HEC MONTREAL GERAD

Recent results obtained with
Primal-Dual VNS algorithms

Pierre Hansen* pierre.hansen@gerad.ca
Jack Brimberg
Dragan Urosevic

Nenad Mladenovic¢
1/

Outline:

Introduction

Problem statement

Heuristic resolution of the primal
Heuristic resolution of the dual
Exact solution methods
Computational experiments
Concluding remarks

2/

Introduction

Metaheuristics are frameworks to build heuristics
for specific problems. As 1s well known, they are
very successful in practice (and little developed in
theory).

Usually heuristics for combinatorial and global
optimization exploit local search in the primal.
Duality and complementary slackness are little or
not exploited. =Y

Introduction

Yet, they prove to be very useful to solve exactly
difficult problems, or to solve them approximately
but with a guarantee of quality of the solution
obtained.

We discuss here primal-dual heuristics for the
simple plant location problem (SPLP) and the
related p-median problem (PMP) based upon the
variable neighborhood search metaheuristic. 7

SPI.P - Problem statement

The objective 1s to choose from a set of m
potential facility locations on a network which
ones to open 1n order to minimize the sum of
opening (or fixed) costs and service (or variable)
costs to satisfy the known demands from a set of »
costumers.

5/

SPI.P - Problem statement

flxed co t for ope facilit
equa to 1 |??a9||n z?s IoI ened and 0 otherw

N
iel a-—I j-:J

fraction of demandiefrisdrgrsatisfiéa featrsfaicititine

Z. v =1, ¥j € J; demand of user j from facility i['g']
ied
rii —wi <0, Viel, ¥VjelJ, (3)
y; € 10,1}, i e I, (4)
Tii > I] Yiel, ¥jeld (5)

6/

SPI.P - Problem statement

The LP relaxation 1s known to be integer-friendly
(ReVelle (1993) and Brimberg & ReVelle (2000)).

For randomly generated instances, discussed later,
it has been proved that any branch-and-bound
algorithm using only the LP relaxation will require
a number of branches that increases exponentially

with m.
7/

SPI.P - Problem statement

Nevertheless, near optimal solutions may be
readily obtained for fairly large instances.

Barahona and Chudak (2005) recently solved with
an 1nstance-dependent error of at most 1%,
problems with m = n up to 3000.

8/

SPI.P - Problem statement

Dual formulation

1max E U — E ti
TRTIN 2 N —

9/

SPI.P - Problem statement

Each variable ¢, appears only 1n the objective function,
with negative sign, and 1n a single constraint. Then, we
have
|
f; = nm}{{z Wi — f}.U} — (Z Wi — f})
jed jet
For any tfixed vector of v;’s, the w,;; may be made as small

as possible without affecting feasibility

+ o

Wi = l]lﬂ-}{{'l.-‘j: — Cij U} = Ii'l.-‘j: = L?_;J) . f?}'

10/

SPI.P - Problem statement

By substitution, an unconstrained nonlinear programming
formulation of the dual can be stated as

max Flv) = Z Vi — Z (I‘IIU}{{Z(E‘J — c:-j-)Jr — fi, D})

qeJ =y} jed

It 1s a piecewise linear concave objective function in »
variables.

11/

Heuristic resolution of the primal

Variable neighborhood search (VNY) 1s a fairly
recent metaheuristic (Mladenovi¢ & Hansen
(1997)) whose basic 1dea 1s to use systematically
different neighborhoods, both 1n descent phase and
to “yqump” out of local minimum traps.

12/

Example

Variable neighborhood search

-~ \\
.
\" — —
.'.L.--d- B B
- " - F
- W _ . 1 .}: Malphborionda
E |'.r._- - —— . —
y '-1'.-.. - -~ ?-":__
- '.l". - ' Lagal grarch
y \ L

.'.I i '-l'.'. & y |I'"|
) i) — & W] Srlulinr

— 13/

Variable neighborhood search

Initialization. Select the set of neighborhood structures A%, for k =

1,...,kmaz, that will be used in the search; find an initial solution x; choose
a stopping condition;

Repeat the following sequence until the stopping condition is met:

(1) Set k + 1;

(2) Repeat the following steps until & = kpaz:
(a) Shaking. Generate a point 2’ at random from the k** neighbor-
hood of = (2' € Ni(x)); in other words, let y be a set of k solution
attributes present in ' but not in z (y = 2’ \ z).
(b) Local search. Find the local optimum in the space of y either
by inspection or by some heuristic; denote the best solution found
with ¢’ and with z" the corresponding solution in the whole space S
(2" = (" \ y) Uy");
(¢) Move or not. If the solution thus obtained is better than the
incumbent, move there (z + z"), and continue the search with A}
(k + 1); otherwise, set k + k + 1;

14/

Heuristic resolution of the primal

In order to apply VNS, a neighborhood structure
must be defined.

Let S denote any subset of open facilities (S < 7).

The k™™ neighborhood of a current solution S is
defined as the set of all possible solutions S

derived from § by any combination of exactly &
total interchange, drop or add moves. 15/

Heuristic resolution of the primal

The basic steps of VNS consist of a repetitive

sequence of
(1) Shaking.

To get a random point S in the A" neighborhood of the incumbent solution S (whic
corresponds to distance at most 2k), the following steps are repeated k times:
- choose a facility ¢y at random from 5;
- choose a facility is at random from [T S
- penerate a uniform random number rnd from the interval (0.1);
- if rnd < 0.2, delete ¢y from the solution (p — p—1); if rnd = 0.8, add i3 to the solutio
(p— p+1);itrnd £ (0.2,0.8), interchange positions ¢y and i3 in s, i.e., close facility
i1 and open facility is;

- update the arrays for first and second closest facilities w.r.t. the new open facilities,

16/

Heuristic resolution of the primal

) Local search.

local search is conducted from the perturbed solution S using the first neighborhoc
(S"). In the best improvement version of the local search that we are using, all p(m
+ m solutions from N7 (S') are visited, and a move made to the best among them or
ts objective function value is smaller than that of S. A fast interchange version,
posed in Whitaker (1983) and Hansen and Mladenovic (1997) for solving the p-Medi:
wpplied. The local search is repeated atter each downward move until a local minimm
eached.

