Self-Adaptive Middleware: A contribution towards taming the complexity of distributed information systems

Yves Caseau

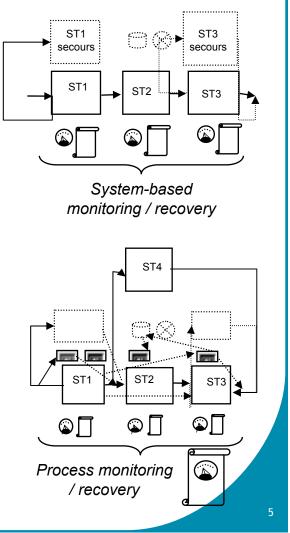
CAL 07 - 3 Octobre

Overview

- Part I Information Systems Complexity
- Part II OAI through adaptive middleware
- Part III Sensitivity to IS patterns
- Part IV Conclusion

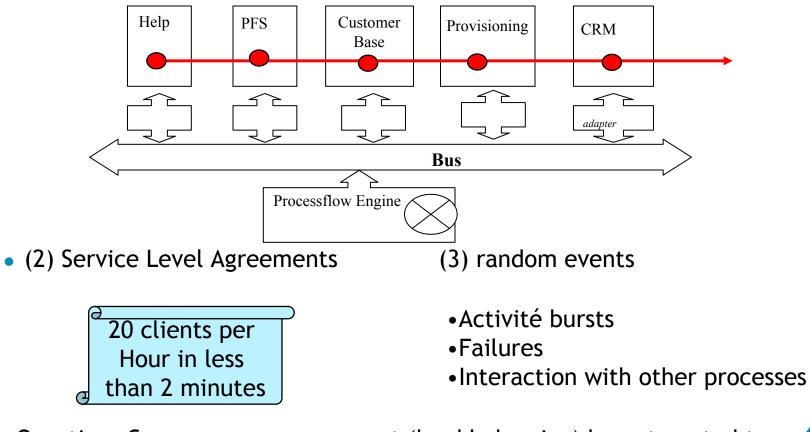
Which complexity ?

- Size (2005 figures)
 - Over 1 million function points, 50 M TPMC (~1000 servers), 700 To
 - 60% makes a tightly integrated global system (SIC)
 - Impact & Testing makes a larger and larger part of software projects costs
- Time & Dependency
 - Production Planning
 - Project planning
- Quality of Service
 - Customer-facing IT
 - Level of expectation is constantly increasing

