Colloque d'Automne du LIX 2007 CAL07

A mathematical programming model for computing fixed points in static program analysis

> Fabrizio Marinelli and Leo Liberti {marinelli,liberti}@lix.polytechnique.fr

LIX, Laboratorie d'Informatique École Polytechnique

Paris, October 3-4, 2007

Outline of the talk

- Some words on static analysis and abstract interpretation
- A mathematical formulation to compute fixed points
- Some preliminary computational results
- Conclusions and future work

Static analysis

- **goal**: statically infer run-time properties of programs (e.g., variable values and dependencies).
- **purpose**: program correctness proofs (e.g., safety, termination, runtime errors), code optimization (e.g., compile-time garbage collection).
- basic assumption: the answers can only be approximate since problems are either undecidable (e.g., termination for all input data) or computationally intractable.
- **tools**: Abstract interpretation, dataflow analysis, control flow analysis, model checking.

Abstract Interpretation

- Focuses on a class of properties of program executions and yields an overapproximations of invariants.
- Starting from a *concrete* semantic,
 - 1. an abstract domain and an abstract semantic are defined,
 - 2. a fixpoint of the abstract semantic, preferably the <u>least</u> one, is computed. Fixpoints are in general obtained by means of iterative procedures based on Kleene's fixed point iteration algorithm.

Aim of this work

We propose an alternative approach based on a mathematical programming language, i.e. a language for expressing optimization and decision problems by means of mathematical relations, that allows the solution of them using generic algorithms.

main advantage: flexibility

Preliminaries

- p_1, \ldots, p_n control points of a program *P* which only performs additions, subtractions and products with a constant.
- x a variable of P
- $I_k = [x_k^l, x_k^u]$ values that x can take at p_k $(x_k^l, x_k^u \in \mathrm{IR} \cup \{\pm\infty\})$
- (Λ, \subseteq) complete lattice of the closed intervals of IR ordered by inclusion (lowest element = \emptyset and greatest element = $]-\infty, +\infty[$)
- $S: \Lambda^n \to \Lambda^n$ an abstract semantic of *P* in the abstract domain of intervals
- Each function $S_k : (I_1, ..., I_n) \rightarrow I_k$ is an arithmetic logical expression involving binary operators in the set $\otimes = \{+, -, *, \cup, \cap\}$
- A least fixed point of *S* is an invariant of *P*. it can be obtained by solving

$$\min_{I_1,...,I_n} \{ S_k(I_1,...,I_n) = I_k \mid k = 1,...,n \}$$

Example

Program P	Semantic S: $\Lambda^4 \to \Lambda^4$
<pre>void main(){ int x = 0; p_1 while (x < 100){ p_2</pre>	$S_{1}: [0,0]$ $S_{2}:]-\infty,99] \cap (I_{1} \cup I_{3})$ $S_{3}: I_{2}+[1,1]$ $S_{4}: [100,+\infty[\cap(I_{1} \cup I_{3})]$
System of fixed point equations	a fixed point
$\begin{cases} I_1 = [0,0] \\ I_2 =] - \infty,99] \cap (I_1 \cup I_3) \\ I_3 = I_2 + [1,1] \\ I_4 = [100, +\infty[\cap (I_1 \cup I_3)] \end{cases}$	$I_{1} = [x_{1}^{l}, x_{1}^{u}] = [0,0]$ $I_{2} = [x_{2}^{l}, x_{2}^{u}] = [0,99]$ $I_{3} = [x_{3}^{l}, x_{3}^{u}] = [1,100]$ $I_{4} = [x_{4}^{l}, x_{4}^{u}] = [100,100]$

- For each control point p_i let us define a pair of real variables $[x_i^l, x_i^u] = I_i$. Recall that I_1, \ldots, I_n describe an invariant of P
- For each function S_i and for each operator \bigotimes_{ij} in S_i let us define \square a pair of real variables $[z_{ij}^l, z_{ij}^u] = Z_{ij}$

 - \square a set Ω_{ij} of variables and constraints that model the semantic of \otimes_{ij} in the arithmetic of intervals

