
Bidirectional A∗ Search on Time-Dependent
Road Networks

Giacomo Nannicini1,2, Daniel Delling3, Dominik Schultes3, Leo

Liberti1

1 LIX, École Polytechnique, F-91128 Palaiseau, France
Email:{giacomon,liberti}@lix.polytechnique.fr

2 Mediamobile, 27 boulevard Hippolyte Marquès, 94200 Ivry sur Seine, France
3 Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

Email:{delling,schultes}@ira.uka.de

December 2, 2010

Abstract

The computation of point-to-point shortest paths on time-dependent
road networks has a large practical interest, but very few works propose
efficient algorithms for this problem. We propose a novel approach which
tackles one of the main complications of route planning in time-dependent
graphs, which is the difficulty of using bidirectional search: since the exact
arrival time at the destination is unknown, we start a backward search
from the destination node using lower bounds on arc costs in order to
restrict the set of nodes that have to be explored by the forward search.
Our algorithm is based on A

∗ with landmarks (ALT); extensive compu-
tational results show that it is very effective in practice if we are willing
to accept a small approximation factor, resulting in a speed-up of more
than one order of magnitude with respect to Dijkstra’s algorithm while
finding only slightly suboptimal solutions. The main idea presented here
can also be generalized to other types of search algorithms.
Keywords. Shortest paths, time-dependent costs, large-scale road net-
works, goal directed search.

1 Introduction

Route planning in road networks is a practical application that, in recent years,
has attracted a lot of attention to the computation of shortest paths on large
graphs. In particular, since in several countries there are now road segments
covered with traffic sensors, it is possible to generate speed profiles based on
historical data. It thus becomes feasible to model the dependence of travelling
speed on the time of the day; consequently, situations like rush hour traffic peaks
can be taken into account during the calculation, giving much more meaningful
results with respect to the static case (where arc costs are always fixed) from
the user’s point of view. In a typical application scenario, e.g., a server machine
which provides a route planning web server, one would like to answer several
shortest path queries in less than one second of CPU time, on graphs with
several millions nodes. This means that we are interested in an algorithm which
is able to quickly find good solutions to the Time-Dependent Shortest Path

Problem, which we define as follows.

1 INTRODUCTION 2

Given a set of time instants T = R+, consider a directed graph G = (V,A)
equipped with a time-dependent arc weight function c : A×T → R+, such that
for each pair of time instants τ, τ ′ ∈ T with τ < τ ′ the property ∀ (u, v) ∈
A c(u, v, τ) + τ ≤ c(u, v, τ ′) + τ ′ holds. This condition on c is known as the
FIFO property. The FIFO property is also called the non-overtaking property: it
basically says that if T1 leaves u at time τ and T2 leaves at time τ ′ > τ , T2 cannot
arrive at v before T1 using the arc (u, v). Given a path p = (s = v1, . . . , vk = t)
in G, its time-dependent cost γτ0(p) is defined recursively as:

γτ0(v1, v2) = c(v1, v2, τ0) (1)

γτ0(v1, . . . , vi) = γτ0(v1, . . . , vi−1) + c(vi−1, vi, τ0 + γτ0(v1, . . . , vi−1)) (2)

for all 2 ≤ i ≤ k. We can now formally introduce the problem discussed in this
paper.

Time-Dependent Shortest Path Problem (TDSPP): Given G = (V,A),
T and c as defined above, a source node s ∈ V , a destination node t ∈ V , and
a starting time τ0 ∈ T , find a path p = (s = v1, . . . , vk = t) in G such that
γτ0(p) is minimum.

For the TDSPP, the FIFO assumption is usually necessary in order to man-
tain polynomial complexity: the SPP in time-dependent FIFO networks is poly-
nomially solvable [26], while it is NP-hard in non-FIFO networks [31].

We assume that a function λ : A→ R+ with the following property:

∀(u, v) ∈ A, τ ∈ T λ(u, v) ≤ c(u, v, τ),

is known. In other words, λ(u, v) is a lower bound on the travelling time of arc
(u, v) for all time instants in T . In practice, this can easily be computed given
an arc length and the maximum allowed speed on that arc. We naturally extend
λ to be defined on paths, i.e., λ(p) =

∑
(vi,vj)∈p

λ(vi, vj). We call Gλ the graph
G weighted by the lower bounding function λ.

In this paper, we propose a novel algorithm for the TDSPP on FIFO net-
works based on a bidirectional A∗ algorithm. Since the arrival time is not known
in advance (so c cannot be evaluated on the arcs adjacent to the destination
node), our backward search occurs on Gλ, and is therefore a time-independent
search. This is used for bounding the set of nodes that will be explored by
the forward search. An extended abstract of this work appeared in [29], which
represented the first attempt to tackle the TDSPP in a bidirectional fashion.
Since then, our idea has been used for several shortest paths algorithms on
time-dependent networks (see e.g., [3, 11]).

1.1 Related Work

Many ideas have been proposed for the computation of point-to-point shortest
paths on static graphs (see [12] for a review), and there are algorithms capable
of finding the solution in a matter of a few microseconds [2]; adaptations of
those ideas for dynamic scenarios, i.e., where arc costs are updated at regular
intervals, have been tested as well [13, 28, 33, 35] (see [30] for a survey).

Much less work has been undertaken on the time-dependent variant of the
shortest paths problem. The TDSPP was first addressed in [8]: a recursive
formula is given to establish the minimum time to travel to a given target

2 DIJKSTRA’S ALGORITHM 3

starting from a given source at a certain time τ . In [17], Dijkstra’s algorithm
[16] is extended to the dynamic case, but the FIFO property, which is necessary
to prove that Dijkstra’s algorithm terminates with a correct shortest paths tree
on time-dependent networks, is not mentioned. Since Dijkstra’s algorithm plays
an important role in this paper, we review it in Section 2. Given source and
destination nodes s and t, the problem of maximizing the departure time from
node s with a given arrival time at node t is equivalent to the TDSPP (see [9]).
A survey on the TDSPP is given in [14].

Goal-directed search, also called A∗ [24], has been adapted to work on all the
previously described scenarios; an efficient version for the static case has been
presented in [21], and then developed and improved in [22]. Those ideas have
been used in [13] on dynamic graphs as well, while the time-dependent case on
graphs with the FIFO property has been addressed in [7] and [13].

After the publication of the extended abstract of this work [29], several
speed-up techniques have been adapted to the time-dependent scenario. The
SHARC-algorithm [4] allows fast unidirectional shortest-path calculations in
large scale networks. Due to its unidirectional nature, it can easily be used
in a time-dependent scenario [10]. Moreover, Contraction Hierarchies [20] have
been adapted as well [3], but the memory consumption of this approach is very
large. Finally, in [11] the approach introduced in this work is enhanced with an
exact bi-level search method (i.e., most of the search is carried out on a smaller
network that plays the same role as motorways in real-life road networks). The
resulting algorithm, TDCALT (Time-Dependent Core-ALT) [11], is one of the
fastest known techniques for route planning in time-dependent road networks.

1.2 Overview

The rest of this paper is organised as follows. We review Dijkstra’s algorithm
in Section 2. In Section 3, we describe A∗ search and the ALT algorithm, which
are needed for our method. In Section 4, we provide the foundations of our idea
in a simple way by employing Dijkstra’s algorithm. In Section 5, we adapt those
ideas to the ALT agorithm, giving a specific implementation. We formally prove
our method’s correctness in Section 6 for both exact and approximated shortest
path computations. In Section 7, we propose some modifications that improve
the performance of our algorithm, and prove their correctness. Computational
experiments in Section 8 show the feasibility of our approach.