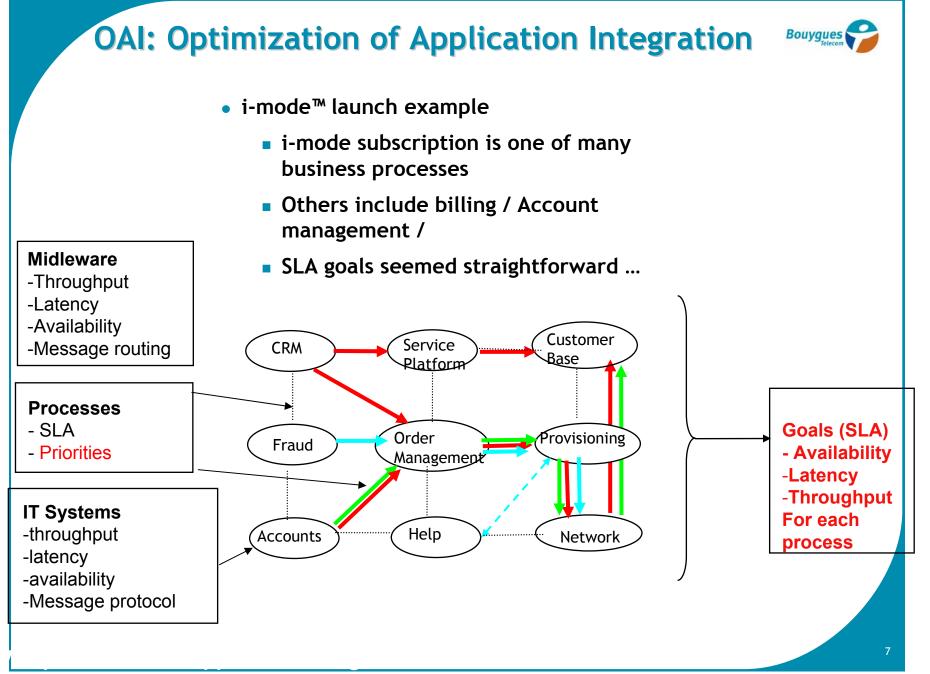

Issues resulting from complexity

- Quality of Service meeting business expectation
 - Complexity of heterogeneous process management
- Resilience
 - lowest possible impact of system-scale failures of one or many components
- Coherence of Distributed Data Management & Long Running Transactions
 - Practical issue: interaction between signaling flows (process control) and synchronization flows
 - Assume a separate mechanism that will ensure the coherence of the distributed objects ?
 - Take responsibility of "business object distribution & coherence" as part as the business process management ?
 - Define an acceptable level of "chaos", that is accept that complete coherence is not necessary ?

Biology of Distributed Information Systems


- From a mechanical toward a biology vision of fault-tolerance [©]
- Biomimetics meets Information Systems: when the solutions to the previous issues are emergent properties, not designed.
- An approach that may be applied :
- <u>System Level</u> : Grid computing, Autonomic computing
- <u>Process Level</u>: self-adaptive process management (from the infra-structure : topic of this talk)
- <u>Operations level</u>: « Organic » operations = rely on alternate processes and operations patterns.

OAI : Problem Definition


• Context: (1) business processes which run over a shared set of components

 Question: Can process management (load balancing) be automated to maximize business priority satisfaction ?

YCS - 3/10/ 2007

I: Information Systems Complexity

YCS - 3/10/ 2007

I: Information Systems Complexity

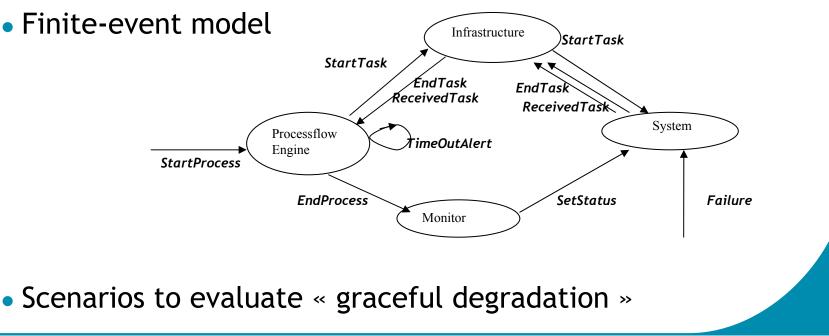
The challenge of OAI

- Why is OAI hard ?
 - Asynchronous availability is hard to compute
 - Sizing (multi-commodity flow)
 - Stochastic (irregular flows & bursts)
 - Non-linear behavior (message protocol)
 - Monitoring is difficult (for explanations)
 - Functional dependencies between processes (QoS/QoD)
- Culture problem
 - Batch, Client/server, 3/3 architecture have been around for a while -> incident solving know-how
 - Distributed, asynchronous systems that exchange messages are far less common
 - BP culture is long to grow (global perspective)

Overview

- Part I Information Systems Complexity
- Part II OAI through adaptive middleware
- Part III Sensitivity to IS patterns
- Part IV Conclusion (BDIS)

SLAs, Priorities and Adaptive Strategies


- Each process has a SLA (throughput, latency, availability)
- Business processes have different priorities
 - An adaptive strategy should balance the load according to priorities and SLAs
 - Self-adaptive = tolerance to bursts
 - Self-healing = tolerance to short failures (fail-over)
- Two approaches:
 - Message Handling Rules : modify the order in which messages are handled (higher priority first)
 - Control Rules : slow down lower priority flows

Simulation Model (default)

• 5 Processes (simplified real problem)

- P1 is a high priority "subscription" process. (high latency)
- P2 is a medium priority automated baring process.
- P3 is a lower priority (3) barring.
- P4 is a high-priority de-barring process (low latency)
- P5 is a query process of medium priority.

