
Slide 1

A formal analysis framework
for plan execution languages

Gilles Dowek, César Muñoz, and Corina Pasareanu

Slide 2 I. Plan execution languages

Slide 3

PLEXIL, plans and plan execution

A language used to express the mission of space vehicles

Drive(1); Right(120); Drive(1); Right(120); Drive(1)

Several processes executed in parallel: drive, heat, ...

Plans hand written or generated (planning, optimization)

Autonomous reaction to external events

when T ≤ 0◦ do heat

Idle process waiting for activation

Close to the (semi-formal) languages used to monitor vehicles

Slide 4

Plan execution languages and synchronous languages

Synchronous execution

Not very different from Esterel-like synchronous languages

Yet some differences :

• tree like organization of processes : processes create children

processes

• strong emphasis on events occurring in the (asynchronous)

external world and that trigger processes

Slide 5

PLEXIL-like languages in a nutshell

A program (plan) is a tree

Each process has a status Waiting, Executing, Finishing, ...

All nodes have a start, a repeat until and an end condition

(boolean expression)

Leaves are commands Drive(1) and assignments x := 1

Internal nodes contribute only to the “control flow” : create other

nodes

Expressions may include variables and lookups

Slide 6

A formal semantics

Important to know what programs do

For simulation

For verification

To formally prove (PVS) properties of the language itself

(compositionality, determinism, ...)

A quite confuse (?) informal description due to the complexity of

the language itself

Slide 7 II. Small step operational semantics

Slide 8

I transforms to V in several small execution steps

First define a relation −→ describing small execution steps

Then use −→ to define the big execution step relation →֒

Slide 9

An example

2 ∗ 4 −→ 8

8 + 3 −→ 11

Slide 10

An example

From −→ define a relation � that allows to reduce in subterm

E.g. from

2 ∗ 4 −→ 8

deduce

(2 ∗ 4)+3 � 8+3

Then define �
∗ (several steps one after another)

Then define a �
↓ b as a �

∗ b and b irreducible

And →֒ as �
↓

Slide 11

An example

(2 ∗ 4) + 3 � 8 + 3 � 11

Hence

(2 ∗ 4) + 3 →֒ 11

Slide 12

Operations of relations

From → to �: reduce a subexpression

From � to �
∗, �↓, ...

Slide 13 III. The case of process languages

Slide 14

Not always termination, not always an output value

But a behavior: a sequence of states of the interacting atomic

processes

Small steps operational semantics is appropriate: behaviors are

(finite or infinite) reduction sequences

Slide 15

The Chemical reaction model of Banâtre and Le Métayer

The state of the interacting processes is described by a finite

multiset of atomic process states

If four atomic processes that are in state A, B, C and C the

solution is the multiset {A, B, C, C} written (A | B | C | C)

small steps are described by rewrite rules e.g.

CH4 | O2 | O2 −→ CO2 | H2O | H2O

Slide 16

An atomic left hand side describes a spontaneous evolution

CO3H
− −→ CO2 + OH−

A compound left hand side describes an interaction

CH4 | O2 | O2 −→ CO2 | H2O | H2O

An puzzle for family meetings:

Take the rule

n | p −→ n if p is a multiple of n

What is the reduced form of 2 | 3 | 4 | ... | 100?

Slide 17

Modeling memory

In small step operational semantics assignment is often a burden

(explicit memory)

〈[x = 3, y = 6], (x := 4; s)〉 −→ 〈[x = 4, y = 6], s〉

In the Chemical model memory (or each memory cell) is a

process

V al(x, 3) | V al(y, 6) | x := 4 −→ V al(x, 4) | V al(y, 6)

Slide 18

Modeling external events

Natural processes are processes

Position(n) | Advance(p) −→ Position(n + p)

Advance(p) −→ Engine(p)

Position(n) |Engine(p+1) −→ Position(n+1) |Engine(p)

Engine(0) −→

Slide 19 III. Synchrony

Slide 20

Do we need a big step execution relation?