1) Move or not.

e simplest acceptance criterion for basic VNS is used: a move is made only if the lo
reh in (ii) obtains a better solution than the incumbent S, Each time a move is ma
s reset to ki, (a parameter typically 1); otherwise & is changed (typically angment
one until a parameter k., is reached, atter which it is reset to k..,). and the cycle
veated. The search is terminated after a stopping criterion, such as a limit on execnt:

1e or on the number of iterations without an improvement, is reached.
17/

Whitaker fast swap heuristic

Published 1n 1983, even though not widely used until
1997 when Hansen and Mladenovi¢ applied it as a
subroutine of a VNS procedure.

The key aspect of this implementation 1s its ability to find
in O(n) time the best facility to close, given a certain
facility to open.

18/

Whitaker fast swap heuristic

What makes this procedure fast is the observation that the
variation in the solution cost can be decomposed into two
components, which we call gain and netloss.

Component gain accounts for all users who would benefit

from the insertion of /; into the solution. Each 1s closer to
/; than to the facility 1t is currently assigned to.

19/

Whitaker fast swap heuristic

7/
@ «— user considered by gain

®—

The difference between the distances 1s the amount by
which the cost of serving that particular user will be
reduced if /; 1s inserted.

20/

Whitaker fast swap heuristic

The second component, netloss, accounts for all other
users, those that would not benefit from the insertion of f,
into the solution.

21/

Whitaker fast swap heuristic

For instance, this user would
be reassigned to ®,(u)

. @ e
N e O--- For instance, this

\ V4
" y user would be

/

1 reassigned to f;

®—

If the facility that is closest to the user u 1s removed, ©z would
have to be reassigned either to @,(u) (its current second closest
facility) or to f..

22/

Whitaker fast swap heuristic

function findOut (S, fi.01,02)

| gain — 0; /* gain resulting from the addition of f; */

2 forall (f £ S) do netloss() — 0; /* loss resulting from removal of f */
3 forall (w e U7) do

4 if (d(u, f;) < dy(u)) then /* gain if f;is close enough to u */

5 gain < [dy(u) —d(u, f;)]:

6 else /* loss if facility that is closest to u is removed */

7 netloss(01 (1)) < min{d(w.f;). d2 ()} —dy (u):

8 endif

9 endforall

10 fr argming_g{netloss(f)}:
11 profit < gain — netloss(fr);
12 return (f,,profit);

end findOut

23/

Whitaker fast swap heuristic

Given this O(n)-time function, it 1s trivial to implement
the swap-based local search procedure in O(mn) time per
iteration: simply call findOut once for each of the m-p
candidates for insertion and pick the most profitable one.

If the best swap 1s profitable, the move 1s performed, the

values of ®(u) and ®@,(u) are updated, and the algorithm
proceeds to the next iteration.

24/

Resende & Werneck fast
swap heuristic

Auxiliary data structures are used to speed up the local
search procedure.

The Whitaker algorithm tries to find the best pair (f;, f,)
which maximizes

profit(fi, fr) = gain(fi) — netloss(fi, fr)

25/

Resende & Werneck fast
swap heuristic

The algorithm differs from Whitaker’s in the computation

of netloss.

For every facility /. in the solution, /oss(f,) 1s defined as
the increase 1n solution value that results from the removal
of /. from the solution (assuming that no facility 1s
inserted).
loss(f;) = Z (dr(u) —dy(u)]
w:01(u)=fr

26/

Resende & Werneck fast
swap heuristic

As defined, gain and /[oss are capable of determining the
net effect of a single insertion or a single deletion, but not
of a swap.

To compute netloss from loss, another function 1s defined,
extra(f, f.), defined so that the following is true for all

pairs (1, f,):
netloss(fi. fr) = loss(fy) — extra(fi. fr)

27/

Resende & Werneck fast
swap heuristic

An expression for extra(f, f.) can be algebraically derived
as

extra(fi, fy)= Y, [da(u)— ma,ﬁ:{:
w: [(1)=Ffr] A
::'." (1, fi)<d2| |'-|':I:

[t willThewmsaawedddin)n-1a, () 1s

netloss(Qyod dneen thet/faciity)
insertadas tesedddinmhaty/theust be

curreadssebrdd tosks tisac datm.

28/

Resende & Werneck fast
swap heuristic

Given the expressions of gain, loss and extra, the profit
associated with each move 1s obtained in a very simple
manner

profit(fi. fr) = gain(fi) — loss(f,) +extral(f;. f)

The interesting aspect of this decomposition is that the
only term that depends on both the facility to be inserted
and the one to be removed 1s extra.

29/

Resende & Werneck fast
swap heuristic

At first, Resende & Werneck implementation seems to be
a complicated alternative to that of Whitaker with same
worst-case complexity.

Yet, additional memory 1s used to store exfra as a matrix.

However, this structure allows for significant
accelerations as we will see.

30/

Resende & Werneck fast
swap heuristic

When a facility /, 1s replaced by a new facility f,, certain
entries in gain, loss, extra, ®,, and ®, become naccurate.

A recomputation of these structures considering all users
1s the straighforward way to update them.

31/

Resende & Werneck fast interchange
heuristic

function updatestructures (S,u,loss. gain,extra,01,07)

l fre—01(u):

2 loss(fy) « |dy(u) —dy (u)];

3 forall (f; €5) do

4 if (d(u,fi) <d>(u))then

5 gain(f;) — max{0.dy (u) —d(u. f;)}:

6 extra(fi, fr) < |da(u) — max{d(u, f;i),d; (u)}|;
7 endif

8 endfor

end updateStructures

32/

Resende & Werneck fast
swap heuristic

A downside of this approach 1s that no information
gathered 1n one iteration 1s used in subsequent ones.

In fact, the actions performed by updateStructures depend
only on u, ®,(«), and ®,(u); no value 1s read from other
structures.

If ®,(u#) and O,(«) do not change from one iteration to
another, u's contribution to gain, loss, and extra will not

change either. .y

Resende & Werneck fast
swap heuristic

All this means that there 1s no need to call
updateStructures again for all users.

To deal with such cases, the notion of affected users 1s
introduced. Sufficient conditions for u to be affected
after a swap between f; and /. are:

1) etther @, (u) or @,(u) 1s f,, the facility removed; or

2) /. (the facility inserted) is closer to u than the original

D, (u) 1s.

