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Abstract

We propose mathematical programming models for solving problems arising from planning and
running an energy production process based on burning biomasses. The models take into account dif-
ferent aspects of the problem: determination of the biomasses to produce and/or buy, transportation
decisions to convey the materials to the respective plants, and plant design. Whereas the “running
model” is linear, the “planning model” is a Mixed-Integer Nonlinear Programming problem, which
we solve by reformulating it to a Mixed-Integer Linear Programming problem.
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1 Introduction

Producing energy derived from fossil carbon-based fuels is proving costly to both the environment (in
terms of pollution) and society (in terms of monetary investment). As the prices of crude oil increase,
governments and other institutions are researching the most cost-efficient ways to produce energy from
alternative sources [Inyang, 2005]. One of the most popular contendents is energy produced by biomasses
of several kinds [Regional Wood Energy Development Programme, 1998]. In [Adams et al., 1998] and
[Adams et al., 2000] the competitiveness of biomass-based fuel for electrical energy opposed to carbon-
based fuel is examined using a mathematical programming. Among the advantages of this type of energy
production, there is the potential for employing wasted materials of biological origin, like used alimentary
fats and oils, agricultural waste and so on. A factory producing energy with such materials would benefit
from both the sales of the energy and the gains obtained by servicing waste [Arighieri et al., 2004]. In
[Fiorese et al., 2005] a mathematical programming is proposed to localize both energy conversion plants
and biomass catchments basins in provincial area. Other mathematical models for specific biomass
discrete facility location problems are developed in [Freppaz et al., 2004] and [Voivontas et al., 2001].

This paper describes an optimization problem arising from the deployment of such an energy produc-
tion process in different regions of Italy. The production process in question comprises several process-
ing plants of different types (for example, a liquid biomass plant, a squeeze plant and a fermentation-
distillation plant). Some of these plants (e.g. liquid biomass plant) produce energy; others (e.g. the
fermentation-distillation plant) produce intermediate products which will then be routed to other plants
for further processing. There are several possible input products (e.g. agricultural products, biological
waste), obtained from different sources (e.g. direct farming or acquisition on the markets) at different unit
costs. Apart from the energetic output, there may be other output products which are sold in different
markets (e.g. bioethanol obtained from the fermentation-distillation plant and sold in the bioethanol
market). See Fig. 1 for a typical process flowsheet.

There are in fact two optimization problems relating to this description. The first (and simplest) is
that of modelling the production process as a net gain maximization supposing the type of plants involved
and the end product demands are known. The second is that of deciding the type of plants to involve in



the process to maximize the net gain, subject to known end product demands. Although post-optimal
sensitivity analysis may be used to gather heuristic hints on how to improve the plant design, a true
design model furnishes the ultimate plant design tool.

Section 2 describes the model relating to the production process when the plant types are known
(“running model”). Section 3 describes the model relating to the process design (“planning model”) and
an exact mixed-integer linear reformulation thereof.

2 Modelling the production process

Modelling a flowsheet as that presented in Fig. 1 presents many difficulties. Notice that the products
can be inputs, intermediate, outputs, or a both (like alcohol, which is both an output product and
an intermediate product). Likewise, processes can be intermediate or final or a combination (like the
fermentation-distillation plant). Consider also that the decision maker may choose to buy an intermediate
product from a different source to cover demand needs, thus making the product a combination of
intermediate and input. Of course the input products may be acquired or produced at different locations
and at different prices. Moreover, each flow arrow has an associated transportation cost.
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Figure 1: A typical process flowsheet.

