
SelfSelf--Adaptive Middleware: Adaptive Middleware:
A contribution towards taming the complexity A contribution towards taming the complexity

of distributed information systemsof distributed information systems

Yves Caseau

CAL 07 – 3 Octobre

OverviewOverview

z Part I – Information Systems Complexity

z Part II – OAI through adaptive middleware

z Part III – Sensitivity to IS patterns

z Part IV – Conclusion

2

YCS – 3/10/ 2007

3

Which complexity ?Which complexity ?

z Size (2005 figures)

� Over 1 million function points, 50 M TPMC (~1000 servers),
700 To

� 60% makes a tightly integrated global system (SIC)

� Impact & Testing makes a larger and larger part of software
projects costs

z Time & Dependency

� Production Planning

� Project planning

z Quality of Service

� Customer-facing IT

� Level of expectation is constantly increasing
I: Bouygues Telecom’s IT

YCS – 3/10/ 2007 I: Information Systems Complexity

Issues resulting from complexityIssues resulting from complexity

z Quality of Service – meeting business expectation

� Complexity of heterogeneous process management

z Resilience

� lowest possible impact of system-scale failures of one or many components

z Coherence of Distributed Data Management & Long Running
Transactions

� Practical issue: interaction between signaling flows (process control)
and synchronization flows

• Assume a separate mechanism that will ensure the coherence of the
distributed objects ?

• Take responsibility of “business object distribution & coherence” as part as
the business process management ?

• Define an acceptable level of “chaos”, that is accept that complete
coherence is not necessary ?

4

YCS – 3/10/ 2007 I: Information Systems Complexity

Biology of Distributed Information SystemsBiology of Distributed Information Systems

z From a mechanical toward a biology vision
of fault-tolerance ☺

� Biomimetics meets Information Systems: when
the solutions to the previous issues are
emergent properties, not designed.

z An approach that may be applied :

� System Level : Grid computing, Autonomic
computing

� Process Level: self-adaptive process
management (from the infra-structure : topic of
this talk)

� Operations level : « Organic » operations = rely
on alternate processes and operations patterns.

5

ST1 ST2 ST3

ST1
secours

ST3
secours

System-based
monitoring / recovery

Process monitoring
/ recovery

ST1 ST2 ST3

ST4

YCS – 3/10/ 2007 I: Information Systems Complexity

6

OAI : Problem DefinitionOAI : Problem Definition

z (2) Service Level Agreements (3) random events

Bus

Processflow Engine

adapter

CRMPFS Customer
Base

ProvisioningHelp

z Context: (1) business processes which run over a shared set of components

z Question: Can process management (load balancing) be automated to
maximize business priority satisfaction ?

20 clients per
Hour in less

than 2 minutes

•Activité bursts
•Failures
•Interaction with other processes

YCS – 3/10/ 2007 I: Information Systems Complexity

7

CRM Service
Platform

Customer
Base

Provisioning

NetworkHelpAccounts

Fraud Order
Management

Processes
- SLA
- Priorities

IT Systems
-throughput
-latency
-availability
-Message protocol

Midleware
-Throughput
-Latency
-Availability
-Message routing

OAI: Optimization of Application IntegrationOAI: Optimization of Application Integration

Goals (SLA)
- Availability
-Latency
-Throughput
For each
process

z i-mode™ launch example

� i-mode subscription is one of many
business processes

� Others include billing / Account
management /

� SLA goals seemed straightforward …

IV: Optimization of Application Integration
YCS – 3/10/ 2007 I: Information Systems Complexity

8

The challenge of OAIThe challenge of OAI

z Why is OAI hard ?

� Asynchronous availability is hard to compute

� Sizing (multi-commodity flow)

� Stochastic (irregular flows & bursts)

� Non-linear behavior (message protocol)

� Monitoring is difficult (for explanations)

� Functional dependencies between processes (QoS/QoD)

z Culture problem

� Batch, Client/server, 3/3 architecture have been around for a
while -> incident solving know-how

� Distributed, asynchronous systems that exchange messages are far
less common

� BP culture is long to grow (global perspective)

YCS – 3/10/ 2007 I: Information Systems Complexity

OverviewOverview

z Part I – Information Systems Complexity

z Part II – OAI through adaptive middleware

z Part III – Sensitivity to IS patterns

z Part IV – Conclusion (BDIS)

9

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

SLAs, Priorities and Adaptive StrategiesSLAs, Priorities and Adaptive Strategies

z Each process has a SLA (throughput, latency, availability)

z Business processes have different priorities
� An adaptive strategy should balance the load according to priorities

and SLAs

� Self-adaptive = tolerance to bursts

� Self-healing = tolerance to short failures (fail-over)

z Two approaches:
� Message Handling Rules : modify the order in which messages are

handled (higher priority first)

� Control Rules : slow down lower priority flows

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

Simulation Model (default)Simulation Model (default)

z 5 Processes (simplified real problem)
� P1 is a high priority “subscription” process. (high latency)

� P2 is a medium priority automated baring process.

� P3 is a lower priority (3) barring.