2 Dijkstra’s Algorithm

Dijkstra’s algorithm [16] solves the single source SPP in static directed graphs
with non-negative weights in polynomial time. The algorithm can easily be
generalized to the time-dependent case [17]. Dijkstra’s algorithm is a labeling
method.

The labeling method for the SPP [18] finds shortest paths from the source
to all vertices in the graph; on a static graph with arc weights w(u, v) ∀(u, v) ∈
A, the method works as follows: for every vertex v it maintains its distance
label ℓ[v], parent node p[v], and status S[v] which may be one of the following:
unreached, explored, settled. Initially ℓ[v] = ∞, p[v] = NIL, and S[v] =
unreached for every vertex v. The method starts by setting ℓ[s] = 0 and

2 DIJKSTRA’S ALGORITHM 4

S[s] = explored; while there are labeled (i.e., explored) vertices, the method
picks an explored vertex u, relaxes all outgoing arcs of u, and sets S[u] =
settled. To relax an arc (u, v), one checks if ℓ[v] > ℓ[u] + w(u, v) and, if true,
sets ℓ[v] = ℓ[u] + w(u, v), p(v) = u, and S(v) = explored. At any iteration
of the algorithm, the set of nodes with status explored or settled is called
the search scope. If the graph does not contain cycles with negative cost, the
labeling method terminates with correct shortest path distances and a shortest
path tree. The algorithm can be extended to the time-dependent case on FIFO
networks by a simple modification of the arc relaxation procedure: if τ0 is the
departure time from the source node, we check if ℓ[v] > ℓ[u] + c(u, v, τ0 + ℓ[u])
and, if true, set ℓ[v] = ℓ[u] + c(u, v, τ0 + ℓ[u]), p[v] = u, and S[v] = explored.
The efficiency of the label-setting method depends on the rule to choose a vertex
to scan next. We say that ℓ[v] is exact if it is equal to the distance from s to v;
it is easy to see that if one always selects a vertex u such that ℓ[u] is exact at the
selection time, then each vertex is scanned at most once. In this case, we only
need to relax arcs (u, v) where v is not settled, and the algorithm is called
label-setting. Dijkstra [16] observed that if the cost function c is non-negative
and v is an explored vertex with the smallest distance label, then ℓ[v] is exact;
so, we refer to the labeling method with the minimum label selection rule as
Dijkstra’s algorithm. If w(u, v) is non-negative ∀(u, v) ∈ A, then Dijkstra’s
algorithm scans vertices in nondecreasing order of distance from s and scans
each vertex at most once; for the point-to-point SPP, we can terminate the
labeling method as soon as the target node is settled. The algorithm requires
O(|A|+ |V | log |V |) amortized time if the queue is implemented as a Fibonacci
heap [19]; with a binary heap, the running time is O((|E| + |V |) log |V |). Note
that on road networks, we typically have |E| = O(|V |); therefore, the running
time of Dijkstra’s algorithm with binary heaps is O(|V | log |V |).

One basic variant of Dijkstra’s algorithm for the point-to-point SPP is bidi-
rectional search; instead of building only one shortest path tree rooted at the
source node s, we also build a shortest path tree rooted at the target node t on
the reverse graph (i.e., the graph G = (V,A) where (u, v) ∈ A ⇔ (v, u) ∈ A).
As soon as one node v becomes settled in both searches, we are guaranteed
that the shortest s→ t path has been found: there is a node u settled by the
forward search and a node w settled by the backward search such that the
concatenation of the shortest s→ u path and the shortest w → t path plus the
arc (u,w) ∈ A forms the shortest s → t path. Since we can think of Dijkstra’s
algorithm as exploring nodes in circles centered at s with increasing radius until
t is reached (see Figure 1), the bidirectional variant is faster because it explores
nodes in two circles centered at both s and t, until the two circles meet (see
Figure 2); the area within the two circles, which represents the number of ex-
plored nodes, will then be smaller than in the unidirectional case, up to a factor
of two.

Dijkstra’s algorithm applied to time-dependent FIFO networks has been
optimized in various ways [5, 6]. We note here that in the time-dependent
scenario bidirectional search cannot be applied, because the arrival time at
destination node is unknown. We also remark that all speedup techniques based
on finding shortest paths in Euclidean graphs [34] cannot be applied either, since
the typical arc cost function, the arc travelling time at a certain time of the day,
does not yield a Euclidean graph.

3 A∗ WITH LANDMARKS 5

Figure 1: Schematic representation of
Dijkstra’s algorithm search space

s t

Figure 2: Schematic representation
of bidirectional Dijkstra’s algorithm
search space.

3 A
∗ with Landmarks

A∗ is an algorithm for goal-directed search that is similar to Dijkstra’s algorithm;
the main difference lies in the fact that A∗ adds a potential function to the
priority key of each node in the queue. The potential function on a node v
is an estimate of the distance to reach the target from v; A∗ then follows the
same procedure as Dijkstra’s algorithm, but the use of this potential function,
summed to the priority key of each node, has the effect of prioritizing nodes that
are likely to be closer to the target node t. If the potential function π is such that
π(v) ≤ d(v, t) ∀v ∈ V , where d(v, t) is the distance from v to t, then A∗ always
finds shortest paths. If π(v) is a good approximation from below of the distance
to target, A∗ efficiently drives the search towards the destination node, and it
explores considerably fewer nodes than Dijkstra’s algorithm; if π(v) = 0∀v ∈ V ,
A∗ behaves exactly like Dijkstra’s algorithm, i.e., it explores the same nodes. A∗

is equivalent to Dijkstra’s algorithm on a graph with reduced costs wπ(u, v) =
w(u, v) − π(u) + π(v) (see e.g. [1, 25]); as the length of each path between s
and t changes by the same amount π(t) − π(s), the shortest path is invariant.
Note that, since Dijkstra’s algorithm requires arc costs to be nonnegative, the
potential function should be consistent, i.e., π(u) ≤ w(u, v) + π(v) ∀(u, v) ∈ A.

One way to compute the potential function, instead of using Euclidean dis-
tances, is to use the concept of landmarks. Landmarks were first proposed in
[21]; they are a preprocessing technique which is based on the triangular inequal-
ity. The basic principle is as follows: suppose we have selected a set L ⊂ V of
landmarks, and we have precomputed distances d(v, ℓ), d(ℓ, v) ∀v ∈ V, ℓ ∈ L;
the following triangle inequalities hold: d(u, t) + d(t, ℓ) ≥ d(u, ℓ) and d(ℓ, u) +
d(u, t) ≥ d(ℓ, t). Therefore πt(u) = maxℓ∈L{d(u, ℓ)−d(t, ℓ), d(ℓ, t)−d(ℓ, u)} is a
lower bound for the distance d(u, t), and it can be used as a potential function
which preserves optimal paths. On static (i.e., non time-dependent) graphs,
landmarks can be used to implement bidirectional search, using some care in
modifying the potential function so that it is consistent for both forward and
backward search [22]. This translates to ensuring that wπf

(u, v) in G is equal

to wπb
(v, u) in the reverse graph G, where πf and πb are the potential functions

for the forward and the backward search, respectively. Bidirectional A∗ with
the potential function described above is called ALT. It is straightforward to
note that, if arc costs can only increase with respect to their original value,
i.e., the value used in the precomputation of landmark distances, then the po-
tential function associated to landmarks is still a valid lower bound, even on

4 BIDIRECTIONAL SEARCH ON TIME-DEPENDENT GRAPHS 6

a time-dependent graph. In [13], this idea is applied to a real road network
in order to analyse algorithmic performances, but with a unidirectional search.
On road networks, the initial arc cost, which should be a lower bound on the
time-dependent cost on that arc, can be easily computed by dividing the arc’s
length by the maximum allowed speed on that arc’s road category.

