Mathematical programming techniques applied to biology

Fabien Tarissan1

Leo Liberti2 Camilo La Rota3

1 ISC-PIF (Paris, France)
2 École Polytechnique (Paris, France)
3 IXXI (Lyon, France)

October 31, 2008
CONTEXT OF WORK

Pre-simulation tool for the MORPHEX european project:

Heterogeneity at many levels:
- organisms
- data
- reliability
- level of details
- ...

How to propose a **first** possible model
Network reconstruction
Network reconstruction

Diagram:

- cad
- tll
- kni
- hb
- kr
- gt

Connections indicated by question marks.
Network reconstruction
Our approach:
 ▶ Modelisation by means of mathematical programming techniques (constraints)
 ▶ Reformulation of the models in order to ease the solving

Contributions:
 ▶ Reconstruction of gene regulatory networks:
 ▶ with continuous dynamics (drosophila)
 ▶ with discrete dynamics (arabidopsis)
Mathematical Programming

\[
\min_x \quad f(x) \\
\text{subject to} \quad g(x) \leq 0
\]

- \(x \in \mathbb{R}^n \) are the decision variables
- \(f : \mathbb{R}^n \to \mathbb{R} \) is the objective function
- \(g : \mathbb{R}^n \to \mathbb{R}^m \) is the set of constraints

+ distinction between integer and continuous variables.

Let \(Z \in \{1, \ldots, n\} \) such that \(\forall i \in Z, \, x_i \in \mathbb{Z} \).
Classes of problems

\[
\min_x \quad f(x)
\]

subject to\quad \begin{cases}
g(x) \leq 0
\end{cases}

AMPL: A Mathematical Programming Language.

<table>
<thead>
<tr>
<th>Class</th>
<th>(f, g)</th>
<th>(Z)</th>
<th>Best solver</th>
<th>Best free solver</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>linear</td>
<td>(Z = \emptyset)</td>
<td>CPLEX</td>
<td>CLP</td>
<td>(\Theta(10^9))</td>
</tr>
<tr>
<td>cNLP</td>
<td>convex</td>
<td>(Z = \emptyset)</td>
<td>SNOPT/FILTER</td>
<td>IPOPT</td>
<td>(\Theta(10^4))</td>
</tr>
<tr>
<td>MILP</td>
<td>linear</td>
<td>(Z \neq \emptyset)</td>
<td>CPLEX</td>
<td>BCP/SYMPHONY</td>
<td>(\Theta(10^3))</td>
</tr>
<tr>
<td>NLP</td>
<td>non linear</td>
<td>(Z = \emptyset)</td>
<td>BARON</td>
<td>?</td>
<td>(\Theta(10^2))</td>
</tr>
<tr>
<td>cMINLP</td>
<td>convex</td>
<td>(Z \neq \emptyset)</td>
<td>MINLP_bb/FILMINT</td>
<td>BONMIN/FILMINT</td>
<td>(\Theta(10^3))</td>
</tr>
<tr>
<td>MINLP</td>
<td>non linear</td>
<td>(Z \neq \emptyset)</td>
<td>BARON</td>
<td>?</td>
<td>(\Theta(10^2))</td>
</tr>
</tbody>
</table>
Application to the drosophila model

Continuous regulation of gene products concentrations:

\[
\frac{dg_{ia}(t)}{dt} = R_a \Phi(u_{ia}(t)) - \lambda_a g_{ia}(t) + D_a (g_{i+1,a}(t) - 2g_{ia}(t) + g_{i-1,a}(t))
\]

- \(g_{ia}(t) \) is the concentration of gene \(a \) in nucleus \(i \) at time \(t \)
- \(R_a \) is the production rate for gene \(a \)
- \(\Phi \) is the sigmoid regulation function
- \(\lambda_a \) is the decay rate
- \(D_a \) is the diffusion coefficient for gene \(a \)
The sigmoid definition:

$$\Phi(u) = \frac{1}{2} \left(\frac{u}{\sqrt{u^2 + 1}} + 1 \right)$$

Relies on:

$$u_{ia}(t) = \sum_{b \in N^\gamma} W_{ba} g_{ib}(t) + m_a g_i^{bcd} + h_a$$

- W_{ba} is the weight on the arc (b, a) in the GRN
- m_a is the regulatory influence of the maternal gene bcd
- h_a is the activation threshold for Φ
The problem

Size of the problem:

- Network of 6 genes
- but missing values for \(W, R, D, m, \lambda, h \) : 66 variables.

