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Abstract. The computation of point-to-point shortest paths on time-
dependent road networks has many practical applications, but there have
been very few works that propose efficient algorithms for large graphs.
One of the difficulties of route planning on time-dependent graphs is
that we do not know the exact arrival time at the destination, hence
applying bidirectional search is not straightforward; we propose a novel
approach based on A∗ with landmarks (ALT) that starts a search from
both the source and the destination node, where the backward search is
used to bound the set of nodes that have to be explored by the forward
search. Extensive computational results show that this approach is very
effective in practice if we are willing to accept a small approximation
factor, resulting in a speed-up of several times with respect to Dijkstra’s
algorithm while finding only slightly suboptimal solutions.

1 Introduction

We consider the Time-Dependent Shortest Path Problem (TDSPP): given
a directed graph G = (V,A), a source node s ∈ V , a destination node t ∈ V , an
interval of time instants T , a departure time τ0 ∈ T and a time-dependent arc
weight function c : A× T → R+, find a path p = (s = v1, . . . , vk = t) in G such
that its time-dependent cost γτ0(p), defined recursively as follows:

γτ0(v1, v2) = c(v1, v2, τ0) (1)
γτ0(v1, . . . , vi) = γτ0(v1, . . . , vi−1) + c(vi−1, vi, τ0 + γτ0(v1, . . . , vi−1)) (2)

for all 2 ≤ i ≤ k, is minimum. We also consider a function λ : A → R+ which
has the following property:

∀(u, v) ∈ A, τ ∈ T (λ(u, v) ≤ c(u, v, τ)).

In other words, λ(u, v) is a lower bound on the travelling time of arc (u, v) for
all time instants in T . In practice, this can easily be computed, given an arc
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length and the maximum allowed speed on that arc. We naturally extend λ to
be defined on paths, i.e. λ(p) =

∑
(vi,vj)∈p λ(vi, vj).

In this paper, we propose a novel algorithm for the TDSPP based on a
bidirectional A∗ algorithm. Since the arrival time is not known in advance (so c
cannot be evaluated on the arcs adjacent to the destination node), our backward
search occurs on the graph weighted by the lower bounding function λ. This is
used for bounding the set of nodes that will be explored by the forward search.

Many ideas have been proposed for the computation of point-to-point short-
est paths on static graphs (see [22, 21] for a review), and there are algorithms
capable of finding the solution in a matter of a few microseconds [1]; adaptations
of those ideas for dynamic scenarios, i.e. where arc costs are updated at regular
intervals, have been tested as well (see [6, 20, 23]).

Much less work has been undertaken on the time-dependent variant of the
shortest paths problem; this problem has been first addressed by [4] (a good
review of this paper can be found in [10], p. 407): Dijkstra’s algorithm [9] is
extended to the dynamic case through a recursion formula based on the assump-
tion that the network G = (V,A) has the FIFO property. The FIFO property
is also called the non-overtaking property, because it basically states that if A
leaves u at time τ0 and B at time τ1 > τ0, B cannot arrive at v before A using
the arc (u, v). The FIFO assumption is usually necessary in order to mantain an
acceptable level of complexity: the TDSPP in FIFO networks is polynomially
solvable [16], while it is NP-hard in non-FIFO networks [18]. Given source and
destination nodes s and t, the problem of maximizing the departure time from
node s with a given arrival time at node t is equivalent to the TDSPP (see [5]).

Goal-directed search, also called A∗ [14], has been adapted to work on all the
previously described scenarios; an efficient version for the static case has been
presented in [11], and then developed and improved in [12]. Those ideas have
been used in [6] on dynamic graphs as well, while the time-dependent case on
graphs with the FIFO property has been addressed in [3] and [6].

Moreover, the recently developed SHARC-algorithm [2] allows fast unidirec-
tional shortest-path calculations in large scale networks. Due to its unidirectional
nature, it can easily be used in a time-dependent scenario. However, in that case
SHARC cannot guarantee to find the optimal solution.

The rest of this paper is organised as follows. In Section 2 we describe A∗

search and the ALT algorithm, which are needed for our method. In Section 3
we describe the foundations of our idea, and present an adaptation of the ALT
algorithm based on it. In Section 4 we formally prove our method’s correctness. In
Section 5 we propose some improvements. In Section 6 we discuss computational
experiments and provide computational results.

