ARS Workshop

Markov Random Fields minimization and minimal cuts in image restoration

October 31, 2008

Lucas Létocart

François Malgouyres
Nicolas Lermé

LIPN and LAGA – Université Paris 13
Outline

1 Context
2 Exact total variation minimization
 - Total variation and regularization
 - TV models
 - Minimization
3 Minimal cut (graph cut) as energy minimization
 - Notations
 - General principle
 - Maximum flow / minimal cut
 - Energy representation
 - Results
 - More results
 - Further results for 3D images
4 Conclusion
 - Conclusion
 - Perspectives
Context

Exact total variation minimization

Total variation and regularization

TV models

Minimization

Minimal cut (graph cut) as energy minimization

Notations

General principle

Maximum flow / minimal cut

Energy representation

Results

More results

Further results for 3D images

Conclusion

Conclusion

Perspectives
Main context

Image degradation

\[v = Hu + \eta \]

- \(v \) → Observed image
- \(u \) → Original image
- \(\eta \) → Noise
- \(H \) → Linear degradation

Goal

Obtain the best estimation \(\bar{u} \) from \(u \) when \(H = \text{identity} \).
Energy minimization

First approach

Restoration corresponds to find the minimum of

\[E(u, v) = \sum_{p \in \Omega} F_p(u_p, v_p) \]

with \(\Omega \subset \mathbb{R}^2 \).

- Inverse problem (Hadamard) \(\Rightarrow \) noise amplification (when \(H \neq \text{Id} \)).
- Need to regularize the solution.

\[E(u, v) = \sum_{p \in \Omega} F_p(u_p, v_p) + \beta \cdot \sum_{p, q \in \Omega \atop \{p, q\} \in N} G_{p, q}(u_p, u_q) \quad \forall \beta \in \mathbb{R}^+ \]

\(\{p, q\} \in N \) indicates the neighborhood relation.

Notations
- General principle
- Maximum flow / minimal cut
- Energy representation
- Results
- More results
- Further results for 3D images

Conclusion
- Conclusion
- Perspectives
Energy minimization

Standard minimization methods

- **Continuous**
 - Gradient descent.
 - Graduated Non Convexity (GCN).

- **Discrete**
 - Dynamic programming (only in 1D).
 - Simulated annealing.
 - Iterated Conditional Modes.

Problems

- No or poor convergence guarantees.
- Solution not ever optimal.
Exact total variation minimization
Regularization (Tikhonov)

- From: Introduce by A. N. Tikhonov in 1963
- Goal: Consider restoration as find the minimum of

\[E(u) = \| u - v \|_{L^2}^2 + \beta \cdot \| \nabla u \|_{L^2}^2 \]

where \(\| u \|_{L^p} = \left(\int_{\Omega} |u(x)|^p \, dx \right)^{\frac{1}{p}} \)

Problem

"Cubes" image \(\sigma_b = 30 \)

Tikhonov restoration

Solution

- Regularize differently.
- Decrease the weight of big gradients.
BV Space

Definition

$BV \Rightarrow \text{Space of functions with bounded variations.}$

$$BV(\Omega) = \{ u \in L^1(\Omega) \mid \int_{\Omega} |\nabla u| < +\infty \}$$

Exact definition uses duality, because $|\nabla u|$ can be a measure.

with the semi-norm

$$|u|_{BV} = \int_{\Omega} |\nabla u| = TV(u) \quad \Rightarrow \quad \text{Total Variation}$$

Advantages

- Discontinuities are authorized along curves.
- Good space for geometric images.
- Existence and unicity of the solution.
Total Variation

Definition (co-area – continuous)

Let \(u \in BV(\Omega) \). Total variation of \(u \) is

\[
TV(u) = \int_{\Omega} |\nabla u| = \int_{\mathbb{R}} \int_{d\{u \leq \lambda\}} ds \ d\lambda,
\]

where \(\{u \leq \lambda\} \) is equivalent to \(\{u(x) \in \Omega \mid u(x) \leq \lambda\} \).

Definition (co-area – discrete)

Let \(u \) be a discrete function. Total variation of \(u \) is

\[
TV(u) = \sum_{\lambda=0}^{L-2} \sum_{\{p,q\} \in \mathcal{N}} w_{p,q} |u_p^\lambda - u_q^\lambda| \quad \text{where} \quad u_p^\lambda = \mathbf{1}_{\{u_p \geq \lambda\}}
\]

Remarks

- (-) Details suppression (textures).
- (+) Allows sharp contours.
TV models

Definition

Let $v \in L^1(\Omega)$ the observed image. The TV model consist of finding

$$\arg\min_{u \in BV(\Omega)} TV(u) + \beta \|u - v\|_{L^\alpha} \quad \alpha \in \{1, 2\}$$

TV + L_2 Model / ROF (Rudin Osher Fatemi 92)

- (+) Strictly convex \Rightarrow unicity.
- (-) Lost of contrast (iterative regularization).
- Gaussian noise.

