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Motivating Example.

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after iteration:

Incoming data

0 1 2
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Motivating Example.

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 1 iteration:

0.08838834762

Incoming data

0 1 2
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Motivating Example.

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 2 iterations:

0.2133883476

Incoming data

0 1 2
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Motivating Example.

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 3 iterations:

0.3017766952

Incoming data

0 1 2
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Motivating Example.

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 4 iterations:

0.3017766952

Incoming data

0 1 2
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Motivating Example.

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 5 iterations:

0.2133883476

Incoming data

0 1 2
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Motivating Example.

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 6 iterations:

0.08838834762

Incoming data

0 1 2
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Motivating Example.

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 7 iterations:

0.

Incoming data

0 1 2
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Motivating Example.

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 8 iterations:

0.

Incoming data

0 1 2
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Motivating Example.

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 9 iterations:

0.08838834762

Incoming data

0 1 2
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Motivating Example: Analysis

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 9 iterations:

0.08838834762

Incoming data: abstraction

0 1 2

Static analysis

Value of intgrx after 1 iteration:

[-h,h]

Extrapolation (widening):
intgrx=[-∞,∞]
Limitation (narrowing): intgrx=[-4,4]
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Motivating Example: Analysis

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 9 iterations:

0.08838834762

Incoming data: abstraction

0 1 2

Static analysis

Value of intgrx after 2 iterations:

[-2*h,2*h]

Extrapolation (widening):
intgrx=[-∞,∞]
Limitation (narrowing): intgrx=[-4,4]
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Motivating Example: Analysis

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 9 iterations:

0.08838834762

Incoming data: abstraction

0 1 2

Static analysis

Value of intgrx after 3 iterations:

[-3*h,3*h]

Extrapolation (widening):
intgrx=[-∞,∞]
Limitation (narrowing): intgrx=[-4,4]
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Motivating Example: Analysis

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 9 iterations:

0.08838834762

Incoming data: abstraction

0 1 2

Static analysis

Value of intgrx after 4 iterations:

[-4*h,4*h]

Extrapolation (widening):
intgrx=[-∞,∞]
Limitation (narrowing): intgrx=[-4,4]
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Motivating Example: Analysis

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 9 iterations:

0.08838834762

Incoming data: abstraction

0 1 2

Static analysis

Value of intgrx after 4 iterations:

[-4*h,4*h]

Extrapolation (widening):
intgrx=[-∞,∞]

Limitation (narrowing): intgrx=[-4,4]
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Motivating Example: Analysis

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0

v o l a t i l e f l o a t x ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

x i = x ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP)

i n t g r x = SUP;
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Simulation (dynamical analysis)

Value of intgrx after 9 iterations:

0.08838834762

Incoming data: abstraction

0 1 2

Static analysis

Value of intgrx after 4 iterations:

[-4*h,4*h]

Extrapolation (widening):
intgrx=[-∞,∞]
Limitation (narrowing): intgrx=[-4,4]
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Problem

Loss of precision because:

we assume that x can instantaneously jump from -1 to 1

we do not consider extra information about x (incoming rate, continuous
evolution)

Proposed solution:

analyze the program together with its physical environment

introduce hybrid statements to the program

Difficulties:
program and environment have different behaviors:

program is discrete
environment is continuous

need to express both in a unified semantics

Olivier BOUISSOU A Hybrid Denotational Semantics for Hybrid Systems
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Hybrid Syntax

Program

# def ine SUP 4
# def ine INF −4
# def ine h 1 /8 .0
sensor x ;
ac tua to r k ;
s t a t i c f l o a t i n t g r x =0 .0 ;
vo id main ( ) {

f l o a t x i ;
wh i le ( t r ue ) {

wa i t ( h ) ;
sens . x? x i ;
i n t g r x += x i∗h ;
i f ( i n t g r x > SUP) {

i n t g r x = SUP;
act . k ! 0 ;

}
i f ( i n t g r x < INF )

i n t g r x = INF ;
}

}

Environment
ẋ = k ∗ y
ẏ = −k ∗ x

We write it:

Ẏ = Fk
`
Y

´
Assumptions for Fk :

continuous

piecewise Lipschitz

Goal of the talk

Give a denotational semantics to this system: the semantics is computed
using only one fix-point.