2 A∗ with Landmarks

A∗ is an algorithm for goal-directed search, similar to Dijkstra’s algorithm, but
which adds a potential function to the priority key of each node in the queue. The
A∗ algorithm on static graphs can be described as follows. The potential function



Bidirectional A∗ Search for Time-Dependent Fast Paths 3

on a node v is an estimate of the distance to reach the target from v; A∗ then
follows the same procedure as Dijkstra’s algorithm, but the use of this potential
function has the effect of giving priority to nodes that are (supposedly) closer
to target node t. If the potential function π is such that π(v) ≤ d(v, t)∀v ∈ V ,
where d(v, t) is the distance from v to t, then A∗ always finds shortest paths.
A∗ is guaranteed to explore no more nodes than Dijkstra’s algorithm: if π(v) is
a good approximation from below of the distance to target, A∗ efficiently drives
the search towards the destination node, and it explores considerably fewer nodes
than Dijkstra’s algorithm; if π(v) = 0 ∀v ∈ V , A∗ behaves exactly like Dijkstra’s
algorithm. In [15] it is shown that A∗ is equivalent to Dijkstra’s algorithm on a
graph with reduced costs, i.e. wπ(u, v) = w(u, v)− π(u) + π(v).

One way to compute the potential function, instead of using Euclidean dis-
tances, is to use the concept of landmarks. Landmarks have first been proposed in
[11]; they are a preprocessing technique which is based on the triangular inequal-
ity. The basic principle is as follows: suppose we have selected a set L ⊂ V of
landmarks, and we have precomputed distances d(v, `), d(`, v)∀v ∈ V, ` ∈ L; the
following triangle inequalities hold: d(u, t)+d(t, `) ≥ d(u, `) and d(`, u)+d(u, t) ≥
d(`, t). Therefore πt(u) = max`∈L{d(u, `) − d(t, `), d(`, t) − d(`, u)} is a lower
bound for the distance d(u, t), and it can be used as a potential function which
preserves optimal paths. On a static graph (i.e. non time-dependent), bidirec-
tional search can be implemented, using some care in modifying the potential
function so that it is consistent for the forward and backward search (see [12]);
the consistency condition states that wπf

(u, v) in G is equal to wπb
(v, u) in the

reverse graph G, where πf and πb are the potential functions for the forward and
the backward search, respectively. Bidirectional A∗ with the potential function
described above is called ALT. It is straightforward to note that, if arc costs
can only increase with respect to their original value, the potential function as-
sociated with landmarks is still a valid lower bound, even on a time-dependent
graph; in [6] this idea is applied to a real road network in order to analyse the
algorithm’s performances, but with a unidirectional search.

The choice of landmarks has a great impact on the size of the search space, as
it severely affects the quality of the potential function. Several selection strategies
exist, although none of them is optimal with respect to random queries, i.e., is
guaranteed to yield the smaller search space for random source-destination pairs.
The best known heuristics are avoid and maxCover [13].

3 Bidirectional Search on Time-Dependent Graphs

Our algorithm is based on restricting the scope of a time-dependent A∗ search
from the source using a set of nodes defined by a time-independent A∗ search
from the destination, i.e. the backward search is a reverse search in Gλ, which
corresponds to the graph G weighted by the lower bounding function λ.

Given a graph G = (V,A) and source and destination vertices s, t ∈ V , the
algorithm for computing the shortest time-dependent cost path p∗ works in three
phases.
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1. A bidirectional A∗ search occurs on G, where the forward search is run on the
graph weighted by c with the path cost defined by (1)-(2), and the backward
search is run on the graph weighted by the lower bounding function λ. All
nodes settled by the backward search are included in a set M . Phase 1
terminates as soon as the two search scopes meet.

2. Suppose that v ∈ V is the first vertex in the intersection of the heaps of
the forward and backward search; then the time dependent cost µ = γτ0(pv)
of the path pv going from s to t passing through v is an upper bound to
γτ0(p

∗). In the second phase, both search scopes are allowed to proceed until
the backward search queue only contains nodes whose associated key exceeds
µ. In other words: let β be the key of the minimum element of the backward
search queue; phase 2 terminates as soon as β > µ. Again, all nodes settled
by the backward search are included in M .

3. Only the forward search continues, with the additional constraint that only
nodes in M can be explored. The forward search terminates when t is settled.

The pseudocode for this algorithm is given in Algorithm 1.

4 Correctness

We denote by d(u, v, τ) the length of the shortest path from u to v with departure
time τ , and by dλ(u, v) the length of the shortest path from u to v on the graph
Gλ. We have the following theorems.