Routing Strategies

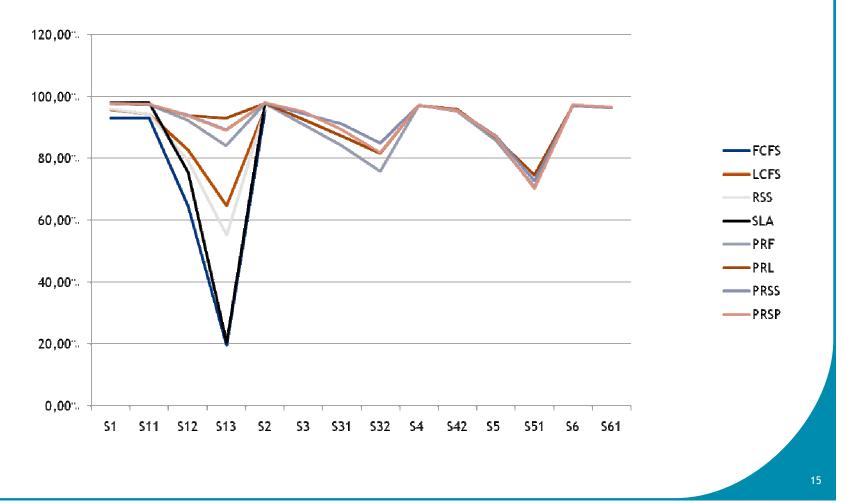
• FCFS (FIFO)

- Default method for most middleware respects temporal constraints
- However, temporal ordering is not preserved by load distribution
- LCFS (FILO)
 - Good strategy for handling backlogs
- "SLA routing"
 - Prediction of processing time based on SLA
 - Sort message according to "expected scheduled time"
- Combination with priorities
 - Process high priority messages first

Scenarios

- 3 types of scenarios
 - Reference = static (with overload)
 - Burst (high-priority & low priority)
 - Component failure
- Different event distribution (uniform, Poisson, ...)
- Performance evaluation
 - Multiple runs
 - Average, standard deviation of SLA achievement
 - Goal is to observe « graceful degradation » (lower priority processes degrade first)

Computational results (1)


	S1	S11	S12	S13	S2					
FCFS	98% [97-100] 98% [98-99] 98% [97-99] 88% [76-98] 84% [71-99]	98% [97-100] 98% [98-99] 98% [97-99] 88% [76-98] 84% [71-99]	83% [45-99] 59% [4-99] 76% [38-99] 47% [0-98] 46% [0-99]	28% [0-98] 15% [0-79] 22% 120,00 ° 12% [0-78] 13% [0-77]	98% [97-99] 98% [98-99] 98% [97-99] 93% [72-99] 90% [71-98]					-
_CFS	98% [97-99] 98% [96-99] 98% [97-99] 93% [86-97] 96% [94-98]	98% [97-99] 96% [93-98] 98% [96-99] 90% [81-97] 94% [90-99]	92% [77-99] 85% [71-99] 91% [79-99] 72% [50-97] 86% [76-99]	75% [89_99] 66% [56-89] 73% [62-92] 52% [36-86] 79% 89,00	98% [97-99] 98% [97-99] 94% [88-99] 96% [93-98]	1			1	-
SLA	98% [97-99] 98% [98-99] 98% [97-99] 98% [96-99] 99% [99-99]	98% [97-99] 98% [98-99] 98% [97-99] 98% [96-100] 99% [98-99]	82% [47-99] 75% [39-99] 78% [39-99] 69% [25-99] 74% [39-99]	26% [0-98] 18% [0-96] 22% 60,00 ° • 15% [0-79] 20% [0-89]	98% [96-99] 98% [98-99] 98% [97-99] 98% [97-100] 99% [99-99]			$\overline{\mathbf{V}}$	/	
PRF	98% [97-99] 97% [91-99] 97% [84-99] 98% [94-100] 93% [88-99]	98% [96-99] 96% [86-99] 94% [80-99] 98% [93-99] 89% [80-99]	98% [97-99] 81% [45-99] 44% [0-99] 95% [85-99] 69% [24-99]	98% [49,99] 48% [0-99] 2% [0-27] 86% [53-99] 45% [20,00]	98% [96-99] 98% [90-99] 98% [88-99] 98% [96-99] 93% [81-98]			\bigvee		– — PRL — PRS: – PRS:
PRL	98% [96-99] 97% [92-99] 97% [87-99] 98% [95-100] 95% [91-98]	98% [96-99] 96% [92-99] 92% [82-99] 98% [95-99] 93% [86-99]	98% [97-99] 83% [54-99] 54% [7-99] 96% [88-99] 82% [63-99]	97% [95-98] 73% [45-98] 59% [1 0,00 97% [93-99] 70% [36-98]	98% [97-99] 97% [90-99] 96% [86-99] 98% [86-99] 95% [88-98]	S11	S12	S13	S2	n
PRSS	98% [97-100] 97% [91-99] 97% [91-99] 98% [96-99] 96% [91-99]	98% [97-99] 96% [88-99] 94% [80-99] 98% [97-99] 94% [86-99]	98% [96-99] 83% [51-99] 44% [0-99] 98% [97-99] 79% [49-99]	98% [96-99] 50% [0-99] 3% [0-30] 97% [91-99] 52% [3-97]	98% [97-100] 98% [91-99] 98% [96-99] 98% [97-99] 96% [87-99]					