The choice of landmarks has a great impact on the size of the search space, as
it severely affects the quality of the potential function. Several selection strate-
gies exist, although none of them is optimal with respect to random queries,
in the sense that none is guaranteed to yield the smallest search space for ran-
dom source-destination pairs. The best known heuristics are Avoid and Max-
Cover [21, 23].

4 Bidirectional Search on Time-Dependent Graphs

We assume that we are given a graph G = (V,A), source and destination vertices
s, t ∈ V , and a departure time τ0 ∈ T . In the rest of this paper, we denote by
d(u, v, τ) the length of the shortest path from u to v with departure time τ , and
by dλ(u, v) the length of the shortest path from u to v on the graph Gλ. The
approach that we propose for bidirectional search on time-dependent graphs is
based on a modification of Dijkstra’s algorithm.

For any u, v,∈ V, τ ∈ T , let l(u, v, τ) ≤ d(u, v, τ) be any lower bounding
function for the distance between u and v with departure time τ . Assume that
we have an upper bound µ on the cost of the optimal solution to TDSPP; e.g.,
µ is the time-dependent cost of any s → t path with departure time τ0. We
run Dijkstra’s algorithm with the following pruning criterion: eliminate any
unsettled node v for which

max{d(s, u, τ0) : u is settled}+ l(v, t,max{d(s, u, τ0) : u is settled}) > µ.
(3)

In the following, the term “pruning” stands for “do not insert in the priority
queue”. Prop. 4.1 establishes correctness of our approach.

4.1 Proposition

Nodes satisfying (3) are not necessary to compute the shortest path from s to
t with departure time τ0 using Dijkstra’s algorithm.

Proof. Suppose, at some iteration of Dijkstra’s algorithm, that the pruning
criterion (3) eliminates some nodes which are on the shortest path p∗ from
s to t with departure time τ0. Let u be the first of these nodes. Then u
is such that d(s, u, τ0) ≥ max{d(s, u, τ0) : u is settled}. Hence γτ0(p

∗) ≤
µ < max{d(s, u, τ0) : u is settled} + l(u, t,max{d(s, u, τ0) : u is settled}) ≤
d(s, u, τ0) + l(u, t, d(s, u, τ0)) ≤ γτ0(p

∗), which is a contradiction. For the last
inequality in the chain, we need the FIFO property. 2

This far, the algorithm looks unidirectional, and we did not specify how the
lower bounds l(u, v, τ) can be obtained. We use bidirectional search to this end.
Our proposal is as follows: run a backward search from t on Gλ. For each node
v settled by the backward search, dλ(v, t) ≤ d(v, t, τ) ∀τ ∈ T ; hence we can
use l(v, t, τ) = dλ(v, t). Therefore, the backward search’s purpose is to provide

5 BIDIRECTIONAL SEARCH WITH A∗ 7

bounds for the pruning criterion of the forward search, which is the only search
that uses time-dependent costs.

We still need to specify several missing details: how do we obtain µ? How do
we choose between performing forward or backward search iterations, and when
should the backward search be stopped? Furthermore, we can see intuitively
that a straightforward implementation of this algorithm is not likely to be useful
in practice because we would need to perform an extensive backward search (i.e.,
explore a large portion of the graph around the target, even in the “wrong”
direction) before we are able to effectively prune the forward search. In the
next section, we tackle all this issues by employing the A∗ algorithm instead of
Dijkstra’s algorithm.

5 Bidirectional Search with A
∗

In Section 4, we have described a general framework for bidirectional search on
time-dependent graphs. In this section, we fill in the missing details, giving a
description that can be implemented in practice, and employ the A∗ algorithm
instead of Dijkstra’s algorithm; recall that A∗ is a generalization of Dijkstra’s
algorithm, in that Dijkstra’s algorithm is equivalent to A∗ with a zero potential
function.

The algorithm for computing the shortest time-dependent cost path p∗ works
in three phases.

1. A bidirectional A∗ search occurs on G, where the forward search is run
on the graph weighted by c with the path cost defined by (1)-(2), and the
backward search is run on Gλ. All nodes settled by the backward search
are included in a set M . Phase 1 terminates as soon as the two search
scopes meet.

2. Suppose that v ∈ V is the first vertex to be explored by both forward and
backward search; let µ = γτ0(pv), where pv is the path from s to t passing
through v. In the second phase, both searches are allowed to proceed
until the backward search queue only contains nodes whose associated
key exceeds µ. In other words, let β be the key of the minimum element
of the backward search queue. Phase 2 terminates as soon as β > µ.
Again, all nodes settled by the backward search are included in M .

3. Only the forward search continues, with the additional constraint that
only nodes in M can be explored. The forward search terminates when t
is settled.

The pseudocode for this algorithm is given in Algorithm 1. Note that we use the
symbol↔ to indicate either the forward search (↔=→) or the backward search

(↔=←). We denote by
−→
A the set of arcs for the forward search, i.e.,

−→
A = A,

and by
←−
A the set of arcs for the backward search, i.e.,

←−
A = {(u, v)|(v, u) ∈ A}.

A typical choice is to alternate between the forward and the backward search
at each iteration of the algorithm during the first two phases. Algorithm 1
works with any choice of feasible potential function; but since we use landmark-
based potentials (see Section 3), we call this algorithm Time-Dependent ALT

(TDALT). A schematic representation of the different phases is given in Fig. 3.

6 CORRECTNESS 8

Algorithm 1 Time-Dependent ALT: Compute the shortest time-dependent
path from s to t with departure time τ0

1:
−→
Q.insert(s, 0);

←−
Q.insert(t, 0); M := ∅; µ := +∞; done := false; phase := 1.

2: while ¬done do

3: if (phase = 1) ∨ (phase = 2) then
4: ↔∈ {→,←}
5: else

6: ↔:=→
7: u :=

←→
Q .extractMin()

8: if (u = t) ∧ (↔=→) then
9: done := true

10: continue

11: if (phase = 1) ∧ (u.dist→ + u.dist← <∞) then
12: µ := u.dist→ + u.dist←

13: phase := 2
14: if (phase = 2) ∧ (↔=←) ∧ (µ < u.key←) then
15: phase := 3
16: continue

17: for all arcs (u, v) ∈
←→
A do

18: if ↔=← then

19: M.insert(u)
20: else if (phase = 3) ∧ (v /∈M) then
21: continue;

22: if (v ∈
←→
Q) then

23: if u.dist↔ + c(u, v, u.dist↔) < v.dist↔ then

24:
←→
Q .decreaseKey(v, u.dist↔ + c(u, v, u.dist↔) +←→π (v))

25: else

26:
←→
Q .insert(v, u.dist↔ + c(u, v, u.dist↔) +←→π (v))

27: return t.dist→

It is easy to see how TDALT is an instantiation that employs A∗ of the idea
discussed in Section 4. In Phase 1, we use the backward search to find an s→ t
path in order to compute an upper bound µ to the optimal cost of the solution.
In Phase 2, we alternate between the two searches in order to fulfill the pruning
criterion (3). Phase 2 ends once (3) is satisfied for all nodes that are not in M .
At this point, we only need to explore nodes in M .