TV + L_1 Model (Nikolova 2004)

- (-) Convex \Rightarrow not unicity.
- (+) No contrast lost.
- Impulsive noise.
Level set approach

Principle

1. Decompose the image in order to solve a succession of quadratic binary optimization problems \bar{u}^λ (MRF)
2. Solve each problem \bar{u}^λ where the solution is a level set
3. Reconstruct \bar{u} from \bar{u}^λ (trivial)

Level set decomposition λ

- Upper-set $\rightarrow U^\lambda(u) = \{p \in \Omega \mid u_p \geq \lambda\}$
- Lower-set $\rightarrow L^\lambda(u) = \{p \in \Omega \mid u_p \leq \lambda\}$

Reconstruction

$$u_p = \sup\{\lambda \in \mathcal{L} \mid p \in U^\lambda(u)\} \quad \forall p \in \Omega$$
Level set approach

Reformulation - $TV + L_1$

$$\arg\min_{u^\lambda \in \{0,1\}^N} E_1^\lambda(u^\lambda) = TV(u^\lambda) + \beta \sum_{p \in \Omega} [(1 - y_p)u_p^\lambda + y_p(1 - u_p^\lambda)]$$

with

$$y_p = 1\{v_p \geq \lambda\}$$

Reformulation - $TV + L_2$

$$\arg\min_{u^\lambda \in \{0,1\}^N} E_2^\lambda(u^\lambda) = TV(u^\lambda) + 2\beta \sum_{p \in \Omega} \left((\lambda - 0.5)u_p^\lambda + v_p(1 - u_p^\lambda)\right)$$
Level set approach

Reformulation

- Here, MRF are positive-negative quadratic pseudo-boolean functions, ie all the linear terms are positive and all the quadratic terms are negative (equivalent to submodular functions).
- Solve MRF is thus equivalent to find a maximal independent set in a bipartite graph, ie find a maximal flow – minimal cut in an associated graph.

Theorem

Minimizing E is equivalent to minimizing all the E^λ for each level.

Total energy $E(u) = \sum_{\lambda=0}^{L-2} E^\lambda(u^\lambda)$ can be minimized because $\{u^\lambda\}_{\lambda=0}^{L-2}$ is monotonous, ie:

$$\bar{u}^\lambda \leq \bar{u}^\mu \quad \forall \lambda < \mu.$$

The optimal solution is given by

$$\forall p \in \Omega, \bar{u}_p = \text{max}\{\lambda, \bar{u}^\lambda = 1\}.$$
Minimal cut (graph cut) as energy minimization
Notations

\(\mathcal{G} = (\mathcal{V}, \mathcal{E}) \) is a directed weighted graph with two terminals \(s, t \) where

- \(\mathcal{V} = \{1, \ldots, k\} \cup \{s\} \cup \{t\}, \ n = |\mathcal{V}| \)
- \(\mathcal{E} = \{(i, j) \mid 1 \leq i, j \leq n, i \neq j\}, \ m = |\mathcal{E}| \)
- **Capacity** \(\Rightarrow c : \mathcal{E} \rightarrow \mathbb{R}^+ \cup +\infty \)
- **Flow** \(\Rightarrow f : \mathcal{E} \rightarrow \mathbb{R} \)

Vocabulary

<table>
<thead>
<tr>
<th>Node</th>
<th>→</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>source</td>
</tr>
<tr>
<td>t</td>
<td>sink</td>
</tr>
<tr>
<td>N-links</td>
<td>arcs ((i, j))</td>
</tr>
<tr>
<td>T-links</td>
<td>arcs ((s, i)) and ((i, t))</td>
</tr>
</tbody>
</table>
Definitions

Definition (flow)

Let \(G \) be a graph. \(f(i, j) \) must verify

1) **Capacity constraints**

\[
f(i, j) \leq c(i, j)
\]

\(\forall i, j \in \mathcal{V} \) et \(\forall (i, j) \in \mathcal{E} \)

2) **Flow symmetry**

\[
f(i, j) = -f(j, i)
\]

\(\forall i, j \in \mathcal{V} \) et \(\forall (i, j) \in \mathcal{E} \)

3) **Kirchhoff law**

\[
\sum_{j \in \mathcal{V} - \{s, t\}}_{(i, j) \in \mathcal{E}} f(i, j) = 0
\]

\(\forall i \in \mathcal{V} - \{s, t\} \)

Definition (cut)

Cut is a partition \(C = (S, T) \) of \(\mathcal{V} \) such

\[
s \in S, \ t \in T \quad \text{et} \quad S \cap T = \emptyset, \ S \cup T = \mathcal{V}
\]

Definition (Cut capacity)

The capacity of a cut \(C \) is

\[
|C| = \sum_{i \in S, j \in T \atop (i, j) \in \mathcal{E}} c(i, j)
\]
General principle

Theorem (Energy minimization (Greig Porteous Seheult 89))

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a directed weighted graph and E be an energy function. E can be minimized using a minimal cut in \mathcal{G} for the image binary case.