34/

Resende & Werneck fast interchange
heuristic

\

\
\
) ’ @
\ e ——
, ®
/
/

\ affected
@) «

users by 2)
affected ®—/
users by 1) — l

T

Jr

35/

Resende & Werneck fast
swap heuristic

Contributions to /oss, gain, and extra need only be
updated for affected users.

As they are often a few after a swap 1s performed, a

significant acceleration is obtained by the entire local
search procedure.

36/

Heuristic resolution of the primal

Reduced variable neighborhood search (RVNS) and
variable neighborhood decomposition search (VNDS) are
two variants of VNS devoted to solving large problem
Instances.

In RVNS, we simply skip the local search phase of the
basic VNS.

VNDS uses decomposition to enhance the efficiency of

VNS when solving large instances. =

Heuristic resolution of the primal

The proposed procedure first obtains an 1nitial solution
with RVNS.

Two parameters are specified:
The maximum neighborhood distance &

)

ax » 10T the shaking
operation.
Stopping criterion based on the maximum number of iterations

allowed between two improvements, i

max*

38/

Heuristic resolution of the primal

Once RVNS i1s executed, we proceed with the
decomposition heuristic:

1. Initialization:
Choose values for the two parameters, {,,,. (maximum number of open facilities t
be selected from the incumbent solution) and t,,,, (maximum computing time fc
the heuristic). Set the incumbent solution S to be the set of open facilities obtaine
by RVNS(2,1000), and let p = |5|. Set the size of the decomposed problem, f=2.

39/

Heuristic resolution of the primal

. Constructing the decomposed problem:
(i) Determine the (p — 1) x p matrix I = [ry;] of ordered network distances wher
column j is assigned the 7% facility listed in S, row i is reserved for the it? closes
tacility in S to each facility j. i = 2,.... p, and 7;; is the corresponding networ
distance. (Note: also save facility indices in R.)
(ii) Determine rp;» = mini<j<p {7¢;}.
(iii) The subproblem and its initial solution ([J) are defined as follows:
- the open facilities are given by the facility assigned column 7% and the
... " closest facilities to it (the first (£ — 1) entries in column j%);
- the subset of users consists of the n' ones assigned in the incumbent solution S t

ond 3?‘-.1'

the subset of £ open facilities just identified;

- additional potential facility sites are added by a subroutine. (In our computations
experiments, the set of users and the set of potential facilities are always the same
however for the general case, some routine to select the subset of potential facilitie
tor the sub-problem is needed.)

40/

Heuristic resolution of the primal

Solving the decomposed problem:

If the total number of facility sites {open or closed) in the subproblem, m" < 10C
solve it by VNS; if 1000 < m' < 1500, solve it by RVNS; else set £ = 2 and return
step 2 (the decomposed problem is too big).

Move or not:

If the new solution) is better than D, proceed to step 5; else if £ = 00, set £ =
else set £ — {4+ 1. If t < {pae. return to step 2; else stop.

Adjusting for boundary effect:

Add the new decomposed solution ' to the fixed portion of § (§ — (S DU D
Conduct a local search from the new solution to obtain local optimum S’. Set S = !
If t < thae, set £ = 2 and return to step 2; else stop.

41/

Decomposition

These two points are not
assigned to open facilities

in the decomposed problem

.
-
-
—
-
-
—
-
—
—
-
-
-
-
-
-
—
-
-—
—
-
-
—
-
-
-
-
-
-

Then, VNS is executed
over this subproblem
42/

Heuristic resolution of the dual

Initial dual solution

Guaranteed performance of primal heuristics may be
determined 1f lower bounds are known.

The integer-friendliness property ensures that the
strong LP relaxation for the SPLP gives a small duality
gap between optimal integer and relaxed solutions.

43/

Heuristic resolution of the dual

For large instances (say n = m = 1500) finding directly the
exact solution of the primal or dual would be very time
consuming.

Thus, procedures which take into account the primal
solution were developed in order to avoid solving
completely the dual problem at this stage.

Let us consider the dual formulation of the SPLP that

usually appears 1n the literature. 44y

Heuristic resolution of the dual

Let us consider the dual formulation of the SPLP
that usually appears in the literature:

max zp = E U5 (13)
(IR
jed
S wy < fi, Vi€l (14)
jed
tl-il_I!I!.E'hjlﬂ-\-lr-l.j;l. _r'?'__In. _rj'_ .-I 15
wi; >0, ¥iel, ¥je (16)

45/

Heuristic resolution of the dual

The complementary slackness conditions for the
SPLP are:

el
wii(yi —ri5) =0, Viel, VjeJ 23
(.;‘l.:_ _Z l!lf-‘:,p;l)i:_ll' = U, Vi1 & I E—]:
jed
(€ij —vs +)z =0, Vi€ l, ¥j e J 25

46/

Heuristic resolution of the dual

The strong duality theorem (z', = z*) is obtained by
summing first each of (22), (23), (24), (25), and then
summing their left and right hand sides.

In the proof, all four complementary slackness conditions
are needed.

However, (23), (24) and (25) are not necessarily true 1f we
add the integrality constraints on the primal variables y;,,
and that 1s the source of the duality gap.

47/

Heuristic resolution of the dual

set of open facilities
'roposition 1 Ifd 2 and a feasible primal solution 1s such that

second-closest open facility for customer j.
Z‘_ < £y q (

JeJ

ITI

set of closed facilities

en (y,x) 15 an optimal solution of the strong LP relazation of SPLP.

If (26) 1s satisfied by the primal heuristic solution, 1t
solves SPLP optimally and no further work is required.

Otherwise, an approximate dual solution from the primal

heuristic solution must be derived. 48/

Heuristic resolution of the dual

The dual solution does not have to be feasible!

Two expected conditions are exploited:
The primal VNDS solution 1s very close to optimum,;
The duality gap 1s small.

Thus, by finding a dual solution with the same objective
function value as the primal, we expect to be close in the
dual space to the optimal (feasible) dual solution.

