On Hypersequents and Labelled Sequents
Translating Labelled Sequent Proofs to Hypersequent Proofs

Robert Rothenberg1,2

1School of Computer Science
University of St Andrews

2Interactive Information, Ltd
Edinburgh

Workshop in Honour of Roy Dyckhoff
St Andrews, 18-19 November 2011
Extensions of Gentzen-style Sequent Calculi

Extensions to Gentzen-style sequent calculi obtained by changing to specific syntactic features [Paoli] in order to control proof search for non-classical logics, such as:

- Labelled Systems
- Multiple Sequents (e.g. higher-order sequents, hypersequents)
- Multi-sided Sequents
- Multi-arrow Sequents (e.g. sequents of relations)
- Multi-comma Systems (e.g. Display Logics)
- Deep Inference Systems (e.g. Calculus of Structures)

Many systems are hybrids of these, such as nested sequents or relational hypersequents.
Why Compare Formalisms?

- Interface vs implementation (automated proof assistants)
- Translating proofs of meta properties.
- Novel and interesting rules obtained from other formalisms.
- Formal criteria for comparing formalisms.
- Illuminate the meaning of particular syntactic features.
- Use abstraction to conceive of new extensions? (akin to juggling notation...)
- Develop a hierarchy of the strength of proof systems.
Why Compare Labelled Sequents and Hypersequents?

- Folklore about relationship, but no published formal comparison beyond specific calculi (mainly for \(S5 \)).
- There are labelled and hypersequent calculi for overlapping sets of logics. (Here we look at some Int\(^* \) logics.)
- A comparison of the rules for some logics suggests a relationship...
Labelled Systems

- The language of formulae is extended with a language of annotations to control inference, e.g.

\[
\frac{\Gamma \Rightarrow \Delta, A^y}{\Gamma \Rightarrow \Delta, \Box A^x} \quad \mathcal{R}\Box
\]

where \(y \) is fresh for the conclusion.
- Additional kinds of formulae based on labels may be used for controlling inference, e.g. \(\mathcal{R}xy \).
- Easily obtained using the relational semantics of a logic.
Syntax of Labelled Sequents

- Formulae in a sequent are annotated with **labels**, e.g. A^x.

 \[\Gamma_1^{x_1}, \ldots, \Gamma_n^{x_n} \Rightarrow \Delta_1^{x_1}, \ldots, \Delta_n^{x_n} \]

- Sequents may also contain **relational formulae** which indicate a relationship between labels, e.g. R_{xy}.

 \[R_{x_1 i_1 y_1}, \ldots, R_{x_k i_k y_k}, \Gamma_1^{x_1}, \ldots, \Gamma_n^{x_n} \Rightarrow \Delta_1^{x_1}, \ldots, \Delta_n^{x_n} \]

- In some calculi, labels may be complex expressions, or may contain variables...

- ...relational formulae may be n-ary, occur on either side, or even be “first class” and combined with formulae, e.g. $R_{xy} \land (A \lor B)^x$.

The Simple Relational Calculus G3I

▶ A labelled calculus with atomic labels and binary relations.
▶ A fragment of the calculus G3I from [Negri, 2005]:

\[R_{xy}, \Sigma; P^x, \Gamma \Rightarrow \Delta, P^y \]

\[R_{xy}, \Sigma; (A \supset B)^x, \Gamma \Rightarrow \Delta, A^y \]
\[R_{xy}, \Sigma; (A \supset B)^x, B^y, \Gamma \Rightarrow \Delta \]
\[R_{xy}, \Sigma; (A \supset B)^x, \Gamma \Rightarrow \Delta \]

\[L \supset \]

\[R_{xy}, \Sigma; A^y, \Gamma \Rightarrow \Delta, B^y \]
\[\Sigma; \Gamma \Rightarrow \Delta, (A \supset B)^x \]
\[R \supset \]

The rules for \(\land \), \(\lor \) and \(\bot \) are standard.