Principle

1. Construct a graph \mathcal{G}.
2. Compute a minimal cut $\mathcal{C} = (\mathcal{S}, \mathcal{T})$ in $\mathcal{G} \Rightarrow$ minimize E.
3. Assign a value to each u_p such that

$$
\begin{align*}
 u_p &= 0 \quad \text{if } p \in \mathcal{S} \\
 u_p &= 1 \quad \text{if } p \in \mathcal{T}
\end{align*}
$$
Maximum flow algorithms

- **Augmenting paths**
 - **Principle**: Find iteratively a non saturated path from s to t in \mathcal{G}.
 - **Algorithms**:
 - Ford-Fulkerson $\rightarrow O(m \cdot f)$, where $f = \text{maximum flow}$
 - Edmonds-Karp $\rightarrow O(nm^2)$
 - Dinic $\rightarrow O(n^2m)$
 - Boykov-Kolmogorov $\rightarrow O(n^2m|\mathcal{C}|)$

- **Push-relabel**
 - **Principe**: Propagate an excess of flow repeatedly from s to t in \mathcal{G}.
 - **Algorithms**:
 - General push flow relabel $\rightarrow O(n^2m)$
 - Push flow relabel with dynamic trees $\rightarrow O(nm\log(n))$
Energy representation

Questions
- Which energies can be minimized via minimal cuts?
- How construct the graph to minimize E?

Definition (representation (Kolmogorov Zabih 02))

Let E be an energy function with n binary variables

$$E(x_1, \ldots, x_n) = \sum_i E_i(x_i) + \sum_{i<j} E_{i,j}(x_i, x_j) \quad \text{with} \quad x_i \in \{0, 1\}.$$

Every function with one variable can be represented by a graph.
Every function with two variables can be represented by a graph iff

$$E_{i,j}(0, 0) + E_{i,j}(1, 1) \leq E_{i,j}(0, 1) + E_{i,j}(1, 0) \quad \text{(submodular)}$$

Questions
- Which energies can be minimized via minimal cuts?
- How construct the graph to minimize E?

Definition (representation (Kolmogorov Zabih 02))

Let E be an energy function with n binary variables

$$E(x_1, \ldots, x_n) = \sum_i E_i(x_i) + \sum_{i<j} E_{i,j}(x_i, x_j) \quad \text{with} \quad x_i \in \{0, 1\}.$$

Every function with one variable can be represented by a graph.
Every function with two variables can be represented by a graph iff

$$E_{i,j}(0, 0) + E_{i,j}(1, 1) \leq E_{i,j}(0, 1) + E_{i,j}(1, 0) \quad \text{(submodular)}$$
Energy representation

\[E^{i,j} = \begin{bmatrix} E^{i,j}(0,0) & E^{i,j}(0,1) \\ E^{i,j}(1,0) & E^{i,j}(1,1) \end{bmatrix} = \begin{bmatrix} A \\ C \end{bmatrix} \begin{bmatrix} B \\ D \end{bmatrix} \]

Energy \(E_i \) with
\[E_i(0) < E_i(1) \]

Energy \(E_i \) with
\[E_i(0) > E_i(1) \]

Energy \(E_{ij} \) with \(C > A \) and
\(C > D \)

Energy representation

Results
More results
Further results for 3D images

Conclusion
Perspectives
Minimization algorithms

Sequential algorithm

- **Proposed by**: Darbon, Chambolle, Zalesky.
- **Principle**: Do L independant optimizations.
- **Complexity**: $O(L \times F)$ with $O(F)$ the complexity to find the maximal flow – minimal cut.
- **Execution time**: < 1 min.

Dyadic algorithm

- **Proposed by**: Darbon, Chambolle, Hochbaum.
- **Principle**: Use the overlap between the level sets.
- **Complexity**: $O(\log_2(L))$.
Results

Tests characteristics
- Computer: AMD Athlon 64 X2 Dual Core 6000+, 2Go of RAM.
- Implementation under MegaWave2.
- Kolmogorov et al. library to compute the maximum flow.
- Images 256^2 and 512^2.
- Averages over 10 launchings.