The central concept in our model is the process site. A process site is a geographical location with
at most one processing plant and/or various storage spaces for different types of goods (commodities).
A place where production of a given commodity occurs is represented by a process site with a storage
space. Thus, for example, a geographical location with two fields producing maize and sunflowers is a
process site with two storage spaces and no processing plant. The fermentation-distillation plant is a
process site with no storage spaces and one processing plant. Each output in Fig. 1 is represented by
a process site with just one storage space for each output good. In this interpretation the concepts of
input, output and intermediate products, and those of intermediate and final process, lose importance:
this is appropriate because, as we have emphasized earlier, these distinctions are not always well-defined.
Instead, we focus the attention on the material balance and on the transformation process in each process
site. Furthermore, we are able to deal with the occurrence that a given commodity may be obtained at
different costs depending on whether it is bought or produced directly.
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We represent the process sites by a set V of vertices of a graph G = (V, A) where the set of arcs
A is given by the logistical connections among the locations. To each vertex v ∈ V we associate a
set of commodities H−(v) which may enter the process site, and a set of commodities H+(v) which
may leave it. Thus, for example, the fermentation-distillation plant is a process site vertex where
H−(fermentation-distillation plant) = {cane,beetroots} and H+(fermentation-distillation plant) =
{alcohol}. Furthermore, we let H =

⋃
v∈V (H−(v) ∪ H+(v)) be the set of all commodities involved in

the production process, and we partition V = V0 ∪ V1 into V0, the set of process sites with an associated
processing plant, and V1 = V \V0. Fig. 2 is the graph derived from the example in Fig. 1.
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Figure 2: The graph derived from the example in Fig. 1.

We assume the following to be known parameters:

• cvk: cost of supplying vertex v with a unit of commodity k (a negative cost may be associated to
waste, since waste disposal is a service commodity);

• Cvk: maximum quantity of commodity k in vertex v;

• τuvk: transportation cost for a unit of commodity k on the arc (u, v);

• Tuvk: transportation capacity for commodity k on arc (u, v);

• λvkh: cost of processing a unit of commodity k into commodity h in vertex v;

• πvkh: yield of commodity h expressed as unit percentage of commodity k in vertex v;

• dvk: demand of commodity k in vertex v.

It is clear that certain parameters make sense only when associated to a particular subset of vertices,
like e.g. the demands may only be applied to the vertices representing the outputs. In this case, the
corresponding parameter should be set to 0 in all vertices for which it is not applicable.

The decision variables are:

• xvk: quantity of commodity k in vertex v;
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• yuvk: quantity of commodity k on arc (u, v);

• zvkh: quantity of commodity k processed into commodity h in vertex v.

Since the output demands are known a priori, we would like to minimize the total operation costs
subject to demand satisfaction. There are three types of costs:

• cost of supplying vertices with commodities:

γ1 =
∑

k∈H

∑

v∈V

cvkxvk;

• transportation costs:
γ2 =

∑

k∈H

∑

(u,v)∈A

τuvkyuvk;

• processing costs:
γ3 =

∑

v∈V

∑

k∈H−(v)

∑

h∈H+(v)

λvkhzvkh,

so the objective function is
3∑

i=1

γi(x, y, z). (1)

We need to make sure that some material conservation equations are enforced in each process site
where a plant is installed:

∑

k∈H−(v)

πvkhzvkh = xvh, ∀v ∈ V0, h ∈ H+(v). (2)

Notice that these constraints do not actually enforce a conservation of mass, for in most processing plants
a percentage of the input quantities goes to waste; but it is nonetheless a conservation law subject to the
yield properties of the particular transformation process of the plant.

Secondly, the quantity of processed commodity must not exceed the quantity of input commodity in
each vertex: ∑

h∈H+(v)

zvkh ≤ xvk, ∀v ∈ V0, k ∈ H−(v). (3)

Furthermore, we need the quantity of input commodity in each vertex to be consistent with the
quantity of commodity in the vertex itself, and similarly for output commodities:

∑

u∈V :(u,v)∈A

yuvk = xvk, ∀v ∈ V, k ∈ H−(v) (4)

∑

u∈V :(v,u)∈A

yvuh = xvh, ∀v ∈ V, h ∈ H+(v). (5)