- For each control point p_i let us define a pair of real variables $[x_i^l, x_i^u] = I_i$. Recall that I_1, \ldots, I_n describe an invariant of P
- For each function S_i and for each operator \bigotimes_{ij} in S_i let us define
 - \Box a pair of real variables $[z_{ij}^l, z_{ij}^u] = Z_{ij}$
 - \square a set Ω_{ij} of variables and constraints that model the semantic of \otimes_{ij} in the arithmetic of intervals

• Example:
$$I_i =]-\infty,99] \cap (I_1 \cup I_3)$$

 $\bigotimes_{i1} = \bigcap \qquad Z_{i1} =]-\infty,99] \cap Z_{i2}$ $]-\infty,99] \qquad \bigotimes_{i2} = \bigcup \qquad Z_{i2} = I_1 \cup I_3$ $I_1 \qquad I_3$

Note

 $\bigotimes_{i1},...,\bigotimes_{im_i}$ are ranked according to the reverse order of evaluation;

$$\min \sum_{i=1}^{n} \left(x_{i}^{u} - x_{i}^{l} \right)$$

$$x_{i}^{l} = z_{i1}^{l} \qquad i = 1, ..., n$$

$$x_{i}^{u} = z_{i1}^{u} \qquad i = 1, ..., n$$

$$\Omega_{ij} \qquad i = 1, ..., n, j = 1, ..., m_{i}$$

$$z_{ij}^{l} \le z_{ij}^{u} \qquad i = 1, ..., n, j = 1, ..., m_{i}$$

$$z_{ij}^{l}, z_{ij}^{u} \in \left[-M/2, M/2 \right]$$

Fixed point of S

$$\min \sum_{i=1}^{n} \left(x_{i}^{u} - x_{i}^{l} \right)$$

$$x_{i}^{l} = z_{i1}^{l} \qquad i = 1, ..., n$$

$$x_{i}^{u} = z_{i1}^{u} \qquad i = 1, ..., n$$

$$\Omega_{ij} \qquad i = 1, ..., n, j = 1, ..., m_{i}$$

$$z_{ij}^{l} \le z_{ij}^{u} \qquad i = 1, ..., n, j = 1, ..., m_{i}$$

$$z_{ij}^{l} \le z_{ij}^{u} \qquad i = 1, ..., n, j = 1, ..., m_{i}$$

Fixed point of *S*
Semantic of operators
$$\min \sum_{i=1}^{n} (x_{i}^{u} - x_{i}^{l})$$

$$x_{i}^{l} = z_{i1}^{l} \quad i = 1,...,n$$

$$x_{i}^{u} = z_{i1}^{u} \quad i = 1,...,n$$

$$\sum_{ij}^{l} \leq z_{ij}^{u} \quad i = 1,...,n, j = 1,...,m_{i}$$

$$z_{ij}^{l} \leq z_{ij}^{u} \quad i = 1,...,n, j = 1,...,m_{i}$$

$$z_{ij}^{l} \leq z_{ij}^{u} \quad e [-M/2, M/2]$$

$$\min \sum_{i=1}^{n} (x_{i}^{u} - x_{i}^{l})$$
of S
$$x_{i}^{l} = z_{i1}^{l} \quad i = 1,...,n$$

$$x_{i}^{u} = z_{i1}^{u} \quad i = 1,...,n$$
operators
$$\Omega_{ij} \quad i = 1,...,n, j = 1,...,m_{i}$$

$$z_{ij}^{l} \le z_{ij}^{u} \quad i = 1,...,n, j = 1,...,m_{i}$$

$$z_{ij}^{l}, z_{ij}^{u} \in [-M/2, M/2]$$

Fixed point o

Semantic of

Proper defini

	$\min \sum_{i=1}^{n} ($	$\left(x_i^u - x_i^l\right)$	Minimum total length of I_1, \ldots, I_n
Fixed point of S		$x_i^l = z_{i1}^l$ $x_i^u = z_{i1}^u$	i = 1,, n i = 1,, n
Semantic of operators		$arOmega_{ij}$	$i = 1,, n, j = 1,, m_i$
Proper definition of inter	vals	$z_{ij}^l \le z_{ij}^u$	$i = 1,, n, j = 1,, m_i$
		$z_{ij}^{l}, z_{ij}^{u} \in [-M/2, M/2]$	