6 Correctness

We prove correctness of Algorithm 1. Intuitively, this follows from Prop. 4.1
by applying the necessary modifications to deal with A∗ instead of Dijkstra’s
algorithm. However, we give a slightly different proof, which makes explicit
reference to β, because we will use the same technique to prove other claims in
the remainder of the paper.

6.1 Theorem

Algorithm 1 computes the shortest time-dependent path from s to t for a given
departure time τ0.

6 CORRECTNESS 9

s t

(a) Phase 1

s t

(b) From Phase 1 to Phase 2

s t

(c) Phase 2

s t

(d) Phase 3

Figure 3: Schematic representation of the TDALT algorithm’s search space

Proof. The forward search of Algorithm 1 is exactly the same as the unidi-
rectional version of the A∗ algorithm during the first 2 phases, and thus it is
correct; we just have to prove that the restriction applied during Phase 3 does
not interfere with the correctness of the A∗ algorithm, i.e., that we do not prune
nodes on the shortest path.

Let µ be an upper bound on the cost of the shortest path; in particular, this
can be the cost γτ0(pv) of the s→ t path passing through the first meeting point
v of the forward and backward search. Let β be the smallest key of the backward
search priority queue at the end of Phase 2. Let p∗ be the shortest path from
s to t with departure time τ0, and suppose there are some nodes on p∗ which
are not settled by the forward search. Let u be the first of these nodes; this
implies that u /∈M , i.e., u has not been settled by the backward search during
the first 2 phases of Algorithm 1. Hence, we have that β ≤ πb(u)+dλ(u, t); then

7 IMPROVEMENTS 10

we have the chain γτ0(p
∗) ≤ µ < β ≤ πb(u) + dλ(u, t) ≤ dλ(s, u) + dλ(u, t) ≤

d(s, u, τ0) + d(u, t, d(s, u, τ0)) = γτ0(p
∗), which is a contradiction. 2

6.2 Theorem

Let p∗ be the shortest path from s to t. If the condition to switch to Phase 3 is
µ < Kβ for a fixed parameter K, then Algorithm 1 computes a path p from s
to t such that γτ0(p) ≤ Kγτ0(p

∗) for a given departure time τ0.

Proof. Suppose that γτ0(p) > Kγτ0(p
∗). Let u be the first node on p∗ that is not

explored by the forward search; by Phase 3, this implies that u /∈M , i.e., u has
not been settled by the backward search during the first 2 phases of Algorithm
1. Hence, we have that β ≤ πb(u) + dλ(u, t); then we have the chain γτ0(p) ≤
µ < Kβ ≤ K(πb(u) + dλ(u, t)) ≤ K(dλ(s, u) + dλ(u, t)) ≤ K(d(s, u, τ0) +
d(u, t, d(s, u, τ0))) = K(γτ0(p

∗)) < γτ0(p), which is a contradiction. 2

7 Improvements

Performance of the basic version of the algorithm can be improved with the
results that we describe in this section.

7.1 Theorem

Let p∗ be the shortest path from s to t with departure time τ0. If all nodes u
on p∗ settled by the backward search are settled with a key smaller or equal to
d(s, u, τ0) + d(u, t, d(s, u, τ0)), then Algorithm 1 is correct.

Proof. Let Q be the backward search queue; let key(u) be the key for the
backward search of node u; let β = key(v) be the smallest key in the backward
search queue when Phase 2 ends, which is attained at a node v; and let µ the best
upper bound on the cost of the solution currently known. To prove correctness,
using the same arguments as in the proof of Thm. 6.1 we must make sure that,
when the backward search stops at the end of Phase 2, then all nodes on the
shortest path from s to t that have not been explored by the forward search
have been added to M . The backward search stops when µ < β.

In an A∗ search on FIFO networks, the keys of settled nodes are non-
decreasing. So every node u on p∗ that has not been settled by the backward
search at the end of Phase 2 would be settled with a key key(u) ≥ key(v), which
yields d(s, u, τ0) + d(u, t, d(s, u, τ0) ≥ key(v) = β > µ ∀u ∈ Q. Thus, u cannot
be on the shortest path from s to t, and Algorithm 1 is correct. 2

This allows the use of larger lower bounds during the backward search: the
backward A∗ search does not have to compute shortest paths on the graph Gλ,
but it should in any case guarantee that when a node u is settled, its key is
an underestimation of the time-dependent cost of the time-dependent shortest
path between s and t passing through u. This is similar to what is required by
the modified Dijkstra’s algorithm of Section 4.

The next proposition is of fundamental practical importance; it states that
the backward search can be pruned at nodes already settled by the forward
search, because all nodes that are on the shortest path and that have not been

7 IMPROVEMENTS 11

settled by the forward search can be reached by the backward search through
another path.

7.2 Proposition

During Phase 2 the backward search does not need to explore nodes that have
already been settled by the forward search.

Proof. Suppose that the forward search has settled all nodes on the shortest
s→ t path p∗ up to node u. Then clearly all remaining nodes on p∗ are reachable
from t in the backward search with a path that does not use any node already
settled by the forward search (i.e., the subpath of p∗ from u to t). Therefore,
the backward search can be pruned at all nodes settled by the forward search.

2

By Thm. 7.1, we can take advantage of the fact that the backward search is
used only to bound the set of nodes explored by the forward search. This means
that we can tighten the bounds used by the backward search: the potential
function for the backward search does not have to be feasible. To derive some
valid lower bounds we need the following proposition.

7.3 Proposition

At a given iteration, let v be any node settled by the forward search. Then,
for each node w which has not been settled by the forward search, d(s, v, τ0) +
πf (v)− πf (w) ≤ d(s, w, τ0).

Proof. Since the forward search uses a feasible and consistent potential function
πf , a node u is settled by increasing value of d(s, u, τ0) + πf (u). Hence, for any
unsettled node w, we have d(s, v, τ0) + πf (v) ≤ d(s, w, τ0),+πf (w). 2

Let v′ be any node settled by the forward search, and let w be a node that
has not been settled. Prop. 7.3 suggests that we can use

π∗b (w) = max{πb(w), d(s, v
′, τ0) + πf (v

′)− πf (w)} (4)

as a lower bound to d(s, w, τ0) during the backward search. To maximize this
bound, we should choose v′ that maximizes d(s, v′, τ0) + πf (v

′), i.e., choose v′

as the last node settled by the forward search. We remark that π∗b is not a
feasible potential for the backward search: it yields valid lower bounds for the
time-dependent graph, but it could overestimate distances on Gλ. The following
lemma gives a correct way to use (4).

7.4 Lemma

If the node v′ used to compute the potential function π∗b defined by (4) is fixed,
then π∗b (v) ≤ π∗b (u) + λ(u, v) for each arc (u, v) ∈ A such that v has not been
settled by the forward search.