Images
- Image “Circles”
- Image “Man”
- Image “Elaine”

Context
- Exact total variation minimization
 - Total variation and regularization
 - TV models
 - Minimization
- Minimal cut (graph cut) as energy minimization
 - Notations
 - General principle
 - Maximum flow / minimal cut
 - Energy representation

Conclusion
- More results
- Further results for 3D images
- Perspectives
Results - $TV + L_1$

Neighborhood: 4-connexity

<table>
<thead>
<tr>
<th>Image</th>
<th>Algorithm</th>
<th>$\beta = 0.25$</th>
<th>$\beta = 0.5$</th>
<th>$\beta = 1.0$</th>
<th>$\beta = 2.0$</th>
<th>$\beta = 4.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Circles” 2562</td>
<td>Sequential</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.11</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>“Circles” 5122</td>
<td>Sequential</td>
<td>0.29</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.41</td>
<td>0.37</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>“Man” 2562</td>
<td>Sequential</td>
<td>5.14</td>
<td>3.63</td>
<td>2.89</td>
<td>2.45</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.46</td>
<td>0.35</td>
<td>0.23</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>“Man” 5122</td>
<td>Sequential</td>
<td>19.65</td>
<td>14.18</td>
<td>11.73</td>
<td>10.30</td>
<td>9.67</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>1.89</td>
<td>1.37</td>
<td>0.92</td>
<td>0.54</td>
<td>0.43</td>
</tr>
<tr>
<td>“Elaine” 2562</td>
<td>Sequential</td>
<td>4.05</td>
<td>2.96</td>
<td>2.40</td>
<td>2.12</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.43</td>
<td>0.32</td>
<td>0.23</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>“Elaine” 5122</td>
<td>Sequential</td>
<td>15.85</td>
<td>11.67</td>
<td>9.97</td>
<td>9.14</td>
<td>8.71</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>1.98</td>
<td>1.37</td>
<td>0.95</td>
<td>0.56</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Neighborhood: 8-connexity

<table>
<thead>
<tr>
<th>Image</th>
<th>Algorithm</th>
<th>$\beta = 0.25$</th>
<th>$\beta = 0.5$</th>
<th>$\beta = 1.0$</th>
<th>$\beta = 2.0$</th>
<th>$\beta = 4.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Circles” 2562</td>
<td>Sequential</td>
<td>0.23</td>
<td>0.18</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.37</td>
<td>0.26</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>“Circles” 5122</td>
<td>Sequential</td>
<td>0.79</td>
<td>0.67</td>
<td>0.64</td>
<td>0.64</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>1.19</td>
<td>0.94</td>
<td>0.87</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>“Man” 2562</td>
<td>Sequential</td>
<td>19.84</td>
<td>12.14</td>
<td>8.68</td>
<td>7.01</td>
<td>6.19</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>1.61</td>
<td>0.97</td>
<td>0.69</td>
<td>0.48</td>
<td>0.27</td>
</tr>
<tr>
<td>“Man” 5122</td>
<td>Sequential</td>
<td>74.19</td>
<td>44.80</td>
<td>35.66</td>
<td>27.97</td>
<td>25.01</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>6.94</td>
<td>3.93</td>
<td>2.89</td>
<td>1.85</td>
<td>1.10</td>
</tr>
<tr>
<td>“Elaine” 2562</td>
<td>Sequential</td>
<td>13.87</td>
<td>9.52</td>
<td>7.36</td>
<td>6.11</td>
<td>5.54</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>1.49</td>
<td>0.87</td>
<td>0.66</td>
<td>0.47</td>
<td>0.27</td>
</tr>
<tr>
<td>“Elaine” 5122</td>
<td>Sequential</td>
<td>56.59</td>
<td>36.39</td>
<td>27.48</td>
<td>24.17</td>
<td>22.57</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>6.15</td>
<td>3.75</td>
<td>2.63</td>
<td>1.89</td>
<td>1.12</td>
</tr>
</tbody>
</table>
Results - $TV + L_2$

Neighborhood: 4-connexity

<table>
<thead>
<tr>
<th>Image</th>
<th>Algorithm</th>
<th>$\beta = 0.01$</th>
<th>$\beta = 0.02$</th>
<th>$\beta = 0.04$</th>
<th>$\beta = 0.08$</th>
<th>$\beta = 0.16$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Circles” 2562</td>
<td>Sequential</td>
<td>3.46</td>
<td>2.76</td>
<td>2.46</td>
<td>2.32</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.21</td>
<td>0.49</td>
<td>0.28</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>“Circles” 5122</td>
<td>Sequential</td>
<td>14.41</td>
<td>11.74</td>
<td>10.26</td>
<td>9.68</td>
<td>9.57</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>4.60</td>
<td>2.23</td>
<td>0.91</td>
<td>0.48</td>
<td>0.39</td>
</tr>
<tr>
<td>“Man” 2562</td>
<td>Sequential</td>
<td>4.03</td>
<td>3.36</td>
<td>2.96</td>
<td>2.70</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.55</td>
<td>0.39</td>
<td>0.30</td>
<td>0.24</td>
<td>0.20</td>
</tr>
<tr>
<td>“Man” 5122</td>
<td>Sequential</td>
<td>17.27</td>
<td>14.16</td>
<td>12.40</td>
<td>11.26</td>
<td>10.64</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>2.37</td>
<td>1.74</td>
<td>1.35</td>
<td>1.08</td>
<td>0.84</td>
</tr>
<tr>
<td>“Elaine” 2562</td>
<td>Sequential</td>
<td>4.01</td>
<td>3.34</td>
<td>2.91</td>
<td>2.64</td>
<td>2.47</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.53</td>
<td>0.42</td>
<td>0.33</td>
<td>0.26</td>
<td>0.20</td>
</tr>
<tr>
<td>“Elaine” 5122</td>
<td>Sequential</td>
<td>17.25</td>
<td>14.38</td>
<td>12.29</td>
<td>11.08</td>
<td>10.48</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>2.74</td>
<td>1.96</td>
<td>1.46</td>
<td>1.13</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Neighborhood: 8-connexity