$\min \sum_{i=1}^{n}$	$(x_i^u - x_i^l)$ Minimum total length of I_1, \dots, I_n
Fixed point of S	$x_i^l = z_{i1}^l$ $i = 1,,n$ $x_i^u = z_{i1}^u$ $i = 1,,n$
Semantic of operators	Ω_{ij} $i = 1,,n, j = 1,,m_i$
Proper definition of intervals	$z_{ij}^{l} \le z_{ij}^{u}$ $i = 1,,n, j = 1,,m_{i}$
	$z_{ij}^{l}, z_{ij}^{u} \in [-M/2, M/2]$

for a suitable choice of *M*, the solution space coincides with the set of fixed points of *S*

 \Rightarrow an optimal solution of the model is a <u>least fixed point</u> of *S*

The key-role of M

- numerical computation is performed by finite arithmetic
 ⇒ the infinity value is represented by a suitable large number M/2
 ⇒ the endpoints of intervals are limited to the range [-M/2,M/2].
- The *M* parameter is also used to model implications between real and binary variables, e.g.,:

 $x \in [0, M], \qquad x > 0 \Longrightarrow y = 1 \quad \text{is modeled by} \quad x \le My$ $y \in \{0, 1\}$

- A large value for *M*
 - + allows the computation of better fixpoints, potentially a least one
 - makes the model ill-conditioned and harder to solve

Union operator: $Z_{ij} = Z_h \cup Z_k$

Semantic

• Constraints of Ω_{ij}

(*i*)
$$z_{ij}^{l} = \min\{z_{h}^{l}, z_{k}^{l}\}$$

(*ii*) $z_{ij}^{u} = \max\{z_{h}^{u}, z_{k}^{u}\}$

$$\begin{cases} z_{ij}^{l} \leq z_{h}^{l} \\ z_{ij}^{l} \leq z_{k}^{l} \end{cases}$$
$$\begin{cases} z_{ij}^{u} \geq z_{h}^{u} \\ z_{ij}^{u} \geq z_{k}^{u} \end{cases}$$

Intersection operator: $Z_{ii} = Z_h \cap Z_k$

Semantic

(i)
$$Z_{ij} = \emptyset$$
 if $(z_h^l > z_k^u) \lor (z_k^l > z_h^u)$
(ii) $z_{ij}^l = \max\{z_h^l, z_k^l\}$
(iii) $z_{ij}^u = \min\{z_h^l, z_k^l\}$

Empty intersection set must be considered *min* and *max* cannot be modeled by simple inequalities

Intersection operator: $Z_{ij} = Z_h \cap Z_k$

• Variables of Ω_{ij}

$$y_{ij}^{0} = \begin{cases} 1 \text{ if } Z_{ij} = \emptyset \\ 0 \text{ otherwise} \end{cases}$$
$$y_{ij}^{lt} = \begin{cases} 1 \text{ if } z_{ij}^{l} = z_{t}^{l} & t \in \{h, k\} \\ 0 \text{ otherwise} \end{cases}$$
$$y_{ij}^{ut} = \begin{cases} 1 \text{ if } z_{ij}^{u} = z_{t}^{u} & t \in \{h, k\} \\ 0 \text{ otherwise} \end{cases}$$

• Variables of
$$\Omega_{ij}$$

$$y_{ij}^{0} = \begin{cases} 1 \text{ if } Z_{ij} = \emptyset \\ 0 \text{ otherwise} \end{cases}$$
$$y_{ij}^{lt} = \begin{cases} 1 \text{ if } z_{ij}^{l} = z_{t}^{l} & t \in \{h, k\} \\ 0 \text{ otherwise} \end{cases}$$
$$y_{ij}^{ut} = \begin{cases} 1 \text{ if } z_{ij}^{u} = z_{t}^{u} & t \in \{h, k\} \\ 0 \text{ otherwise} \end{cases}$$

$$\begin{cases} z_{h}^{l} Z_{h} \\ y_{ij}^{lk} = 1 \\ y_{ij}^{lh} = 0 \end{cases} \qquad z_{ij}^{l} Z_{ij} \\ z_{ij}^{lk} = 1 \\ z_{k}^{l} Z_{ij} \\ z_{ij}^{lk} Z_{k} \\ z_{ij}^{lk} Z_{k} \\ z_{ij}^{lk} Z_{k} \\ z_{ij}^{lk} Z_{ij} \\$$

