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Introduction

● Metaheuristics are frameworks to build heuristics 
for specific problems. As is well known, they are 
very successful in practice (and little developed in 
theory).

● Usually heuristics for combinatorial and global 
optimization exploit local search in the primal. 
Duality and complementary slackness are little or 
not exploited.
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Introduction

● Yet, they prove to be very useful to solve exactly 
difficult problems, or to solve them approximately 
but with a guarantee of quality of the solution 
obtained.

● We discuss here primal-dual heuristics for the 
simple plant location problem (SPLP) and the 
related p-median problem (PMP) based upon the 
variable neighborhood search metaheuristic.
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SPLP - Problem statement

● The objective is to choose from a set of m 
potential facility locations on a network which 
ones to open in order to minimize the sum of 
opening (or fixed) costs and service (or variable) 
costs to satisfy the known demands from a set of n 
costumers.
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SPLP - Problem statement
fixed cost for opening facility i

distribution cost for satisfying the
demand of user j from facility i

equal to 1 if facility i is opened, and 0 otherwise

fraction of demand of user j satisfied from facility i
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SPLP - Problem statement

● The LP relaxation is known to be integer-friendly
(ReVelle (1993) and Brimberg & ReVelle (2000)).

● For randomly generated instances, discussed later, 
it has been proved that any branch-and-bound 
algorithm using only the LP relaxation will require 
a number of branches that increases exponentially 
with m.
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SPLP - Problem statement

● Nevertheless, near optimal solutions may be 
readily obtained for fairly large instances.

● Barahona and Chudak (2005) recently solved with 
an instance-dependent error of at most 1%, 
problems with m = n up to 3000.



9/94

Dual formulation

SPLP - Problem statement
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SPLP - Problem statement

● Each variable ti appears only in the objective function, 
with negative sign, and in a single constraint. Then, we 
have

● For any fixed vector of vj’s, the wij may be made as small 
as possible without affecting feasibility
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SPLP - Problem statement

● By substitution, an unconstrained nonlinear programming 
formulation of the dual can be stated as 

● It is a piecewise linear concave objective function in n 
variables.
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Heuristic resolution of the primal

● Variable neighborhood search (VNS) is a fairly 
recent metaheuristic (Mladenović & Hansen 
(1997)) whose basic idea is to use systematically 
different neighborhoods, both in descent phase and 
to “jump” out of local minimum traps.
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Example
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Variable neighborhood search
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Heuristic resolution of the primal

● In order to apply VNS, a neighborhood structure 
must be defined.

● Let S denote any subset of open facilities (S ⊆ I ).

● The kth neighborhood of a current solution S is 
defined as the set of all possible solutions S’

derived from S by any combination of exactly k
total interchange, drop or add moves.
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Heuristic resolution of the primal

● The basic steps of VNS consist of a repetitive 
sequence of 
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Heuristic resolution of the primal
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Whitaker fast swap heuristic 

● Published in 1983, even though not widely used until 
1997 when Hansen and Mladenović applied it as a 
subroutine of a VNS procedure.

● The key aspect of this implementation is its ability to find
in O(n) time the best facility to close, given a certain 
facility to open.
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Whitaker fast swap heuristic 

● What makes this procedure fast is the observation that the 
variation in the solution cost can be decomposed into two 
components, which we call gain and netloss.

● Component gain accounts for all users who would benefit
from the insertion of fi into the solution. Each is closer to 
fi than to the facility it is currently assigned to.
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Whitaker fast swap heuristic 

fi

user considered by gain

The difference between the distances is the amount by 
which the cost of serving that particular user will be 
reduced if fi is inserted.
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Whitaker fast swap heuristic 

● The second component, netloss, accounts for all other
users, those that would not benefit from the insertion of fi

into the solution.
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If the facility that is closest to the user u is removed, u would
have to be reassigned either to Φ2(u) (its current second closest
facility) or to fi .

Whitaker fast swap heuristic 

fi

For instance, this 
user would be 
reassigned to fi

For instance, this user would 
be reassigned to Φ2(u)
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Whitaker fast swap heuristic 
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Whitaker fast swap heuristic 

● Given this O(n)-time function, it is trivial to implement
the swap-based local search procedure in O(mn) time per 
iteration: simply call findOut once for each of the m-p
candidates for insertion and pick the most profitable one.