YCS - 3/10/ 2007

II: Self-Adaptive Middleware

Computational Results (II)

YCS - 3/10/ 2007

II: Self-Adaptive Middleware

Results

- Priority routing works. The algorithms that use process priority as part of the sorting strategy are able to maintain the SLA of high priority processes much longer.
- The second lesson is that FCFS is not a good default algorithm. LCFS does better as soon as the event flow become tight.
- The combination of priority and SLA sorting is the best approach.

Flow Rules

- First intuition at Bouygues Telecom was to implement control flow mechanisms (emergency mode)
- Before actually implementing it in the EAI adapter, we use the simulation engine to evaluate two strategies :
 - 1. RS1: When the QoS of a system X fails lower than 90% of its SLA level (cf. Section 3), we reduce the flow of systems that are providers of X whose priority is lower than X. A dual rule restores the default setting once the QoS of X reaches 90%.
 - 2. RS2: This is a similar rule, but the triggering condition is based on processes. When the QoS of a process P fails below 90%, we reduce the flow of all systems that have a lower priority than P and who are providers of a system that supports P.
- Control flow is more complex to operate but it is not necessarily part of the middleware infrastructure

Routing Rules

- We implemented rules that dynamically change the message handling strategy (using a "status" : FAST means use PRL to process a backlog)
 - RS3: When the QoS of a system X drops below 95%, the system is switched to FAST status. The system resumes normal status once the QoS returns above 95%.
 - RS4: When the QoS of a process P drops below 95%, all systems that support this process are switched to FAST status.
 - RS5: A system is switched to FAST status whenever its mailbox size grows over 100. Obviously, the triggering size is a constant that depends on the volume that is processed by the EAI and the number of connected systems.

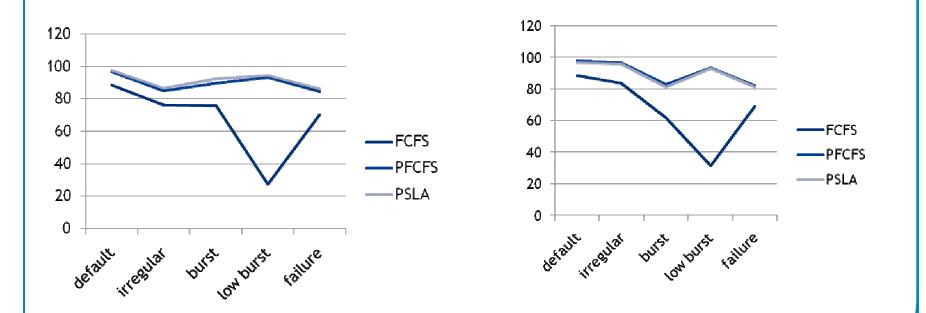
Resul	ts
-------	----

	S33		S51		S2			
	FCFS	PRSP	FCFS	PRSP	FCFS	PRSP		
No R u	38% 31	70% 44%	56% 48%	75% 61%	98% Q8%	98% 08%		
BS1 Does not provide any stable improvement								
	42% 33% 31%	23% 65% 39%	55% 47% 35%	33% 70% 52%	98% 98% 93% 81%	% 98% 98% 92%		
RS2	52% 25% 46% 25% 33%	70% 43% 23% 65% 66%	62% 29% 55% 46% 35%	75% 61% 33% 70% 66%	98% 98% 98% 93% 90%	98% 98% 98% 98% 97%		