Intersection operator: $Z_{ij} = Z_h \cap Z_k$ • Semantic

(i)
$$Z_{ij} = \emptyset$$
 if $(z_h^l > z_k^u) \lor (z_k^l > z_h^u)$

• Constraints of
$$\Omega_{ij}$$

$$\begin{vmatrix} z_{h}^{l} - z_{k}^{u} \leq My_{ij}^{0} \\ |z_{h}^{l} - z_{k}^{u}| \geq \varepsilon y_{ij}^{0} \\ z_{k}^{l} - z_{h}^{u} \leq My_{ij}^{0} \\ |z_{k}^{l} - z_{h}^{u}| \geq \varepsilon y_{ij}^{0} \\ z_{ij}^{l} + My_{ij}^{0} \leq M/2 \\ z_{ij}^{u} - My_{ij}^{0} \geq -M/2 \end{vmatrix} \right\} \xrightarrow{Z_{h} \ z_{k}^{u} \ z_{k}^{l} \ Z_{k} \\ y_{ij}^{0} = 1 \Rightarrow [z_{ij}^{l}, z_{ij}^{u}] = [-M/2, M/2]$$

Intersection operator: $Z_{ii} = Z_h \cap Z_k$

Semantic

 $(ii) \quad z_{ij}^l = \max\left\{z_h^l, z_k^l\right\}$

• Constraints of Ω_{ii} $z_k^l \xrightarrow{Z_k} Z_h \implies y_{ij}^{lh} = 1 \text{ or } y_{ij}^0 = 1$ $z_{h}^{l} - z_{k}^{l} \le M(y_{ii}^{lh} + y_{ii}^{0})$ $z_{h}^{l} \xrightarrow{Z_{k}} Z_{k} \implies y_{ij}^{lk} = 1 \text{ or } y_{ij}^{0} = 1$ $z_{k}^{l} - z_{h}^{l} \leq M(y_{ii}^{lk} + y_{ii}^{0})$ $y_{ii}^{lh} + y_{ii}^{lk} + y_{ii}^{0} = 1$ $y_{ij}^{lt} \left(z_{ij}^{l} - z_{t}^{l} \right) = 0 \quad t \in \{h, k\} \quad \begin{cases} y_{ij}^{lh} = 1 \implies z_{ij}^{l} = z_{h}^{l} \\ y_{ij}^{lk} = 1 \implies z_{ij}^{l} = z_{k}^{l} \end{cases}$

Similar constraints are defined to model $z_{ij}^{u} = \min\{z_{h}^{u}, z_{k}^{u}\}$

Plus operator: $Z_{ij} = Z_h + Z_k$

$$z_{ij}^{l} = z_{h}^{l} + z_{k}^{l} \qquad \qquad Z_{ij} \qquad \qquad z_{ij}^{u} = z_{h}^{u} + z_{k}^{u}$$

(i)
$$z_{ij}^{l} = -\infty$$
 if $(z_{h}^{l} = -\infty) \lor (z_{k}^{l} = -\infty)$
(ii) $z_{ij}^{l} = z_{h}^{l} + z_{k}^{l}$ if $z_{h}^{l}, z_{k}^{l} \neq -\infty$
(iii) $z_{ij}^{u} = +\infty$ if $(z_{h}^{u} = +\infty) \lor (z_{k}^{u} = +\infty)$
(iv) $z_{ij}^{u} = z_{h}^{u} + z_{k}^{u}$ if $z_{h}^{u}, z_{k}^{u} \neq +\infty$

Addition between intervals must be extended to deal with infinity values

$$\bigotimes_{ij} = \bigcup$$
$$\bigotimes_{ij} = \bigcap$$
$$\bigotimes_{ij} = +$$