● If the best swap is profitable, the move is performed, the 
values of Φ1(u) and Φ2(u) are updated, and the algorithm
proceeds to the next iteration.
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Resende & Werneck fast 
swap heuristic 

● Auxiliary data structures are used to speed up the local 
search procedure.

● The Whitaker algorithm tries to find the best pair (fi , fr) 
which maximizes  



26/94

Resende & Werneck fast 
swap heuristic 

● The algorithm differs from Whitaker’s in the computation 
of netloss.

● For every facility fr in the solution, loss(fr) is defined as 
the increase in solution value that results from the removal
of fr from the solution (assuming that no facility is
inserted).
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Resende & Werneck fast 
swap heuristic 

● As defined, gain and loss are capable of determining the 
net effect of a single insertion or a single deletion, but not 
of a swap.

● To compute netloss from loss, another function is defined, 
extra( fi, fr), defined so that the following is true for all 
pairs ( fi, fr):
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Resende & Werneck fast
swap heuristic 

● An expression for extra( fi, fr) can be algebraically derived 
as

It will cause a reduction in
netloss(fi , fr) since the facility 
inserted is closer to u than the 
current second closest facility.

The amount d2(u) – d1(u) is  
removed from netloss(fi, fr) 
since the addition of fi must be 
considered only as a gain.
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Resende & Werneck fast 
swap heuristic 

● Given the expressions of gain, loss and extra, the profit
associated with each move is obtained in a very simple 
manner

● The interesting aspect of this decomposition is that the 
only term that depends on both the facility to be inserted
and the one to be removed is extra.
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Resende & Werneck fast 
swap heuristic 

● At first, Resende & Werneck implementation seems to be 
a complicated alternative to that of Whitaker with same 
worst-case complexity.

● Yet, additional memory is used to store extra as a matrix.

● However, this structure allows for significant 
accelerations as we will see.
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Resende & Werneck fast 
swap heuristic 

● When a facility fr is replaced by a new facility fi, certain 
entries in gain, loss, extra, Φ1, and Φ2 become inaccurate. 

● A recomputation of these structures considering all users 
is the straighforward way to update them.



32/94

Resende & Werneck fast interchange 
heuristic 
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Resende & Werneck fast 
swap heuristic 

● A downside of this approach is that no information 
gathered in one iteration is used in subsequent ones.

● In fact, the actions performed by updateStructures depend 
only on u, Φ1(u), and Φ2(u); no value is read from other 
structures.

● If Φ1(u) and Φ2(u) do not change from one iteration to 
another, u's contribution to gain, loss, and extra will not 
change either.
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Resende & Werneck fast
swap heuristic 

● All this means that there is no need to call 
updateStructures again for all users.

● To deal with such cases, the notion of affected users is 
introduced. Sufficient conditions for u to be affected 
after a swap between fi and fr are:

1) either Φ1(u) or Φ2(u) is fr, the facility removed; or
2) fi (the facility inserted) is closer to u than the original 
Φ2(u) is.
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Resende & Werneck fast interchange 
heuristic 

fi

fr

affected
users by 1)

affected
users by 2)
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Resende & Werneck fast 
swap heuristic 

● Contributions to loss, gain, and extra need only be 
updated for affected users.

● As they are often a few after a swap is performed, a 
significant acceleration is obtained by the entire local 
search procedure.  
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Heuristic resolution of the primal

● Reduced variable neighborhood search (RVNS) and 
variable neighborhood decomposition search (VNDS) are 
two variants of VNS devoted to solving large problem 
instances.

● In RVNS, we simply skip the local search phase of the 
basic VNS.

● VNDS uses decomposition to enhance the efficiency of 
VNS when solving large instances.
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Heuristic resolution of the primal

● The proposed procedure first obtains an initial solution 
with RVNS.

● Two parameters are specified: 
– The maximum neighborhood distance k’

max , for the shaking 
operation.

– Stopping criterion based on the maximum number of iterations 
allowed between two improvements, imax.
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Heuristic resolution of the primal

● Once RVNS is executed, we proceed with the 
decomposition heuristic:
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Heuristic resolution of the primal
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Heuristic resolution of the primal
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Boundary effect!Boundary effect!

Decomposition
These two points are not These two points are not 
assigned to open facilitiesassigned to open facilities

in the decomposed problem.in the decomposed problem.

Then, VNS is executed Then, VNS is executed 
over this subproblemover this subproblem
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Heuristic resolution of the dual

● Initial dual solution

– Guaranteed performance of primal heuristics may be 
determined if lower bounds are known.