Olivier BOUISSOU A Hybrid Denotational Semantics for Hybrid Systems
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Discrete Semantics

Assumption

The environment is perfectly known.

Semantics of discrete statements: textbook

Je1 + e2K = {(σ, n1 + n2) | (σ, n1) ∈ Je1K and (σ, n2) ∈ σ}
Jv < eK = {(σ, true) : JvKσ < JeKσ}

∪ {(σ, false) : JvKσ ≥ JeKσ}
Jv = eK =

˘
(σ, σ′) | σ′ = σ [v 7→ n] and (σ, n) ∈ JeK

¯
Jwhile(b) instK = Fix(Γ) with Γ(ϕ) =

˘
(σ, σ′) | JbKσ = true and (σ, σ′) ∈ ϕ ◦ JinstK

¯
∪ {(σ, σ) | JbKσ = false}

Ji1; i2K = Ji2K ◦ Ji1K

Semantics of hybrid statements:

Jsens.y?xK = Binds x with the present value of y

˘
(σ, σ′)|σ′ = σ[x 7→ σ.y(σ.time)]

¯

Jwait cK = Move time forward of c seconds

˘
(σ, σ′) | σ′ = σ[time 7→ σ.time + c]

¯

Jact.k!cK = Chose the function yc for the future


(σ, σ′)|σ′ = σ

»
y 7→ λx .


σ.y(x) if x ≤ σ.time
yc(x) else

–ff
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Continuous Semantics

Assumption: the discrete evolution is known

the switching times are known

the evolution of the environment is governed by one IVP

Initial value problem (IVP):

an ODE ẏ = F (y) that governs the evolution

an initial condition y(0) = y0 that explicits the starting point

Solution an IVP:

a function y such that ∀t ∈ R+, ẏ(t) = F (y(t)) and y(0) = y0

y verifies y = y0 +
R x

0 F
`
y(s)

´
ds, i.e. y is a fixpoint of the PICARD

operator P : y 7→ λx .y0 +
R x

0 F
`
y(s)

´
ds

Goal of the continuous semantics

Express y as a the fix-point of a (possibly monotone) function on a lattice and
show that it is the limit of Kleene’s iterates.

Olivier BOUISSOU A Hybrid Denotational Semantics for Hybrid Systems
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Lattice of Partial Interval Valued Functions

Basic idea

Continuous functions defined on [0,∞[ are elements with perfect information.
Construct a lattice that respect this information order.

Approximation of a continuous function: interval valued function defined
on [0, X ].
A function that is defined on [0, X + 1] and that is tighter is a better
approximation.
Formally: IF0

X = {f : [0, X ] → I(R)} such that the upper and the lower
functions are continuous. D =

S
X∈R+

IF0
X ∪ IF0

∞.
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Lattice of Partial Interval Valued Functions

Basic idea

Continuous functions defined on [0,∞[ are elements with perfect information.
Construct a lattice that respect this information order.

Approximation of a continuous function: interval valued function defined
on [0, X ].
A function that is defined on [0, X + 1] and that is tighter is a better
approximation.
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X = {f : [0, X ] → I(R)} such that the upper and the lower

functions are continuous. D =
S
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IF0

X ∪ IF0
∞.
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Lattice of Partial Functions: Order and Join

Comparable functions Incomparable functions

Join

F
=
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Fixpoint Computation

The semantic operator is a modified Picard operator that updates and
extends the partial functions.