4.1 Theorem
Algorithm 1 computes the shortest time-dependent path from s to t for a given
departure time τ0.

Proof. The forward search of Algorithm 1 is exactly the same as the unidirec-
tional version of the A∗ algorithm during the first 2 phases, and thus it is correct;
we have to prove that the restriction applied during phase 3 does not interfere
with the correctness of the A∗ algorithm.

Let µ be an upper bound on the cost of the shortest path; in particular, this
can be the cost γτ0(pv) of the s → t path passing through the first meeting point
v of the forward and backward search. Let β be the smallest key of the backward
search priority queue at the end of phase 2. Suppose that Algorithm 1 is not
correct, i.e. it computes a sub-optimal path. Let p∗ be the shortest path from s to
t with departure time τ0, and let u be the first node on p∗ which is not explored
by the forward search; by phase 3, this implies that u /∈ M , i.e. u has not been
settled by the backward search during the first 2 phases of Algorithm 1. Hence,
we have that β ≤ πb(u) + dλ(u, t); then we have the chain γτ0(p

∗) ≤ µ < β ≤
πb(u) + dλ(u, t) ≤ dλ(s, u) + dλ(u, t) ≤ d(s, u, τ0) + d(u, t, d(s, u, τ0)) = γτ0(p

∗),
which is a contradiction. ut

4.2 Theorem
Let p∗ be the shortest path from s to t. If the condition to switch to phase 3 is
µ < Kβ for a fixed parameter K, then Algorithm 1 computes a path p from s
to t such that γτ0(p) ≤ Kγτ0(p

∗) for a given departure time τ0.
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Algorithm 1 Compute the shortest time-dependent path from s to t with de-
parture time τ0

1:
−→
Q.insert(s, 0);

←−
Q.insert(t, 0); M := ∅; µ := +∞; done := false; phase := 1.

2: while ¬done do
3: if (phase = 1) ∨ (phase = 2) then
4: ↔∈ {→,←}
5: else
6: ↔:=→
7: u :=

←→
Q .extractMin()

8: if (u = t) ∧ (↔=→) then
9: done := true

10: continue
11: if (phase = 1) ∧ (u.dist→ + u.dist← <∞) then
12: µ := u.dist→ + u.dist←

13: phase := 2
14: if (phase = 2) ∧ (↔=←) ∧ (µ < u.key←) then
15: phase := 3
16: continue
17: for all arcs (u, v) ∈

←→
A do

18: if ↔=← then
19: M.insert(u)
20: else if (phase = 3) ∧ (v /∈M) then
21: continue;

22: if (v ∈
←→
Q ) then

23: if u.dist↔ + c(u, v, u.dist↔) < v.dist↔ then

24:
←→
Q .decreaseKey(v, u.dist↔ + c(u, v, u.dist↔) +←→π (v))

25: else
26:

←→
Q .insert(v, u.dist↔ + c(u, v, u.dist↔) +←→π (v))

27: return t.dist→

5 Improvements

The basic version of the algorithm can be enhanced by making use of the fol-
lowing results.

5.1 Proposition
During phase 2 the backward search does not need to explore nodes that have
already been settled by the forward search.

We can take advantage of the fact that the backward search is used only
to bound the set of nodes explored by the forward search, i.e. the backward
search does not have to compute shortest paths. This means that we can tighten
the bounds used by the backward search, as long as they are still valid lower
bounds, even if doing so would result in an A∗ backward search that computes
suboptimal distances.
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5.2 Proposition
At a given iteration, let v be the last node settled by the forward search. Then,
for each node w which has not been settled by the forward search, d(s, v, τ0) +
πf (v)− πf (w) ≤ d(s, w, τ0).

Let v be as in Prop. 5.2, and w a node which has not been settled by the
forward search. Prop. 5.2 suggests that we can use

π∗b (w) = max{πb(w), d(s, v, τ0) + πf (v)− πf (w)} (3)

as a lower bound to d(s, w, τ0) during the backward search. However, to prove
the algorithm’s correctness when using π∗b we must assume that the node v used
in (3) is fixed at each backward search iteration. Thus, we do the following: we
set up 10 checkpoints during the query; when a checkpoint is reached, the node
v used to compute (3) is updated, and the backward search queue is flushed
and filled again using the updated π∗b . This is enough to guarantee correctness.
The checkpoints are computed comparing the initial lower bound πf (t) and the
current distance from the source node, both for the forward search.

