tm and actionsA1, . . . , Am,
and a set of variables x1, . . . , xn, the WHILE program equivalent to the BR program with
the above-mentioned execution mode is written as in Fig. 3. It uses a single additional integer
variable x0. Line 4 in the pseudocode of Fig. 3 consists of a sequence of m ifblocks, which

1: x0 ← −1
2: while x0 6= 0 do
3: if x0 = −1 then
4: if . . . then instructions s.t. x0 is the smallest i

such that Ti(x1, . . . , xn) = True, or 0 if there is none
5: else if x0 = i then
6: (x1, . . . , xn)← Ai(x1, . . . , xn)
7: x0 ← −1
8: else
9: x0 ← 0

10: end if
11: end while

FIGURE 3. Universal WHILE translation of BR programs.

we have separated for the sake of readability, see Fig. 4.

1: if T1(x1, . . . , xn) = True then
2: x0 ← 1
3: else if T2(x1, . . . , xn) = True then
4: . . .
5: else if Tm(x1, . . . , xn) = True then
6: x0 ← m
7: else
8: x0 ← 0
9: end if

FIGURE 4. Code corresponding to line 4 in Fig. 3.

An interesting side note is that other BR program interpreters do not forbid the canonical
conversion of a BR program to a WHILE program. While the specifics depend on each

14 COMPUTATIONAL INTELLIGENCE

The typed Variables (in order)
int x← 1

int age← 90

The WHILE program
1: x0 ← −1

2: while x0 6= 0 do
3: if x0 = −1 then
4: if age > 1∧x= 2 then
5: x0 ← 1

6: else if x = 1 then
7: x0 ← 2

8: else if age > 60 then
9: x0 ← 3

10: else

11: x0 ← 0

12: end if
13: else if x0 = 1 then
14: age← 0

15: x← 0

16: x0 ← −1

17: else if x0 = 2 then
18: x←x+1

19: x0 ← −1

20: else if x0 = 3 then
21: age←age +1

22: x0 ← −1

23: else
24: x0 ← 0

25: end if
26: end while

FIGURE 5. Example: WHILE form of the BR program in Fig. 1

execution algorithm, we can remember the three most common elements found in such
algorithms from Section 2.2:

• Refraction results in the use of an additional boolean variable per rule instance in the
WHILE program.
• Priority partially decides the order of the if-then-else of the WHILE program.
• Recency is the most complicated. An easy workaround would add an incremental integer
variable per rule instance in the WHILE program and use a max() function in the tests of the
if-then-else.

5.2. A structural operational semantics
Let us consider the SOS described by Plotkin in (Plotkin, 1981) applied to WHILE

programs. It describes the execution of a program as a finite automaton, with each simple
command corresponding to a state transition relation. Its usefulness in proving properties
of programs, such as sets of input resulting in termination or non-termination, has been
established (Burstall, 1969). Fig. 6 shows the state transition relations corresponding to the
WHILE language under an easily readable form, using an Inference Rule syntax wherein
the premises are listed above a horizontal line, the conclusion below, and the condition, if
present, to its right.

We use an example to demonstrate that such a transformation of a BR program into
a WHILE program can be used to prove properties of BR programs through those same
SOS methods. Consider the simple example of a loan request application with three integer
variables: amount, duration and income. We use the naive rule described in Fig. 7. The
input value of amount is the requested loan value, while its final value is the total repaid
sum.

We provide a proof-of-concept implementation of our SOS, and perform a few compu-
tational experiments on the issue of termination of BR programs. Obviously, since we now
know that the BR language is Turing-complete, we do not mean that our SOS is able to
systematically predict termination correctly. We simply mean to say that we test our SOS on
a few given BR programs.