<table>
<thead>
<tr>
<th>Image</th>
<th>Algorithm</th>
<th>$\beta = 0.01$</th>
<th>$\beta = 0.02$</th>
<th>$\beta = 0.04$</th>
<th>$\beta = 0.08$</th>
<th>$\beta = 0.16$</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Circles” 2562</td>
<td>Sequential</td>
<td>10.34</td>
<td>8.13</td>
<td>6.91</td>
<td>6.36</td>
<td>6.03</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.66</td>
<td>0.38</td>
<td>0.92</td>
<td>0.60</td>
<td>0.31</td>
</tr>
<tr>
<td>“Circles” 5122</td>
<td>Sequential</td>
<td>43.84</td>
<td>32.68</td>
<td>27.79</td>
<td>24.90</td>
<td>23.99</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>2.12</td>
<td>7.02</td>
<td>4.05</td>
<td>1.66</td>
<td>1.04</td>
</tr>
<tr>
<td>“Man” 2562</td>
<td>Sequential</td>
<td>11.24</td>
<td>9.24</td>
<td>7.98</td>
<td>7.23</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>1.00</td>
<td>0.90</td>
<td>0.73</td>
<td>0.57</td>
<td>0.48</td>
</tr>
<tr>
<td>“Man” 5122</td>
<td>Sequential</td>
<td>46.66</td>
<td>37.18</td>
<td>31.91</td>
<td>28.78</td>
<td>26.83</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>5.29</td>
<td>4.40</td>
<td>3.08</td>
<td>2.49</td>
<td>2.03</td>
</tr>
<tr>
<td>“Elaine” 2562</td>
<td>Sequential</td>
<td>11.06</td>
<td>9.25</td>
<td>8.02</td>
<td>7.30</td>
<td>6.77</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>1.09</td>
<td>0.89</td>
<td>0.77</td>
<td>0.62</td>
<td>0.51</td>
</tr>
<tr>
<td>“Elaine” 5122</td>
<td>Sequential</td>
<td>48.13</td>
<td>38.25</td>
<td>33.07</td>
<td>29.49</td>
<td>27.39</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>5.87</td>
<td>4.88</td>
<td>3.44</td>
<td>2.70</td>
<td>2.12</td>
</tr>
</tbody>
</table>
More results

Tests characteristics
- Impulsive noise: $d_b = 20\%$ and $d_b = 40\%$.
- Gaussian noise: $\sigma_b = 15$ and $\sigma_b = 30$.
- Images 512^2.
- Connexity 8.

Images
- Image “Cubes”
- Image “Man”

Context
Exact total variation minimization
- Total variation and regularization
- TV models
- Minimization

Minimal cut (graph cut) as energy minimization
- Notations
- General principle
- Maximum flow / minimal cut
- Energy representation
- Results

More results
- Further results for 3D images

Conclusion
- Conclusion
- Perspectives
Results - $TV + L_1 - d_b = 20\%$

Context

Exact total variation minimization
- Total variation and regularization
- TV models
- Minimization

Minimal cut (graph cut) as energy minimization
- Notations
- General principle
- Maximum flow / minimal cut
- Energy representation