Proof. By definition, π∗b (v) = max{πb(v), α−πf (v)}, where with α we denoted
the key of v′, that is, d(s, v′, τ0)+πf (v

′), which is fixed by hypothesis. Consider
the case π∗b (v) = πb(v); then, since the landmark potential functions πb and πf

are consistent, π∗b (v) = πb(v) ≤ πb(u)+λ(u, v) ≤ π∗b (u)+λ(u, v). Now consider

8 COMPUTATIONAL RESULTS 12

the case π∗b = α − πf (v); then π∗b (v) = α − πf (v) ≤ α − πf (u) + λ(u, v) ≤
π∗b (u) + λ(u, v), which completes the proof. 2

One could think that feasibility and consistency of π∗b for the backward
search on Gλ would follow from Lemma 7.4 by chaining the inequalities π∗b (v) ≤
π∗b (u) + λ(u, v) for nodes on the shortest path to s. However, this is not the
case because Lemma 7.4 is only valid for nodes that have not been settled by
the forward search; therefore, the chain of inequalities would fail as soon as we
encounter a node that has been settled by the forward search. We can still prove
correctness of our algorithm with tightened bounds, thanks to Thm. 7.1.

7.5 Theorem

Algorithm 1 is correct if we use (4) for fixed v′ as potential function for the
backward search.

Proof. Let db(u) be the distance from a node u to node t computed by the
backward search. We will prove that, when a node u on the shortest path from
s to t is settled by the backward search, db(u) ≤ d(u, t, d(s, u, τ0)) ∀τ0 ∈ T . By
Prop. 7.3 and Thm. 7.1, this is enough to prove our statement.

Let q∗ = (v1 = u, . . . , vn = t) be the shortest path from u to t on Gλ.
We proceed by induction on i : n, . . . , 1 to prove that each node vi is settled
with the correct distance on Gλ, i.e., db(vi) = dλ(vi, t). It is trivial to see that
the nodes vn and vn−1 are settled with the correct distance on Gλ. For the
induction step, suppose vi is settled with the correct distance db(vi) = dλ(vi, t).
By Lemma 7.4, we have db(vi) + π∗b (vi) ≤ db(vi) + λ(vi−1, vi) + π∗b (vi−1) =
dλ(vi−1, t) + π∗b (vi−1) ≤ db(vi−1) + π∗b (vi−1); hence, vi is extracted from the
queue before vi−1. This means that vi−1 will be settled with the correct distance
db(vi−1) = dλ(vi−1, t), and the induction step is proven.

Thus, u will be settled with distance db(u) = dλ(u, t) ≤ d(u, t, d(s, u, τ0)),
which proves our statement. 2

By Thm. 7.5, Algorithm 1 is correct when using π∗b only if we assume that
the node v′ used in (4) is fixed at each backward search iteration. Thus, we do
the following: we set up 10 checkpoints during the query; when a checkpoint
is reached, the node v′ used to compute (4) is updated, and the backward
search queue is flushed and filled again using the updated π∗b . This is enough
to guarantee correctness. The checkpoints are computed comparing the initial
lower bound ∆ = πf (t) and the current distance from the source node, both for
the forward search: the initial lower bound is divided by 10 and, whenever the
current distance from the source node exceeds k∆/10 with k ∈ {1, . . . , 10}, π∗b
is updated.

8 Computational Results

In this section, we present an extensive experimental evaluation of the TDALT

algorithm. Our implementation is written in C++ using the Standard Template
Library. For the priority queue, we use a binary heap. Other types of priority
queues were also tested. In our computational experience, the impact of the
choice of the priority queue has almost no influence on the performance of
speed-up techniques. Our tests were executed on one core of an AMD Opteron

8 COMPUTATIONAL RESULTS 13

2218 running SUSE Linux 10.3. The machine is clocked at 2.6 GHz, has 16 GB
of RAM and 2 x 1 MB of L2 cache. The program was compiled with GCC 4.2.1,
using optimization level 3.

Unless otherwise stated, we use 16 maxCover landmarks (see Section 3),
computed on the input graph using the lower bounding function λ to weight
arcs, and we use (4) as potential function for the backward search, with 10
checkpoints (see Section 7). We use dynamic landmark selection, as suggested
in [23]. When performing random s-t queries, the source s, target t, and the
starting time τ0 are picked uniformly at random and results are based on 10 000
queries. We evaluate the query performance by reporting the average number
of settled nodes, i.e., the number of nodes extracted from the priority queues,
the number of relaxed arcs, and the resulting running times.

Inputs. We tested our algorithm on two different road networks: the road
network of Western Europe, which has approximately 18 million vertices and
42.6 million arcs, and the road network of Germany, which has 4.7 million nodes
and 10.8 million arcs.

Our German data contains five different realistic traffic scenarios, generated
from traffic simulations: Monday, midweek (Tuesday till Thursday), Friday, Sat-
urday, and Sunday. As expected, congesture of roads is higher during the week
than on the weekend: ≈ 8% of arcs are time-dependent for Monday, midweek,
and Friday. The corresponding figures for Saturday and Sunday are ≈ 5% and
≈ 3%, respectively. All data has been provided by PTV AG for scientific use.

Unfortunately, our European data set does not contain traffic data. We
therefore used artificially generated costs. In order to model the time-dependent
costs on each arc, we developed a heuristic algorithm, based on statistics gath-
ered using real-world data on a limited-size road network; we used piecewise
linear cost functions, with one breakpoint for each hour over a day. Arc costs
are generated assigning, at each node, several random values that represent
peak hour (i.e., hour with maximum traffic), duration and speed of traffic in-
crease/decrease for a traffic jam; for each node, two traffic jams are generated,
one in the morning and one in the afternoon. Then, for each arc in a node’s arc
star, a speed profile is generated, using the traffic jam’s characteristics of the
corresponding node, and assigning a random increase factor between 1.5 and 3
to represent that arc’s slowdown during peak hours with respect to uncongested
hours. We do not assign speed profile to arcs that have both endpoints at nodes
with level 0 in a pre-constructed Highway Hierarchy [32], because they represent
“unimportant” nodes of the road network (i.e., nodes that only appear in local
shortest paths, as opposed to long-distance shortest paths). As a result, those
arcs will have the same travelling time value throughout the day; for all other
arcs, we use the traffic jam values associated with the endpoint with smallest
ID.

This method was developed to ensure spatial coherency between traffic in-
creases, i.e., if a certain arc is congested at a given time, then it is likely that
adjacent arcs will be congested too. This is a basic principle of traffic analy-
sis [27].

Random Queries. Table 1 reports the results of our bidirectional ALT vari-
ant on time-dependent networks for different approximation values K using the

8 COMPUTATIONAL RESULTS 14

Table 1: Performance of the time-dependent versions of Dijkstra, unidirectional
ALT, and our bidirectional approach.