We use Prolog (Clocksin and Mellish, 1987) to code the SOS of the WHILE program-
ming language as rules in a rule inference engine using the form displayed in Fig.6. Similar
rules encode the evaluation of Boolean and Numerical variables. We then encode the WHILE

UNIVERSALITY AND PREDICTION IN BUSINESS RULES 15

Supposing C are commands, E are expressions and s are memory states, the following inference rules
encode the operational semantics of the commands of the WHILE language. The assignment command:

< E, s >→e< E′, s′ >

< x← E, s >→c< x← E′, s′ >

< x← n, s >→c< skip, s[x = n] >

The sequential composition command:

< C1, s >→c< C′1, s
′ >

< (C1;C2), s >→c< (C′1;C2), s′ >

< (skip;C2), s >→c< C2, s >

The if command:

< if True then C1 else C2, s >→c< C1, s >

< if False then C1 else C2, s >→c< C2, s >

< B, s >→b< B′, s′ >

< if B then C1 else C2, s >→c< if B′ then C1 else C2, s′ >

The while command:

< while B do C, s >→c< if B then (C;while B do C) else skip, s >

FIGURE 6. The inference rules encoding the operational semantics of commands in WHILE,
starting from a state s of the machine’s memory

The Rule
R:

if(amount > income · duration)
then(amount← 1.1 amount,

duration← duration + 1)

The WHILE program
1: x0 ← −1

2: while x0 6= 0 do
3: if x0 = −1 then
4: if amount > income · duration then
5: x0 ← 1

6: else
7: x0 ← 0

8: end if
9: else if x0 = 1 then
10: amount← 1.1 amount
11: duration← duration + 1

12: x0 ← −1

13: else

14: x0 ← 0

15: end if
16: end while

The Prolog encoding
We use the variablesX = amount× 10i and Y = income× 10i where
i is the number of times the rule executes.

1: C = seq(C1,C2)
2: C1 = assign(‘X0’,-1)
3: C2 = whiledo(neq(‘X0’,0),C3)
4: C3 = ifthenelse(eq(‘X0’,-1),C4,C5)
5: C4 = ifthenelse(geq(‘X’,mult(‘Y’,‘Dur’)),

assign(‘X0’,1),assign(‘X0’,0))
6: C5 = ifthenelse(eq(‘X0’,1),seq(seq(seq(

assign(’Dur’,add(‘Dur’,1)),
assign(‘X’,mult(‘X’,11))),
assign(‘Y’,mult(‘Y’,10))),
assign(‘X0’,-1)),
assign(‘X0’,0))

FIGURE 7. A naive BR program for Loan Applications

program itself as a series of rules in Prolog1. It is then a simple matter to ask Prolog about the
termination of this program by simply asking about the truth value of assertions including
‘X0fin’ = 0 and constraint over the inputs.

1Notably, we use the variables X = Amount × 10i and Y = income × 10i where i is the number of times the rule
executes, so as to benefit from SWI-Prolog’s CLP(FD) library (Triska, 2014) and XSB-Prolog’s bounds library.

16 COMPUTATIONAL INTELLIGENCE

5.3. Proving Termination
Termination of a program for a given input is one of the easiest properties of programs to

look into using SOS. Because of the Turing completeness of the BR language, our methodol-
ogy for proving (or disproving) termination will obviously not work on every BR program.
We proceed as follows: given a BR program, we tranform it into its WHILE form, which
we then use to derive the SOS. We implement the SOS as a set of constraints in two Prolog
dialects (SWI-Prolog (Wielemaker et al., 2012) and XSB Prolog (Sagonas et al., 1994)), so
as to use the corresponding interpreter to try and establish feasibility or infeasibility of the
constraint set.

We coded the WHILE programs for three examples in Prolog. We first used SWI-Prolog
to test termination for an interval range of inputs by using a Prolog query containing the
input and the specific output x0 = 0 (i.e. the WHILE loop ends). The results for the program
in Fig. 7 show some of the advantages and limits of using basic Prolog. For some intervals
of values for amount, we can prove in a few seconds of CPU time that for duration = 5
and income = 10, the BR program always terminates. On the other hand, we are unable to
prove non-termination using SWI-Prolog as it lacks loop detection algorithms. We then used
the tabling included in XSB-Prolog (Swift and Warren, 2012) to test non-termination. We
observe that we can now detect non-terminating inputs, however given an interval we can
only detect the absence of a terminating input, i.e. we cannot distinguish between a set of
input that all terminate and another where only some values lead to termination. Furthermore,
the results for the program in Fig. 9 show that even then, not all inputs can be determined to
be terminating or non-terminating (this is expected as the halting problem is undecidable).
We remark, however, that the most useful contribution of an SOS is to prove termination of
programs (rather than non-termination), making even the basic Prolog application important.
Amongst its many advantages, our semantics can be used for automatic validation of a BR
program, for example. A search algorithm could also be used to identify the cutoff point of
amount 6 62 as containing every terminating input, if one were to take the monotonicity of
the program into account.