– The integer-friendliness property ensures that the 
strong LP relaxation for the SPLP gives a small duality 
gap between optimal integer and relaxed solutions.
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Heuristic resolution of the dual

● For large instances (say n = m = 1500) finding directly the 
exact solution of the primal or dual would be very time 
consuming.

● Thus, procedures which take into account the primal 
solution were developed in order to avoid solving 
completely the dual problem at this stage. 

● Let us consider the dual formulation of the SPLP that 
usually appears in the literature.
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Heuristic resolution of the dual

● Let us consider the dual formulation of the SPLP 
that usually appears in the literature:
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Heuristic resolution of the dual

● The complementary slackness conditions for the 
SPLP are:
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Heuristic resolution of the dual

● The strong duality theorem (z*
P = z*

D) is obtained by 
summing first each of (22), (23), (24), (25), and then 
summing their left and right hand sides.

● In the proof, all four complementary slackness conditions 
are needed.

● However, (23), (24) and (25) are not necessarily true if we 
add the integrality constraints on the primal variables yi ,
and that is the source of the duality gap. 
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Heuristic resolution of the dual
set of open facilities

set of closed facilities

second-closest open facility for customer j.

● If (26) is satisfied by the primal heuristic solution, it 
solves SPLP optimally and no further work is required.

● Otherwise, an approximate dual solution from the primal 
heuristic solution must be derived.
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Heuristic resolution of the dual

● The dual solution does not have to be feasible!

● Two expected conditions are exploited:
– The primal VNDS solution is very close to optimum;
– The duality gap is small.

● Thus, by finding a dual solution with the same objective 
function value as the primal, we expect to be close in the 
dual space to the optimal (feasible) dual solution.

● To accomplish this, the complementary slackness 
condition must be satisfied.
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Heuristic resolution of the dual

first-closest open facility to user j

● If  in addition, we impose the condition:

it follows that all the complementary slackness conditions 
will be satisfied (see Mladenović et al. 2003).
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Heuristic resolution of the dual

● Proposition 2 is capable of providing a good initial dual 
solution, but, since such a solution is not unique, 
alternative procedures were devised.
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Heuristic resolution of the dual
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Heuristic resolution of the dual
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Heuristic resolution of the dual

Improving the dual solution

The initial dual solution obtained will most likely be 
infeasible. To reduce infeasibility, we consider the 
unconstrained dual function

where the second term in the right hand side is the sum of 
infeasibilities. 
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Heuristic resolution of the dual

● To maximize this function, a powerful local search that 
uses variable neighborhood descent (VND) rules was 
devised as well as four neighborhoods structures designed 
for this purpose.
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Heuristic resolution of the dual

● The first two neighborhoods representing windows around 
the current vj in the ranked matrix [cij]. 

● Letting ij denote the lower index of the window, we 
obtain:                         ,           . 

● To simplify the notation, let us denote the last inequalities 
that define the window around the current dual value by

.
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Heuristic resolution of the dual

● The first neighborhood N1 (v) is constructed by replacing 
vj with aj, i.e. 

● In the same way, neighborhood N2 (v) is obtained by 
replacing vj with its upper window bj, 

● The cardinality of each of these neighborhoods equals n.
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Heuristic resolution of the dual

● In the third neighborhood N3(v), the value of some 
variable vj is increased by 

where 

● A move in N3 will improve F(v) without increasing the 
infeasibility of the solution.
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Heuristic resolution of the dual

● In N4(v), the value of some variable vj is decreased by 

first-closest open facility to user j

● When vj is reduced by some amount, then, in order to get 
a larger F(v), at least two members of the following sum 
need to be reduced. 
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Heuristic resolution of the dual

● Those two members should then satisfy the conditions       
and                             . Thus, it may be possible to 

increase F(v) by decreasing vj as described before. 

●
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Heuristic resolution of the dual
● The VND procedure first makes best improvement moves 

in the N1 neighborhood of the current solution by 
examining all n points in that neighborhood. 

● Once stalled, the procedure moves to the next 
neighborhood in sequence (N2, N3, N4), always reverting 
to N1 when an improvement is found. The iterations end 
when no improvement is found consecutively in each of 
the four neighborhoods.

