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Static analysis

goal: statically infer run-time properties of programs (e.g., variable 
values and dependencies).

purpose: program correctness proofs (e.g., safety, termination, run-
time errors) , code optimization (e.g., compile-time garbage 
collection).

basic assumption: the answers can only be approximate since 
problems are either undecidable (e.g., termination for all input 
data) or computationally intractable.

tools: Abstract interpretation, dataflow analysis, control flow 
analysis, model checking.



4

Abstract Interpretation
Focuses on a class of properties of program executions and yields an over-
approximations of invariants.

Starting from a concrete semantic, 
1. an abstract domain and an abstract semantic are defined, 
2. a fixpoint of the abstract semantic, preferably the least one, is computed. 

Fixpoints are in general obtained by means of iterative procedures based on 
Kleene’s fixed point iteration algorithm. 

Aim of this work
We propose an alternative approach based on a mathematical programming 
language, i.e. a language for expressing optimization and decision problems by 
means of mathematical relations, that allows the solution of them using generic 
algorithms.
main advantage: flexibility 
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Preliminaries
p1,…, pn control points of a program P which only performs additions, 

subtractions and products with a constant.
x a variable of P
Ik = [xk

l, xk
u] values that x can take at pk (xk

l, xk
u ∈ IR ∪ {±∞}) 

(Λ, ⊆ )  complete lattice of the closed intervals of IR ordered by inclusion 
(lowest element = ∅ and greatest element  = ]−∞, +∞[)

S: Λn → Λn an abstract semantic of P in the abstract domain of intervals

Each function Sk : (I1,…, In) → Ik is an arithmetic logical expression involving 
binary operators in the set ⊗ = {+, −, ∗ , ∪ , ∩} 
A least fixed point of S is an invariant of P. it can be obtained by solving 

( ){ }nkIIIS knkII n

,...,1|,...,min 1,...,1
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void main(){

int x = 0;

while (x < 100){

x = x + 1;  

}

}

Program P Semantic S: Λ4 → Λ4

a fixed pointSystem of fixed point equations
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Mathematical model
For each control point pi let us define a pair of real variables                 . 
Recall that I1,…, In describe an invariant of P
For each function Si and for each operator ⊗ ij in Si let us define 

a pair of real variables 
a set Ωij of variables and constraints that model the semantic of ⊗ ij in the 
arithmetic of intervals 

[ ] ij
u
ij

l
ij Zzz =,

[ ] i
u
i

l
i Ixx =,
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Mathematical model

312   IIZi ∪=

21 ]99,]  ii ZZ ∩∞−=

( )31]99,]  IIIi ∪∩∞−=

For each control point pi let us define a pair of real variables                 . 
Recall that I1,…, In describe an invariant of P
For each function Si and for each operator ⊗ ij in Si let us define 

a pair of real variables 
a set Ωij of variables and constraints that model the semantic of ⊗ ij in the 
arithmetic of intervals 

⊗ i1 = ∩

⊗ i2 = ∪

I3I1

]−∞, 99]

are ranked 
according to the reverse 
order of evaluation;

Example:
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l
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for a suitable choice of M, the solution space coincides with the set 
of fixed points of S
⇒ an optimal solution of the model is a least fixed point of S

Mathematical model

Minimum total length of I1,…, In
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10 =⇒> yx
{ }1,0

],,0[
∈
∈

y
Mx Myx ≤

numerical computation is performed by finite arithmetic
⇒ the infinity value is represented by a suitable large number M/2
⇒ the endpoints of intervals are limited to the range [−M/2,M/2].

The key-role of M

The M parameter is also used to model implications between real 
and binary variables, e.g.,:

is modeled by

A large value for M
+ allows the computation of better fixpoints, potentially a least one

− makes the model ill-conditioned and harder to solve
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Union operator: Zij = Zh ∪ Zk
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Intersection operator: Zij = Zh ∩ Zk
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Empty intersection set must be considered 
min and max cannot be modeled by simple inequalities
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⊗ ij = ∩
⊗ ij = +
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Intersection operator: Zij = Zh ∩ Zk
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Intersection operator: Zij = Zh ∩ Zk
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Intersection operator: Zij = Zh ∩ Zk
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Intersection operator: Zij = Zh ∩ Zk
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Plus operator: Zij = Zh + Zk
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Plus operator: Zij = Zh + Zk
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Constraints of Ωij

Similar constraints are defined for the upper limit of Zij

Minus operator Zij = Zh − Zk can be easily transformed into plus 
operator by setting Zk = [− zu

k , − zl
k]
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Solution of the model

All the non-linear constraints can be easily linearized. 
The model is a Mixed Integer Linear Program which can be solved 
by branch-and-bound algorithms coded in standard tools (e.g., 
Cplex, Xpress-MP, Lp-solve).

branch-and-bound: 
decomposes the problem in sub-problems easier and easier;
the process is represented with an enumeration tree where the root node is 
the original problem and the leaves are solutions;
bounding of sub-problems is performed by comparing lower and upper 
bounds. 

Branch-and-bound is an exponential algorithm in the worst case.
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Computational validation

Instance set: 40 toy examples in C language

62.5% of the problems are solved at root node (10% just by 
preprocessing)
The average size of the enumeration tree is 7,275 nodes 
93,87 simplex iterations are performed on the average
Computational times are negligible (< 0.01 sec.)

Model solver: Cplex 10.1
Machine: AMD Athlon 64 1.8GHz
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Conclusions and future work
Conclusions

A mathematical programming approach to compute fixpoints in the abstract 
domain of intervals has been proposed
The model 

can be used together with existing methods to derive better approximations of 
invariants and 
can be useful for parameterized fixpoint computation (e.g., optimization of the fixed 
point formats of numbers)

The model has been validated on small examples in C language

Future work
Testing on real case instances 
Numerical problems and weakness of lower bound due to the large constant  M
Extension to relational domains such as octagons and polyedra
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