Along with the example from Fig. 7, a slightly more realistic example is seen in Fig. 8,
adding the boolean variable approval and the integer variable age to the BR program. On
the other hand, Fig. 9 is a less trivial example: a BR program that chooses the interest rate
interest depending on the credit score score using a made-up algorithm which simulates
the logistic map, where score ∈ [300, 850].

The results for the examples in Fig. 7 and Fig. 8 are displayed in Fig. 1, while the results
for the example in Fig. 9 are in Fig. 2. Fig. 1 is indicative of a practical use of studying the
termination of BR programs this way: a bank might wish to check that their loan application
BR program terminates for a given range of values. Studying unexpected failures can point
out a missing rule or variable in the BR program.

On the other hand, the results from Fig. 2 are somewhat more difficult to interpret. While
the BR program in Fig. 9 is somewhat contrived, it shows that some failures can be not
only unexpected, but unpredictable. The SWI-Prolog ERROR: Out of local stack
looks like yet another inconclusive answer, but tracing the execution of the Prolog interpreter
shows that some errors are the result of infinitely repeated goals, and a simple alteration
to the Prolog interpreter can detect most infinite recursion loops of that kind (Van Gelder,
1987). This is proved by looking at the result of the tabling-enabled XSB-Prolog execution,
which gives us proof of non-termination for the input r = 3.82843 (score = 813.541375).
Such non-terminating inputs might be found by looking at the internal states of a classic
BR engine, but the automation provided by existing research on SOS and Prolog remains
valuable and time-saving. On the other hand, some values have a convergent but non-periodic
behavior which we cannot detect using either of our implementations. The tested input r = 3
(score = 637.5) has such a behavior. The Prolog algorithm actually simulates the fixed

UNIVERSALITY AND PREDICTION IN BUSINESS RULES 17

The Rules
R1:

if (approval = True ∧ age < 18)

then (approval← False)
R2:

if (approval = True ∧ duration > 10)

then (approval← False)
R3:

if (approval = True ∧ amount > income · duration)
then (amount← 1.1 amount,

duration← duration + 1)

The Variables
boolean approval = True
int age, duration, income
float amount

The WHILE program
1: x0 ← −1

2: while x0 6= 0 do
3: if x0 = −1 then
4: if approval = True ∧ age < 18 then

5: x0 ← 1

6: else if approval = True ∧ duration > 10 then
7: x0 ← 2

8: else if approval = True ∧ amount > income · duration then
9: x0 ← 3

10: else
11: x0 ← 0

12: end if
13: else if x0 = 1 then
14: approval← False
15: x0 ← −1

16: else if x0 = 2 then
17: approval← False
18: x0 ← −1

19: else if x0 = 3 then
20: amount← 1.1 amount
21: duration← duration + 1

22: x0 ← −1

23: else
24: x0 ← 0

25: end if
26: end while

FIGURE 8. A more realistic BR program for Loan Applications, the input should always
have approval = True

The Rules
R1:

if (n 6 1000)

then (x← r · x(1− x),
n← n + 1)

R2:
if (x > 0.51)

then (x← r · x(1− x))
R3:

if (x 6 0.49)

then (x← r · x(1− x))

The Variables
float r = 4 score

850
∈ [0, 4]

float x = 0.48 + interest ∈ [0, 1]

int n = 1

The WHILE program
1: x0 ← −1

2: while x0 6= 0 do
3: if x0 = −1 then
4: if n 6 1000 then

5: x0 ← 1

6: else if x > 0.51 then
7: x0 ← 2

8: else if x 6 0.49 then
9: x0 ← 3

10: else
11: x0 ← 0

12: end if
13: else if x0 = 1 then
14: x← r · x(1− x)
15: n← n + 1

16: x0 ← −1

17: else if x0 = 2 then
18: x← r · x(1− x)
19: x0 ← −1

20: else if x0 = 3 then
21: x← r · x(1− x)
22: x0 ← −1

23: else
24: x0 ← 0

25: end if
26: end while

FIGURE 9. A nontrivial BR program and corresponding WHILE program, the input should
always have n = 1

