

#### Fast point-to-point shortest path queries on dynamic road networks with interval data

Giacomo Nannicini $^{1,2}$ , Philippe Baptiste $^1$ , Daniel Krob $^1$ , Leo Liberti $^1$ 

<sup>1</sup> LIX, École Polytechnique, France

 $^2$  Mediamobile, Paris, France

## **Summary of Talk**



- Context Definition
- Problem Definition
- A Polynomial Time Approximation Scheme
- Computational Results
- Future Research

## **Context Definition**



- Computing point-to-point shortest paths is of great interest to many users:
  - GPS devices with path computing capabilities
  - Many web sites provide users with route planners



## **Real-time Traffic Information**



As roads are being covered with various devices that allow traffic observation (cams, sensors, etc.), traffic information has become a frequent request from users



Users are interested in the shortest path in terms of travel time, not of path's length

#### **Traffic Prediction Tools**



- Another common request from users is the computation of the fastest route with departure at a given time
- This means that we should foresee traffic conditions on each road, and then compute the shortest path
- It is a very difficult task!

| Route planner preferences                         |                                   |                      |
|---------------------------------------------------|-----------------------------------|----------------------|
| Journey preference                                | Fastest (road type)               | C Shortest (mileage) |
| Use of motorways                                  | No preference                     |                      |
| Avoid                                             | ☐ Toll roads<br>☐ Ferry crossings |                      |
| What kind of traffic conditions do<br>you expect? | High traffic                      |                      |
|                                                   |                                   | 60                   |

## **Problem Definition (1)**



- We are given a graph  $G = \langle V, A, c \rangle$  where  $c : A \to \mathbb{R}$  is the cost function which associates a travel time to each arc, a source node s and a target node t; we want to compute the shortest  $s \to t$  path (Point To Point Shortest Path Problem)
- The cost function c changes over time
- If c is unbounded, we can find the optimum or a K-approximated solution ∀ K for the PTPSPP on a dynamic graph only with a labeling algorithm (e.g. Dijkstra's algorithm, A\*) which potentially explores the whole graph

## **Time Constraints**



- The road network of a whole country can be very large
  - France: roughly 8M nodes, 17M arcs
- We want to be able to compute the shortest path in a low time
  - Dijkstra's algorithm takes on average 11 seconds: it's too much!
- There are several fast algorithms which compute exact solutions for the PTPSPP on a static graph (e.g. Highway Hierarchies, Reach + ALT), but they lose optimality whenever the cost function changes

## **A Reasonable Assumption**



- Let us define lower and upper bounding functions l and u for c
  - This helps in simplifying our problem
  - Such functions can be computed using historical data on travel times
  - Historical data should be filtered to avoid outliers (e.g. to avoid  $u = \infty$ )



## **Problem Definition (2)**



- Given a graph  $G = \langle V, A, c \rangle$  with lower and upper bounding functions l and u such that  $l(a) \leq c(a) \leq u(a) \forall a \in A$ , for any pair of nodes  $s, t \in V$ we want to compute the shortest  $s \to t$  path for any cost function c.
- Query times should be as low as possible
- Since the cost function changes frequently, we can't perform costly update steps
- Pre-processing time (if reasonable) is not an issue

## Notation



- For  $s, t \in V$  let P(s, t) be the set of all  $s \to t$  paths
- Let  $P_f^*(s,t)$  be the set of the shortest  $s \to t$  paths on graph G with cost function c = f; e.g.  $P_u^*(s,t)$  is the set of the shortest  $s \to t$  paths on the graph weighted by the upper bounding function
- For  $U \subset V$ , G[U] is the subgraph induced by U, and P[U](s,t) is the set of  $s \to t$  paths on graph G[U]
- $P_f^*[U](s,t)$  is the set of the shortest  $s \to t$  paths on graph G[U] with cost function c = f

## **Guarantee Regions (1)**



■ For K > 1,  $s, t \in V$  and path  $p \in P_u^*(s, t)$ , we define a guarantee region  $\Gamma_{st}(K, p)$  as

$$\{v \in V | v \in p \lor \exists q \in P(s,t) \ (v \in q \land l(q) < \frac{1}{K}u(p))\}$$

• The following approximation property holds: for  $p^* \in P^*(s,t)$  and  $q^* \in P^*[\Gamma_{st}(K,p)](s,t)$ , we have

$$c(q^*) \le Kc(p^*)$$

# Example (1)





- Suppose K = 1.5
- Upper cost of green path:  $u(p^*) = 30$

• Lower cost of blue paths:  $l(p) = 15 \le \frac{u(p^*)}{K}$ 

# Example (2)





- $\Gamma_{st}(1.5, p^*) =$ blue, red and purple nodes.
- What happens in the worst possible scenario for this region?