6 Experiments

In this section, we present an extensive experimental evaluation of our time-
dependent ALT algorithm. Our implementation is written in C++ using solely
the STL. As priority queue we use a binary heap. Our tests were executed on
one core of an AMD Opteron 2218 running SUSE Linux 10.1. The machine is
clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The program
was compiled with GCC 4.1, using optimization level 3.

Unless otherwise stated, we use 16 maxcover landmarks [11], computed on
the input graph using the lower bounding function λ to weight edges, and we
use (3) as potential function for the backward search, with 10 checkpoints (see
Section 5). When performing random s-t queries, the source s, target t, and the
starting time τ0 are picked uniformly at random and results are based on 10 000
queries.

Inputs. We tested our algorithm on two different road networks: the road network
of Western Europe provided by PTV AG for scientific use, which has approxi-
mately 18 million vertices and 42.6 million arcs, and the road network of the US,
taken from the TIGER/Line Files, with 23.9 million vertices and 58.3 million
arcs. A travelling time in uncongested traffic situation was assigned to each arc
using that arc’s category (13 categories for Europe, 4 for US) to determine the
travel speed.

Modeling Traffic. Unfortunately, we are not aware of a large publicly available
real-world road network with time-dependent arc costs. Therefore, we have to
use artificially generated costs. In order to model the time-dependent costs on
each arc, we developed an heuristic algorithm, based on statistics gathered using
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real-world data on a limited-size road network; we used piecewise linear cost
functions, with one breakpoint for each hour over a day. Arc costs are generated
assigning, at each node, several random values that represent peak hour (i.e. hour
with maximum traffic increase), duration and speed of traffic increase/decrease
for a traffic jam; for each node, two traffic jams are generated, one in the morning
and one in the afternoon. Then, for each arc in a node’s arc star, a speed profile
is generated, using the traffic jam’s characteristics of the corresponding node,
and assigning a random increase factor between 1.5 and 3 to represent that arc’s
slowdown during peak hours with respect to uncongested hours. We do not assign
speed profile to arcs that have both endpoints at nodes with level 0 in a pre-
constructed Highway Hierarchy [19], and as a result those arcs will have the same
travelling time value throughout the day; for all other arcs, we use the traffic
jam values associated with the endpoint with smallest ID. The breakpoints of
these speed profiles are stored in memory as a multiplication factor with respect
to the speed in uncongested hours, which allows us to use only 7 bits for each
breakpoint. We assume that all roads are uncongested between 11PM and 4AM,
so that we do not need to store the corresponding breakpoints; as a result, we
store all breakpoints using 16 additional bytes per edge. The travelling time of
an arc at time τ is computed via linear interpolation of the two breakpoints that
precede and follow τ .

This method was developed to ensure spatial coherency between traffic in-
creases, i.e. if a certain arc is congested at a given time, then it is likely that
adjacent arcs will be congested too. This is a basic principle of traffic analy-
sis [17].

Random Queries. Table 1 reports the results of our bidirectional ALT vari-
ant on time-dependent networks for different approximation values K using the
European and the US road network as input. For the European road network,
preprocessing takes approximately 75 minutes and produces 128 additional bytes
per node (for each node we have to store distances to and from all landmarks);
for the US road network, the corresponding figures are 92 minutes and 128 bytes
per node. For comparison, we also report the results on the same road network
for the time-dependent versions of Dijkstra, unidirectional ALT, and the SHARC
algorithm [2].

As the performed ALT-queries compute approximated results instead of op-
timal solutions, we record three different statistics to characterize the solution
quality: error rate, average relative error, maximum relative error. By error rate
we denote the percentage of computed suboptimal paths over the total number of
queries. By relative error on a particular query we denote the relative percentage
increase of the approximated solution over the optimum, computed as ω/ω∗−1,
where ω is the cost of the approximated solution computed by our algorithm
and ω∗ is the cost of the optimum computed by Dijkstra’s algorithm. We report
average and maximum values of this quantity over the set of all queries. We also
report the number of nodes settled at the end of each phase of our algorithm,
denoting them with the labels phase 1, phase 2 and phase 3.
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Table 1. Performance of the time-dependent versions of Dijkstra, unidirectional ALT,
SHARC, and our bidirectional approach. For SHARC, we use approximation values of
1.001 and 1.002 (cf. [2] for details).