� P4 is a high-priority de-barring process (low latency)

� P5 is a query process of medium priority.

z Finite-event model

z Scenarios to evaluate « graceful degradation »
II: Self-Adaptive Middleware

Processflow
Engine

Infrastructure

Monitor

StartProcess

StartTask

System
TimeOutAlert

EndProcess

EndTask

StartTask

EndTask

SetStatus Failure

ReceivedTask
ReceivedTask

YCS – 3/10/ 2007

Routing StrategiesRouting Strategies

z FCFS (FIFO)

� Default method for most middleware – respects temporal
constraints

� However, temporal ordering is not preserved by load
distribution

z LCFS (FILO)

� Good strategy for handling backlogs

z “SLA routing”

� Prediction of processing time based on SLA

� Sort message according to “expected scheduled time”

z Combination with priorities

� Process high priority messages first

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

ScenariosScenarios

z 3 types of scenarios

� Reference = static (with overload)

� Burst (high-priority & low priority)

� Component failure

z Different event distribution (uniform, Poisson, …)

z Performance evaluation

� Multiple runs

� Average, standard deviation of SLA achievement

� Goal is to observe « graceful degradation » (lower priority
processes degrade first)

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

S1 S11 S12 S13 S2

FCFS 98% [97-100]
98% [98-99]
98% [97-99]
88% [76-98]
84% [71-99]

98% [97-100]
98% [98-99]
98% [97-99]
88% [76-98]
84% [71-99]

83% [45-99]
59% [4-99]
76% [38-99]
47% [0-98]
46% [0-99]

28% [0-98]
15% [0-79]
22% [0-98]
12% [0-78]
13% [0-77]

98% [97-99]
98% [98-99]
98% [97-99]
93% [72-99]
90% [71-98]

LCFS 98% [97-99]
98% [96-99]
98% [97-99]
93% [86-97]
96% [94-98]

98% [97-99]
96% [93-98]
98% [96-99]
90% [81-97]
94% [90-99]

92% [77-99]
85% [71-99]
91% [79-99]
72% [50-97]
86% [76-99]

75% [63-99]
66% [56-89]
73% [62-92]
52% [36-86]
79% [73-92]

98% [97-99]
98% [97-99]
98% [97-99]
94% [88-99]
96% [93-98]

SLA 98% [97-99]
98% [98-99]
98% [97-99]
98% [96-99]
99% [99-99]

98% [97-99]
98% [98-99]
98% [97-99]
98% [96-100]
99% [98-99]

82% [47-99]
75% [39-99]
78% [39-99]
69% [25-99]
74% [39-99]

26% [0-98]
18% [0-96]
22% [0-98]
15% [0-79]
20% [0-89]

98% [96-99]
98% [98-99]
98% [97-99]
98% [97-100]
99% [99-99]

PRF 98% [97-99]
97% [91-99]
97% [84-99]
98% [94-100]
93% [88-99]

98% [96-99]
96% [86-99]
94% [80-99]
98% [93-99]
89% [80-99]

98% [97-99]
81% [45-99]
44% [0-99]
95% [85-99]
69% [24-99]

98% [97-99]
48% [0-99]
2% [0-27]
86% [53-99]
45% [1-93]

98% [96-99]
98% [90-99]
98% [88-99]
98% [96-99]
93% [81-98]

PRL 98% [96-99]
97% [92-99]
97% [87-99]
98% [95-100]
95% [91-98]

98% [96-99]
96% [92-99]
92% [82-99]
98% [95-99]
93% [86-99]

98% [97-99]
83% [54-99]
54% [7-99]
96% [88-99]
82% [63-99]

97% [95-98]
73% [45-98]
59% [17-98]
97% [93-99]
70% [36-98]

98% [97-99]
97% [90-99]
96% [86-99]
98% [96-99]
95% [88-98]

PRSS 98% [97-100]
97% [91-99]
97% [91-99]
98% [96-99]
96% [91-99]

98% [97-99]
96% [88-99]
94% [80-99]
98% [97-99]
94% [86-99]

98% [96-99]
83% [51-99]
44% [0-99]
98% [97-99]
79% [49-99]

98% [96-99]
50% [0-99]
3% [0-30]
97% [91-99]
52% [3-97]

98% [97-100]
98% [91-99]
98% [96-99]
98% [97-99]
96% [87-99]

Computational results (1)Computational results (1)

14

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

Computational Results (II)Computational Results (II)

15

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

ResultsResults

z Priority routing works. The algorithms that use process
priority as part of the sorting strategy are able to maintain
the SLA of high priority processes much longer.

z The second lesson is that FCFS is not a good default
algorithm. LCFS does better as soon as the event flow
become tight.

z The combination of priority and SLA sorting is the best
approach.

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

Flow RulesFlow Rules

z First intuition at Bouygues Telecom was to implement control flow
mechanisms (emergency mode)

z Before actually implementing it in the EAI adapter, we use the
simulation engine to evaluate two strategies :

1. RS1: When the QoS of a system X fails lower than 90% of its SLA
level (cf. Section 3), we reduce the flow of systems that are
providers of X whose priority is lower than X. A dual rule restores
the default setting once the QoS of X reaches 90%.