Error Query

relative # settled nodes time
method K rate avg max Phase 1 Phase 2 Phase 3 [ms]

Dijkstra - 0.0% 0.000% 0.00% - - 8 877 158 5 757.4
uni-ALT - 0.0% 0.000% 0.00% - - 2 143 160 1 520.8

TDALT 1.00 0.0% 0.000% 0.00% 132 129 2 556 840 3 009 320 2 842.0
1.05 3.1% 0.012% 3.91% 132 129 1 244 050 1 574 750 1 379.2
1.07 6.6% 0.034% 6.06% 132 129 849 171 1 098 470 915.4
1.10 18.1% 0.106% 7.79% 132 129 473 414 622 466 481.9
1.12 26.1% 0.182% 10.57% 132 129 337 353 444 991 325.0
1.15 35.4% 0.292% 10.57% 132 129 236 108 311 209 214.2
1.20 43.0% 0.485% 19.40% 132 129 171 154 225 557 145.3
1.25 45.4% 0.589% 21.64% 132 129 148 856 196 581 122.3
1.30 46.4% 0.656% 21.64% 132 129 139 089 184 143 111.6
1.35 47.0% 0.704% 21.64% 132 129 134 582 178 410 107.4
1.50 47.1% 0.722% 21.64% 132 129 132 299 175 468 105.4
1.75 47.2% 0.726% 30.49% 132 129 132 131 175 248 105.4
2.00 47.2% 0.726% 30.49% 132 129 132 130 175 247 105.4

European road network as input. Preprocessing takes approximately 75 min-
utes and produces 128 additional bytes per node. The extra space is required
because for each node we store distances to and from all landmarks.

Since the performed TDALT queries compute approximated results instead
of optimal solutions, we record three different statistics to characterize the so-
lution quality: error rate, average relative error, maximum relative error. By
error rate, we mean the percentage of computed suboptimal paths over the total
number of queries. By relative error on a particular query, we mean the relative
percentage increase of the approximated solution over the optimum, computed
as ω/ω∗ − 1, where ω is the cost of the approximated solution computed by
our algorithm and ω∗ is the cost of the optimum computed by Dijkstra’s algo-
rithm. We report average and maximum values of this quantity over the set of
all queries. We also report the number of nodes settled at the end of each phase
of our algorithm, denoting them with the labels Phase 1, Phase 2 and Phase 3.

As expected, we observe a clear trade-off between the quality of the computed
solution and query performance. For an approximation factor ofK = 2.0, on the
European road network queries are on average 55 times faster than Dijkstra’s
algorithm, but almost 50% of the computed paths will be suboptimal. In our
tests, the average relative error is small, even though, in the worst case, the
approximated solution has a cost which is 50% larger than the optimal value.
One reason for this poor solution quality is that, for such high approximation
values, Phase 2 is very short. As a consequence, nodes in the middle of the
shortest path are not explored by our approach, and the meeting point of the
two search scopes is far from being the optimal one. By decreasing the value of
the approximation constantK, we are able to obtain solutions that are very close
to the optimum, and performance is significantly better than for unidirectional
ALT or Dijkstra. In our experiments, a very good trade-off between average
quality and performance is achieved with an approximation value of K = 1.15,

8 COMPUTATIONAL RESULTS 15

Table 2: Performance of the time-dependent versions of Dijkstra, unidirectional
ALT and our bidirectional approach without the tightened potential function
π∗b defined as in (4).

Error Query

relative # settled nodes time
method K rate avg max Phase 1 Phase 2 Phase 3 [ms]

Dijkstra - 0.0% 0.000% 0.00% - - 8 877 158 5 757.4
uni-ALT - 0.0% 0.000% 0.00% - - 2 143 160 1 520.8

TDALT 1.00 0.0% 0.000% 0.00% 719 650 3 763 990 3 862 070 3 291.6
1.05 3.5% 0.023% 4.88% 719 650 2 996 940 3 238 120 2 683.5
1.07 5.5% 0.046% 6.94% 719 650 2 519 750 2 874 500 2 290.7
1.10 12.1% 0.123% 9.45% 719 650 1 810 340 2 201 870 1 619.2
1.12 20.1% 0.237% 10.93% 719 650 1 416 240 1 772 080 1 218.4
1.15 32.1% 0.474% 14.35% 719 650 1 049 750 1 345 930 842.0
1.20 44.4% 0.788% 19.42% 719 650 824 331 1 079 290 618.3
1.25 50.5% 0.994% 24.57% 719 650 755 262 996 631 553.3
1.30 53.3% 1.104% 24.57% 719 650 735 524 972 294 531.5
1.35 54.7% 1.166% 24.57% 719 650 727 843 962 950 526.5
1.50 56.1% 1.248% 28.16% 719 650 720 359 953 704 524.7
1.75 56.3% 1.261% 39.34% 719 650 719 661 952 947 519.0
2.00 56.4% 1.262% 39.41% 719 650 719 650 952 933 518.2

which yields average query times smaller than 215 ms with an average error
of 0.3% and a maximum recorded relative error of 10.6%. In road networks,
the speed profiles are not completely accurate; therefore, a slightly suboptimal
solution (on average, less than 0.3% over the optimum for K = 1.15) is usually
an acceptable solution. By decreasing K to values < 1.05, it does not pay off
to use the bidirectional variant any more, as the unidirectional variant of ALT
is faster and is always correct.

An interesting observation is that for K = 2.0, switching from a static to
a time-dependent scenario increases query times only by a factor of ≈ 2: on
the European road network, in a static scenario, ALT has query times of 53.6
ms (see [13]), while our time-dependent variant yields query times of 105 ms.
We also note that for our bidirectional search there is an additional overhead
that increases the time spent per node with respect to unidirectional ALT: on
the European road network, using an approximation factor of K = 1.05 yields
similar query times to unidirectional ALT, but the number of nodes settled by
the bidirectional approach is almost 30% smaller. We conjecture that this is due
to the following facts: in the bidirectional approach, one has to check at each
iteration if the current node has been settled in the opposite direction. During
Phase 2, the upper bound has to be updated from time to time. The cost of
these operations, added to the phase-switch checks, possibly accounts for the
increase of running time per settled node.

We also report the results obtained on the European road network using
the unmodified ALT potential function πb for the backward search, instead of
the tightened one π∗b defined as in (4). These can be found in Table 2, which
has the same column labels as Table 1. Comparing query times with the same
value of the approximation constant K, we see that using the potential function
π∗b yields a significant improvement over πb. The difference in performance is

8 COMPUTATIONAL RESULTS 16

larger as K increases. For K = 1 the difference is very small; for K = 1.05,
the algorithm with πb is 95% slower than the one with π∗b , and the slowdown
increases to 236% for K = 1.10 and to 293% for K = 1.15. With the largest
approximation factor that we tested in our experiments, K = 2, the algorithm
without the tightened potential function is more than 5 times slower. The same
behaviour is observed in terms of the number of settled nodes. For K = 1,
the number is very similar (only a 28% increase when not using π∗b). The
ratio rapidly grows until it reaches a 444% increase for K = 2. Thus, a great
deal of the computational improvement that the bidirectional variant obtains
over Dijkstra’s algorithm and unidirectional ALT is due to the use of tightened
bounds. If we use the standard ALT potential function πb for the backward
search, then we do not manage to obtain a speed-up of more than a factor 3
with respect to unidirectional ALT, and this comes at the price of suboptimal
solutions. Summarizing, our bidirectional approach has the great advantage of
deriving better lower bounds for the time-dependent search as compared to the
original ALT bounds. The new potential function leads to large computational
improvement.