Error Query
relative # settled nodes time

input method K rate avg max phase 1 phase 2 phase 3 [ms]

EUR

Dijkstra - 0.0% 0.000% 0.00% - - 8 908 300 6 325.8
uni-ALT - 0.0% 0.000% 0.00% - - 2 192 010 1 775.8
1.001-SHARC - 57.1% 0.686% 34.31% - - 140 945 60.3
1.002-SHARC - 42.8% 0.583% 34.31% - - 930 251 491.4
ALT 1.00 0.0% 0.000% 0.00% 125 068 2 784 540 3 117 160 3 399.3

1.02 1.0% 0.003% 1.13% 125 068 2 154 900 2 560 370 2 723.3
1.05 4.0% 0.029% 4.93% 125 068 1 333 220 1 671 630 1 703.6
1.10 18.7% 0.203% 8.10% 125 068 549 916 719 769 665.1
1.13 30.5% 0.366% 12.63% 125 068 340 787 447 681 385.5
1.15 36.4% 0.467% 13.00% 125 068 265 328 348 325 287.3
1.20 44.7% 0.652% 18.19% 125 068 183 899 241 241 185.3
1.30 48.2% 0.804% 23.63% 125 068 141 358 186 267 134.6
1.50 48.8% 0.844% 25.70% 125 068 130 144 172 157 121.9
2.00 48.9% 0.886% 48.86% 125 068 125 071 165 650 115.7

USA

Dijkstra - 0.0% 0.000% 0.00% - - 12 435 900 8 020.6
uni-ALT - 0.0% 0.000% 0.00% - - 2 908 170 2 403.9
ALT 1.00 0.0% 0.000% 0.00% 272 790 4 091 050 4 564 030 4 534.2

1.10 21.5% 0.135% 7.02% 272 790 633 758 829 176 656.3
1.15 54.4% 0.402% 9.98% 272 790 312 575 405 699 289.6
1.20 62.0% 0.482% 9.98% 272 790 278 345 359 190 251.1
1.50 64.8% 0.506% 13.63% 272 790 272 790 351 865 247.5
2.00 64.8% 0.506% 16.00% 272 790 272 791 351 854 246.8

As expected, we observe a clear trade-off between the quality of the computed
solution and query performance. If we are willing to accept an approximation
factor of K = 2.0, on the European road network queries are on average 55
times faster than Dijkstra’s algorithm, but almost 50% of the computed paths
will be suboptimal and, although the average relative error is still small, in the
worst case the approximated solution has a cost which is 50% larger than the
optimal value. The reason for this poor solution quality is that, for such high
approximation values, phase 2 is very short. As a consequence, nodes in the
middle of the shortest path are not explored by our approach, and the meeting
point of the two search scopes is far from being the optimal one. However, by
decreasing the value of the approximation constant K we are able to obtain
solutions that are very close to the optimum, and performance is significantly
better than for unidirectional ALT or Dijkstra. In our experiments, it seems
as if the best trade-off between quality and performance is achieved with an
approximation value of K = 1.15, which yields average query times smaller than
300 ms on both road neworks with a maximum recorded relative error of 13%
(on the European road network, while the corresponding figure is 9.98% for the
US instance). By decreasing K to values < 1.05 it does not pay off to use the
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bidirectional variant any more, as the unidirectional variant of ALT is faster and
is always correct.

Comparing results for K > 1.15 for the US with those for Europe, we observe
that number of queries that return suboptimal paths increases, but the average
and maximum error rates are smaller than the corresponding values on the
European road network with the same values of K. Moreover, the speed-ups
of our algorithm with respect to plain Dijkstra are lower on the US instance: the
maximum recorded speed-up (for K = 2.0) is only of a factor 33. This behaviour
has also been observed in the static scenario [6]. However, with K = 1.15, which
is a good trade-off between quality and speed, query performance is very similar
on both networks.

An interesting observation is that for K = 2.0 switching from a static to a
time-dependent scenario increases query times only of a factor of ≈ 2: on the
European road network, in a static scenario, ALT-16 has query times of 53.6
ms (see [6]), while our time-dependent variant yields query times of 115 ms.
We also note that for our bidirectional search there is an additional overhead
which increases the time spent per node with respect to unidirectional ALT: on
the European road network, using an approximation factor of K = 1.05 yields
similar query times to unidirectional ALT, but the number of nodes settled by
the bidirectional approach is almost 30% smaller. We suppose that this is due
to the following facts: in the bidirectional approach, one has to check at each
iteration if the current node has been settled in the opposite direction, and
during phase 2 the upper bound has to be updated from time to time. The cost
of these operations, added to the phase-switch checks, is probably not negligible.