Results

More results
- Further results for 3D images

Conclusion

Perspectives
Results - $TV + L_1 - d_b = 40\%$

Noise - $SNR = 0.47$

Result - $\beta = 0.65$

Level lines

Noise - $SNR = -0.88$

Result - $\beta = 2.8$
Results - $TV + L_2 - \sigma_b = 15$

Noise - SNR = 14.70

Result - $\beta = 0.04$

Level lines

Noise - SNR = 12.1

Result - $\beta = 0.1$
Results - $TV + L_2 - \sigma_b = 30$

Noise - $SNR = 8.82$

Result - $\beta = 0.03$

Level lines

Noise - $SNR = 6.25$

Result - $\beta = 0.06$
3D Images - Results - $TV + L^1$

<table>
<thead>
<tr>
<th>Image</th>
<th>Algorithm</th>
<th>$\beta = 0.25$</th>
<th>$\beta = 0.5$</th>
<th>$\beta = 1.0$</th>
<th>$\beta = 2.0$</th>
<th>$\beta = 4.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPHERE-40</td>
<td>Sequential</td>
<td>0.10</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.60</td>
<td>0.17</td>
<td>0.18</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>SPHERE-40+d_b</td>
<td>Sequential</td>
<td>17.98</td>
<td>11.56</td>
<td>6.92</td>
<td>5.95</td>
<td>6.12</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.72</td>
<td>0.22</td>
<td>0.20</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>SPHERE-80</td>
<td>Sequential</td>
<td>0.75</td>
<td>0.49</td>
<td>0.44</td>
<td>0.43</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>2.09</td>
<td>1.82</td>
<td>1.77</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>SPHERE-80+d_b</td>
<td>Sequential</td>
<td>234.65</td>
<td>90.49</td>
<td>69.89</td>
<td>63.65</td>
<td>65.88</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>2.96</td>
<td>2.38</td>
<td>2.24</td>
<td>2.19</td>
<td>2.33</td>
</tr>
<tr>
<td>FACTORIES-40</td>
<td>Sequential</td>
<td>10.93</td>
<td>8.62</td>
<td>6.72</td>
<td>5.91</td>
<td>5.04</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>1.93</td>
<td>0.84</td>
<td>0.77</td>
<td>0.33</td>
<td>0.19</td>
</tr>
<tr>
<td>FACTORIES-40+d_b</td>
<td>Sequential</td>
<td>10.41</td>
<td>9.21</td>
<td>7.31</td>
<td>6.43</td>
<td>5.59</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.95</td>
<td>0.96</td>
<td>0.79</td>
<td>0.37</td>
<td>0.19</td>
</tr>
<tr>
<td>FACTORIES-80</td>
<td>Sequential</td>
<td>154.71</td>
<td>96.00</td>
<td>73.69</td>
<td>62.15</td>
<td>55.72</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>19.42</td>
<td>12.38</td>
<td>5.60</td>
<td>3.18</td>
<td>1.96</td>
</tr>
<tr>
<td>FACTORIES-80+d_b</td>
<td>Sequential</td>
<td>166.67</td>
<td>108.72</td>
<td>80.44</td>
<td>67.14</td>
<td>60.26</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>20.01</td>
<td>10.37</td>
<td>6.90</td>
<td>3.59</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Table: Computation times (seconds) for $TV + L^1$ with 6 connexity. 3D images: 40^3 and 80^3.

Context

Exact total variation minimization
- Total variation and regularization
- TV models
- Minimization

Minimal cut (graph cut) as energy minimization
- Notations
- General principle
- Maximum flow / minimal cut
- Energy representation
- Results
- More results

Conclusion
- Conclusion
- Perspectives
3D Images - Results - $TV + L^1$

<table>
<thead>
<tr>
<th>Image</th>
<th>Algorithm</th>
<th>$\beta = 0.25$</th>
<th>$\beta = 0.5$</th>
<th>$\beta = 1.0$</th>
<th>$\beta = 2.0$</th>
<th>$\beta = 4.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPHERE-40</td>
<td>Sequential</td>
<td>0.51</td>
<td>0.49</td>
<td>0.46</td>
<td>0.22</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>3.53</td>
<td>3.40</td>
<td>3.14</td>
<td>0.68</td>
<td>0.62</td>
</tr>
<tr>
<td>SPHERE-40+d_b</td>
<td>Sequential</td>
<td>110.38</td>
<td>110.06</td>
<td>106.39</td>
<td>56.08</td>
<td>28.82</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>4.73</td>
<td>4.48</td>
<td>3.78</td>
<td>0.97</td>
<td>0.84</td>
</tr>
<tr>
<td>SPHERE-80</td>
<td>Sequential</td>
<td>8.01</td>
<td>7.39</td>
<td>2.52</td>
<td>1.52</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>59.35</td>
<td>54.78</td>
<td>6.69</td>
<td>5.72</td>
<td>5.51</td>
</tr>
<tr>
<td>SPHERE-80+d_b</td>
<td>Sequential</td>
<td>1802.33</td>
<td>1643.56</td>
<td>873.04</td>
<td>299.68</td>
<td>218.54</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>73.46</td>
<td>63.76</td>
<td>9.33</td>
<td>7.31</td>
<td>7.16</td>
</tr>
<tr>
<td>FACTORIES-40</td>
<td>Sequential</td>
<td>44.16</td>
<td>43.96</td>
<td>52.74</td>
<td>43.61</td>
<td>29.97</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>5.48</td>
<td>4.91</td>
<td>4.84</td>
<td>4.25</td>
<td>3.07</td>
</tr>
<tr>
<td>FACTORIES-40+d_b</td>
<td>Sequential</td>
<td>42.76</td>
<td>42.42</td>
<td>46.45</td>
<td>45.33</td>
<td>32.96</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>5.48</td>
<td>5.12</td>
<td>7.77</td>
<td>5.48</td>
<td>3.72</td>
</tr>
<tr>
<td>FACTORIES-80</td>
<td>Sequential</td>
<td>587.27</td>
<td>1027.61</td>
<td>783.87</td>
<td>410.16</td>
<td>259.07</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>78.69</td>
<td>119.34</td>
<td>129.47</td>
<td>95.27</td>
<td>23.31</td>
</tr>
<tr>
<td>FACTORIES-80+d_b</td>
<td>Sequential</td>
<td>530.08</td>
<td>720.27</td>
<td>819.68</td>
<td>477.99</td>
<td>286.81</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>73.00</td>
<td>168.33</td>
<td>141.93</td>
<td>65.86</td>
<td>29.39</td>
</tr>
</tbody>
</table>