Local Queries. For random queries on the European road network, our bidi-
rectional TDALT algorithm with K = 1.15 is roughly 6.5 times faster than
unidirectional ALT on average. In order to gain insight whether this speed-up
derives from small- or large-range queries, Fig. 4 reports the query times with
respect to the Dijkstra rank1. These values were gathered on the European
road network instance. Note that we use a logarithmic scale due to the fluctu-
ating query times of bidirectional TDALT. Comparing both ALT versions, we
observe that switching from uni- to bidirectional queries pays off especially for
long-distance queries. This is not surprising. For small distances, the overhead
for bidirectional routing is not counterbalanced by a significant decrease in the
number of explored nodes. Hence, unidirectional ALT is faster for local queries.
For ranks of 224, the median of the bidirectional variant is almost 2 orders of
magnitude lower than for the unidirectional variant. Another interesting ob-
servation is the fact that some outliers of bidirectional TDALT are almost as
slow as the unidirectional variant. Comparing different approximation values,
we observe that query times differ by roughly the same factor for all ranks less
than 223.

Number of Landmarks. In static scenarios, query times of bidirectional
TDALT can be significantly reduced by increasing the number of landmarks
to 32 or even 64 (see [13]). In order to check whether this also holds for our
time-dependent variant, we recorded our algorithm’s performance using different
numbers of landmarks. Table 3 reports those results on the European road
network. We evaluate 8 maxCover landmarks (yielding a preprocessing effort of
33 minutes and an overhead of 64 bytes per node), 16 maxCover landmarks (75
minutes, 128 bytes per node) and 32 Avoid landmarks (29 minutes, 256 bytes per
node). In the latter case, we used Avoid instead of maxCover because obtaining
32 landmarks with maxCover required too much computing time. We do not
report error rates here, because the number of landmarks has almost no impact

1For an s-t query, the Dijkstra rank of node t is the number of nodes settled before t is
settled. Thus, it is some kind of distance measure.

8 COMPUTATIONAL RESULTS 17

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
01

0.
1

1
10

10
0

10
00

uni ALT
TDALT (K=1.15)
TDALT (K=1.5)

Figure 4: Comparison of unidirectional ALT and bidirectional TDALT using
the Dijkstra rank methodology [32]. The results are represented as box-and-
whisker plot: each box spreads from the lower to the upper quartile and contains
the median, the whiskers extend to the minimum and maximum value omitting
outliers, which are plotted individually.

on the quality of the computed paths. Surprisingly, the number of landmarks

Table 3: Performance of unidirectional ALT and bidirectional TDALT with
different number of landmarks in a time-dependent scenario.

8 landmarks 16 landmarks 32 landmarks
K # settled time [ms] # settled time [ms] # settled time [ms]

uni-ALT - 2 280 420 1 446.4 2 143 160 1 520.8 2 056 190 1 623.3
TDALT 1.00 3 147 440 2 745.5 3 009 320 2 842.0 2 931 080 2 953.3

1.05 1 714 210 1 373.8 1 574 750 1 379.2 1 516 710 1 409.5
1.10 768 368 540.2 622 466 481.9 561253 464.2
1.15 461 259 293.5 311 209 214.2 250 248 184.4
1.20 375 900 230.6 225 557 145.3 164 419 111.1
1.50 326 076 195.8 175 468 105.3 113 040 68.1
2.00 325 801 195.8 175 247 105.4 112 826 68.0

has a very small influence on the performance of TDALT. In fact, increasing the
number of landmarks yields larger average query times for unidirectional ALT
and for bidirectional TDALT with low K-values, and thus makes the algorithm
less efficient. This is due the fact that the search space decreases only slightly,
but the additional overhead for accessing landmarks increases. However, for
larger values K, more landmarks results in faster query times. With K = 2.0
and 32 landmarks, we are able to perform time-dependent queries 70 times
faster than plain Dijkstra, but the solution quality in this case is no better than
in the 16 landmarks case. Summarizing, for K > 1.10 increasing the number

8 COMPUTATIONAL RESULTS 18

of landmarks has a positive effect on computational times, although switching
from 16 to 32 landmarks does not yield the same benefits as from 8 to 16, and
thus in our experiments is not worth the extra memory. On the other hand, for
K ≤ 1.10 and for unidirectional ALT, increasing the number of landmarks has
a negative effect on computational times, and thus is never a good choice in our
experiments.

Traffic Days. Next, we focus on the impact of arc cost perturbation on
TDALT, where by perturbation we mean the difference between the static lower
bounds used to compute landmark distances, and the time-dependent costs. Ta-
ble 4 reports the performance of uni- and bidirectional time-dependent ALT for
different traffic days on the German road network. Dijkstra settles 2.2 million
nodes in ≈ 1.5 seconds in this setup, independent of the traffic day.

Table 4: Performance of TDALT on our German road network instance. Sce-
nario depicts the degree of perturbation.

Error Query

relative #settled #relaxed time
scenario algorithm K rate av. max nodes arcs [ms]

Monday

uni-ALT – 0.0% 0.000% 0.00% 193 087 230 665 140.38
TDALT 1.00 0.0% 0.000% 0.00% 106 743 127 190 88.53

1.15 12.5% 0.094% 13.02% 51 137 60 838 37.23
1.50 12.5% 0.096% 24.27% 51 119 60 816 37.12

midweek

uni-ALT – 0.0% 0.000% 0.00% 200 236 239 112 147.20
TDALT 1.00 0.0% 0.000% 0.00% 116 476 138 696 98.27

1.15 12.4% 0.094% 14.32% 50 764 60 398 36.91
1.50 12.5% 0.097% 27.59% 50 742 60 371 36.86

Friday

uni-ALT – 0.0% 0.000% 0.00% 196 551 235 083 143.52
TDALT 1.00 0.0% 0.000% 0.00% 116 857 139 175 98.28

1.15 12.0% 0.096% 14.03% 50 891 60 550 36.92
1.50 12.1% 0.098% 30.77% 50 874 60 531 36.82

Saturday

uni-ALT – 0.0% 0.000% 0.00% 148 331 177 568 100.07
TDALT 1.00 0.0% 0.000% 0.00% 63 717 76 001 47.41

1.15 10.5% 0.088% 13.97% 50 042 59 607 36.00
1.50 10.6% 0.089% 26.17% 50 036 59 600 35.63

Sunday

uni-ALT – 0.0% 0.000% 0.00% 142 631 170 670 92.79
TDALT 1.00 0.0% 0.000% 0.00% 58 956 70 333 42.96

1.15 10.4% 0.088% 14.28% 50 349 59 994 36.04
1.50 10.5% 0.089% 32.08% 50 345 59 988 35.74

The degree of perturbation has only a mild impact on unidirectional ALT
and bidirectional TDALT. In a low traffic scenario, unidirectional ALT queries
are up 16 times faster than plain Dijkstra, while this values drops to 10 if
more arcs are perturbed. Switching from exact to approximate queries does not
pay off in low traffic scenarios. The gain in performance is only around 20%,
which seems rather low compared to the loss in quality of paths. However, this
value increases to a factor of up to 3 in high traffic scenarios. Still, comparing
Tables 1 and 4, the gain in performance for dropping correctness is much lower
for Germany than for Europe. Possibly, this derives from the size of the graph.
With increasing graph size, lower bounds get worse as the gap between lower

9 CONCLUSION 19

bound distance and time-dependent distance increases. This would also explain
why speed-ups for unidirectional ALT are higher for Germany than for Europe.