Comparing the time-dependent variant of SHARC with our approach, we ob-
serve that SHARC with an approximation value of 1.001 settles as many nodes
as ALT with K = 2.0. However, query performance is better for SHARC due to
its small computational overhead. By increasing the approximation value, com-
putational times are slowed by almost one order of magnitude, but the solution
quality merely improves. The reason for this poor performance is that SHARC
uses a contraction routine which cannot bypass nodes incident to time-dependent
edges. As in our scenario about half of the edges are time-dependent, the prepro-
cessing of SHARC takes quite long (≈ 12 hours) and query performance is poor.
Summarizing, ALT seems to work much better in a time-dependent scenario.

Local Queries. For random queries, our bidirectional ALT algorithm (with K =
1.15) is roughly 6.7 times faster than unidirectional ALT on average. In order to
gain insight whether this speed-up derives from small or large distance queries,
Fig. 1 reports the query times with respect to the Dijkstra rank4. These values
were gathered on the European road network instance. Note that we use a loga-
rithmic scale due to the fluctuating query times of bidirectional ALT. Comparing
both ALT version, we observe that switching from uni- to bidirectional queries
pays off especially for long-distance queries. This is not surprising, because for

4 For an s-t query, the Dijkstra rank of node t is the number of nodes settled before t
is settled. Thus, it is some kind of distance measure.
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Fig. 1. Comparison of uni- and bidirectional ALT using the Dijkstra rank methodol-
ogy [19]. The results are represented as box-and-whisker plot: each box spreads from
the lower to the upper quartile and contains the median, the whiskers extend to the
minimum and maximum value omitting outliers, which are plotted individually.

small distances the overhead for bidirectional routing is not counterbalanced by
a significant decrease in the number of explored nodes: unidirectional ALT is
faster for local queries. For ranks of 224, the median of the bidirectional variant
is almost 2 orders of magnitude lower than for the unidirectional variant. An-
other interesting observation is the fact that some outliers of bidirectional ALT
are almost as slow as the unidirectional variant.

Number of Landmarks. In static scenarios, query times of bidirectional ALT can
be significantly reduced by increasing the number of landmarks to 32 or even
64 (see [6]). In order to check whether this also holds for our time-dependent
variant, we recorded our algorithm’s performance using different numbers of
landmarks. Tab. 2 reports those results on the European road network. We
evaluate 8 maxcover landmarks (yielding a preprocessing effort of 33 minutes and
an overhead of 64 bytes per node), 16 maxcover landmarks (75 minutes, 128 bytes
per node) and 32 avoid landmarks (29 minutes, 256 bytes per node). Note that
we do not report error rates here, as it turned out that the number of landmarks
has almost no impact on the quality of the computed paths. Surprisingly, the

Table 2. Performance of uni- and bidirectional ALT with different number of land-
marks in a time-dependent scenario.

8 landmarks 16 landmarks 32 landmarks
K # settled time [ms] # settled time [ms] # settled time [ms]

uni-ALT - 2 321 760 1 739.8 2 192 010 1 775.8 2 111 090 1 868.5

ALT 1.00 3 240 210 3 270.6 3 117 160 3 399.3 3 043 490 3 465.1
1.10 863 526 736.5 719 769 665.1 681 836 669.7
1.15 495 649 382.1 348 325 287.3 312 695 280.0
1.20 389 096 286.3 241 241 185.3 204 877 170.1
1.50 320 026 228.4 172 157 121.9 133 547 98.3
2.00 313 448 222.2 165 650 115.7 126 847 91.1
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number of landmarks has a very small influence on the performance of time-
dependent ALT. Even worse, increasing the number of landmarks even yields
larger average query times for unidirectional ALT and for bidirectional ALT
with low K-values. This is due the fact that the search space decreases only
slightly, but the additional overhead for accessing landmarks increases when
there are more landmarks to take into account. However, when increasing K,
a larger number of landmarks yields faster query times: with K = 2.0 and 32
landmarks we are able to perform time-dependent queries 70 times faster than
plain Dijkstra, but the solution quality in this case is as poor as in the 16
landmarks case. Summarizing, for K > 1.10 increasing the number of landmarks
has a positive effect on computational times, although switching from 16 to
32 landmarks does not yield the same benefits as from 8 to 16, and thus in our
experiments is not worth the extra memory. On the other hand, for K ≤ 1.10 and
for unidirectional ALT increasing the number of landmarks has a negative effect
on computational times, and thus is never a good choice in our experiments.

