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1 Introduction

Consider a weighted directed graph G = (V,A, c) (where c : A → R+) which
represents a road network evaluated by travelling times (so the graph may not
be Euclidean). Assuming that c changes every few minutes, that the cardinal-
ity of V is very large (several million vertices), and that each shortest path
request must be answered in a few milliseconds, current technology does not
allow us to find an exact optimum in the brief time window before the next
change of the weight function. Such a situation occurs in fastest path compu-
tations for GPS enabled vehicles with real-time traffic information. Some prac-
tically efficient algorithms for graphs with fixed arc costs are [SS05,GKW05];
[MG04,MGD04,SP06] address uncertainty in arc costs but do not yield algo-
rithms which perform within acceptable time frames.

We assume some lower and upper bounding functions l, u : A → R for c are
known. In this paper, we propose a Polynomial-Time Approximation Scheme
(PTAS) for the Point-to-Point Shortest Path Problem (PPSPP). The strin-
gent time constraints do not make exact algorithms an acceptable choice,
yet a guarantee on the solution quality is desired. Our algorithm is based on
Dijkstra-type searches performed on clusters of nodes; such clusters are pre-
computed in such a way as to give a bound on the solution performance, whilst
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accelerating the search enough to be practically useful within the given time
constraints.

2 Guarantee regions

For s, t ∈ V we denote the set of all paths (s, . . . , t) from s to t by P (s, t)
and the set of all shortest paths from s to t on a graph weighted by function
f by P ∗

f (s, t) (the subscript f is omitted when f = c). Given U ⊆ V such
that s, t ∈ U , let G[U ] be the subgraph of G induced by U . The set of all
paths between s and t in G[U ] is denoted by P [U ](s, t) and the set of all
shortest paths between s and t in G[U ] weighted by function f is denoted
by P ∗

f [U ](s, t); as before, we will write P ∗[U ](s, t) = P ∗

c [U ](s, t). We naturally

extend c to be defined on paths p = (v1, . . . , vk) by c(p) =
∑k−1

i=1 c(vi, vi+1).

Let Gl = (V,A, l), Gu = (V,A, u) be the graph G weighted by the lower and
upper bounding functions l, u. For K > 1, s, t ∈ V and path p ∈ P ∗

u (s, t) (p
is a shortest path from s to t in Gu), we define a guarantee region Γst(K, p) =
{v ∈ V |v ∈ p ∨ ∃ q ∈ P (s, t) (v ∈ q ∧ l(q) < 1

K
u(p))}. We can prove that such

a set of nodes has the following approximation property: p∗ ∈ P ∗(s, t) and
q∗ ∈ P ∗[Γst(K, p)](s, t), we have c(q∗) ≤ Kc(p∗). Although guarantee regions
generated by shortest paths in Gu may not be the minimally-sized sets with
this approximation property, it is possible to show that they are no worse than
those generated by any other path.

The trouble with the guarantee regions defined above is that building all guar-
antee regions for all node pairs in a very large graph is not a feasible task with
current technology. We deal with this problem by covering V with clusters
V1, . . . , Vk; however, not all coverings are useful for our approach. We will call
a covering V1, . . . , Vk of V valid if for all i ≤ k there are two selected (not
necessarily distinct) vertices si, ti ∈ Vi such that for all other vertices v ∈ Vi

there are paths p ∈ P (v, si), q ∈ P (ti, v) entirely contained in Vi. For all i ≤ k

let σi = maxv∈Vi,p∈P ∗

u (v,si) c(p) and τi = maxv∈Vi,p∈P ∗

u (ti,v) c(p)) be the costs of
the longest shortest path in Gu from v to si and respectively from ti to v

over all v ∈ Vi. We can now extend guarantee regions to depend on a source
and a destination cluster in a valid covering V1, . . . , Vk of V . For K > 1,
i 6= j ≤ k and a path p ∈ P ∗

u (si, tj), we define the clustered guarantee region

as ΓViVj
(K, p) = {v ∈ V |v ∈ p ∪ Vi ∪ Vj ∨ ∃ q ∈ P (si, tj) (v ∈ q ∧ l(q) <

1
K

(u(p) + σi + τj))}. We can prove that such a set of nodes has the follow-
ing approximation property: for u ∈ Vi, v ∈ Vj (where i 6= j), p∗ ∈ P ∗(u, v),
q∗ ∈ P ∗[ΓViVj