Table: Computation times (seconds) for $TV + L^1$ with 26 connexity. 3D images: 40^3 and 80^3.
3D Images - Results - $TV + L^2$

<table>
<thead>
<tr>
<th>Image</th>
<th>Algorithm</th>
<th>$\beta = 0.01$</th>
<th>$\beta = 0.02$</th>
<th>$\beta = 0.04$</th>
<th>$\beta = 0.08$</th>
<th>$\beta = 0.16$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPHERE-40</td>
<td>Sequential</td>
<td>7.52</td>
<td>6.19</td>
<td>5.55</td>
<td>5.34</td>
<td>5.05</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>SPHERE-40+d_b</td>
<td>Sequential</td>
<td>7.29</td>
<td>6.18</td>
<td>5.74</td>
<td>5.46</td>
<td>5.36</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.45</td>
<td>0.40</td>
<td>0.35</td>
<td>0.38</td>
<td>0.32</td>
</tr>
<tr>
<td>SPHERE-80</td>
<td>Sequential</td>
<td>81.86</td>
<td>67.72</td>
<td>63.29</td>
<td>57.48</td>
<td>56.52</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>1.74</td>
<td>1.74</td>
<td>1.74</td>
<td>1.74</td>
<td>1.74</td>
</tr>
<tr>
<td>SPHERE-80+d_b</td>
<td>Sequential</td>
<td>78.92</td>
<td>68.82</td>
<td>63.94</td>
<td>60.42</td>
<td>59.70</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>4.32</td>
<td>3.80</td>
<td>3.86</td>
<td>3.65</td>
<td>3.79</td>
</tr>
<tr>
<td>FACTORIES-40</td>
<td>Sequential</td>
<td>9.63</td>
<td>7.50</td>
<td>6.52</td>
<td>5.90</td>
<td>5.54</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.99</td>
<td>0.94</td>
<td>0.56</td>
<td>0.41</td>
<td>0.36</td>
</tr>
<tr>
<td>FACTORIES-40+d_b</td>
<td>Sequential</td>
<td>9.60</td>
<td>7.64</td>
<td>6.69</td>
<td>6.04</td>
<td>5.62</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.99</td>
<td>0.88</td>
<td>0.55</td>
<td>0.40</td>
<td>0.35</td>
</tr>
<tr>
<td>FACTORIES-80</td>
<td>Sequential</td>
<td>110.99</td>
<td>83.62</td>
<td>71.53</td>
<td>64.97</td>
<td>60.73</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>19.58</td>
<td>11.02</td>
<td>6.34</td>
<td>5.14</td>
<td>4.50</td>
</tr>
<tr>
<td>FACTORIES-80+d_b</td>
<td>Sequential</td>
<td>112.19</td>
<td>84.65</td>
<td>72.29</td>
<td>65.26</td>
<td>61.34</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>18.28</td>
<td>10.40</td>
<td>6.23</td>
<td>4.36</td>
<td>3.65</td>
</tr>
<tr>
<td>CELLULES-40</td>
<td>Sequential</td>
<td>6.33</td>
<td>6.72</td>
<td>6.00</td>
<td>5.46</td>
<td>5.19</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.93</td>
<td>1.18</td>
<td>0.89</td>
<td>0.55</td>
<td>0.54</td>
</tr>
<tr>
<td>CELLULES-80</td>
<td>Sequential</td>
<td>107.74</td>
<td>84.60</td>
<td>68.65</td>
<td>61.70</td>
<td>58.07</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>29.35</td>
<td>33.07</td>
<td>12.75</td>
<td>7.58</td>
<td>4.94</td>
</tr>
</tbody>
</table>