points (after 1000 iterations) of the logistic map, defined as the sequence xn+1 = r · xn(1−
xn), and falls into a infinite recursion of goals if no fixed point is within [0.49, 0.51]. The
bifurcation diagram in Fig. 10 is well-known, and represents those fixed points. While it
makes the situation clear for r ∈ [1.41, 3.57], i.e. score∈ [300, 758], the higher values fall
within the chaotic part of the logistic map. In particular, some specific values have a periodic
behavior, such as the tested r = 3.82843 (score = 813.541375). The use of SOS derived
from the WHILE form of BR programs helps in this and similar cases by automatically
identifying with certainty some non-terminating inputs, assuming Prolog is configured to
identify infinite recursive goals.

18 COMPUTATIONAL INTELLIGENCE

BR program: interval]−∞, 50] [50, 60] [60, 70]]−∞, 62] {62} {63} [63,+∞[
domain for variable amount

Naive program: True True ERROR: ‘Out of True True ERROR:‘Out of ERROR:‘Out of
SWI-Prolog (Fig. 7) global stack’ global stack’ global stack’

Naive program: yes yes yes yes yes no no
XSB-Prolog (Fig. 7)

Realistic program: True True True True True True True
SWI-Prolog (Fig. 8)

TABLE 1. Results of the SWI-Prolog and XSB-Prolog queries containing the SOS of WHILE forms of
the BR programs in Fig. 7 and Fig. 8 as well as facts about the input (duration = 5, income = 10, and age = 20
when relevant) and about the output (x0 = 0)

BR program r = 3 r = 3.22 r = 3.67 r = 3.82843

score = 637.5 score = 684.25 score = 779.875 score =
813.541375

Custom interest ERROR: Out of True True ERROR: Out of
rate: SWI-Prolog (Fig. 9) local stack local stack

Custom interest Error: Query yes yes no
rate: XSB-Prolog (Fig. 9) exhausted system memory

TABLE 2. Results of the Prolog query containing the SOS of WHILE forms of the BR programs in Fig. 9
as well as facts about the input (x = 5, n = 1) and about the output (x0 = 0)

FIGURE 10. Bifurcation Diagram for the Logistic Map

6. CONCLUSION
Business Rules form an unexpectedly expressive programming language compared to

their practical use in business. While BR programs are syntactically very simple, the lan-
guage contains hidden complexity in the details of its interpreters. In particular, any inter-
preter that uses a looping algorithm can make the set of all BR programs Turing-complete.
We hope that our formalization will open the doors to further research into BR as a program-

UNIVERSALITY AND PREDICTION IN BUSINESS RULES 19

ming language (Wang, 2017). The Turing-completeness of BR programs using any looping
interpreter is important to theoretical research into the properties of BRs.

We also proved the PAC-unlearnability of the concept class of BR programs. That proof
is stronger than the usual PAC-learnability approach as the example of the logistic map
shows that some BR programs are completely PAC-unlearnable regardless of how inefficient
the learning algorithm is. This showcases how complex and nontrivial BR programs are.
This invites future research into learning BR programs with statistical objectives as it may
well be possible to achieve our stated purpose for less general, but still useful classes of BR
programs. That is a problem that industrial BR systems would be very interested in. In (Wang
and Liberti, 2017) we look at discrete distributions, for example, but many other possibilities
exist.

The theoretical limits discussed in this paper do not imply that the BRAG problem is
hopeless, but only that more research is needed in order to delimit a reasonable class of
BRAG instances for which the BRAG can be solved, see e.g. (Wang et al., 2017).

The constructive proof we used to prove the Turing-completeness of BRs allows us to
introduce the WHILE forms of BR programs. WHILE programs are simple programming
languages that are easily linked to others, and can already provide some insight on their
own. Using SOS analysis techniques on the transformed BR programs highlights a marked
difference with the existing operational semantics of BRs. These might inspire new tech-
niques for studying the properties of BR programs. In particular, the study of which inputs
or sets of input allow for the termination or non-termination of BR programs is made more
practical by the use of this standardized operational semantics.

Acknowledgments
The first author (OW) is supported by an IBM France/ANRT CIFRE Ph.D. thesis award.