(K, p)](u, v), we have c(q∗) ≤ Kc(p∗). Again, clustered guaran-
tee regions may not be the minimially-sized sets having this approximation
property, but they are no worse than those generated by any other path.
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The definition of guarantee regions imply that the most expensive part of their
(pre-processing) computation is finding all paths p ∈ P (s, t) s.t. l(p) < H.
There exists in fact a polynomial algorithm that computes all nodes on a
path with a total cost < H from a node s to a node t. Computing H itself is
straightforward, since it requires knowing p∗ ∈ P ∗

u (s, t) and, in the clustered
case, upper bounds to the cost of shortest paths in a small set of nodes.

3 Preliminary computational experiments

We used a subgraph of France’s road network, roughly corresponding to Île-de-
France (i.e. Paris and surroundings), to validate our approach. This subgraph
has roughly 300.000 vertices and 800.000 edges. We ran several bidirectional
Dijkstra searches [SS05] on the full graph and on guarantee regions to assess
the usefulness of our heuristic, with source and destination node chosen at
random, and for each source-destination pair we repeated the query 5 times
with arc costs generated at random with a uniform distribution each time;
upper bounds on arc costs are between 5-10 times lower bounds. We recorded
solution quality and CPU times in Table 1. For each value of K (first column),
we indicate the average number D of nodes explored in bi-directional Dijkstra
searches n the full graph, the average number R of nodes explored in bi-
directional Dijkstra searches on the guarantee regions, the average percentage
increase P of the approximated solution value with respect to the optimum
(0% means that the approximated solution is optimal), the average CPU time
savings C in percentage of the CPU times taken by the exact algorithm (0%
means as slow as the exact algorithm).

K D R P C

3 74559 74532 0% 0%

4 74779 74219 0% 0%

5 74651 65126 0% 8.39%

6 74739 39282 0% 46.85%

7 74647 5609 0.07% 93.86%

Table 1
Computational results on unclustered graph: mean values.

To validate the clustered approach, we generated a valid covering of V , and
then, for some random cluster pairs, compared the number of explored and
settled nodes between a bidirectional Dijkstra search and a bidirectional Dijk-
stra search constrained to the guarantee regions, where source and destination
node of Dijkstra’s search where chosen randomly in their respective cluster,
performing 5 queries with arc costs generated at random for each source-
destination pair. Results are reported in Table 2 (same column labels as Table
1); cluster size was set to 500 nodes.
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K D R P C

6 74493 73262 0% 0%

7 74605 66804 0% 5.83%

8 74129 56761 0% 20.35%

9 74436 34091 0.02% 54.26%

10 74494 13978 1.20% 82.05%

Table 2
Computational results on clustered graph: mean values

4 Conclusion

We have proposed a two-phase Polynomial Time Approximation Scheme for
the Point-To-Point Shortest Path Problem, based on a pre-processing phase
where we compute guarantee regions where we can restrict the search, and
a query phase where we answer point-to-point queries. This was motivated
by the need for finding short paths on large-scale graphs very quickly, where
arc costs (representing travelling times given by real-time traffic data on a
road network) may vary within a given range. The approach was successfully
validated on a graph (of limited size) derived from the road network of the
Île-de-France region, showing great computational time reduction in query
resolution while still finding an optimal or near-optimal solution.

In practice, real-time traffic data is only available for a relatively small subset
of all arcs, so that knowing how to infer unknown traffic data from the existing
data is also an issue. Although we do not target this particular aspect of the
problem in this paper, future work will be undertaken on the matter.
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