● The output solution may still be infeasible.
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Exact solution methods

Sliding simplex for exact dual solution
The original (linear) dual

is rewritten in a reduced form, taking advantage of two         
facts:
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Exact solution methods
(a) many of the constraints 

are nonbinding and may be eliminated;
(b) for those that are binding, the wij may be eliminated 
by direct substitution.

●
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Exact solution methods

second-closest open facility to user j

first-closest open facility to user j
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Exact solution methods
Using 

It is immediately seen that                for all users j that                
belong to the set Ji3. Also from (17), it holds that                    
for all  j ∈ Ji1, i ∈I – (set of closed facilities), since              . 

●
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Exact solution methods

Therefore, the dual model is reduced as follows: 
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Exact solution methods
In the sliding simplex method proposed, the wij variables, 
whose corresponding                    , are removed with their 
constraints as in the above formulation.

Only at this moment the bounds        and        are allowed to 
vary during the solution process, in order to move towards 
the optimal solution while keeping a reasonable dimension 
on problem size.              
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Exact solution methods
To this end, it is necessary to rank the cij by nonincreasing
values for each j. Using a second-level index for ranking, we 
have

Consider a value of       , and let k denote the 
largest index such that                . Then, the l-interval of vj is 
defined to be
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Exact solution methods

which contains the following values of the cij:

Setting                    and                                , one gets the 
reduced l -dual associated with vector v, as given in (38)-
(41) and (34) with the subsets Ji1, Ji2, Ji3, i = 1,…,m, updated 
appropriately.
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Exact solution methods
The steps of the sliding simplex are now summarized as 
follows:
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Exact solution methods
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Exact solution methods
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Exact solution methods

Exact primal solution
At this stage, we have:
(a) a primal solution obtained by the VNDS heuristic.
(b) an exact dual solution by sliding simplex.

If the two bounds are equal, the VNDS solution must be 
optimal. 

Otherwise, a classical branch-and-bound is initiated.

The tightness of the upper and lower bounds will be useful in 
keeping the number of branchings to a minimum.
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The main features of the branch and bound algorithm are 
summarized below:

Exact solution methods
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Exact solution methods

Since the sliding simplex method may call the LP solver 
many times at each node as the windows on the vj change, it 
is advisable after each call to check if the node can be 
fathomed by bounding, before proceeding further to the 
exact lower bound.
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Computational experiments

The solution procedure is tested on similarly-constructed 
instances as given in Barahona and Chudak (2005).

Both facilities and user points are assumed to be the same 
random uniformly-distributed set of vertices in the unit 
square.

The fixed costs are the same for all facilities, and the 
transportation costs correspond to the Euclidian distances 
separating pairs of points in the plane.
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Computational experiments

Such test problems have interesting known properties, e.g.:
(i) for n ≤ 500, the problems are easy to solve;
(ii) when n is large, any enumerative method based on LP 
relaxation requires the exploration of an exponentially-
increasing number of solutions;
(iii) the value of the LP relaxation is about 0.998 of the 
optimal value. 
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Computational experiments

Three types of instances based on different magnitudes of 
fixed cost are considered:

(i) Type I, 
(ii) Type II,
(iii) Type III,

In order to avoid numerical problems, all data entries are 
made to be integer by rounding them to four significant 
digits. 
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Computational experiments
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Computational experiments
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Computational experiments

Larger instances of size up to 15000 x 15000 were generated 
using the procedure of Barahona and Chudak (2005) already 
described.

When n ≤ 7000, a 1800 MHz PC Pentium IV is used, while 
for n > 7000, a SUN Enterprise 10000 (with 400 MHz and 
64 Gb of RAM) which is slower but has sufficient memory 
to handle the larger problems.
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Computational experiments
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Computational experiments
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Computational experiments
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Computational experiments

From the summary results in Tables 2, 3 and 4, the following 
observations are made:
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Computational experiments
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Computational experiments

A series of instances of type IV, in which different fixed 
costs are drawn randomly from a uniform distribution on the 
interval               , were generated.



88/94

Computational experiments
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Computational experiments

The results show that:
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Computational experiments
p-median
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Computational experiments



92/94

Computational experiments
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Computational experiments
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Concluding remarks

● Exploiting both the primal and the dual (or the 
complementary slackness conditions) reduces 
drastically the size of both the primal and the dual.

● This leads to solve exactly, or with a small error 
and a guarantee of quality, much larger SPLP and 
PMP problems than done before.

● Many generalizations appear to be possible.