Finally, we have the bounds on the variables:

dvk ≤ xvk ≤ Cvk, ∀v ∈ V, k ∈ H (6)
0 ≤ yuvk ≤ Tuvk, ∀(u, v) ∈ A, k ∈ H (7)
zvkh ≥ 0, ∀v ∈ V, k ∈ H−(v), h ∈ H+(v) (8)
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and some fixed variables for irrelevant vertices:

xvk = 0, ∀v ∈ V1, k ∈ H\(H−(v) ∪H+(v)) (9)
yuvk = 0, ∀(u, v) ∈ A, k ∈ H\H−(v), (10)
yuvk = 0, ∀(u, v) ∈ A, k ∈ H\H+(u). (11)

The main advantage to this model is that it can be easily extended to deal with more commodities
and plants in a natural way, by adding appropriate vertices or changing the relevant H−(v),H+(v) and
related parameters.

2.1 Solution of the problem

The problem described in Section 2 is a Linear Programming (LP) problem, which can be solved by using
one of several LP solvers. We generated a random instance defined over the graph of Fig. 2, which we
solved to optimality using AMPL [Fourer and Gay] with the lp solve [Berkelaar, 2004] solver.

3 Planning the process design

In this section, we suppose no processing plants are yet present at the process sites. At each process site,
we wish to install an appropriate processing plant chosen from a set P of possible plants (e.g. there may
be different types of liquid biomass plants, each having different yield levels on the input commodities).
We therefore wish to take discrete decisions as regards the plant installation, feasible with the material
balance constraints as in Section 2, which minimizes the total operation costs.

We re-define the parameters λ, π to make them dependent on a processing plant p ∈ P as follows:

• λvkhp: cost of using plant p to transform a unit of commodity k into commodity h in vertex v;

• πvkhp: yield of commodity h, using plant p, expressed as unit percentage of commodity k in vertex
v.

Furthermore, we consider the following additional binary decision variables:

wvp =
{

1 if plant p is installed in vertex v
0 otherwise

The objective function (1) changes in the γ3 term, which becomes:

γ′3 =
∑

v∈V

∑

k∈H−(v)

∑

h∈H+(v)


∑

p∈P

λvkhpwvp


 zvkh.

The material conservation constraints (2) become:

∑

k∈H−(v)


∑

p∈P

πvkhpwvp


 zvkh = xvh, ∀v ∈ V, h ∈ H+(v). (12)

The following constraints enforce consistency on the assignment variables:
∑

p∈P

wvp = 1, ∀v ∈ V0, (13)

∑

p∈P

wvp = 0, ∀v ∈ V1. (14)
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Finally, constraints (3)-(8) are also part of the formulation.

3.1 Solution of the problem

The model described in Section 3 is a Mixed-Integer Nonlinear Programming problem (MINLP) with
nonconvex terms in both the objective function and the constraints. Problems of this type are solved either
by employing heuristic methods, like Multi Level Single Linkage (MLSL) [Kucherenko and Sytsko, 2004,
Liberti and Kucherenko, 2005] or Variable Neighbourhood Search (VNS) [Hansen and Mladenović, 2001,
L. Liberti and M. Dražic, 2005], or by using an ε-approximate method called spatial Branch-and-Bound
(sBB) [Smith and Pantelides, 1999, Adjiman et al., 1998], which also provides a proof of ε-optimality. It
turns out, however, that by exploting the special structure of the MINLP at hand, we can reformulate it
exactly to a MILP and solve it with a state-of-the-art MILP solver (e.g. CPLEX [ILO02]).

The reformulation process is as follows.

1. Distribute products over sums, so that all the bilinear terms can be expressed as wvpzvkh (also see
[Tawarmalani and Sahinidis, 2002]).