Not always termination, not always an output value: the trip itself

is the goal of the trip

All we need is to define one-tick execution steps and sequences

But still several ways to relate the evolution of subprocesses and

that of the global process

From the atomic step relation to micro step relation

Slide 21

From 2 ∗ 4 −→ 8

deduce (2 ∗ 4)+3 � 8+3

In a similar way, from A −→ B

deduce Γ | A � Γ | B

One interaction at a time, no parallelism

E.g. if P −→ Q and P ′ −→ Q′

(P | P ′) � (Q | P ′) � (Q | Q′)

The relation � is the asynchronous evolution relation

Slide 22

Synchrony: the easy case

A and all B1, ..., Bn its −→-reducible subprocesses

If there exists C such that

A = (B1 | ... | Bn | C)

then we say that the reducible subprocesses do not overlap

In this case we can reduce A to

(B′
1 | ... | B

′
n
| C)

Defines a relation −→‖

Slide 23

Synchrony: the easy case

V al(x, 2) | V al(y, 4) | x := 0 | y := y + 1

−→‖

V al(x, 0) | V al(y, 5)

Slide 24

But if they overlap?

V al(x, 0) | x := 1 | x := 2

(1) No reduction (or Error)

(2) Priority

A priority relation ≺: strict partial order on processes

A reducible subprocess is eligible if it is ≻ all the reducible

subprocesses it overlaps with

Eligible subprocesses do not overlap

Reduce eligible subprocesses in parallel: another relation −→≺

Slide 25

Active parts of reducible expressions

V al(x, 2) | V al(y, 4) | V al(z, 6) | y := x + 1 | z := x + 3

irreducible

because

V al(x, 2) | V al(y, 4) | y := x+1 −→ V al(x, 2) | V al(y, 3)

but not

V al(y, 4) | y := x + 1 −→ V al(y, 3)

Slide 26

Active parts of reducible expressions

However in

V al(x, 2) |V al(y, 4) | y := x + 1 −→ V al(x, 2) |V al(y, 3)

The atomic process V al(x, 2) is kept in the right hand side

Needed to reduce but not modified

Active part of the reducible expression

The micro relation: ⇒ is −→≺

Slide 27 IV. External events

Slide 28

When an external event occurs: T < 0◦, ...

Some processes start evolving, this evolution must terminate and

reach quiescence

Then the system is quite

Until another external event may occur

Two external events never happen simultaneously

i.e. are never processed simultaneously

Slide 29

From the micro step relation to the quiescence relation

The run to quiescence relation is ⇒↓

Slide 30

From the quiescence relation to the macro step relation

and the execution relation

One macro-step : one event followed by run to quiescence

An a priori scenario of external events

The execution relation = iteration of macro step relation

Slide 31 V. What have we been doing ?

Slide 32

Starting from one relation (atomic) we have defined four others

The operations to build relations from relations are a few

−→n n step (macro to execution)

−→∗ some number of steps

−→↓ to irreducible form (micro to quiescence)

−→′;−→ (quiescence to macro)

−→s parallel reduction of s-subexpressions (atomic to micro)

The properties of the languages are consequences of properties

of these operations

Slide 33 VI. Formally proving properties

Slide 34

Determinism

Determinism: a −→ a′ and a −→ a′′ implies a′ = a′′

If −→ is deterministic, then −→n is deterministic

If −→ is deterministic, then −→↓ is deterministic

If −→ is deterministic, and s is a strategy for −→, then −→s is

deterministic

Notice that −→∗, for instance, is not

Slide 35

Compositionality

−→ relation on a set T and | binary operation on T

a −→ a′ and b −→ b′ implies (a | b) −→ (a′ | b′)

Does not hold in general, but for specific sets A: 〈a, b〉 ∈ A

Much more interesting because holds only if we have some

compatibility between A and −→...

Slide 36

Some outputs

Better known properties of this language

Participation to the design of the language

Propositions of alternatives (what if run to quiescence does not

terminate ?)

A framework to help the design of plan execution languages