7 Conclusion and Future Work

We have presented an algorithm which applies bidirectional search on a time-
dependent road network, where the backward search is used to bound the set of
nodes that have to be explored by the forward search; this algorithm is based
on the ALT variant of the A∗ algorithm. We have discussed related theoretical
issues, and we proved the algorithm’s correctness. Extensive computational ex-
periments show that this algorithm is very effective in practice if we are willing to
accept a small approximation factor: the exact version of our algorithm is slower
than unidirectional ALT, but if we can accept a decrease of the solution quality
of a few percentage points with respect to the optimum then our algorithm is
several times faster. For practical applications, this is usually a good compro-
mise. We have compared our algorithm to existing methods, showing that this
approach for bidirectional search is able to significantly decrease computational
times.

Future research will include the possibility of an initial contraction phase for a
time-dependent graph, which would be useful for several purposes, and algorithm
engineering issues such as the balancing of the forward and backward search, and
the update of the available upper bound on the optimal solution cost. The idea of
bidirectional routing on time-dependent graphs, using a time-dependent forward
search and a time-independent backward search, may be applied to other static
routing algorithms, in order to generalize them in a time-dependent scenario.
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A Appendix

Proof of Thm. 4.2

Proof. Suppose that γτ0(p) > Kγτ0(p
∗). Let u be the first node on p∗ which

is not explored by the forward search; by phase 3, this implies that u /∈ M ,
i.e. u has not been settled by the backward search during the first 2 phases of
Algorithm 1. Hence, we have that β ≤ πb(u) + dλ(u, t); then we have the chain
γτ0(p) ≤ µ < Kβ ≤ K(πb(u)+dλ(u, t)) ≤ K(dλ(s, u)+dλ(u, t)) ≤ K(d(s, u, τ0)+
d(u, t, d(s, u, τ0))) = K(γτ0(p

∗)) < γτ0(p), which is a contradiction. ut

A.1 Theorem
Algorithm 1 is correct if, when a node u is settled by the backward search, then
its key is smaller or equal to d(s, u, τ0) + d(u, t, d(s, u, τ0)).

Proof. Let Q be the backward search queue, let key(u) be the key for the back-
ward search of node u, let β be the smallest key in the backward search queue,
which is attained at a node v, and let µ the best upper bound on the cost of the
solution currently known. To prove correctness, we must make sure that, when
the backward search stops at the end of phase 2, then all nodes on the shortest
path from s to t have been added to M . The backward search stops when µ < β.

In an A∗ search, the keys of settled nodes are non-decreasing. So every node u
which at the current iteration has not been settled by the backward search will be
settled with a key key(u) ≥ key(v), which yields d(s, u, τ0) + d(u, t, d(s, u, τ0) ≥
key(v) = β > µ ∀u ∈ Q. Thus, every node which has not been settled by the
backward search cannot be on the shortest path from s to t, and Algorithm 1 is
correct. ut

Proof of Prop. 5.1

Proof. Let db(v) be the distance from a node v to node t computed by the
backward search if we do not explore any node already explored by the forward
search. We will prove that, when a node v is settled by the backward search,
db(v) ≤ d(v, t, d(s, v, τ0)) ∀τ0 ∈ T . By Thm. A.1, this is enough to prove our
statement.

Consider a node v settled by the backward search, but not by the forward
search; let q be the shortest path from s to v with departure time τ0, let q∗ be
the shortest path from v to t with departure time τv = γτ0(q). Suppose that
q∗ does not pass through any node already settled by the forward search. Then
db(v) ≤ λ(q∗) ≤ d(v, t, d(s, v, τ0)).

Suppose now that q∗ passes through a node w already settled by the forward
search. Let p be the shortest path from s to w with departure time τ0, and let
p∗ be the shortest path from w to t with departure time τw = γτ0(p); clearly
v cannot be on p, because otherwise it would have been settled by the forward
search. So we have, by the FIFO property and by optimality of p, that γτ0(p) +
γτw(p′) ≤ γτ0(q)+γτv (q′), which means that v does not have to be explored and



14 G. Nannicini, D. Delling, L. Liberti, D. Schultes

added to the set M by the backward search, because we already have a better
path passing through w. Thus, even if key(v) > d(s, v, τ0) + d(v, t, d(s, v, τ0))
Algorithm 1 is correct. ut

A.2 Lemma
Let v be a node, and u its parent node in the shortest path from s to v with
departure time τ0. Then d(s, u, τ0) + πf (u) ≤ d(s, v, τ0) + πf (v).