2. Replace each bilinar term wvpzvkh by a new added variable ζvkhp called a linearization variable.
More precisely, the bilinear terms in γ′3 in the objective and in constraints (12) should be replaced
by the corresponding linearization variable, yielding:

γ′′3 =
∑

v∈V

∑

k∈H−(v)

∑

h∈H+(v)

∑

p∈P

λvkhpζvkhp

and ∑

k∈H−(v)

∑

p∈P

πvkhpζvkhp = xvh, ∀v ∈ V, h ∈ H+(v). (15)

Naturally, to keep the reformulation exact, we must add the bilinear constraints

(ζvkhp = wvpzvkh), ∀v ∈ V, k, h ∈ H, p ∈ P (16)

to the formulation. These are called defining constraints.

3. Since wvp is a binary variable, ζvkhp can only take values in {0, zvkh}; this allows us to reformulate
the defining constraints (16) exactly by adding the following linear constraints:

(ζvkhp ≥ 0), ∀v ∈ V, k, h ∈ H, p ∈ P (17)
(ζvkhp ≥ zvkh + zU

vkh(wvp − 1)), ∀v ∈ V, k, h ∈ H, p ∈ P (18)
(ζvkhp ≤ zU

vkhwvp), ∀v ∈ V, k, h ∈ H, p ∈ P (19)
(ζvkhp ≤ zvkh), ∀v ∈ V, k, h ∈ H, p ∈ P (20)

to the formulation and dropping the bilinear defining constraints (16), where zU
vkh is a tight upper

bound to zvkh for each v ∈ V , k, h ∈ H. It is important to choose these upper bounds as tight as
possible, as the difficulty of finding feasible solutions during the MILP Branch-and-Bound process
(and hence the overall running time) may well depend on this. Constraints (17)-(20) are known as
McCormick envelopes [McCormick, 1976].

3.1.1 Reformulation-Linearization Technique cuts

Possible Reformulation-Linearization Technique (RLT) cuts may be derived as in [Sherali and Adams, 1986,
Sherali and Alameddine, 1992, Sherali and Adams, 1999] by multiplying constraints by appropriate vari-
ables and then linearizing the resulting bilinear terms, as detailed below:
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• constraints (3) by bound factors wvp and (1− wvp) for all p ∈ P ;

• constraints (13) and (14) by variables zvkh for all k, h, to obtain:
∑

p∈P

ζvkhp = zvkh, ∀v ∈ V0, k, h ∈ H (21)

∑

p∈P

ζvkhp = 0, ∀v ∈ V1, k, h ∈ H. (22)

Constraints (21) and (22) are a particular subclass of RLT constraints ([Sherali and Alameddine, 1992,
Sherali and Adams, 1999]) called reduction constraints [Liberti, 2004b, Liberti, 2004c, Liberti, 2004a],
with very interesting properties. In particular, although the bilinear defining constraints (16) are not
in the formulation, it can be shown that in consequence of (21) and (22), a certain subset of them still
hold at the relaxed solution. To sum up, the LP relaxation at each Branch-and-Bound node consists
in minimizing γ1 + γ2 + γ′′3 subject to (15) and (3) with the RLT cuts derived from them, (4), (5),
(6)-(8), (9)-(11), (13) and (14) with the reduction constraints (21) and (22) derived from them, and the
McCormick envelopes (17)-(20).

4 Conclusion

In this paper we described a Linear Programming (LP) model for running a biomass-based energy pro-
duction process, and Mixed-Integer Nonlinear Programming model for planning the installation of pro-
cessing plants types used in the production process. We solve the first model using a commercial LP
solver (CPLEX), whereas the second model is solved by way of an exact reformulation to a mixed-integer
linear programming model.
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and applications. European Journal of Operations Research, 130:449–467, 2001.

[ILO02] ILOG. ILOG CPLEX 8.0 User’s Manual. ILOG S.A., Gentilly, France, 2002.

[Inyang, 2005] H.I. Inyang, editor. Bridging the gaps for global sustainable development. International
Conference on Energy, Environment and Disasters, Charlotte, NC, July 2005.

[Kucherenko and Sytsko, 2004] S. Kucherenko and Yu. Sytsko. Application of deterministic low-
discrepancy sequences to nonlinear global optimization problems. Computational Optimization and
Applications, 30(3):297–318, 2004.
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