
Fast point-to-point shortest path
queries on dynamic road networks

with interval data
Giacomo Nannicini1,2, Philippe Baptiste1, Daniel Krob1, Leo Liberti1

1 LIX, École Polytechnique, France
2 Mediamobile, Paris, France

CTW 2007 – p. 1/26

Summary of Talk

Context Definition

Problem Definition

A Polynomial Time Approximation Scheme

Computational Results

Future Research

CTW 2007 – p. 2/26

Context Definition
Computing point-to-point shortest paths is of great
interest to many users:

GPS devices with path computing capabilities
Many web sites provide users with route planners

CTW 2007 – p. 3/26

Real-time Traffic Information

As roads are being covered with various devices that
allow traffic observation (cams, sensors, etc.), traffic
information has become a frequent request from users

Users are interested in the shortest path in terms of
travel time, not of path’s length

CTW 2007 – p. 4/26

Traffic Prediction Tools

Another common request from users is the computation
of the fastest route with departure at a given time

This means that we should foresee traffic conditions on
each road, and then compute the shortest path

It is a very difficult task!

CTW 2007 – p. 5/26

Problem Definition (1)

We are given a graph G = 〈V,A, c〉 where c : A → R is
the cost function which associates a travel time to each
arc, a source node s and a target node t; we want to
compute the shortest s → t path (Point To Point Shortest
Path Problem)

The cost function c changes over time

If c is unbounded, we can find the optimum or a
K-approximated solution ∀K for the PTPSPP on a
dynamic graph only with a labeling algorithm (e.g.
Dijkstra’s algorithm, A∗) which potentially explores the
whole graph

CTW 2007 – p. 6/26

Time Constraints

The road network of a whole country can be very large
France: roughly 8M nodes, 17M arcs

We want to be able to compute the shortest path in a
low time

Dijkstra’s algorithm takes on average 11 seconds:
it’s too much!

There are several fast algorithms which compute exact
solutions for the PTPSPP on a static graph (e.g. Highway
Hierarchies, Reach + ALT), but they lose optimality
whenever the cost function changes

CTW 2007 – p. 7/26

A Reasonable Assumption

Let us define lower and upper bounding functions l and
u for c

This helps in simplifying our problem
Such functions can be computed using historical
data on travel times
Historical data should be filtered to avoid outliers
(e.g. to avoid u = ∞)

CTW 2007 – p. 8/26

Problem Definition (2)

Given a graph G = 〈V,A, c〉 with lower and upper
bounding functions l and u such that
l(a) ≤ c(a) ≤ u(a)∀a ∈ A, for any pair of nodes s, t ∈ V

we want to compute the shortest s → t path for any cost
function c.

Query times should be as low as possible

Since the cost function changes frequently, we can’t
perform costly update steps

Pre-processing time (if reasonable) is not an issue

CTW 2007 – p. 9/26

Notation

For s, t ∈ V let P (s, t) be the set of all s → t paths

Let P ∗

f (s, t) be the set of the shortest s → t paths on
graph G with cost function c = f ; e.g. P ∗

u (s, t) is the set
of the shortest s → t paths on the graph weighted by
the upper bounding function

For U ⊂ V , G[U] is the subgraph induced by U , and
P [U](s, t) is the set of s → t paths on graph G[U]

P ∗

f [U](s, t) is the set of the shortest s → t paths on
graph G[U] with cost function c = f

CTW 2007 – p. 10/26

Guarantee Regions (1)

For K > 1, s, t ∈ V and path p ∈ P ∗

u (s, t), we define a
guarantee region Γst(K, p) as

{v ∈ V |v ∈ p ∨ ∃ q ∈ P (s, t) (v ∈ q ∧ l(q) <
1

K
u(p))}

The following approximation property holds: for
p∗ ∈ P ∗(s, t) and q∗ ∈ P ∗[Γst(K, p)](s, t), we have

c(q∗) ≤ Kc(p∗)

CTW 2007 – p. 11/26

Example (1)

Suppose K = 1.5

Upper cost of green path: u(p∗) = 30

Lower cost of blue paths: l(p) = 15 ≤ u(p∗)
K

CTW 2007 – p. 12/26

Example (2)

Γst(1.5, p
∗) = blue, red and purple nodes.

What happens in the worst possible scenario for this
region?

CTW 2007 – p. 13/26

Example (3)

Shortest path has cost 24

Shortest path restricted to Γst(1.5, p
∗) has cost 30

30 ≤ 1.5 · 24, we are still within the approximation
constant

CTW 2007 – p. 14/26

Extending Guarantee Regions

Computing Γst(K, p) for all pairs s, t ∈ V is not feasible

Idea: compute a guarantee region for a set of source
nodes, and a set of target nodes

Define a covering of V with clusters V1, . . . , Vk with the
property that for all i ≤ k there are vertices si, ti ∈ Vi

such that for all other vertices v ∈ Vi there are paths
p ∈ P (v, si), q ∈ P (ti, v) entirely contained in Vi.