To accomplish this, the complementary slackness

condition must be satisfied. 49/

Heuristic resolution of the dual

roposition 2 For a given primal solution y, let v be a corresponding dual solution s

at
Z v; = fi + @ vielt, (2]
jed; jeds first-closest open facility to user j
here J; denotes the subset of users assigned to open facility i. Then zp(v) = zp(y).
J“f.:'i;f.

zp(v) ZJJ—ZZEJ—ZT-I-ZFJI—.MH'

If 1n addition, we impose the condition:

.o

c; <v; <7, YieJ (28)

it follows that all the complementary slackness conditions
will be satisfied (see Mladenovic et al. 2003). -

Heuristic resolution of the dual

Proposition 2 is capable of providing a good initial dual
solution, but, since such a solution 1s not unique,
alternative procedures were devised.

51/

Heuristic resolution of the dual

(i) Proportional formula:

j";(q}'__g') YjeJ i=if, (2
ZE‘EJ,; (Cf' - EE':' !
where i denotes the closest open facility to j (i.e., the facility assigned to j). Summir
left and right hand sides of (29) over j € J,, it follows that (27) holds, Vi € I™. We m:
also show that (28) is satisfied. Since the primal solution is a local minimum, we have (s

Mladenovic et al. (2003)),
> (@ —g) > fi, Viel™, (3

J€Jd;

F =) - e {:— = '._I::,' . —_
and thus, ¢; <v; <€, Vj € J.

52/

Heuristic resolution of the dual

(ii) Projection formula:
Given any dual solution -uj- < IR"™, we may find its closest point that belongs to the manifold
defined in (27) by:

1 _ o o N
t:‘j:ﬂ;_m ZUE_J“_ZEE, __.j(__‘_}"' 'l:?-:;_. (31)

fcJ; feJ;

For example, we could select t-‘;- = (¢; +¢;)/2, Vj € J; i.e., take a point (L;) in the middle
of the hypercube

i
H =[]l %)
1=1
Another possibility would be:

c;,min{¢;,G;}}, Vj € J. (32)

\"r — i r
v; = max{c;

In the last expression, ¢; is defined as é; = min,;.;-{¢;;},Vj € J (see Mladenovié et al.
(2003) for details).
53/

Heuristic resolution of the dual

Improving the dual solution

The 1mitial dual solution obtained will most likely be
infeasible. To reduce infeasibility, we consider the
unconstrained dual function

-
Flo)=) vj—)_ (Zu-j — cij)t - r)
JEJ iel \ ged

where the second term in the right hand side 1s the sum of
infeasibilities. 54/

Heuristic resolution of the dual

To maximize this function, a powerful local search that
uses variable neighborhood descent (VND) rules was
devised as well as four neighborhoods structures designed
for this purpose.

55/

Heuristic resolution of the dual

The first two neighborhoods representing windows around
the current v; in the ranked matrix [c;].

Letting i; denote the lower index ot the window, we

obtain: ¢i;j < vj < cij+14, Vi€

To simplify the notation, let us denote the last inequalities
that define the window around the current dual value by

aj < vj < .F;rj.

56/

Heuristic resolution of the dual

The first neighborhood N, (v) 1s constructed by replacing
v; with a;, 1.€.

;""\.-Tl(t-‘jl = { I:(Ll, v, ..., 't.-‘n], (1?1, a2z, ..., t-‘n]l, 5500 [:'1.11, U2, ..., {’Lﬂ] }

In the same way, neighborhood N, (v) 1s obtained by
replacing v; with its upper window b,

No(v) ={(b1,v2,...,0n), (V1, b2, ... U)o, (U1, 02, ..., b)}

The cardinality of each of these neighborhoods equals #.

57/

Heuristic resolution of the dual

In the third neighborhood N;(v), the value of some
variable v; 1s increased by

Av; = min{b; —v;, min Af;},

-+
Afi= (f:, - Z(i-‘j‘ - t‘ajj‘+) :

ged

where

A move 1 N; will improve F(v) without increasing the

infeasibility of the solution. 58/

Heuristic resolution of the dual

In Ny(v), the value of some variable v, 1s decreased by

|
Av; =min [min E (v; — c;;j:]l+ — fi s U -
1V >0y -
JjeJ

first-closest open facility to us
When v, 1s reduced by some amount, then, in order to get
a larger F(v), at least two members of the following sum

need to be reduced.

|
- (:(E‘J — Cij)7 — f})
el \ged

59/

Heuristic resolution of the dual

Those two members should then satisfy the conditions
v; > ¢y and 37 (v; —¢;;)* > f;. Thus, 1t may be possible to
increase F(v) by decreasing v;as described before.

60/

Heuristic resolution of the dual

The VND procedure first makes best improvement moves
in the N, neighborhood of the current solution by
examining all n points in that neighborhood.

Once stalled, the procedure moves to the next
neighborhood 1n sequence (V,, N;, N,), always reverting
to IV, when an improvement 1s found. The iterations end
when no improvement 1s found consecutively 1n each of
the four neighborhoods.

The output solution may still be infeasible. 61/

Exact solution methods

Sliding simplex for exact dual solution
The original (linear) dual

max zp = E vj 13)
'1:-1ul__|
JEJ
D wi S iy Vi€l (14)
Jjed
v;i —wiy; <oy, VieET, Vjied (15)
wi; >0, Viel, Vje J (16)

1s rewritten 1n a reduced form, taking advantage of two
facts:

62/

Exact solution methods

(a) many of the constraints

v —w;; L, Viel, Vjed (15)

are nonbinding and may be eliminated;
(b) for those that are binding, the w,; may be eliminated

by direct substitution.

63/

Exact solution methods

leduced dual. Suppose that
first-closest open facility to user j
(< vj 5 vj € J. (3
second-closest open facility to user j
et us then divide the set of users J into three subsets for each facility i € I:

Ji = {j€d e <gt, (3
Jo = {j€J|g <y <T}, (3
J‘Ta';_z, — {j - J ET < Céj}. (3

64/

Exact solution methods

Using

w;; = max{v; — ¢;,0} = (v; —)7,V

i, 7. (1"

It is immediately seen that wi; = 0 for all users j that
belong to the set J.;. Also from (17), 1t holds that Wi = V5 —
for all j € J,, i el ~(set of closed facilities), since Vi = &; .

65/

Exact solution methods

Therefore, the dual model 1s reduced as follows:

max zIp = E (2
(AR TH :]

S+ Y wy; < £+ Y ey viel

jedil jediz JEJﬂ

li' —

4] i
-3

(38)

(39)

(40)
(41)

66/

Exact solution methods

In the sliding simplex method proposed, the w,; variables,
whose corresponding ¢i; ¢ |¢;.T;] , are removed with their
constraints as in the above formulation.