▶ The **pure relational rules** (or “ordering rules”):

\[R_{xx}, \Sigma; \Gamma \Rightarrow \Delta \]
\[\Sigma; \Gamma \Rightarrow \Delta \]
\[\text{refl} \]

\[R_{xz}, R_{xy}, R_{yz}, \Sigma; \Gamma \Rightarrow \Delta \]
\[R_{xy}, R_{yz}, \Sigma; \Gamma \Rightarrow \Delta \]
\[\text{trans} \]
[Pinto & Uustalu, 2009] give a similar calculus for \textbf{BiInt}, with (aside from the dual of \supset) contraction as a primitive rule and replacing the axiom with

$$\Sigma; A^x, \Gamma \Rightarrow \Delta, A^x$$

$$\frac{R_{xy}, \Sigma; A^x, A^y, \Gamma \Rightarrow \Delta}{R_{xy}, \Sigma; A^x, \Gamma \Rightarrow \Delta} \quad L_{\text{mono}} \quad \frac{R_{xy}, \Sigma; \Gamma \Rightarrow \Delta, A^x, A^y}{R_{xy}, \Sigma; \Gamma \Rightarrow \Delta, A^y} \quad R_{\text{mono}}$$

The mono rules are derivable in \textbf{G3I} using cut, e.g.:

$$\vdots$$

$$\frac{R_{xy}, \Sigma; A^x, \Gamma \Rightarrow \Delta, A^y}{R_{xy}, \Sigma; A^x, A^y, \Gamma \Rightarrow \Delta} \quad \frac{R_{xy}, \Sigma; A^x, A^y, \Gamma \Rightarrow \Delta}{R_{xy}, \Sigma; A^x, \Gamma \Rightarrow \Delta} \quad \text{cut}$$
Geometric Rules

- **A geometric rule** is a $\mathcal{G}3$-style rule of the form

$$
\frac{[\hat{z}/y] \Sigma_1, \Sigma_0, \Gamma \Rightarrow \Delta \ldots [\hat{z}/y] \Sigma_n, \Sigma_0, \Gamma \Rightarrow \Delta}{\Sigma_0, \Gamma \Rightarrow \Delta}
$$

where the variables \hat{z} do not occur free in the conclusion, and each Σ_i is a multiset of atoms.

- Geometric rules can be added to $\mathcal{G}3$-style calculi without affecting admissibility of cut, weakening or contraction. [Negri 2005] [Simpson 1994].

- **A geometric implication** [Palmgren 2002?] is a formula of the form $\forall \bar{x}.(A \supset B)$, without \supset, \forall in subformulae of A, B. They are constructively equivalent to:

$$
\forall \bar{x}.((P_{10} \land \ldots \land P_{k0}) \supset \exists \bar{y}.((P_{11} \land \ldots \land P_{k1}) \lor \ldots \lor (P_{1n} \land \ldots \land P_{kn})))
$$

- Frame conditions of many logics in Int^* are geometric implications.
Extending G3I for Geometric Intermediate Logics

- Adding rules that correspond to frame conditions of logics...

 - Adding the “directedness” rule yields a calculus for \textit{Jan}:
 \[
 \frac{Rx\hat{z}, Ry\hat{z}, Rxw, Ryw, \Sigma; \Gamma \Rightarrow \Delta}{Rxw, Ryw, \Sigma; \Gamma \Rightarrow \Delta} \quad \text{dir}
 \]

 - Adding the “linearity rule” yields a calculus for \textit{GD}:
 \[
 \frac{Rxy, \Sigma; \Gamma \Rightarrow \Delta \quad Ryx, \Sigma; \Gamma \Rightarrow \Delta}{\Sigma; \Gamma \Rightarrow \Delta} \quad \text{lin}
 \]

 - Adding the “symmetry” rule yields a calculus for \textit{Cl}:
 \[
 \frac{Rxy, Ryx, \Sigma; \Gamma \Rightarrow \Delta}{Rxy, \Sigma; \Gamma \Rightarrow \Delta} \quad \text{sym}
 \]