9 Conclusion

We have presented an algorithm that applies bidirectional search on a time-
dependent road network, where the backward search is used to bound the set of
nodes that have to be explored by the forward search; this algorithm is based
on the ALT variant of the A∗ algorithm. We have discussed related theoretical
issues, and we proved the algorithm’s correctness. Our idea can be adapted and
applied to several shortest path algorithms, and lays the foundations for future
work. Extensive computational experiments show that this algorithm is very
effective in practice if we are willing to accept a small approximation factor.
The exact version of our algorithm is slower than unidirectional ALT, but a
nearly optimal variant of our algorithm is several times faster. For practical
applications, this is usually a good compromise.

References

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network flows: theory, algorithms,
and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[2] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast routing in road
networks with transit nodes. Science, 316(5824):566, 2007.

[3] G. V. Batz, D. Delling, P. Sanders, and C. Vetter. Time-Dependent Con-
traction Hierarchies. In Proceedings of the 11th Workshop on Algorithm
Engineering and Experiments (ALENEX’09), pages 97–105. SIAM, April
2009.

[4] R. Bauer and D. Delling. SHARC: Fast and Robust Unidirectional Routing.
ACM Journal of Experimental Algorithmics, 14:2.4, August 2009. Special
Section on Selected Papers from ALENEX 2008.

[5] L. Buriol, M. Resende, and M. Thorup. Speeding up dynamic shortest path
algorithms. INFORMS Journal on Computing, accepted for publication.

[6] I. Chabini. Discrete dynamic shortest path problems in transportation
applications: complexity and algorithms with optimal run time. Trans-
portation Research Records, 1645:170–175, 1998.

[7] I. Chabini and S. Lan. Adaptations of the A∗ algorithm for the computation
of fastest paths in deterministic discrete-time dynamic networks. IEEE
Transactions on Intelligent Transportation Systems, 3(1):60–74, 2002.

[8] K. Cooke and E. Halsey. The shortest route through a network with time-
dependent internodal transit times. Journal of Mathematical Analysis and
Applications, 14:493–498, 1966.

[9] C. Daganzo. Reversibility of time-dependent shortest path problem. Tech-
nical report, Institute of Transportation Studies, University of California,
Berkeley, 1998.

REFERENCES 20

[10] D. Delling. Time-Dependent SHARC-Routing. Algorithmica, July 2009.
Special Issue: European Symposium on Algorithms 2008.

[11] D. Delling and G. Nannicini. Bidirectional Core-Based Routing in Dy-
namic Time-Dependent Road Networks. In S.-H. Hong, H. Nagamochi,
and T. Fukunaga, editors, Proceedings of the 19th International Sympo-
sium on Algorithms and Computation (ISAAC 08), volume 5369 of Lecture
Notes in Computer Science, pages 813–824. Springer, 2008.

[12] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route
Planning Algorithms. In J. Lerner, D. Wagner, and K. A. Zweig, editors,
Algorithmics of Large and Complex Networks, volume 5515 of Lecture Notes
in Computer Science, pages 117–139. Springer, 2009.

[13] D. Delling and D. Wagner. Landmark-based routing in dynamic graphs.
In Demetrescu [15], pages 52–65.

[14] D. Delling and D. Wagner. Time-Dependent Route Planning. In R. K.
Ahuja, R. H. Möhring, and C. Zaroliagis, editors, Robust and Online Large-
Scale Optimization, volume 5868 of Lecture Notes in Computer Science,
pages 207–230. Springer, 2009.

[15] C. Demetrescu, editor. 6th Workshop on Experimental Algorithms, volume
4525 of LNCS, New York, 2007. Springer.

[16] E. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[17] S. Dreyfus. An appraisal of some shortest-path algorithms. Operations
Research, 17(3):395–412, 1969.

[18] L. R. Ford and D. R. Fulkerson. Modern Heuristic Techniques for Combi-
natorial Problems. Princeton University Press, Princeton, NJ, 1962.

[19] M. Fredman and R. Tarjan. Fibonacci heaps and their use in improved net-
work optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[20] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction Hi-
erarchies: Faster and Simpler Hierarchical Routing in Road Networks. In
C. C. McGeoch, editor, Proceedings of the 7th Workshop on Experimental
Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer Science,
pages 319–333. Springer, June 2008.

[21] A. Goldberg and C. Harrelson. Computing the shortest path: A∗ meets
graph theory. In Proceedings of the 16th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2005), pages 156–165, Philadelphia, 2005.
SIAM.

[22] A. Goldberg, H. Kaplan, and R. Werneck. Reach for A∗: Efficient point-
to-point shortest path algorithms. In Proceedings of the 8th Workshop on
Algorithm Engineering and Experiments (ALENEX 06), Lecture Notes in
Computer Science, pages 129–143. Springer, 2006.

REFERENCES 21

[23] A. Goldberg and R. Werneck. Computing point-to-point shortest paths
from external memory. In C. Demetrescu, R. Sedgewick, and R. Tamassia,
editors, Proceedings of the 7th Workshop on Algorithm Engineering and
Experimentation (ALENEX 05), pages 26–40, Philadelphia, 2005. SIAM.

[24] E. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems,
Science and Cybernetics, SSC-4(2):100–107, 1968.

[25] T. Ikeda, M. Tsu, H. Imai, S. Nishimura, H. Shimoura, T. Hashimoto,
K. Tenmoku, and K. Mitoh. A fast algorithm for finding better routes by
ai search techniques. In Proceedings for the IEEE Vehicle Navigation and
Information Systems Conference, pages 291–296, 2004.

[26] D. E. Kaufman and R. L. Smith. Fastest paths in time-dependent networks
for intelligent vehicle-highway systems application. Journal of Intelligent
Transportation Systems, 1(1):1–11, 1993.

[27] B. S. Kerner. The Physics of Traffic. Springer, Berlin, 2004.

[28] G. Nannicini, P. Baptiste, G. Barbier, D. Krob, and L. Liberti. Fast paths
in large-scale dynamic road networks. Computational Optimization and
Applications, 45(1):143–158, 2010.

[29] G. Nannicini, D. Delling, L. Liberti, and D. Schultes. Bidirectional A∗

search for time-dependent fast paths. In C. McGeoch, editor, Proceedings
of the 8th Workshop on Experimental Algorithms (WEA 2008), volume
5038 of Lecture Notes in Computer Science, pages 334–346, New York,
2008. Springer.

[30] G. Nannicini and L. Liberti. Shortest paths on dynamic graphs. Interna-
tional Transactions in Operational Research, 15:551–563, 2008.

[31] A. Orda and R. Rom. Shortest-path and minimum delay algorithms in
networks with time-dependent edge-length. Journal of the ACM, 37(3):607–
625, 1990.

[32] P. Sanders and D. Schultes. Highway hierarchies hasten exact shortest
path queries. In G. Stølting Brodal and S. Leonardi, editors, 13th Annual
European Symposium on Algorithms (ESA 2005), volume 3669 of Lecture
Notes in Computer Science, pages 568–579. Springer, 2005.

[33] P. Sanders and D. Schultes. Dynamic highway-node routing. In Demetrescu
[15], pages 66–79.

[34] R. Sedgewick and J. Vitter. Shortest paths in euclidean graphs. Algorith-
mica, 1(1):31–48, 1986.

[35] D. Wagner, T. Willhalm, and C. Zaroliagis. Geometric containers for effi-
cient shortest-path computation. ACM Journal of Experimental Algorith-
mics, 10:1–30, 2005.