For all i ≤ k let σi = maxv∈Vi,p∈P ∗

u (v,si) c(p) and
τi = maxv∈Vi,p∈P ∗

u (ti,v) c(p)) be the costs of the longest
shortest path in Gu from v to si and respectively from ti
to v over all v ∈ Vi.

CTW 2007 – p. 15/26

Guarantee Regions (2)

For K > 1, i 6= j ≤ k and a path p ∈ P ∗

u (si, tj), we define
the clustered guarantee region ΓViVj

(K, p) as

{v ∈ V |v ∈ p ∪ Vi ∪ Vj ∨

∃ q ∈ P (si, tj) (v ∈ q ∧ l(q) < 1
K

(u(p) + σi + τj))}

The following approximation property holds: for
u ∈ Vi, v ∈ Vj (where i 6= j), p∗ ∈ P ∗(u, v),
q∗ ∈ P ∗[ΓViVj

(K, p)](u, v), we have

c(q∗) ≤ Kc(p∗)

CTW 2007 – p. 16/26

Framework

Define a valid covering of V with clusters V1, . . . , Vk with
the aforementioned property

Compute σi and τi for each cluster Vi

Compute ΓViVj
(K, p) for each pair i 6= j and for a given

approximation constant K

When computing the shortest path from s to t, apply
Dijkstra’s algorithm only on subgraph G[ΓViVj

(K, p)],
where s ∈ Vi, t ∈ Vj

The so-found path will have a cost within K times the
optimum solution’s cost

All computations can be done in polynomial time; it
is thus a PTAS

CTW 2007 – p. 17/26

Region’s Cardinality

Each region’s size depends on l, u, the graph topology
and the value of K

As K increases, the region’s size decreases

 345000

 350000

 355000

 360000

 365000

 370000

 375000

 380000

 385000

 390000

 395000

 610000 620000 630000 640000 650000 660000 670000
 350000

 355000

 360000

 365000

 370000

 375000

 380000

 385000

 390000

 620000 625000 630000 635000 640000 645000 650000 655000 660000 665000

CTW 2007 – p. 18/26

Effect on Performances

The smaller the region, the less nodes we have to
explore

This means faster query times, but of course the
solution’s quality can decrease

A region’s cardinality can also be used to give an upper
bound to query times

It is probably the most important decision to take, as it
severely affects performances

CTW 2007 – p. 19/26

Pros and Cons

Pros:
Guarantee of a K-approximated solution
Query times can be reduced as much as needed (up
to a certain degree!)

Cons:
The speed-up is lower than that obtained with other
techniques that pre-compute shortest paths
If K is not well chosen, we can have undesired
behaviours

CTW 2007 – p. 20/26

Extreme Cases

 410000

 415000

 420000

 425000

 430000

 435000

 440000

 445000

 565000 570000 575000 580000 585000 590000 595000 600000 605000 610000 615000
 410000

 415000

 420000

 425000

 430000

 435000

 440000

 445000

 565000 570000 575000 580000 585000 590000 595000 600000 605000 610000

Both are to be avoided!

CTW 2007 – p. 21/26

Computational Results (1)

Unclustered graph (average values)

K Search set size Search set size Cost Speed up

(Optimum sol.) (Approx. sol.) increase

3 74559 74532 0% 0%
4 74779 74219 0% 0%
5 74651 65126 0% 8.39%
6 74739 39282 0% 46.85%
7 74647 5609 0.07% 93.86%

CTW 2007 – p. 22/26

Computational Results (2)

Clustered graph (average values)

K Search set size Search set size Cost Speed up

(Optimum sol.) (Approx. sol.) increase

6 74493 73262 0% 0%
7 74605 66804 0% 5.83%
8 74129 56761 0% 20.35%
9 74436 34091 0.02% 54.26%
10 74494 13978 1.20% 82.05%

CTW 2007 – p. 23/26

An Example

Optimum solution: 5 minutes, 12 seconds

Approximated solution: 5 minutes, 20 seconds

CTW 2007 – p. 24/26

An example

CTW 2007 – p. 25/26

Future Research

Computation of lower and upper bounds for all arcs

Improvement in query times

Efficient storage of node sets

Faster pre-processing computations

CTW 2007 – p. 26/26

	Summary of Talk
	Context Definition
	Real-time Traffic Information
	Traffic Prediction Tools
	Problem Definition (1)
	Time Constraints
	A Reasonable Assumption
	Problem Definition (2)
	Notation
	Guarantee Regions (1)
	Example (1)
	Example (2)
	Example (3)
	Extending Guarantee Regions
	Guarantee Regions (2)
	Framework
	Region's Cardinality
	Effect on Performances
	Pros and Cons
	Extreme Cases
	Computational Results (1)
	Computational Results (2)
	An Example
	An example
	Future Research