- Weakening, contraction and cut admissibility is preserved.
Hypersequents

- Attributed to [Avron] although similar calculi occur in earlier work by [Beth], [Sambin & Valentini], [Pottinger].
- A hypersequent is a non-empty list/multiset of sequents

\[\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n \]

called its components.
- A hypersequent \(\mathcal{H} \) is true in an interpretation \(\mathcal{I} \) iff one of its components, \(\Gamma_i \Rightarrow \Delta_i \in \mathcal{H} \) is true in that interpretation, i.e.

\[(\forall \Gamma_1 \supset \forall \Delta_1) \lor \ldots \lor (\forall \Gamma_n \supset \forall \Delta_n)\]
Syntax of Hypersequents

- **Internal rules** are (structural) rules which have one active component in each premiss, and one principal component in the conclusion. **External rules** are (structural) rules which are not internal rules.

- The **standard external rules** are

 \[
 \frac{\mathcal{H}}{\mathcal{H} \vdash \Gamma \Rightarrow \Delta} \quad \text{EW} \quad \frac{\mathcal{H} \vdash \Gamma \Rightarrow \Delta}{\mathcal{H} \vdash \Gamma \Rightarrow \Delta} \quad \text{EC} \quad \frac{\mathcal{H} \vdash \Gamma \Rightarrow \Delta}{\mathcal{H} \vdash \Gamma \Rightarrow \Delta} \quad \text{EP}
 \]

 where \(\mathcal{H}, \mathcal{H}' \) denote the **side components**.

- The **hyperextension** of a sequent calculus is its extension as a hypersequent calculus by adding hypercontexts to rules and the standard external rules.
A Hyperextension of a Calculus for Int

\[\frac{\Gamma, P \Rightarrow P, \Delta}{\text{Ax}} \]

\[\frac{\Gamma, \bot \Rightarrow \Delta}{L\bot} \]

\[\frac{\mathcal{H}|\Gamma \Rightarrow \Delta, \bot}{R\bot} \]

\[\frac{\mathcal{H}|\Gamma, A \Rightarrow \Delta \quad \mathcal{H}|\Gamma, B \Rightarrow \Delta}{\mathcal{H}|\Gamma, A \lor B \Rightarrow \Delta} \quad \text{L\lor} \]

\[\frac{\mathcal{H}|\Gamma \Rightarrow A, \Delta \quad \mathcal{H}|\Gamma \Rightarrow B, \Delta}{\mathcal{H}|\Gamma \Rightarrow A \lor B, \Delta} \quad \text{R\lor}_1 \]

\[\frac{\mathcal{H}|\Gamma \Rightarrow A \lor B, \Delta}{R\lor_2} \]

\[\frac{\mathcal{H}|\Gamma \Rightarrow \Delta, A \quad \mathcal{H}|\Gamma, B \Rightarrow \Delta}{\mathcal{H}|\Gamma, A \supset B \Rightarrow \Delta} \quad \text{L\supset} \]

\[\frac{\mathcal{H}|\Gamma \Rightarrow A \supset B, \Delta}{\text{R\supset}} \]

\[\frac{\mathcal{H}|\Gamma \Rightarrow \Delta}{\mathcal{H}|\Gamma, \Gamma' \Rightarrow \Delta, \Delta'} \quad \text{W} \]

\[\frac{\mathcal{H}|\Gamma, \Gamma' \Rightarrow \Delta, \Delta', \Delta'}{\mathcal{H}|\Gamma, \Gamma' \Rightarrow \Delta, \Delta'} \quad \text{C} \]

plus the dual \(\land \) rules and standard external rules and (hyperextended) cut.
Extensions for Some Intermediate Logics

- Adding the LQ rule yields a calculus for \textbf{Jan}:

\[
\frac{\mathcal{H}|\Gamma_1, \Gamma_2 \Rightarrow}{\mathcal{H}|\Gamma_1 \Rightarrow |\Gamma_2 \Rightarrow} \quad \text{LQ}
\]