Only at this moment the bounds ¢; and €; are allowed to
vary during the solution process, 1n order to move towards
the optimal solution while keeping a reasonable dimension
on problem size.

67/

Exact solution methods

To this end, it 1s necessary to rank the ¢;; by nonincreasing
values for each j. Using a second-level index for ranking, we
have

Ciyj S Cigj < -+ < Cipj, V] € J. (42)

Consider a value of v € [¢i5,Cinj] , and let k denote the
largest index such that ij < vj . Then, the l-interval of v;is
defined to be

[Cik_ess ‘ff;;+fj] (43)

68/

Exact solution methods

which contains the following values of the c;;:

lIIl_-l"i‘|:-.'-—-|:..I..-i|-' E?J;II—-E--I_]J. T ?Ciﬁ'j‘ II:?-E-IT.;_I_J_J‘ L -{11_;'-,+£|J|- I:J:_]:}

Setting ¢; = ¢;,_,; and C; = ¢, ,; Vj € J, one gets the
reduced [-dual associated with vector v, as given 1n (38)-
(41) and (34) with the subsets J;, J,,, J5, i = 1,...,m, updatec
appropriately.

69/

Exact solution methods

The steps of the sliding simplex are now summarized as
follows:

. Initialization:
For each j € J rank the ¢;; in order of non-decreasing values (ties being broker
arbitrarily). Record the values and corresponding indices as ¢; ; and i, for p =
1,...,|I| and all j € J. Choose a value for parameter 7.

pJ

2. Initial solution:
Obtain a vector v which corresponds to a feasible or infeasible solution (v, w) of thi
dual. Set up the first reduced f-dual from wv.

3. Solution of the /(-dual:
Solve the current f-dual using the simplex algorithm (e.g. with CPLEX) and th
latest dual solution as starting solution to obtain a vector v*.

70/

Exact solution methods

. Optimality test:
Check for each j € J, that the following condition holds:

i *: — . a a a * ¥ e I Fe 7 * — a a
uj; = Cj,j O Ci,,_,j < t-j; < Cigy] 07 L-‘J- = Cipj-

If for some j it 1s not the case, go to step 5; otherwise go to step 6.

. Updating of the reduced /-dual:
Update the index k and window in (43) for each j as required; reformulate the /-du:
accordingly and return to step 3.

. Output:

An optimal solution of the dual is given by (v*,w") where w,

;= max{v} — ¢, 0]

J

T I -
71 e I, Vi e J;its value is EJ’EJ Y.

71/

Exact solution methods

Theorem 1 The sliding simplex algorithm solves the dual of SPLP.

Proof. From sensitivity analysis, one may add to the dual (13) - (16) without changing the
optimal solution the set of constraints

Ciy j < vj < Cimis Vi e J (45)

as at least one y; must be equal to 1 in any feasible solution. Then the current reduced
(-dual is equivalent to this problem with the additional constraints

Cip_gj S V5 < Cik+fjv."h*’ij €J (46)

where we assume that redundant constraints obtained when ¢;,_,; = ¢;; or ¢ ,j = Cippj
are omitted.

The optimal solution (v*, w*) of (13) - (16), (45), (46) is such that none of the constraints
(46) are tight, as otherwise the condition of Step 4 would not hold. So it remains optimal
if those constraints are removed, i.e., for (13) - (16), (45) and hence for (13) - (16).

Furthermore, since there are a finite number of combinations of windows for v. and each

combination may be encountered at most once, the algorithm must terminate after a finite
number of iterations. 1/

Exact solution methods

Exact primal solution

At this stage, we have:
(a) a primal solution obtained by the VNDS heuristic.
(b) an exact dual solution by sliding simplex.

If the two bounds are equal, the VNDS solution must be
optimal.

Otherwise, a classical branch-and-bound 1s 1nitiated.

The tightness of the upper and lower bounds will be useful 1n
keeping the number of branchings to a minimum. 73/

Exact solution methods

The main features of the branch and bound algorithm are

summarized below:

(a) For branching, the fractional primal variables (duals of the dual) are first identified,
and those that correspond to open facilities in the heuristic solution are closed, one at a
time, by a depth first strategy.

(b) At each node of the branch-and-bound tree, a relaxed dual is solved by the sliding
simplex method, described in the previous section using the solution of the parent node as
the starting point.

(c) As in Erlenkotter (1978), to keep facility i closed, the fixed cost f; is temporarily
set at +0o0; to keep facility 7 open, the fixed cost f; 1s set at 0,

74/

Exact solution methods

(d) An elementary backtracking scheme with last-in, first-out is applied.

(e) Pruning of nodes in the branch-and-bound tree is either by bounding (relaxed so-
[ution is worse than upper bound) or by obtaining a primal integer solution (no fractiona
duals of the dual).

Since the sliding simplex method may call the LP solver
many times at each node as the windows on the v, change, it

is advisable after each call to check if the node can be
fathomed by bounding, before proceeding further to the
exact lower bound.

75/

Computational experiments

The solution procedure 1s tested on similarly-constructed
instances as given in Barahona and Chudak (2005).

Both facilities and user points are assumed to be the same
random uniformly-distributed set of vertices in the unit
square.

The fixed costs are the same for all facilities, and the
transportation costs correspond to the Euclidian distances

separating pairs of points in the plane. .

Computational experiments

Such test problems have interesting known properties, e€.g.:
(1) for n < 500, the problems are easy to solve;

(11) when 7 1s large, any enumerative method based on LP
relaxation requires the exploration of an exponentially-
increasing number of solutions;

(i11) the value of the LP relaxation 1s about 0.998 of the
optimal value.

77/

Three types of instances based on different magnitudes of

Computational experiments

fixed cost are considered:

(i) Type I, fi=+/n/10, vi eI
(i) Type II, fi = V/r/100, ¥i € 1
(iii) Type III, fi = /n /1000, ¥i € I

In order to avoid numerical problems, all data entries are

made to be integer by rounding them to four significant

digits.