Confronting the estimation to the observed data:

\[
\min \sum_{i \in N^u} \sum_t (g_{ia}(t) - g_{ia}^{\text{data}}(t))^2 + \Pi_R + \Pi_\lambda + \Pi_D + \Pi_u
\]

Penalty function:

\[
\Pi_u = e^\Theta - 1
\]

\[
\Theta = \Lambda(\sum_{(b,a) \in A} (W_{ba}v_b^{\text{max}})^2 + (m_a v_{bcd}^{\text{max}})^2 + h_a^2)
\]
1. Translating the model into AMPL:
 ▶ Objective function:
 \[
 \min \sum_{a \in N^\gamma} \left(g^a_i(t) - g_{\text{data}}^a_i(t) \right)^2 + \sum_{a \in N^\gamma} \left(W^b_v^{a} \right)^2 + \sum_{a \in N^\gamma} \left((m^b_{a} v_{\text{max}}^{a})^2 + h^2_a \right)
 \]

 ▶ Some penalty functions as constraints:
 \[
 \forall a \in N^\gamma \left\{ \begin{array}{l}
 R^L \leq R_a \leq R^U \\
 \lambda^L \leq \lambda_a \leq \lambda^U \\
 D^L \leq D_a \leq D^U
 \end{array} \right.
 \]

 ▶ PDE as a constraint (discretization):
 \[
 g^a_i(t) - g^a_i(t-1) = \Delta t \left(\frac{R_a}{2} \left(\frac{u^a_i(t)}{\sqrt{u^a_i(t)^2 + 1}} + 1 \right) - \lambda_a g^a_i(t) + D_a (g^a_{i+1}(t) - 2g^a_i(t) + g^a_{i-1}(t)) \right)
 \]

2. Other issues:
 ▶ Mitosis time
 ▶ Modelling cell division
 ▶ Updating diffusion coefficient
 ▶ ...
Simplifying the model

- Driven by biological knowledge: (e.g. boundaries on W, m and h)

- Mathematical reformulating of terms:
 - exact reformulation: e.g. for $\frac{u}{\sqrt{u^2+1}}$
 1. $z = \frac{1}{\sqrt{u^2+1}} \implies z^2(u^2 + 1) = 1 \implies (zu)^2 + z^2 = 1$
 2. Let u', u'' and z' be respectively the uz, u'^2 and z^2.
 3. Substitute $\frac{u}{\sqrt{u^2+1}}$ with u' and add constraints:
 \[
 \begin{cases}
 u' = uz \\
 u'' + z' = 1 \\
 z' = z^2 \\
 u'' = u'^2
 \end{cases}
 \]
 - approximative reformulation of z^2
Work achieved so far

What is done:

1. the raw model (without any reformulation)
2. various reformulations:
 - sigmoid (exact): too many variables.
 - sigmoid (approx): ok.
 - convex products (approx): ok but feasibility issues.
3. run on small data set: good results

What will be done:

- run on large data set: too heavy for now (need to split the model).
- trying other modellisations ($g_{ia}(t) = g_{ia}^{\text{data}}(t)$?)
Other case of study: Arabidopsis

Same approach:
- Gene regulatory network
- Some knowledge of the network topology
- Don’t know the weight on edges

Different dynamics:
- Descretization of the time
- Qualitative activity of gene i: $x_i^{t+1} = H \left(\sum_{j=1}^{n} \alpha_{ij} w_{ij} x_j^t - \theta_i \right)$
 - θ_i: threshold of activation.
 - w_{ij}: interaction strength ($\frac{\text{induced production}}{\text{decay}}$).
 - α_{ij}: Kind of the interaction
 (repression $= -1$, activation $= +1$)

Similar problem: Find w_{ij} and θ_i
Modelling: defining the GRN

Gene Regulatory Network (GRN): \((G, T, \alpha, w, x, \iota, \theta)\)

- **Sets and Graph:**
 - \(V\): vertexes (genes)
 - \(A\): arcs (interactions)
 - \(T\): \(=\{1, 2, \ldots\} \subset \mathbb{N}\)
 - \(G = (V, A)\)

- **Evolution rules**

\[
\begin{align*}
x(v, 1) &= \iota(v) \\
x(v, t) &= \begin{cases} 1 & \text{if } \sum_{u \in \delta^{-}(v)} \alpha(u, v)w(u, v)x(u, t - 1) \geq \theta(v) \\ 0 & \text{otherwise}, \end{cases}
\end{align*}
\]

where \(\delta^{-}(v) = \{u \in V \mid (u, v) \in A\}\) for all \(v \in V\).