- Adding the communication rule yields a calculus for \textbf{GD}:

\[
\frac{\mathcal{H}|\Gamma_1, \Gamma_2 \Rightarrow \Delta_1 \quad \mathcal{H}|\Gamma_1, \Gamma_2 \Rightarrow \Delta_2}{\mathcal{H}|\Gamma_1 \Rightarrow \Delta_1 |\Gamma_2 \Rightarrow \Delta_2} \quad \text{Com}
\]

- Adding the split rule yields a calculus for \textbf{Cl}:

\[
\frac{\mathcal{H}|\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2}{\mathcal{H}|\Gamma_1 \Rightarrow \Delta_1 |\Gamma_2 \Rightarrow \Delta_2} \quad \text{S}
\]
The Labelled and Hypersequent Rules Look Similar

Hypersequent Rule

\[
\frac{\mathcal{H}|\Gamma_1, \Gamma_2 \Rightarrow}{\mathcal{H}|\Gamma_1 \Rightarrow |\Gamma_2 \Rightarrow}
\]

\[
\frac{\mathcal{H}|\Gamma_1, \Gamma_2 \Rightarrow \Delta_1 \quad \mathcal{H}|\Gamma_1, \Gamma_2 \Rightarrow \Delta_2}{\mathcal{H}|\Gamma_1 \Rightarrow \Delta_1 |\Gamma_2 \Rightarrow \Delta_2}
\]

\[
\frac{\mathcal{H}|\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2}{\mathcal{H}|\Gamma_1 \Rightarrow \Delta_1 |\Gamma_2 \Rightarrow \Delta_2}
\]

Relational Rule

\[
\frac{R_{x\hat{z}}, R_{y\hat{z}}, R_{wx}, R_{wy}, \Sigma; \Gamma \Rightarrow \Delta}{R_{wx}, R_{wy}, \Sigma; \Gamma \Rightarrow \Delta}
\]

\[
\frac{R_{xy}, \Sigma; \Gamma \Rightarrow \Delta \quad R_{yx}, \Sigma; \Gamma \Rightarrow \Delta}{\Sigma; \Gamma \Rightarrow \Delta}
\]

\[
\frac{R_{xy}, R_{yx}, \Sigma; \Gamma \Rightarrow \Delta}{R_{xy}, \Sigma; \Gamma \Rightarrow \Delta}
\]

Components roughly correspond to labels, and relational formula roughly correspond to subset relations.
Translation of Labelled Sequents to Hypersequents

- We want a translation of proofs in labelled systems like $G3I^*$ to (familiar) hypersequent systems.
- Each label corresponds to a component.
- Relations are translated using monotonicity: R_{xy} is translated by including the antecedent (r. succedent) of the component for x (r. y) as a subset of the antecedent (r. succedent) of the component for y (r. x). e.g.,

$$R_{xy}, A^x, B^y \Rightarrow C^x, D^y \quad \mapsto \quad A \Rightarrow C, D \mid A, B \Rightarrow D$$

The process is called transitive unfolding.
- The translation makes an explicit relationship between labels into an implicit relationship between components.
Labelled Calculi are More Expressive than Hypersequents

- The two labelled sequents,

\[\mathcal{R}_{xy}, \mathcal{R}_{xz}; \Gamma^x \Rightarrow \mathcal{R}_{xy}, \mathcal{R}_{yz}; \Gamma^x \Rightarrow \]

both translate to the same hypersequent,

\[\Gamma \Rightarrow | \Gamma \Rightarrow | \Gamma \Rightarrow \]

- What do relations mean w.r.t. hypersequents? e.g. The following holds for \textbf{Int} models:

\[\mathcal{R}_{xy}; (A \lor B)^x, (B \supset C)^y \Rightarrow A^x, C^y \]

but the corresponding hypersequent is not derivable for \textbf{Int}:

\[A \lor B \Rightarrow A, C \mid A \lor B, B \supset C \Rightarrow C \]
Hypersequents and Monotonicity

- Ideally, we’d like hypersequent rules to act on multiple components in accordance with monotonicity, just as labelled rules do.
- But the following rule is not valid for Int:

\[
\frac{\mathcal{H}|A, \Gamma \Rightarrow \Delta, \Delta'|A, \Gamma, \Gamma'| \Rightarrow \Delta'}{\mathcal{H}|A, \Gamma \Rightarrow \Delta, \Delta'|\Gamma, \Gamma'| \Rightarrow \Delta'} \quad L \subseteq
\]