ΓF ,y0 (f )(x) =

8><>:
y0 +

R x
0 F (y(s))ds if x ≤ Xf

J + F (J) ∗ [−eα, eα] ∗ (x − X),

with J = y0 +
R X

0 F
`
f (s)

´
ds otherwise
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The semantic operator is a modified Picard operator that updates and
extends the partial functions.

ΓF ,y0 (f )(x) =

8><>:
y0 +

R x
0 F (y(s))ds if x ≤ Xf

J + F (J) ∗ [−eα, eα] ∗ (x − X),
with J = P[0,Xf ]

`
F , y0

´
(f )(X) otherwise
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Kleene’s Iteration

We build a sequence of function fn such that:
fn defined on [0, n]
∀n, ∀x ∈ [0, n], y(x) ∈ fn(x)

We use Keye Martin’s measurement theory to prove that the sequence
converges.

0 1 2
0

5

10
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Hybrid Semantics

Combining two semantics:

hybrid environments (σd , σc)

semantics of discrete statements remain unchanged

semantics of a sens:

Jsens.y?xK =
˘
(σ, σ′)|σ′ = σ[x 7→ σ.y(σ.time)]

¯

semantics of a act:

Jact.k!cK =


(σ, σ′)|σ′ = σ

»
y 7→ λx .


σ.y(x) if x ≤ σ.time
yc(x) else

–ff
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Hybrid Semantics

Combining two semantics:

hybrid environments (σd , σc)

semantics of discrete statements remain unchanged

semantics of a sens:

Jsens.y?xKH = perform one step of the continuous Kleene’s iteration

semantics of a act:

Jact.k!cK =


(σ, σ′)|σ′ = σ

»
y 7→ λx .


σ.y(x) if x ≤ σ.time
yc(x) else

–ff
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Hybrid Semantics

Combining two semantics:

hybrid environments (σd , σc)

semantics of discrete statements remain unchanged

semantics of a sens:

Jsens.y?xKH(σd , σc) = (σ′d , σ′c) with

(
σ′c = σc [y 7→ Γn

σd .F,y(0)

`
y

´
]

σ′d = σd [x 7→ mid
`
σ′c .y(σd .time)

´
]

semantics of a act:

Jact.k!cK =


(σ, σ′)|σ′ = σ

»
y 7→ λx .


σ.y(x) if x ≤ σ.time
yc(x) else

–ff
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Hybrid Semantics

Combining two semantics:

hybrid environments (σd , σc)

semantics of discrete statements remain unchanged

semantics of a sens:

Jsens.y?xKH(σd , σc) = (σ′d , σ′c) with

(
σ′c = σc [y 7→ Γn

σd .F,y(0)

`
y

´
]

σ′d = σd [x 7→ mid
`
σ′c .y(σd .time)

´
]

semantics of a act:

Jact.k!cKH(σd , σc) = change the function defining the ODE
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Hybrid Semantics

Combining two semantics:

hybrid environments (σd , σc)

semantics of discrete statements remain unchanged

semantics of a sens:

Jsens.y?xKH(σd , σc) = (σ′d , σ′c) with

(
σ′c = σc [y 7→ Γn

σd .F,y(0)

`
y

´
]

σ′d = σd [x 7→ mid
`
σ′c .y(σd .time)

´
]

semantics of a act:

Jact.k!cKH(σd , σc) =

 
σd

"
F 7→ λt , y .

(
σd .F (y , t) t ≤ σd .time

σc .Fc(y , t) else

#
, σc

!
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Conclusion

New model for hybrid systems that:

remains close to existing programs

is designed to be integrated to existing static analyzers

does not permit physically impossible phenomena (Zeno effect)

Denotational semantics for this model that:

unifies the description of the continuous and discrete systems

uses only one fixpoint to compute the semantics of the whole system

Future work:
define an abstract semantics and analysis:

analysis of the continuous system: validated integration
analysis of the discrete system: classic domains (octagons, error series,. . . )
analysis of the interactions: needs to be formalized

define a suitable widening for the continuous functions
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