78/

Computational experiments

Table 1: Testing CPLEX.

f n Zmip* tmipopt zvNDs tvNDs
1.-';_,-'1[I 100 | 200505.00 1.26 | 209805.00 0.09
2001 361531.00 T.19 | 361531.00 0.75

300 | 511252.00 2697 | 511425.00 1.55

400 | 660444.00 67.03 | 660444.00 6.72

500 1 79979100 141.55 | =02541.00 24.40

600 | 926829.00 241.20 | 926829.00 31.59

T00 | 10584587.00 720065 | 1058487.00 16.20

wn /100 100 TOT69.00 (.54 TOTE9.00 (.16
2001 13567400 505 | 138674.00 (.89

300 1 20300000 24.13 | 203000.00 2.70

400 | 267729.00 34.32 | 267729.00 4.80

500 | 328235.00 62.64 | 328235.00 0.95

a00 | 388733.00 20590 | 385734.00 10,97

TOO | 44705900 117.75 | 447089.00 16.55

s00 | 50320000 200073 | 503200.00 24 .47

900 | 557946.00 44344 | 55T853.00 30.43

1000 | 61111000 37252 | 611110.00 52.14

1100 | 665303.00 120021 | 665303.00 57.48

79/

Computational experiments

Table 1: Testing CPLEX.

fi mn mip* tmipopt | :vNDs 1tvNDs
Wn /1000 100 9959.00 0.87 0959.00 0.19
200 2TR06.00 5.10 27R06.00 0.23

300 49687.00 15.72 49687 .00 (.20

400 T4711.00 31.77 T4711.00 (.26

500 99794.00 56.00 09794.00 (.30

600 | 124479.00 83.30 [124479.00 0.45

TOO | 15044600 117.75 | 150446.00 0.59

800 | 175042.00 167.02 [175042.00 0.83

900 | 199145.00 233.64 [199145.00 1.05
1000 | 223206.00 274.58 | 223206.00 1.30
1100 | 246267.00 584.98 | 246267.00 1.56

80/

Computational experiments

Larger instances of size up to 15000 x 15000 were generated

using the procedure of Barahona and Chudak (2005) already
described.

When n <7000, a 1800 MHz PC Pentium IV is used, while
for n > 7000, a SUN Enterprise 10000 (with 400 MHz and
64 Gb of RAM) which 1s slower but has sufficient memory
to handle the larger problems.

81/

Computational experiments

Table 2: Main results: Type I instances.

Objective values Time (sec.) T'ime total Yo gap

n| p| B&B Sliding RVNS VNDS| B&B Sliding RVNS VNDs| Best All|B&B Shdin
000151431035 1431013.5 1524403 14310358 34.7 251 0.1 15.9 41.1 69.1| 0.00 0.001°
100 161555369 1555027.5 1666104 1555369 (471.0 353 0.1 21.8 a7.2 165.9(000 0.001°
J0018]1789543 1789021.3 1906447 17589843 75.4 38.2 0.1 14.2 b2.5 08.5| 0.00 0.045!
AD0 1511904195 19036795 2077133 1905380 57.4 458 0.2 395 854 115.6(006 0,055
SO0(18 2023878.0 2141113 2024911 2068 0.2 9401 2999 387.7 0.0511
OO0 |20 2581964.9 2790620 2590631 B42.5 0.4 9501 9406 1505.7 0.335
001021 3101007.7 3422644 3106197 1923.0 0.6 56.0] 19796 2504.3 0.167.
000 (23 36023551 3904718 3606160 3073.1 0.3 153.3] 3226.7 4075.5 0.104
50023 40994457 4504614 4116586 7943.7 0.3 113.9] 8057.9 10952.2 0.418
000 |25 4581458.1 4879807 4599619 15927.2 0.5 245 11617258 18342.0 (. 396
00|26 04 7959.0 5476685 5077153 31329.1 0.9 153.5|31513.5 34624.9 0.578.
ICICID 29 H1TEE1.8 6099060 5548718 H2734.9 1.2 115.4|52854.5 55923.6 D.EEIEEI

82/

Computational experiments

Table 3: Main results: Type II Instances,

Objective values Time (sec.) Time total "o gap

n| p| B&E Slhding RVNS VNDS| BAB Sliding RVNS VNDS| Best Alll BiB Shidin
H00| 62 328235 328235.0 355279 325235 1.0 1.0 1.2 244 266 51.2[0.0000 0.000
0y 77 611110 6111100 694078 61111071 5.9 4.9 02 11.6) 167 967 0.0000 0000
W00 85| BY22TE 8T2216.0 983339 E72434)124.4 95 03 171.6) 181.7 345110.0175 0.025
J00] 9211122577 11224986 1245881 1123159]1495.8 242 0.6 1383] 163.1 440.3]0.051% 0055
WO 104 13660092.2 1495801 1366643 105.5 1.2 485.7] 5924 965.7 0,040
0011071595805 1595805.0 1748782 1595896 75.5 63.3 1.4 315.6] 3503 905.85]0.0001 0000
S00]111 151965868 1999865 1520639 3574 1.9 1106.5)1466.1 2274.7 0.052.
0113 2042313.4 2296471 2043218 0.2 0.9 2366.6|2567.7 4030.2 0.044.
A0 119 2255880.7 2526011 2256254 pl2.4 1.5 1T6T.6|2271.5 3665.4 OLO16
0124 24668836 2765239 2467450 1054.5 2.3 1360.212417.0 4095.1 0.024:

83/

Computational experiments

Table 4: Main results: Type III instances.