- A simple counterexample is

\[
\frac{A \Rightarrow A \land B | A, B \Rightarrow A \land B}{A \Rightarrow A \land B | B \Rightarrow A \land B} \quad L \subseteq
\]

which is valid for \(\text{GD} = \text{Int} + (A \supset B) \lor (B \supset A) \).
The Translation Requires Communication

Theorem

Labelled proofs in G3I\(^*\) (that do not contain ordering rules with principal relational formulae) can be translated into hypersequent proofs in a corresponding calculus augmented with the Com rule,

\[
\frac{\mathcal{H}|\Gamma \Rightarrow \Delta, \Delta'|\Gamma, \Gamma' \Rightarrow \Delta' \quad \mathcal{H}|\Gamma, \Gamma' \Rightarrow \Delta | \Gamma' \Rightarrow \Delta, \Delta'}{\mathcal{H}|\Gamma \Rightarrow \Delta | \Gamma' \Rightarrow \Delta'} \quad \text{Com}
\]

- Labelled rules and proofs for some logics Int\(^*\) can be translated into hypersequent proofs for GD\(^*\).
- The restriction on ordering rules has to do with the admissibility of cut. A rule such as

\[
\frac{\mathcal{R}_{yx}, \mathcal{R}_{xy}, \mathcal{R}_{yz}; \Gamma \Rightarrow \Delta \quad \mathcal{R}_{zy}, \mathcal{R}_{xy}, \mathcal{R}_{yz}; \Gamma \Rightarrow \Delta}{\mathcal{R}_{xy}, \mathcal{R}_{yz}; \Gamma \Rightarrow \Delta} \quad \text{bd}_2
\]

translates to hypersequent rules with duplicated metavariables in the conclusion, and that may affect cut admissibility. (⋆)
Translation of Proofs

- Note that this work is about translating *proofs* of arbitrary labelled sequents (with relations) into hypersequents.
- The communication rule allows us to derive hypersequent variants of the labelled rules.
- We proceed by transitive unfolding the premisses of each labelled inference and then applying the hypersequent variant of the inference rule, to obtain a conclusion that is the transitive unfolding of the conclusion of the labelled inference.
- The refl, trans and mono rules are ignored as they are implicit in the translation. (⋆)
Monotonicity Rules

Lemma
The rules

\[
\frac{\mathcal{H} | A, \Gamma \Rightarrow \Delta, \Delta' | A, \Gamma, \Gamma' \Rightarrow \Delta'}{\mathcal{H} | A, \Gamma \Rightarrow \Delta, \Delta' | \Gamma, \Gamma' \Rightarrow \Delta'} \quad L\subset
\]

\[
\frac{\mathcal{H} | \Gamma \Rightarrow \Delta, \Delta' | \Gamma, \Gamma' \Rightarrow \Delta'}{\mathcal{H} | \Gamma \Rightarrow \Delta, \Delta' | \Gamma, \Gamma' \Rightarrow \Delta', A} \quad R\subset
\]

are derivable using Com.

Proof.

\[
\frac{\mathcal{H} | A, \Gamma \Rightarrow \Delta, \Delta' | A, \Gamma, \Gamma' \Rightarrow \Delta'}{\mathcal{H} | A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta' | A, \Gamma, \Gamma' \Rightarrow \Delta'} \quad W \quad (RS)
\]

\[
\frac{\mathcal{H} | A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta' | A, \Gamma, \Gamma' \Rightarrow \Delta'}{\mathcal{H} | A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta'^2} \quad C
\]

\[
\frac{\mathcal{H} | A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta'}{\mathcal{H} | A, \Gamma, \Gamma' | \Gamma' \Rightarrow \Delta^2, \Delta'} \quad EW
\]

\[
\mathcal{H} | A, \Gamma \Rightarrow \Delta, \Delta' | \Gamma, \Gamma' \Rightarrow \Delta' \quad W
\]

\[
\mathcal{H} | A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta' \quad EW
\]

\[
\mathcal{H} | A, \Gamma, \Gamma' \Rightarrow \Delta, \Delta' \quad C
\]

\[
\mathcal{H} | A, \Gamma \Rightarrow \Delta, \Delta' | \Gamma, \Gamma' \Rightarrow \Delta' \quad L\subset
\]