REFERENCES
APT, K. 2003. Principles of Constraint Programming. Cambridge University Press, Cambridge.
BERLINER, L.M. 1992. Statistics, probability and chaos. Statistical Science, 7(1):69–122.
BLOCKEEL, H., and L. DE RAEDT. 1998. Top-down induction of first-order logical decision trees. Artificial

Intelligence, 101(1):285–297.
BLUM, L., M. SHUB, and S. SMALE. 1989. On a theory of computation and complexity over the real numbers:

NP-completeness, recursive functions, and universal machines. Bulletin of the American Mathematical
Society, 21(1):1–46.

BRACHMAN, R., and H. LEVESQUE. 2004. Knowledge Representation and Reasoning. Elsevier, Amsterdam.
BURSTALL, R. M. 1969. Proving properties of programs by structural induction. The Computer Jour-

nal, 12(1):41–48.
BUSINESS RULES GROUP. 2017. The business rules manifesto <www.businessrulesgroup.org/brmanifesto.htm>.
CHURCH, A. 1932. A set of postulates for the foundation of logic. Annals of Mathematics, 33(2):346–366.
CHURCH, A. 1936. An unsolvable problem of elementary number theory. American Journal of Mathemat-

ics, 58:345–363.
CLOCKSIN, W.F., and C.S. MELLISH. 1987. Programming in Prolog. Springer-Verlag, New York.
COHEN, A., S. GOLDWASSER, and V. VAIKUNTANATHAN. 2015. Aggregate pseudorandom functions and

connections to learning. In Theory of Cryptography (TCC). Edited by Y. Dodis and J. Nielsen, Volume
9015 of LNCS. Springer, Berlin, pp. 61–89.

COUSOT, P. 1981. Semantic foundations of program analysis. In Program Flow Analysis: Theory and
Applications. Edited by S. Muchnick and N. Jones. Prentice-Hall, Inc., pp. 303–342. Englewood Cliffs,
New Jersey.

CULBERT, C., and G. RILEY. 2003. CLIPS Basic Programming Guide. CLIPS.
CURTIS, M.W. 1965. A Turing Machine simulator. Journal of the ACM, 12(1):1–13.

20 COMPUTATIONAL INTELLIGENCE

DE RAEDT, L., and S. DŽEROSKI. 1994. First-order JK-clausal theories are PAC-learnable. Artificial
Intelligence, 104(1):375–392.

DE SAINTE MARIE, C., G. HALLMARK, and A. PASCHKE. 2013. Rif production rule dialect (second edition).
Recommendation, W3C.

FORGY, C. 1982. Rete: A fast algorithm for the many patterns/many objects match problem. Artificial
Intelligence, 19(1):17–37.

FRIEDMAN-HILL, E.J. 2003. JESS in Action. Manning Publications, Greenwitch, CT.
GANDY, R. 1980. Church’s thesis and the principles for mechanisms. In The Kleene Symposium. Edited

by J. Barwise, H. Keisler, and K. Kunen. North-Holland, pp. 123–148.
GIURCA, A., D. GAŠEVIĆ, and K. TAVETER editors. 2009. Handbook of Research on Emerging Rule-Based

Languages and Technologies: Open Solutions and Approaches. IGI Global, Hershey.
GOLDREICH, O., S. GOLDWASSER, and S. MICALI. 1986. How to construct random functions. Journal of the

ACM, 4(33):792–807.
HANSON, ERIC N., and MOHAMMED S. HASAN. 1993. Gator: An optimized discrimination network for active

database rule condition testing. Technical Report 93-036, CIS Department University of Florida.
HAREL, D. 1980. On folk theorems. Communications of the ACM, 23(7):379–389.
HIROSE, K., and M. OYA. 1972. Some results in general theory of flow charts. In Proceedings of the First

USA-Japan Computer Conference, Tokyo, Japan, pp. 367–371.
HOARE, C.A.R. 1969. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576–580.
LIBERTI, L., and F. MARINELLI. 2014. Mathematical programming: Turing completeness and applications to

software analysis. Journal of Combinatorial Optimization, 28(1):82–104.
LIGEZA, A. 2006. Logical Foundations for Rule-Based Systems. Springer, Berlin.
MATIYASEVICH, Y. 1993. Hilbert’s Tenth Problem. MIT Press, Boston.
MINSKY, M. 1972. Computation: Finite and Infinite Machines. Prentice-Hall, London.
PLOTKIN, G. 1981. A structural approach to operational semantics. Comp. Sci., Aarhus Univ. DAIMI FN-