2. RS2: This is a similar rule, but the triggering condition is based on
processes. When the QoS of a process P fails below 90%, we
reduce the flow of all systems that have a lower priority than P
and who are providers of a system that supports P.

z Control flow is more complex to operate but it is not necessarily part
of the middleware infrastructure

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

Routing RulesRouting Rules

z We implemented rules that dynamically change the message
handling strategy (using a “status” : FAST means use PRL to
process a backlog)

� RS3: When the QoS of a system X drops below 95%, the system is
switched to FAST status. The system resumes normal status once
the QoS returns above 95%.

� RS4: When the QoS of a process P drops below 95%, all systems that
support this process are switched to FAST status.

� RS5: A system is switched to FAST status whenever its mailbox size
grows over 100. Obviously, the triggering size is a constant that
depends on the volume that is processed by the EAI and the number
of connected systems.

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

ResultsResults
S33 S51 S2

FCFS PRSP FCFS PRSP FCFS PRSP

No
R
u
l
e
s

38%
31
%

35%
29%
44%

70%
44%
22%
66%
67%

56%
48%
50%
44%
57%

75%
61%
33%
70%
75%

98%
98%
98%
93%
90%

98%
98%
98%
98%
97%

RS1 46%
23%
42%
33%
31%

70%
44%
23%
65%
39%

60%
25%
55%
47%
35%

75%
61%
33%
70%
52%

98%
98%
98%
93%
81%

98%
98
%

98%
98%
92%

RS2 52%
25%
46%
25%
33%

70%
43%
23%
65%
66%

62%
29%
55%
46%
35%

75%
61%
33%
70%
66%

98%
98%
98%
93%
90%

98%
98%
98%
98%
97%

S33 S51 S2

PRF PRSP PRF PRSP PRF PRSP

No
Rul
es

69%
42%
23%
63%
65%

70%
44%
22%
66%
67%

76%
62%
37%
70%
72%

75%
61%
33%
70%
75%

98%
98%
98%
98%
93%

98%
98%
98%
98%
97%

RS3 74%
69%
58%
75%
72%

75%
69%
59%
77%
72%

76%
69%
65%
73%
79%

74%
68%
64%
72%
80%

98%
97%
98%
98%
92%

98%
98%
98%
98%
96%

RS4 71%
64%
52%
69%
67%

76%
68%
57%
74%
70%

76%
66%
59%
72%
78%

74%
64%
59%
69%
78%

98%
98%
98%
98%
93%

98%
98%
98%
98%
97%

RS5 77%
74%
65%
77%
72%

78%
73%
63%
80%
74%

77%
74%
65%
77%
72%

75%
66%
57%
72%
80%

98%
98%
98%
98%
93%

98%
98%
98%
98%
97%

Does not provide
any stable
improvement

-Small improvement
-Simpler is better

YCS – 3/10/ 2007 II: Self-Adaptive Middleware

OverviewOverview

z Part I – Information Systems Complexity

z Part II – OAI through adaptive middleware

z Part III – Sensitivity to IS patterns

z Part IV – Conclusion (BDIS)

20

IS patterns (I) : short servicesIS patterns (I) : short services

z Default vs. Short processes

21

z Irregular load is easier to manage with shorter processes

z The opposite is observed with bursts

YCS – 3/10/ 2007 III: Sensitivity to IS patterns

IS patterns (II) : longer processesIS patterns (II) : longer processes

z default vs longer processes (non-homogeneous)

22

z different difficulty patterns …

z … but the relative ranking of methods is not changed

YCS – 3/10/ 2007 III: Sensitivity to IS patterns

IS patterns (III) : IS patterns (III) : «« Lean ManufacturingLean Manufacturing »»

z Contrast

� « lean » IS : 60% capacity usage, tight SLA (50% lean ratio)

� « optimized IS »: 80% capacity usage, loose SLA (10-20% lean ratio)

23

z An experimental verification of Taichi Ohno’s intuition (Toyota) ☺
lean = under-optimization of resources to achieve flexibility and
robustness.

YCS – 3/10/ 2007 III: Sensitivity to IS patterns

ConclusionsConclusions

A first step towards “autonomic BPM”

1. Self-optimization:
� Priority handling works: it is possible and fairly simple to take

process priority into account for routing messages and the results
show a real improvement.

� Routing (mailbox sorting) algorithm matters: the more
sophisticated SLA projection technique showed a real
improvement over a FCFS policy.

� Control rules are interesting, but they are secondary to the
routing policy: it is more efficient to deal with congestion
problems with a distributed routing strategy rather than with a
global rule schema.

2. Self-healing: some form of self-healing is demonstrated but
true self-healing requires collaboration with HW

3. Self-configuration: the goal is to make configuration
declarative (e.g., SLA) vs. defining time & resource
configuration (e.g., schedules)

V: Conclusions 24

YCS – 3/10/ 2007