- **Functions:**
 - \(\alpha : A \rightarrow \{+1, -1\}\) arc sign;
 - \(w : A \rightarrow \mathbb{R}^+_0\) arc weight;
 - \(x : V \times T \rightarrow \{0, 1\}\) gene activation;
 - \(\iota : V \rightarrow \{0, 1\}\) initial configuration;
 - \(\theta : V \rightarrow \mathbb{R}\) threshold,
Modelling: defining the problem

Given

- \((G, T, \alpha)\)
- \(S := \{1..S_{\text{max}}\}\): set of stages.
- \(U = \{U_s\}_{s \in S}; U_s \subseteq V\): nodes of \(G_s\) (induced subnetworks of \(G\)).
- \(I = \{\iota_{s,u}\}_{s \in S, u \in U_s}; \iota_{s,u} : V \to \{0, 1\}\): initial conditions.
- \(\Phi = \{\phi_{s,u}\}_{s \in S, u \in U_s}; \phi_{s,u} : V \to \{0, 1\}\): expression data.

Find

\(w, \theta\) with the property that \(\forall \iota_s, (G_s, T, \alpha, w, \bar{x}_s, \iota_s, \theta)\) satisfies the evolution rules and has fixed points that collectively minimize the total \(D_H(\rho, \phi)\).

\(D_H\): hamming distance from model fixed points to data.

fixed points \((\bar{\rho})\): If \(\bar{x}_t = \bar{x}_{t-1} = \bar{\rho}\) then \(\bar{x}_{t'} = \bar{x}_t\) for all \(t' > t\).
Finding fixed points
Finding fixed points
Finding fixed points

\[d1 = 5 \]
Finding fixed points

\[d_1 = 5 \]
\[d_2 = 1 \]
Mathematical programming formulation

- **Objective function**

\[
\sum_{s \in S} \sum_{t \in T \setminus 1} (y_{s,t-1} - y_{s,t}) \sum_{u \in U_s} |x_{s,u,t} - \rho_{s,u}|
\]

- **Fixed point conditions**

\[
\sum_{u \in U_s} |x_{s,u}^t - x_{s,u}^{t-1}| \leq \|U_s\| \sigma_s^t \\
1 - y_s^t \leq \sum_{r \geq t} \sigma_r^t \\
y_s^t \sum_{r \geq t} \sigma_r^t = 0
\]

- **Evolution rules**

\[
\sum_{u \in U_s : (u,v) \in A} \alpha_{u,v} w_{u,v} x_{s,u}^{t-1} \geq \theta_v x_{s,v}^t - \|V\| (1 - x_{s,v}^t)
\]
\[
\sum_{u \in U_s : (u,v) \in A} \alpha_{u,v} w_{u,v} x_{s,u}^{t-1} \leq (\theta_v - \epsilon)(1 - x_{s,v}^t) + \|V\| x_{s,v}^t
\]
Conclusion on the modelling approach

Static modelling of a dynamic system

A framework for reconstructing regulatory networks:

- of different biological organisms
- with different dynamics

Drawbacks:

- loose of efficiency
- might require to introduce new elements

Perspectives:

- automatization of the reformulations
- study more complex qualitative models of GRN
- integrating different kind of knowledge (experimental, theoretical, . . .)
Automatic (re)formulation

For the modelling part: E.g. 4 “virtual” constraints to express the *fixed point* (should have been generated!)

For the simplification part:

<table>
<thead>
<tr>
<th>Name</th>
<th>Nonlinear feasible set</th>
<th>Linear feasible set</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowBin</td>
<td>$(x_1, x_2) \in {0, 1} \times \mathbb{R} : x_2 = x_1^n$</td>
<td>$(x_1, x_2) \in {0, 1} \times \mathbb{R} : x_2 = x_1$</td>
</tr>
</tbody>
</table>
| **ProdBin** | $(x, x_{n+1}) \in \{0, 1\}^n \times \mathbb{R} : x_{n+1} = \prod_{i \leq n} x_i$ | $(x, x_{n+1}) \in \{0, 1\}^n \times [0, 1] : x_{n+1} \leq x_i \quad \forall i \leq n$
| | | $x_{n+1} \geq 1 - n + \sum_{i \leq n} x_i$ |
| **ProdBin-Cont** | $(x_1, x_2, x_3) \in \{0, 1\} \times [x_2^L, x_2^U] \times \mathbb{R} : x_3 = x_1 x_2$ | $(x_1, x_2, x_3) \in \{0, 1\} \times [x_2^L, x_2^U]^2 : x_3 \leq x_2^U x_1$
| | | $x_3 \geq x_2^L x_1$ |
| | | $x_3 \leq x_2 + x_2^L (1 - x_1)$ |
| | | $x_3 \geq x_2 - x_2^U (1 - x_1)$ |

Leads to *Term Rewriting Systems (TRS)* properties:

- termination
- confluence
- optimality?