Proof. Suppose that ` is the active landmark, i.e. the landmark in our landmarks
set that currently gives the best bound; we have that either πf (u) = dλ(u, `)−
dλ(t, `) or πf (u) = dλ(`, t)− dλ(`, u).

First case: πf (u) = dλ(u, `)−dλ(t, `). We have d(s, u, τ0)+πf (u) = d(s, u, τ0)+
dλ(u, `)−dλ(t, `) ≤ d(s, u, τ0)+dλ(u, v)+dλ(v, `)−dλ(t, `) ≤ d(s, u, τ0)+λ(u, v)+
dλ(v, `)− dλ(t, `) ≤ d(s, v, τ0) + πf (v).

Second case: πf (u) = dλ(`, t) − dλ(`, u). We have d(s, u, τ0) + πf (u) =
d(s, u, τ0) + dλ(`, t) − dλ(`, u); by triangular distance, dλ(`, v) ≤ dλ(`, u) +
dλ(u, v) ≤ dλ(`, u) + λ(u, v), which yields −dλ(`, u) ≤ −dλ(`, v) + λ(u, v). So
d(s, u, τ0)+dλ(`, t)−dλ(`, u) ≤ d(s, u, τ0)+dλ(`, t)−dλ(`, v)+λ(u, v) ≤ d(s, v, τ0)+
πf (v). ut

Proof of Prop. 5.2

Proof. There are two possibilities for w: either it has been explored (but not
settled) by the forward search, or it has not been explored. Let Q be the set of
nodes in the forward search queue. If w has been explored, then w ∈ Q, and
clearly d(s, v, τ0) + πf (v) ≤ d(s, w, τ0) + πf (w) because v has been extracted
before w, which proves our statement. Otherwise, there is a node u ∈ Q on the
shortest path from s to w with departure time τ0. We have that d(s, v, τ0) +
πf (v) ≤ d(s, u, τ0) + πf (u) because v has been extracted while u is still in the
queue, and by Lemma A.2, if we examine the nodes u1 = u, u2, . . . , uk = w on
the shortest path from s to w with departure time τ0, we have that d(s, u1, τ0)+
πf (u1) ≤ · · · ≤ d(s, uk, τ0) + πf (uk), from which our statement follows. ut

A.3 Lemma
If the key of the forward search used to compute the potential function π∗b defined
by (3) is fixed, then we have π∗b (v) ≤ π∗b (u) + λ(u, v) for each arc (u, v) ∈ A.

Proof. By definition we have π∗b (v) = max{πb(v), α − πf (v)}, where with α
we denoted the key of a node settled by the forward search, which is fixed by
hypothesis. Consider the case π∗b (v) = πb(v); then, since the landmark potential
functions πb and πf are consistent, we have π∗b (v) = πb(v) ≤ πb(u) + λ(u, v) ≤
π∗b (u) + λ(u, v). Now consider the case π∗b = α − πf (v); then we have π∗b (v) =
α−πf (v) ≤ α−πf (u)+λ(u, v) ≤ π∗b (u)+λ(u, v), which completes the proof. ut
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A.4 Theorem
If we use the potential function π∗b defined by (3) as potential function for the
backward search, with a fixed value of the forward search key, then Algorithm 1
is correct.

Proof. Let db(u) be the distance from a node u to node t computed by the
backward search. We will prove that, when a node u is settled by the backward
search, db(u) ≤ d(u, t, d(s, u, τ0)) ∀τ0 ∈ T . By Prop. 5.2 and Thm. A.1, this is
enough to prove our statement.

Let q∗ = (v1 = u, . . . , vn = t) be the shortest path from u to t on Gλ. We
proceed by induction on i : n, . . . , 1 to prove that each node vi is settled with the
correct distance on Gλ, i.e. db(vi) = dλ(vi, t). It is trivial to see that the nodes
vn and vn−1 are settled with the correct distance on Gλ. For the induction step,
suppose vi is settled with the correct distance db(vi) = dλ(vi, t). By Lemma A.3,
we have db(vi)+π∗b (vi) ≤ db(vi)+λ(vi−1, vi)+π∗b (vi−1) = dλ(vi−1, t)+π∗b (vi−1) ≤
db(vi−1)+π∗b (vi−1), hence vi is extracted from the queue before vi−1. This means
that vi−1 will be settled with the correct distance db(vi−1) = dλ(vi−1, t), and
the induction step is proven.

Thus, u will be settled with distance db(u) = dλ(u, t) ≤ d(u, t, d(s, u, τ0)),
which proves our statement.