Table: Computation times (seconds) for $TV + L^2$ with 6 connectivity. 3D images: 40^3 and 80^3.
3D Images - Results - $TV + L^2$

<table>
<thead>
<tr>
<th>Image</th>
<th>Algorithm</th>
<th>$\beta = 0.01$</th>
<th>$\beta = 0.02$</th>
<th>$\beta = 0.04$</th>
<th>$\beta = 0.08$</th>
<th>$\beta = 0.16$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPHERE-40</td>
<td>Sequential</td>
<td>66.48</td>
<td>42.82</td>
<td>30.55</td>
<td>24.54</td>
<td>21.71</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>0.65</td>
<td>0.61</td>
<td>0.60</td>
<td>0.61</td>
<td>0.60</td>
</tr>
<tr>
<td>SPHERE-40+d_b</td>
<td>Sequential</td>
<td>64.45</td>
<td>41.20</td>
<td>29.81</td>
<td>25.01</td>
<td>22.64</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>2.32</td>
<td>2.19</td>
<td>1.85</td>
<td>1.66</td>
<td>1.56</td>
</tr>
<tr>
<td>SPHERE-80</td>
<td>Sequential</td>
<td>598.28</td>
<td>378.50</td>
<td>274.36</td>
<td>219.81</td>
<td>209.11</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>5.87</td>
<td>5.54</td>
<td>5.50</td>
<td>5.62</td>
<td>5.65</td>
</tr>
<tr>
<td>SPHERE-80+d_b</td>
<td>Sequential</td>
<td>550.09</td>
<td>347.81</td>
<td>260.82</td>
<td>219.12</td>
<td>196.73</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>27.87</td>
<td>20.94</td>
<td>17.62</td>
<td>15.52</td>
<td>14.38</td>
</tr>
<tr>
<td>FACTORIES-40</td>
<td>Sequential</td>
<td>66.24</td>
<td>54.15</td>
<td>39.77</td>
<td>30.34</td>
<td>25.40</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>8.90</td>
<td>5.69</td>
<td>3.75</td>
<td>3.55</td>
<td>2.12</td>
</tr>
<tr>
<td>FACTORIES-40+d_b</td>
<td>Sequential</td>
<td>65.75</td>
<td>54.01</td>
<td>39.59</td>
<td>30.29</td>
<td>25.75</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>8.59</td>
<td>5.68</td>
<td>3.86</td>
<td>3.22</td>
<td>2.15</td>
</tr>
<tr>
<td>FACTORIES-80</td>
<td>Sequential</td>
<td>1099.51</td>
<td>673.16</td>
<td>391.58</td>
<td>281.06</td>
<td>227.92</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>173.10</td>
<td>75.40</td>
<td>52.07</td>
<td>38.89</td>
<td>21.55</td>
</tr>
<tr>
<td>FACTORIES-80+d_b</td>
<td>Sequential</td>
<td>1086.86</td>
<td>662.72</td>
<td>387.27</td>
<td>281.60</td>
<td>231.48</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>108.21</td>
<td>67.50</td>
<td>49.87</td>
<td>33.01</td>
<td>20.38</td>
</tr>
<tr>
<td>CELLULES-40</td>
<td>Sequential</td>
<td>23.09</td>
<td>23.98</td>
<td>24.71</td>
<td>26.91</td>
<td>24.28</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>3.05</td>
<td>3.43</td>
<td>3.76</td>
<td>5.24</td>
<td>3.03</td>
</tr>
<tr>
<td>CELLULES-80</td>
<td>Sequential</td>
<td>262.14</td>
<td>277.04</td>
<td>373.07</td>
<td>294.75</td>
<td>239.85</td>
</tr>
<tr>
<td></td>
<td>Dyadic</td>
<td>50.98</td>
<td>61.38</td>
<td>126.01</td>
<td>67.98</td>
<td>48.13</td>
</tr>
</tbody>
</table>

Table: Computation times (seconds) for $TV + L^2$ with 26 connexity. 3D images: 40^3 and 80^3.
Conclusion
Conclusion

TV minimization

- (+) Exact solutions.
- (+) Quick results.
- (-) Restricted energy classes.
- (-) Over-smoothing along the discontinuities.
Perspectives

Parametric flow

Objectif: re-use the flow value.

Conditions:
- Arcs \((s, i)\) → non-increasing capacities.
- Arcs \((i, t)\) → non-decreasing capacities.
- Arcs \((i, j)\) → constant capacities.

Results: Less improvements than for the dyadic technique (Darbon Chambolle 08).

Applications: interactive segmentation, video segmentation.
Perspectives

Extension to multiway cut

Multi-labelling

Extension to other operators

Goal: generalize restoration to other operators H (convolution, sampling).

Applications: confocal microscopy, IRM.

Extension to other energy minimization models

Potts model