19. Technical Report Comp. Sci., Aarhus Univ. DAIMI FN-19, Computer Science Department, Aarhus
University.

PROCTOR, M. 2011. Drools: a rule engine for complex event processing. In AGTIVE International Conference
on Applications of Graph Transformations with Industrial Relevance. Edited by A. Schürr, D. Varró, and
G. Varró. Springer, Berlin, pp. 2–2.

REZK, M., and M. KIFER. 2012. Formalizing production systems with rule-based ontologies. In Foundations
of Information and Knowledge Systems. Edited by T. Lukasiewicz and A. Sali, Volume 7153 of LNCS.
Springer, Berlin, pp. 332–351.

ROSS, R. 2003. Principles of the Business Rule Approach. Addison-Wesley, Boston.
SAGONAS, K., T. SWIFT, and D.S. WARREN. 1994. XSB as an efficient deductive database engine. In SIGMOD

International Conference on the Management of Data. Edited by R. Snodgrass and M. Winslett. ACM Press,
New York, pp. 442–453.

SHANNON, C. 1956. A universal Turing machine with two internal states. In Automata Studies. Edited
by C. Shannon and J. McCarthy, Volume 34 of Annals of Mathematics Studies. Princeton University Press,
Princeton, pp. 157–165.

SNEYERS, J., T. SCHRIJVERS, and B. DEMOEN. 2005. The computational power and complexity of constraint
handling rules. In Proceedings of the 2nd Workshop on Constraint Handling Rules, pp. 3–17.

SWIFT, T., and D.S. WARREN. 2012. XSB: Extending prolog with tabled logic programming. Theory and
Practice of Logic Programming, 12(1-2):157–187.

TRISKA, M. 2014. Correctness Considerations in CLP(FD) Systems. Ph. D. thesis, Vienna University of
Technology.

TURING, A. 1937. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of
the London Mathematical Society, 42(1):230–265.

TURING, A. 1939. Systems of Logic Based on Ordinals. Ph. D. thesis, Princeton University.
VALIANT, L.G. 1984. A theory of the learnable. Communications of the ACM, 11(27):1134–1142.
VAN GELDER, A. 1987. Efficient loop detection in prolog using the tortoise-and-hare technique. Journal of

Logic Programming, 4(1):23–31.
VON HALLE, B. 2001. Business Rules Applied: Building Better Systems Using the Business Rules Approach.

Wiley, Chichester.

UNIVERSALITY AND PREDICTION IN BUSINESS RULES 21

WANG, O. 2017. Analytics learning for rule-based systems. Ph. D. thesis, Ecole Polytechnique.
WANG, O., C. KE, L. LIBERTI, and C. DE SAINTE MARIE. 2016. The learnability of business rules. In Machine

Learning, Optimization, and Big Data. Edited by P. Pardalos, P. Conca, G. Giuffrida, and G. Nicosia, Volume
10122 of LNCS. Springer, pp. 257–268.

WANG, O., and L. LIBERTI. 2017. Controlling some statistical properties of business rules programs. In Learn-
ing and Intelligent Optimization (LION), LNCS, Springer, Berlin.

WANG, O., L. LIBERTI, C. D’AMBROSIO, C. DE SAINTE MARIE, and C. KE. 2017. Controlling the average
behaviour of business rules programs. In RuleML. Edited by J. A. et al., Volume 9718 of LNCS. Springer,
Berlin, pp. 83–96.

WIELEMAKER, J., T. SCHRIJVERS, M. TRISKA, and T. LAGER. 2012. SWI-Prolog. Theory and Practice of
Logic Programming, 12(1-2):67–96.

WILLIAMS, H.P. 1999. Model Building in Mathematical Programming (4th ed.). Wiley, Chichester.
ZANIOLO, C. 1994. A unified semantics for active and deductive databases. In Rules in Database Systems.

Edited by N. P. et al.. Springer, London, pp. 271–287.