Objective values Time (sec.) Time total | % gap
n‘ P piop Sliding rvns wnps| B&BR Sliding rvvs vwps| Best Al LR Shiding
BOOW34T(99794 99794.0 107984 99794 0.1 0.1 0.2 0.3 0.6 L.5[0.0000 0.0000
10000391 223206 223206.0 247790 223206 1.1 1.1 0.7 1.3 3.1 ¢ A0 0000 00000
15000410 332750 332744.0 352516 332764 5.0 2.6 1.0 3.0 6.6 17.310.0042 0.0060
20000453 438574 4355650 496630 438575 63,0 4.8 2.7 307 458.2 110.6[0.0009 0.0023
2500(498| 542203 542182.5 614850 542267 86,1 (.30 3.2 348 453 146.900.011% 0.0157
30001519 642321 6423000 736939 642321 8.3 B 4.2 1521 165.1 243.5]0.0000 00018
35001542 741097 T41057.3 848933 741126 5559 133 5.6 87.1] 106.0 268.610.0039 0.0092
40001570 839922 839909.5 972853 830942 2053 21.1 585 162.2] 189.1 393.6{0.0024 0.0039
450001582 932428 932361.5 1069321 932597 5156.1 23.4 7.3 113.7] 144.4 277.110.0181 0.0253
HO00IGO01028249 1028235.0 1217007 1028255 1266.3 32.2 6.9 239.6] 275.7 613.910.0006 0.0019
GOOMGAT|1211859 1211861.0 1354204 1211932 4030.7 47.6 14.3 7T61.4] 523.3 1036.4]0.0035 0.0055
7006681392127 1392009090 1593475 1392232285477 87.8 14.9 T15.5[818.858 1293.110.0075 0.0096
SO00pT01 15692920 1791174 1569767 117.1 220 1043.5[1152.9 1574.3 00303
QOOOpT24 17420755 2022581 1742358 154.5 20.2 1528.0{1703.0 2182.9 0.01s0
10000)752 1915065.1 2163915 1915562 172.0 36.3 1530.4)1738.7 2740.1 0.0259
11000)76s 2079253.9 2391519 2079616 20670 33.4 1144.211444.6 2686.6 OLOLTS
120000759 2245167.0 2551364 2245526 316.6 40.4 3113.3]3470.3 4504.6 00215
13000)=02 2411167.2 2702463 2411335 375.4 80.96266.96723.27716.4 00109
14000827 2570329.3 2913820 2570792 4TH.T T4.1 3919 344721 T935.4 0.01s0
15000544 2733373.3 3134626 2733979 0a7.7 61.3 5103.4)5722.4 8500.1

00221

Computational experiments

From the summary results in Tables 2, 3 and 4, the following
observations are made:

e The VNDS heuristic provides high quality solutions over a wide range of problem size
and types. This includes much larger problem instances than currently considered i
the literature. For Type III instances up to 15000 x 15000, the largest gap obtaine
is of the order of 0.03%. For Type I, the maximum gap is 0.06% for problem sizes
to 5000 x 5000, and Type I, 0.58%. These results present a significant improvemen
in the state-of-the-art given in Barahona and Chudak (2000}, where gaps of 17 ar
reported on problem sizes up to 3000 x 3000. Meanwhile the computation time fo
VINDS is very reasonable considering the problem sizes investigated. For example
problems up to 3000 x 3000 take only a few minutes; the largest one (15000 x 15000
ran for 1.8 hr. It is also interesting to note that Type III instances, the easiest fo

our YINDS, were the hardest for Barahona and Chudak’'s VE&ERRWC,

85/

Computational experiments

The sliding simplex method is capable of solving the dual exactly for the large-scs
problems investigated. This is quite impressive considering that the largest proble
solved has n + mn = 225,015,000 dual variables. By obtaining a tight starti
solution (which may be infeasible), and then using our sliding simplex method,
substantial reduction in problem size and number of simplex iterations is obtaine
Computation times for sliding simplex are also seen to be reasonable, although Ty
[instances took significantly longer.

By using the entire package proposed here, namely, a heuristic solution of the prim
problem by VNDS, followed by exact solution of the dual with sliding simplex, ai
then closing the gap with branch-and-bound, exact solution of large scale SPLP’s
achieved. Our largest problem solved (7000 x 7000) set a new record (soon to |
beaten, as shown below).

86/

Computational experiments

A series of instances of type IV, in which different fixed
costs are drawn randomly from a uniform distribution on the
interval [v/7/1000,/7/10] were generated.

87/

Computational experiments

Table 5: Main results: Type IV instances.

Objective values

Time (sec.)

Time total

Vo gap
Alll Blp Sliding

n| p| B&B Sliding rkrRvns wvnDs| BB Sliding RvNs vNDs| Best

SO0 46] 368408 368408 643882 368408 2.3 22 03 201 22.6 24, 2|0.0000 00000
1000 77) 578740 578740 1130397 578740 5.2 5.1 0.6 20.1 208 26800000 0.0000
1500(109) 740870 740870 1058235 V40570 0.9 30,7 1.6 527.1 559.5 594.3)0.0000 00000
2000(128) 915155 915155 20958798 915155 Gh.s 654 1.6 3444 4114 A23.900.0000 00000
20000 1441071962 1071962 1547638 10719621 1095 1095 3.4 134.9] 247.8 262700000 00000
SO00PITS|L193847 1193847 1864527 1193547 107.9 107.7 3.6 11919 1303.2 1309. 70,0000 00000
S0001195]1 334569 1334569 2056067 13346200 1505 1504 4910455 1200.7 1315.40.0035 00038
4000)206]1435336 1438304 2218219 1438336 250.1 2499 6.3 932.6| 1185.8 1221.3]0.0000 0.0022
450012311 541580 1541880 2593945 1542339 2982 2079 6.6 1064.6[1369.1 1371.3)0.0295 00295
HO00|246]1693821 1693782 2616424 16095554] 3943 369.7 B5.21490.7(1868.6 1977.8])0.1023 0.1046
SO00I255|1813342 1513324 2941636 1513342 4681 4626 5.0 28248 320954 34950100000 00010
GOODZELO1TATT 1917477 3108396 1917477 5111 21059 5.7 2617.9) 3437.5 3575.3]0.0000 00000
GO00306]2016429 2016254 3519048 20166781 5122 5512 5.64300.0] 49497 5385.000.0123 0.0196
TO00[305|12154529 2152592 3060288 2154829 11308 747.3 8.1 4627.3| 5382.7 5H8516.5)0.0000 0.1039
SO00331|2320081 2320081 5652921 2320044 1262.0 126009 200068954 8176.3 8685.3|0.0372 0.0372
9000(36212529390 2529390 6554965 2529575 1364.1 1362.9 20.0 3510.4) 4893.4 5219.5)0.0073 0.0073
100003842737 359 2737350 Th28204 27V37359) 4224.6 1592.3 20.05262.0| 6874.3 9995, 410.0000 0.0003
11000(411)2934323 2934323 8149233 2034428] 18596.5 18932 20058121 7725.4 T785.4|0.0036 0.0036
12000143013110714 3110714 8063905 3110714) 2571.3 2567.2 20.1 4930.3| 7517.6 T737.5(0.0000 0.0000
13000(458]13300155 3300155 8975232 3300155] 3126.1 31228 20.29530.5(12673.4 13612.000.0000 0.0000
14000473]3461 208 3461208 GOG1695 3461205 47648 4750.1 20,2 8168.5|120948.1 13120900 0000 0.0000
15000{490|3645572 3645340 9787616 3645900]19217.6 5429.8 20.2 4898.0{10348.1 26237.3j0.0115 0.0178