	S33		S51		SZOUYGUES		
	PRF	PRSP	PRF	PRSP	PRF	PRSP	
No Rul es	69% 42% 23% 63% 65%	70% 44% 22% 66% 67%	76% 62% 37% 70% 72%	75% 61% 33% 70% 75%	98% 98% 98% 98% 93%	98% 98% 98% 98% 97%	
RS3	74% 69% 58% 75% 72%	75% 69% 59% 77% 72%	76% 69% 65% 73% 79%	74% 68% 64% 72% 80%	98% 97% 98% 98% 92%	98% 98% 98% 98% 96%	
RS4	71% 64% 52% 69% 67%	76% 68% 57% 74% 70%	76% 66% 59% 72% 78%	74% 64% 59% 69% 78%	98% 98% 98% 98% 93%	98% 98% 98% 98% 97%	
RS5	77% 74% 65% 77% 72%	78% 73% 63% 80% 74%	77% 74% 65% 77% 72%	75% 66% 57% 72% 80%	98% 98% 98% 98% 93%	98% 98% 98% 98% 97%	
-Small improvement							

-Simpler is better

Overview


- Part I Information Systems Complexity
- Part II OAI through adaptive middleware
- Part III Sensitivity to IS patterns
- Part IV Conclusion (BDIS)

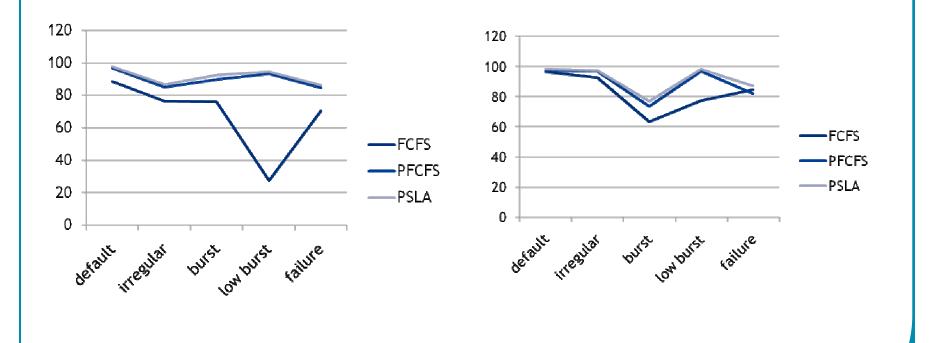
IS patterns (I) : short services

Default

vs. Short processes

- Irregular load is easier to manage with shorter processes
- The opposite is observed with bursts

YCS - 3/10/ 2007


III: Sensitivity to IS patterns

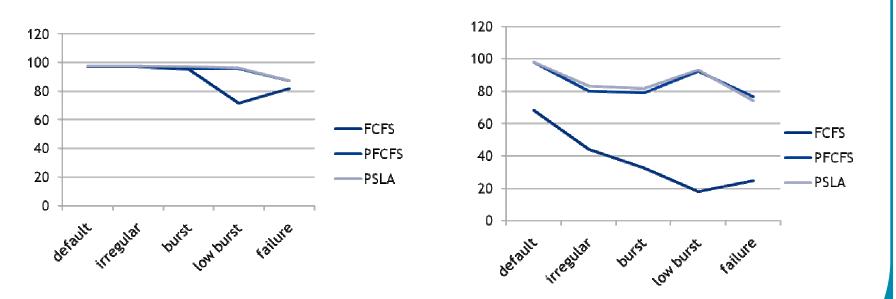
IS patterns (II) : longer processes

• default

VS

longer processes (non-homogeneous)

- different difficulty patterns ...
- ... but the relative ranking of methods is not changed


22

Bouygues

IS patterns (III) : « Lean Manufacturing »

Contrast

- « lean » IS : 60% capacity usage, tight SLA (50% lean ratio)
- optimized IS »: 80% capacity usage, loose SLA (10-20% lean ratio)

 An experimental verification of Taichi Ohno's intuition (Toyota) lean = under-optimization of resources to achieve flexibility and robustness.

23

Conclusions

A first step towards "autonomic BPM"

- 1. Self-optimization:
 - Priority handling works: it is possible and fairly simple to take process priority into account for routing messages and the results show a real improvement.
 - Routing (mailbox sorting) algorithm matters: the more sophisticated SLA projection technique showed a real improvement over a FCFS policy.
 - Control rules are interesting, but they are secondary to the routing policy: it is more efficient to deal with congestion problems with a distributed routing strategy rather than with a global rule schema.
- 2. Self-healing: some form of self-healing is demonstrated but true self-healing requires collaboration with HW
- 3. Self-configuration: the goal is to make configuration declarative (e.g., SLA) vs. defining time & resource configuration (e.g., schedules)