Plus operator:
$$Z_{ij} = Z_h + Z_k$$

• Variables of Ω_{ij}

$$w_t^l = \begin{cases} 1 \text{ if } z_t^l \neq -\infty & t \in \{h, k\} \\ 0 \text{ otherwise} \end{cases}$$

$$r_{hk}^{l} = \begin{cases} 1 \text{ if } (z_{h}^{l} = -\infty) \lor (z_{k}^{l} = -\infty) \\ 0 \text{ otherwise} \end{cases}$$

$$w_t^u = \begin{cases} 1 \text{ if } z_t^u \neq +\infty & t \in \{h, k\} \\ 0 \text{ otherwise} \end{cases}$$
$$r_{hk}^u = \begin{cases} 1 \text{ if } (z_h^u = +\infty) \lor (z_k^u = +\infty) \\ 0 \text{ otherwise} \end{cases}$$

- $w_h^l = 1(w_k^l = 1)$ indicates that the lower limit of Z_h (Z_k) is finite
- $r_{hk}^{l} = 1$ indicates that one of the lower limits is infinite

Plus operator:
$$Z_{ij} = Z_h + Z_k$$

• Constraints of Ω_{ij}

 $z_{t}^{l} - Mw_{t}^{l} \leq -M/2 \qquad t \in \{h, k\}$ $z_{t}^{l} + M(1 - w_{t}^{l}) \geq -\varepsilon - M/2 \qquad t \in \{h, k\}$ Proper definition of w_{h}^{l} and w_{k}^{l} $r_{hk}^{l} + w_{t}^{l} \geq 1 \qquad t \in \{h, k\}$ $w_{h}^{l} = 0 \text{ or } w_{k}^{l} = 0 \Longrightarrow r_{hk}^{l} = 1$ $z_{ij}^{l} = (z_{h}^{l} + z_{k}^{l})(1 - r_{hk}^{l}) - \frac{M}{2}r_{hk}^{l}$ $z_{ij}^{l} = \begin{cases} z_{h}^{l} + z_{k}^{l} \text{ for "finite" values} \\ -M/2 \quad \text{otherwise} \end{cases}$

Similar constraints are defined for the upper limit of Z_{ij}

• Minus operator $Z_{ij} = Z_h - Z_k$ can be easily transformed into plus operator by setting $Z_k = [-z^u_k, -z^l_k]$

Solution of the model

- All the non-linear constraints can be easily linearized.
- The model is a Mixed Integer Linear Program which can be solved by branch-and-bound algorithms coded in standard tools (e.g., Cplex, Xpress-MP, Lp-solve).

branch-and-bound:

- \Box decomposes the problem in sub-problems easier and easier;
- □ the process is represented with an enumeration tree where the root node is the original problem and the leaves are solutions;
- bounding of sub-problems is performed by comparing lower and upper bounds.
- Branch-and-bound is an exponential algorithm in the worst case.

Computational validation

- Instance set: 40 toy examples in C language
- 62.5% of the problems are solved at root node (10% just by preprocessing)
- The average size of the enumeration tree is 7,275 nodes
- 93,87 simplex iterations are performed on the average
- Computational times are negligible (< 0.01 sec.)

- Model solver: Cplex 10.1
- Machine: AMD Athlon 64 1.8GHz

Conclusions and future work

Conclusions

- A mathematical programming approach to compute fixpoints in the abstract domain of intervals has been proposed
- The model
 - □ can be used together with existing methods to derive better approximations of invariants and
 - □ can be useful for parameterized fixpoint computation (e.g., optimization of the fixed point formats of numbers)
- The model has been validated on small examples in C language

Future work

- Testing on real case instances
- Numerical problems and weakness of lower bound due to the large constant M
- Extension to relational domains such as octagons and polyedra

Colloque d'Automne du LIX 2007 CAL07

A mathematical programming model for computing fixed points in static program analysis

> Leo Liberti and Fabrizio Marinelli {liberti,marinelli}@lix.polytechnique.fr

LIX, Laboratorie d'Informatique École Polytechnique

Paris, October 3-4, 2007