The proof of \(R\subset \) is similar. \(\square\)
Lemma

The rule

\[
\frac{H|A, \Gamma_1 \Rightarrow \Delta_1| \ldots |A, \Gamma_k \Rightarrow \Delta_k \quad H|B, \Gamma_1 \Rightarrow \Delta_1| \ldots |B, \Gamma_k \Rightarrow \Delta_k}{H|A \lor B, \Gamma_1 \Rightarrow \Delta_1| \ldots |A \lor B, \Gamma_k \Rightarrow \Delta_k} \quad L \lor \star
\]

where $\Gamma_i \subseteq \Gamma_{i+1}$ and $\Delta_{i+1} \subseteq \Delta_i$, is derivable using Com.

The dual rule $R \land \star$ is similarly derivable.

A $L \supset \star$ rule is also derivable, using the derived monotonicity rules.
An Example Translation

\[\mathcal{R}_{yy}, \mathcal{R}_{xy}; B^x, B^y, (B \supset C)^y \Rightarrow B^y \quad \mathcal{R}_{yy}; C^y, (B \supset C)^y \Rightarrow C^y \]

\[\mathcal{R}_{xx}, \mathcal{R}_{xy}; A^x \Rightarrow A^x, C^y \quad \mathcal{R}_{xx}, \mathcal{R}_{xy}; B^x, B^y, (B \supset C)^y \Rightarrow C^y \]

\[\mathcal{R}_{xy}; A^x \Rightarrow A^x, C^y \quad \mathcal{R}_{xy}; B^x, B^y, (B \supset C)^y \Rightarrow C^y \]

\[\mathcal{R}_{xy}; (A \lor B)^x, (B \supset C)^y \Rightarrow A^x, C^y \]

\[B \Rightarrow A, C \mid B, B \supset C \Rightarrow B, C \quad B \Rightarrow A, C \mid C, B \supset C \Rightarrow C \]

\[A \Rightarrow A, C \mid A, B \supset C \Rightarrow C \quad B \Rightarrow A, C \mid B, B \supset C \Rightarrow C \]

\[A \Rightarrow A, C \mid A, B \supset C \Rightarrow C \quad B \Rightarrow A, C \mid B, B \supset C \Rightarrow C \]

\[A \lor B \Rightarrow A, C \mid A \lor B, B \supset C \Rightarrow C \]
Related Work (1)

- Hypersequents and labelled calculi for S_5, [Avron, 1996], etc.
- Hypersequents and Display Logics for specific logics, [Wansing, 1998], and labelled calculi for S_5, [Restall, 2006].
- Hypersequents and labelled calculi for A and L, [Metcalf et al, 2002].
- Starred sequents, hypersequents and indexed sequents for S_5 and N_3, [P. Girard, 2005].
- Relationship between labelled calculi and nested sequents for modal logics [Fitting, 2010].
Related Work (2)

- Obtaining labelled calculi from non-labelled (e.g. Hilbert and sequent) calculi, [Gabbay, 1996].
- Obtaining (hyper)sequent rules from Hilbert-style axioms [Ciabattoni et al, 2008].
- Syntactic conditions for cut admissibility [Ciabattoni et al, 2009].
- Labelled sequent calculi with geometric rules, for non-classical logics [Negri, 2005], spec. for intermediate logics [Dyckhoff & Negri, 2010 (MS)].
Open Questions and Future Work

- Do rules with non-linear conclusions (e.g. bd_2) admit cut in the presence of Com?
- Can hypersequent proofs of single components be transformed so that they do not have Com, for logics weaker than GD?
- Can transformation of labelled proofs into hypersequent proofs give a technique for parallelising programs?