3/

Computational experiments

The results show that:

e instances with different fixed costs are easier to solve problems of the same siz
and uniform distribution of users location, than instances with uniform fixed cost:
Indeed, all problems , with sizes up to 15,000 could be solved exactly, again settin
a new record.

e reduced VNS does not give good results if it is allocated a small computing tim
as in the previous experiments; VINDS, with the new stopping rule as before, take
more time but obtains excellent results, close or equal to those of the sliding simple
algorithm; the value of the LP relaxation obtained by the sliding simplex algoritha
is optimal in 12 cases out of 22, including those with 12000, 13000 and 14000 user:
the branch-and-bound algorithm has less work to do than with instances of type IL
IT and especially I, although some computing time is required even when there is n
duality gap to obtain an integer solution.

89/

Computational experiments

p-median

BIRCH Instances - TYPE 1

VNDS S.Simplex Branch and Bound

T p| f—obj tirmne f—obj time | f — obj timne
10000 100 | 12428.46 883.97 | 1242846 2066.35
15000 100 | 18639.28 1687.63 | 18639.26 16897.61
20000 100 | 24840.28 J012.72 | 24840.27 43021.83
9600 64 | 11934.81 942.03 | 11934.81 4413.52
12300 64 | 15863.79 1879.12 | 15863.79 8915.88
16000 64 | 20004.55 2042.28 | 20004.55 19767.00
19200 G4 | 24018.33 4580.60 | 24018.33 S 7936.05
10000 25 | 12455.71 410.96 | 12455.71 25518.59
12500 25 | 15597.85 1353.64 | 15597.12 47536.92
15000 25 | 1894926 1681.99 | 18949.25 01527.82
17500 25 | 21937.40 1524.05 | 21937.40 123991.39
20000 25 | 25096.82 2262.23 | 25096.82 217205.60

90/

Computational experiments

BIRCH Instances - TYPE 11

VNDS S.Simplex Branch and Bound
T p| f—obj timne f— obj timne f — obj tirme
L0000 100 9629.56 J483.80 9624.77 6951.23 9625.60 46033.25
15000 100 | 1590477 606 7.38 | 15895.93 J1038.01 | 15895.93 31038.01
20000 100 [19982.67 19982.68 | 1997457 62182.20 | 19979.56 159836.62
9600 G4 §230.09 2175.64 8224 04 1070 7.92
12800 64 | 10216.72 3259.07 | 1021036 J2809.85
1GOO0 64 | 13340.47 3753.25 | 13335.34 83919.72
19200 64 | 15207.56 3039.95 | 15207.11 234902.23
L0000 25 7203.39 208.35 7203.39 131440.47
12500 25 | 8605.31 980.87 | 8576.09 94049.62
15000 25 | 9513.64 2329.05 | 951364 510352.37
17500 25 | 12535.68 2287.66 | 1253537 1068651.50
20000 25 | 13052.81 J038.60 | 13022.17 454044 .84
BIRCH Instances - TYPE 111
VNDS S.Simplex Branch and Bound
n p| f—obj time | f— obj f—obj time
25000 25 | 17312.86 650.29
s0000 25 | 35877.32 T00.60
™000 25 | 50393.09 851.13
100000 25 | T287T4.34 1252.25

91/

Computational experiments

BIRCH Instances - TYPE 1

Refine-VNS RV NS

n p| f—obj time f—obj time
10000 100 | 12652.39 60.34 | 12836.12 59.88
15000 100 | 18069.18 60.72 | 1941591 59.12
20000 100 | 25461.72 59.90 | 26666.65 59.56
9600 64 | 12040.19 51.58 | 12058.62 59.73
12800 64 | 16034.26 46.03 | 16054.46 59.74
1GOOOD 64 | 20316.82 46.45 | 20514.65 58.23
19200 64 | 24343.16 60.30 | 24900.55 59.56
10000 25 | 12499.06 40.97 [1248028 58.92
12500 25 | 15615.30 45.26 | 15683.09 59.14
15000 25 | 19078.12 47.59 [19038.40 59.26
17500 25 | 22035.82 49.05 | 22020.87 59.23
20000 25 | 25211.80 20.14 | 25213.84 59.43

92/

Computational experiments

BIRCH Instances - TYPE II

Refine-V'NS RVNS
n p| f—obj time f—obj time
10000 100 9874.63 47.14 9858.32 59.35
15000 100 | 16370.46 58.08 | 16450.29 58.92
20000 100 | 20657.58 57.61 | 21985.56 59.17
9600 64 8370.8 52.84 | 8304.14 59.23
12800 64 | 10367.73 43.77 | 10377.09 59.26
1GOOI 64 | 13530.79 36.89 | 13530.79 59.29
19200 64 | 15568.52 45.57 | 16023.56 59.37
10000 25 T248.78 46.02 7210.77 58.23
12500 25 | 8643.58 44 | 8618.98 58.14
15000 25 9618.78 41.15 9570.92 59.04
17500 25 | 1274273 25.9 | 12587.68 59.12
20000 25 | 13176.01 32.7 | 13213.35 58.15

BIRCH Instances - TYPE I1I

Refine-VNS RV NS
n p| f—obj time f—obj time
25000 25 [17290.04 16.72 | 1733581 59.24
50000 25 [35924.01 23.09 | 36086.01 5897
000 25 | 50385.23 30.19 | 50460.37 58.67
L0000 25 | 71702.27 28.74 7a3335.6 59.03

93/

Concluding remarks

Exploiting both the primal and the dual (or the
complementary slackness conditions) reduces
drastically the size of both the primal and the dual.

This leads to solve exactly, or with a small error
and a guarantee of quality, much larger SPLP and
PMP problems than done before.

Many generalizations appear to be possible. 0s)