## Example (3)





- Shortest path has cost 24
- Shortest path restricted to  $\Gamma_{st}(1.5, p^*)$  has cost 30
- $30 \le 1.5 \cdot 24$ , we are still within the approximation constant

# Extending Guarantee Regions



- Computing  $\Gamma_{st}(K, p)$  for all pairs  $s, t \in V$  is not feasible
- Idea: compute a guarantee region for a set of source nodes, and a set of target nodes
- Define a covering of V with clusters  $V_1, \ldots, V_k$  with the property that for all  $i \le k$  there are vertices  $s_i, t_i \in V_i$  such that for all other vertices  $v \in V_i$  there are paths  $p \in P(v, s_i), q \in P(t_i, v)$  entirely contained in  $V_i$ .
- For all  $i \leq k$  let  $\sigma_i = \max_{v \in V_i, p \in P_u^*(v, s_i)} c(p)$  and  $\tau_i = \max_{v \in V_i, p \in P_u^*(t_i, v)} c(p)$ ) be the costs of the longest shortest path in  $G_u$  from v to  $s_i$  and respectively from  $t_i$ to v over all  $v \in V_i$ .

## **Guarantee Regions (2)**



• For K > 1,  $i \neq j \leq k$  and a path  $p \in P_u^*(s_i, t_j)$ , we define the clustered guarantee region  $\Gamma_{V_iV_j}(K, p)$  as

 $\{ v \in V | v \in p \cup V_i \cup V_j \lor \\ \exists q \in P(s_i, t_j) \ (v \in q \land l(q) < \frac{1}{K}(u(p) + \sigma_i + \tau_j)) \}$ 

• The following approximation property holds: for  $u \in V_i, v \in V_j$  (where  $i \neq j$ ),  $p^* \in P^*(u, v)$ ,  $q^* \in P^*[\Gamma_{V_iV_j}(K, p)](u, v)$ , we have

$$c(q^*) \le Kc(p^*)$$

#### Framework



- Define a valid covering of V with clusters  $V_1, \ldots, V_k$  with the aforementioned property
- Compute  $\sigma_i$  and  $\tau_i$  for each cluster  $V_i$
- Compute  $\Gamma_{V_iV_j}(K, p)$  for each pair  $i \neq j$  and for a given approximation constant K
- When computing the shortest path from s to t, apply Dijkstra's algorithm only on subgraph  $G[\Gamma_{V_iV_j}(K, p)]$ , where  $s \in V_i, t \in V_j$
- The so-found path will have a cost within K times the optimum solution's cost
  - All computations can be done in polynomial time; it is thus a PTAS

## **Region's Cardinality**



- Each region's size depends on l, u, the graph topology and the value of K
  - ▲ As K increases, the region's size decreases



## **Effect on Performances**



- The smaller the region, the less nodes we have to explore
  - This means faster query times, but of course the solution's quality can decrease
- A region's cardinality can also be used to give an upper bound to query times
- It is probably the most important decision to take, as it severely affects performances

### **Pros and Cons**



#### Pros:

- Guarantee of a K-approximated solution
- Query times can be reduced as much as needed (up to a certain degree!)
- Cons:
  - The speed-up is lower than that obtained with other techniques that pre-compute shortest paths
  - If K is not well chosen, we can have undesired behaviours

#### **Extreme Cases**





Both are to be avoided!

## **Computational Results (1)**



#### Unclustered graph (average values)

| K | Search set size | Search set size | Cost     | Speed up |
|---|-----------------|-----------------|----------|----------|
|   | (Optimum sol.)  | (Approx. sol.)  | increase |          |
| 3 | 74559           | 74532           | 0%       | 0%       |
| 4 | 74779           | 74219           | 0%       | 0%       |
| 5 | 74651           | 65126           | 0%       | 8.39%    |
| 6 | 74739           | 39282           | 0%       | 46.85%   |
| 7 | 74647           | 5609            | 0.07%    | 93.86%   |

## **Computational Results (2)**



#### Clustered graph (average values)

| K  | Search set size | Search set size | Cost     | Speed up |
|----|-----------------|-----------------|----------|----------|
|    | (Optimum sol.)  | (Approx. sol.)  | increase |          |
| 6  | 74493           | 73262           | 0%       | 0%       |
| 7  | 74605           | 66804           | 0%       | 5.83%    |
| 8  | 74129           | 56761           | 0%       | 20.35%   |
| 9  | 74436           | 34091           | 0.02%    | 54.26%   |
| 10 | 74494           | 13978           | 1.20%    | 82.05%   |

## An Example





- Optimum solution: 5 minutes, 12 seconds
- Approximated solution: 5 minutes, 20 seconds

#### An example





#### **Future Research**



- Computation of lower and upper bounds for all arcs
- Improvement in query times
- Efficient storage of node sets
- Faster pre-processing computations